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Abstract

We present an algorithm for reparametrizing algebraic plane curves from a numerical point
of view. More precisely, given a tolerance ǫ > 0 and a rational parametrization P of a
plane curve C with perturbed float coefficients, we present an algorithm that computes a
parametrization Q of a new plane curve D such that Q is an ǫ–proper reparametrization
of D. In addition, the error bound is carefully discussed and we present a formula that
measures the “closeness” between the input curve C and the output curve D.

Keywords: Rational Curve, Approximately Improper, Proper Reparametrization

1. Introduction

Let P(t) be a rational affine parametrization of an algebraic plane curve C over the
complex field C. Associated with P(t), we have the rational map φP : C → C; t → P(t),
where φP(C) ⊂ C is dense. φP is a birational map if P is proper. That is, except for a
finite number of points, for almost every point p ∈ C, there is exactly one parameter value
t0 ∈ C such that P(t0) = p. Geometrically, P proper means that P traces the curve once.
If P is not proper, there is more than one parameter value corresponding to a generic point
on C. Lüroth’s Theorem shows constructively that it is always possible to reparametrize an
improperly parametrized curve to a proper one.

Proper parameterizations are crucial to many practical problems in computer aided ge-
ometric design (CAGD), such as visualization (see [17, 18]). Particularly, proper parame-
terizations ensure the validity of the resultant technique in the implicitization problem (see
[12, 15, 28, 32]). Therefore, the proper reparametrization problem has received extensive
research (see [8, 22, 23, 31, 33] for examples).

The problem of proper reparametrization for curves has widely been discussed from
the symbolic point of view. More precisely, given the field of complex numbers C, and a
rational parametrization P(t) ∈ C(t)2 of an algebraic plane curve C with exact coefficients,
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one computes a rational proper parametrization Q(t) ∈ C(t)2 of C, and a rational function
R(t) ∈ C(t) \ C such that P(t) = (Q ◦ R)(t). Nevertheless, in many practical applications,
symbolic (or exact) approaches tend to be insufficient, since in practice object data are
usually given approximately. As a consequence, hybrid symbolic-numerical algorithms have
stepped onto stage.

Briefly speaking, given a tolerance ǫ > 0, and an irreducible affine algebraic plane
curve C defined by a parametrization P with perturbed float coefficients that is “nearly
improper” (i.e. improper within the tolerance ǫ), one looks for a rational curve D defined
by a parametrization Q, such that Q is proper and almost all points of the rational curve
D are in the “vicinity” of C. The notion of vicinity can be illustrated by the offset region
restricted by the external and internal offset to C at distance ǫ (see Section 4 for details).
Therefore, the problem reduces to find a properly parameterized curve D that lies within
the offset region of C. For instance, assume that we are given a tolerance ǫ = 0.2, and a
curve C defined by the parametrization

P(t) =

(
1.999t2 + 3.999t + 2.005 − 0.003t4 + 0.001t3

2.005 + 0.998t4 + 4.002t3 + 6.004t2 + 3.997t
,
0.001 − 0.998t4 − 4.003t3 − 5.996t2 − 4.005t

2.005 + 0.998t4 + 4.002t3 + 6.004t2 + 3.997t

)
.

Figure 1: Input curve C (left), curve D (center), curves C and D (right)

One may check that P is proper from the symbolic point of view; but it is nearly improper
(numerically speaking), since for almost all points p := P(s0) ∈ C, s0 ∈ C, there exist two
values of the parameter t, given by the approximate roots of the equation .4901606943t2 +
.2393271335 10−8(2202769s0 + 417838122)t − .4954325182s20 − s0 = 0, such that P(t) is
“almost equal” to P(s0). Our method provides an ǫ–proper reparametrization of D

Q(t) =

(−0.00139214373770521 t2 − 0.455587113115768 t+ 0.230804565878748

0.472790306463932 t2 − 0.475516806696674 t+ 0.233345983511073
,

−0.472791477433681 t2 + 0.473001908925789 t− 0.00421763512489261

0.472790306463932 t2 − 0.475516806696674 t+ 0.233345983511073

)
.
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In Figure 1, one may check that C and D are “close”.

