1,570 research outputs found

    Rational Hausdorff Divisors: a New approach to the Approximate Parametrization of Curves

    Get PDF
    In this paper we introduce the notion of rational Hausdorff divisor, we analyze the dimension and irreducibility of its associated linear system of curves, and we prove that all irreducible real curves belonging to the linear system are rational and are at finite Hausdorff distance among them. As a consequence, we provide a projective linear subspace where all (irreducible) elements are solutions to the approximate parametrization problem for a given algebraic plane curve. Furthermore, we identify the linear system with a plane curve that is shown to be rational and we develop algorithms to parametrize it analyzing its fields of parametrization. Therefore, we present a generic answer to the approximate parametrization problem. In addition, we introduce the notion of Hausdorff curve, and we prove that every irreducible Hausdorff curve can always be parametrized with a generic rational parametrization having coefficients depending on as many parameters as the degree of the input curve

    Topologically certified approximation of umbilics and ridges on polynomial parametric surface

    Get PDF
    Given a smooth surface, a blue (red) ridge is a curve along which the maximum (minimum) principal curvature has an extremum along its curvature line. Ridges are curves of extremal curvature and encode important informations used in surface analysis or segmentation. But reporting the ridges of a surface requires manipulating third and fourth order derivatives whence numerical difficulties. Additionally, ridges have self-intersections and complex interactions with the umbilics of the surface whence topological difficulties. In this context, we make two contributions for the computation of ridges of polynomial parametric surfaces. First, by instantiating to the polynomial setting a global structure theorem of ridge curves proved in a companion paper, we develop the first certified algorithm to produce a topological approximation of the curve P encoding all the ridges of the surface. The algorithm exploits the singular structure of P umbilics and purple points, and reduces the problem to solving zero dimensional systems using Gröbner basis. Second, for cases where the zero-dimensional systems cannot be practically solved, we develop a certified plot algorithm at any fixed resolution. These contributions are respectively illustrated for Bezier surfaces of degree four and five

    Bivariate systems and topology of plane curves: algebraic and numerical methods

    Get PDF
    The work presented in this thesis belongs to the domain of non-linear computational geometry in lowdimension. More precisely it focuses on solving bivariate systems and computing the topology of curvesin the plane. When the input is given by polynomials, the natural tools come from computer algebra.Our contributions are algorithms proven efficient in a deterministic or a Las Vegas settings together witha practical efficient software for topology certified drawing of a plane algebraic curve. When the input isnot restricted to be polynomials but given by interval functions, we design algorithms based on certifiednumerical approches using subdivision and interval arithmetic. The input is then required to fulfill somegeneric assumptions and our algorithms are certified in the sense that they terminate if and only if theassumptions are satisfied.Le travail présenté dans cette thèse appartient au domaine de la géométrie computationnelle non linéaireen petite dimension. Plus précisément, il se concentre sur la résolution de systèmes bivariés et le calcul dela topologie des courbes dans le plan. Lorsque l’entrée est donnée par des polynômes, les outils naturelsproviennent du calcul formel. Nos contributions sont des algorithmes dont l’efficacité a été prouvée dansun cadre déterministe ou Las Vegas, ainsi qu’un logiciel efficace pour le dessin certifié de la topologied’une courbe algébrique plane. Lorsque les données d’entrée ne sont pas limitées aux polynômes maissont données par des fonctions d’intervalles, nous concevons des algorithmes basés sur des approchesnumériques certifiées utilisant la subdivision et l’arithmétique d’intervalles. L’entrée doit alors satisfairecertaines hypothèses génériques et nos algorithmes sont certifiés dans le sens où ils se terminent si etseulement si les hypothèses sont satisfaites

    Numerical proper reparametrization of parametric plane curves

    Get PDF
    We present an algorithm for reparametrizing algebraic plane curves from a numerical point of view. More precisely, given a tolerance ϵ>0 and a rational parametrization P of a plane curve C with perturbed float coefficients, we present an algorithm that computes a parametrization Q of a new plane curve D such that Q is an ϵ –proper reparametrization of D. In addition, the error bound is carefully discussed and we present a formula that measures the “closeness” between the input curve C and the output curve D

    On the approximate parametrization problem of algebraic curves.

    Get PDF
    The problem of parameterizing approximately algebraic curves and surfaces is an active research field, with many implications in practical applications. The problem can be treated locally or globally. We formally state the problem, in its global version for the case of algebraic curves (planar or spatial), and we report on some algorithms approaching it, as well as on the associated error distance analysis

    On deflation and multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construction uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear in each iteration instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new variables that completely deflates the root in one step. We show that the isolated simple solutions of this new system correspond to roots of the original system with given multiplicity structure up to a given order. Both constructions are "exact" in that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0508

    SYNAPS: A library for dedicated applications in symbolic numeric computing,

    Get PDF
    International audienceWe present an overview of the open source library synaps. We describe some of the representative algorithms of the library and illustrate them on some explicit computations, such as solving polynomials and computing geometric information on implicit curves and surfaces. Moreover, we describe the design and the techniques we have developed in order to handle a hierarchy of generic and specialized data-structures and routines, based on a view mechanism. This allows us to construct dedicated plugins, which can be loaded easily in an external tool. Finally, we show how this design allows us to embed the algebraic operations, as a dedicated plugin, into the external geometric modeler axel

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF
    • …
    corecore