To relate the tolerance with the vicinity region, one can either approach from analyzing
locally the condition number of the implicit equations (see [13]), estimating the Hausdorff
distance (see e.g. [29, 30]) or studying whether for almost every point p on the original curve,
there exists a point q on the output curve such that the distance of p and q is significantly
smaller than the tolerance (see e.g. [24, 25]). The error analysis we present in this paper
will be based on the third approach, and we shall derive upper bounds for the distance of
the offset region.

Approximate algorithms have been developed for many applied numerical topics, such as
computing approximate greatest common divisor (gcd) [3, 4, 10, 21, 40], finding zeros of mul-
tivariate systems [5, 10], factoring polynomials [9, 14], etc. In addition, computing approxi-
mate parametrizations for algebraic curves and surfaces has been investigated. For instance,
in [2], the authors construct a C1-continuous piecewise (m,n) rational ǫ-approximation of
a real algebraic plane curve. Using the Weierstrass Preparation Theorem, Newton power
series factorizations, and modified rational Padé approximations, the authors construct a
locally approximate rational parametric representations for all real branches of the given
algebraic plane curve. In [6], a novel approach for computing an approximate parameteri-
zation of a whole closed space algebraic curve from a small number of approximating arcs
is presented. [7] proposes an algorithm that subdivides the given curve into arcs, and then
approximates the arcs with curves parametrized by rational functions of low degree. In [19],
a method for computing an approximate parameterization of a planar algebraic curve by a
rational Bézier (spline) curve is described. The approach is based on the minimization of a
suitable non-linear objective function, which takes into account both the distance from the
curve and the positivity of the weight function (i.e., the numerator of the rational paramet-
ric representation). In [20], a method of approximating a segment of the intersection curve
of two implicitly defined surfaces by a rational parametric curve is presented. The method
includes predictor and corrector steps. The corrector step is formulated as an optimiza-
tion problem, where the objective function is the approximation of integral of the squared
Euclidean distance of the curve to the intersection curve. The predictor step is based on
simple extrapolation and on a differential equation. In [24, 25, 29, 30], the authors deal with
mathematical objects given approximately. They develop numerical theory parallel to that
for exact algebraic varieties. More precisely, given an algebraic variety V (curve or surface)
implicitly defined, they analyze the existence of a new variety V that is close to V. A rational
parametrization of V is computed. In [16], the authors propose an algorithm of comput-
ing a piecewise conic parametric curve as an approximation of the input implicit plane or
space curve. For a given space curve, [34] provides its certified cubic B-spline approximation
with topology and geometric feature preserved. In [38], new algorithms are presented to
approximate digitized curves by piecewise circular arcs with geometric continuity G0 or G1.
First, iterative methods are proposed to solve for the best single arc and biarc problems of
a digitized curve with respect to the maximum norm. Then, an approximate arcwise curve
of G0 or G1 continuity is constructed with the approximate error controlled within a given
tolerance ǫ > 0. [39] is devoted to implicit planar curves (not necessary algebraic), when
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the region of interest is a certain box. This paper proposes an all-at-once approach, which
relies on an evolution process: starting from the bounding box of the domain of interest, a
closed B-spline curve is moved gradually towards the given implicit curve.

Despite of the importance and the popularity of developing approximate algorithms for
algebraic varieties, the work on reparametrizing a given parametric curve with perturbed
float coefficients is rare. To our knowledge, only a heuristic algorithm was proposed in
[31], which, however, lacks of the error analysis and the detection of the improperness of a
numerical curve within a given tolerance.

In this paper, we aim at developing a proper parameterization technique for algebraic
plane curves given numerically. Our work will be based on the existing symbolic algorithm
given by [22], but it generalizes the corresponding theory to the numerical situation. How-
ever, far beyond a natural generalization, our work consists of numerical reparametrization
and error analysis. We extend the concept of tracing index, which is the cardinality of a
generic fibre of a parameterization (see Chapter 4 in [32]) and it is used to characterize the
properness of a parametrization to the numerical situation. Numerically, the approximate
tracing index is defined as the number of parameter values mapped to points in a neighbor-
hood of a generic point of a given plane curve. We provide an algorithm that computes an
approximate curve for the originally given one that is defined by a new proper parametriza-
tion, and we measure the closeness of the two curves through error analysis. We prove that
our obtained new approximate curve always lies in the offset region of the original one (and
reciprocally).

The paper is organized as follows. In Section 2, the symbolic algorithm of proper repa-
rameterization presented in [22] is briefly reviewed. In Section 3, the definitions of ap-
proximate tracing index (ǫ–index) and ǫ–numerical reparametrization are proposed. The
ǫ–numerical reparametrization is constructed and proved to be ǫ–proper. Afterwards in Sec-
tion 4, the closeness of the reparametrized curve and the originally given one is measured
through the error analysis. In Section 5, a numerical algorithm and concrete examples are
given. We conclude in Section 6 with the topics for further study.

2. Symbolic Algorithm of Reparametrization for Curves

Before studying the approximate case, we briefly review the notions and algorithm of
symbolically reparameterizing curves presented in [22]. The idea will be reformulate the
results obtained in [22] to the case in which the input is given approximately (see Section
3).

Consider the field of the complex numbers C, and a rational algebraic plane curve C over
C defined by a rational parametrization P(t) ∈ C(t)2. The parametrization P is proper if
and only if the map P : C −→ C ⊂ C2; t 7−→ P(t) is birational; or equivalently, if for almost
every point on C and for almost all values of the parameter in C the map P is rationally
bijective. The notion of properness can also be stated algebraically in terms of fields of
rational functions. In fact, a rational parametrization P is proper if and only if the induced

4



monomorphism φP on the fields of rational functions φP : C(C) −→ C(t);R(x, y) 7−→
R(P(t)) is an isomorphism. Therefore, P is proper if and only if the map φP is surjective;
that is, φP(C(C)) = C(P(t)) = C(t). Lüroth’s Theorem implies that any rational curve over
C can be properly parametrized (see [1, 32, 35]). [22, 31] further show how to reparameterize
a given improper parameterization to a proper one.

Intuitively speaking, P is proper if and only if P(t) traces C only once. In this sense,
we may generalize the above notion by introducing the notion of tracing index of P(t) as
follows: we say that k ∈ N is the tracing index of P(t), and we denote it by index(P), if all
but finitely many points on C are generated, via P(t), by k parameter values; i.e. index(P)
represents the number of times that P(t) traces C. Hence, the birationality of φP , i.e. the
properness of P(t), is characterized by tracing index one (for further details see [32]).

We hereby present some preliminaries on resultants. The univariate resultant of two
polynomials A,B ∈ C[x1, . . . , xn, t] denoted by Rest(A,B), is defined as the determinant
of the Sylvester matrix associated with A and B with respect to t. Clearly, Rest(A,B) ∈
C[x1, . . . , xn], and Rest(A,B) = 0 if and only if A and B have a common factor on t. Note
that Rest(A,B) is contained in the ideal generated by A andB. Hence, if A(α, b) = B(α, b) =
0 at α = (α1, . . . , αn), we have Rest(A,B)(α) = 0. Reciprocally, if Rest(A,B)(α) = 0, we
get that lc(A, t)(α) = lc(B, t)(α) = 0, or there exists b ∈ C such that A(α, b) = B(α, b) = 0,
where lc(A, t) denotes the leading coefficient of A with respect to t (for more details see for
instance Chapter 3 in [11], or Sections 5.8 and 5.9 in [36]).

The following property of resultants will play an important role in our later analysis: if
α ∈ Cn is such that degt(ϕα(A)) = degt(A), and degt(ϕα(B)) = degt(B)− k then,

ϕα(Rest(A,B)) = ϕα(lc(A, t))
kRest(ϕα(A), ϕα(B)),

where ϕα is the natural evaluation homomorphism

ϕα : C[x1, . . . , xn, t] −→ C[x1, . . . , xn, t];A(x1, . . . , xn, t) 7−→ A(α1, . . . , αn, t)

(see Lemma 4.3.1, pp. 96, in [37]).

Finally, given R(t) = r1(t)/r2(t) ∈ C(t), where gcd(r1, r2) = 1, we define deg(R) as the
maximum of deg(r1) and deg(r2).

We next outline the algorithm developed in [22], which computes a rational proper
reparametrization of an improperly parametrized algebraic plane curve. The algorithm
is valid over any field (here we consider the field of complex numbers C), and involves the
computation of polynomial gcds and univariate resultants. We shall adopt the resultant
approach, which is efficient and produces no extra factors (see step 5 in the algorithm). Of
course other elimination approach, such as Gröbner basis, will also work.
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Symbolic Algorithm Reparametrization for Curves.

Input: a rational affine parametrization P(t) = (p11(t)/p12(t), p21(t)/p22(t)) ∈ C(t)2,
with gcd(pi1, pi2) = 1, i = 1, 2, of an algebraic plane curve C.
Output: a rational proper parametrization Q(t) ∈ C(t)2 of C, and a rational function
R(t) ∈ C(t) \ C such that P(t) = (Q ◦R)(t).

1. Compute Hj(t, s) = pj1(t)pj2(s)− pj1(s)pj2(t), j = 1, 2.

2. Determine the polynomial S(t, s) = gcd(H1(t, s), H2(t, s)) = Cm(t)s
m + · · ·+C0(t).

3. If degt(S) = 1, Return Q(t) = P(t), and R(t) = t. Otherwise go to step 4.

4. Consider a rational function R(t) = Ci(t)
Cj(t)

∈ C(t), such that Cj(t), Ci(t) are two of

the polynomials obtained in step 2 such that gcd(Cj, Ci) = 1, and CjCi 6∈ C (see
Lemma 3, Theorem 1, and Section 3 in [22]).

5. For k = 1, 2, compute the polynomials

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)) = (qk2(s)xk − qk1(s))
deg(R),

where Gk(t, xk) = xkpk2(t)− pk1(t).

6. Return Q(t) = (q11(t)/q12(t), q21(t)/q22(t)) ∈ C(t)2, and R(t) = Ci(t)/Cj(t).

Remark 1. It holds that index(P) = degt(S). Furthermore, for all but a finite number of
values of the variable s, degt(S) = degt(gcd(H1(t, α), H2(t, α))) (see Subsection 4.3 in [32]).

Example 1. Let C be the rational curve defined by the parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
=

(
10t4 + 13t3 + 17t2 + 3t5 + 24t+ 11 + t6

(t3 + 2)(t2 + 3t+ 7 + 3t3)
, −2t4 − t3 − 9t2 + 5 + t6 + t5

(t3 + 2)2

)
.

In step 1 of the algorithm, we compute the polynomials

H1(t, s) = 270t−270s+216t2+39t3+107t4−19t6+31t5−26t6s3−49t6s2+26t5s3−31t4s2+
91t4s3 − 11t5s2 − 195t3s2 + 195t2s3 + 234ts3 + 19s6 − 31s5 − 107s4 − 39s3 − 216s2 − 54ts2 +
12ts4 + 66ts6 + 6ts5 + 31t2s4 + 54t2s+ 49t2s6 + 11t2s5 − 91t3s4 − 234t3s+ 26t3s6 − 26t3s5 −
12t4s+ 27t4s6 + t4s5 − 27t6s4 − 66t6s− 8t6s5 − t5s4 − 6t5s+ 8t5s6,

H2(t, s) = 36t2 +24t3 − 8t4 + t6 − 4t5 − 5t6s3 − 9t6s2 − 4t5s3 − 8t4s3 − 36t3s2 +36t2s3 − s6 +
4s5 + 8s4 − 24s3 − 36s2 + 9t2s6 + 8t3s4 + 5t3s6 + 4t3s5 − 2t4s6 + 2t6s4 + t6s5 − t5s6.

Now, we determine S(t, s). We obtain

S(t, s) = C0(t) + C1(t)s+ C2(t)s
2 + C3(t)s

3,

6



where C0(t) = −6t− 2t2 + t3, C1(t) = 3t3 + 6, C2(t) = t3 + 2, and C3(t) = −t2 − 3t− 1.

Since degt(S) > 1, we go to step 4, and we consider

R(t) =
C3(t)

C2(t)
=

−t2 − 3t− 1

t3 + 2
.

Note that gcd(C2, C3) = 1. Now, we compute the polynomials

L1(s, x1) = Rest(G1(t, x1), sC2(t)− C3(t)) = −961(−3x1 + sx1 + 1− 3s+ s2)3,

L2(s, x2) = Rest(G2(t, x2), sC2(t)− C3(t)) = −961(−x2 − 1 + s+ s2)3,

where Gi(t, xi) = xipi2(t) − pi1(t), i = 1, 2 (see step 5). Finally, in step 6, the algorithm
outputs the proper parametrization Q(t), and the rational function R(t)

Q(t) =

(
−1 − 3t+ t2

t− 3
, −1 + t+ t2

)
, R(t) =

−t2 − 3t− 1

t3 + 2
.

3. The Problem of Numerical Reparametrization for Curves

The problem of numerical reparametrization for curves can be stated as follows:

• Given the field C of complex numbers, a tolerance ǫ > 0, and a rational parametrization
P(t) = (p11(t)/p12(t), p21(t)/p22(t)) ∈ C(t)2 of an algebraic plane curve C that is
approximately improper (see Definition 1).

• Find a rational parametrization Q(t) ∈ C(t)2 of an algebraic plane curve D, and a
rational function R(t) ∈ C(t) \ C such that Q is an ǫ–proper reparametrization of D
(see Definition 4).

• Measure the closeness between C and D (see Section 4).

The idea in this section is to adapt the symbolic algorithm in Section 2 to the case in
which the input and output are not assumed to be exact. Instead, we deal with mathematical
objects that are given approximately, probably because they proceed from an exact data
that has been perturbed under some previous measuring process or manipulation. Note
that, in many practical applications, for instance in the frame of computer aided geometric
design, most of data objects are given approximately.

The structure of this section is as follows: first, we introduce some previous definitions
as the notion of ǫ–index, and ǫ–numerical reparametrization (see Subsection 3.1). After-
wards, in Subsection 3.2, we obtain some properties that characterize whether a rational
parametrization is an ǫ–proper reparametrization. Using these results, in Subsection 3.3, we
show how to construct the rational function R that will be used to compute the ǫ–proper
reparametrization Q in Subsection 3.4. Finally, in Subsection 3.5 we prove some proper-
ties concerning the parametrizaton Q. These properties will play an important role in the
development of Section 4.
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3.1. Notation and Preliminary Definitions

In order to start with the problem proposed, we consider a tolerance ǫ > 0, and a rational
parametrization of a given algebraic plane curve C

P(t) = (p1(t), p2(t)) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
∈ C(t)2, ǫ–gcd(pj1, pj2) = 1, j = 1, 2,

where ǫ–gcd(pj1, pj2) denotes the approximate gcd for the polynomials pj1 and pj2 (we remind
that P is expected to be given with perturbed float coefficients). We assume that index(P) =
1. Observe that we are working numerically and then, with probability almost one degt(S) =
1, where S is the polynomial introduced in Section 2. Otherwise, if index(P) > 1, we may
apply Symbolic Algorithm Reparametrization for Curves in Section 2.

We also consider the polynomials

SPQ
ǫ (t, s) = ǫ–gcd(HPQ

1 , HPQ
2 ), HPQ

j (t, s) = pj1(t)qj2(s)− qj1(s)pj2(t), j = 1, 2,

where s is a new variable, and

Q(t) = (q1(t), q2(t)) =

(
q11(t)

q12(t)
,
q21(t)

q22(t)

)
∈ C(t)2, ǫ–gcd(qj1, qj2) = 1, j = 1, 2

is a rational parametrization of a new plane curve. Note that since ǫ–gcd(pj1, pj2) = 1, j =
1, 2, then SPQ

ǫ (t, s) ∈ C[t, s] \ C[s], and SPQ
ǫ (t, s) ∈ C[t, s] \ C[t].

Observe that the polynomials HPQ
j , j = 1, 2, generalize the polynomials Hj, j = 1, 2,

introduced in step 1 of the symbolic algorithm presented in Section 2. More precisely, we
have that Hj(t, s) = HPP

j (t, s), j = 1, 2.

Once the polynomials HPP
j , j = 1, 2, are introduced, we observe that in step 2 of the

symbolic algorithm one computes gcd(H1, H2). From this fact, one gets the idea that under
our conditions and taking into account that we are working with mathematical objects that
are assumed to be given approximately, we have to compute the approximate gcd of HPP

1

and HPP
2 (that is, ǫ–gcd(HPP

1 , HPP
2 )) instead of gcd(H1, H2) (note that the gcd of two not

exact input polynomials is always 1).

Therefore, at this point, we need to generalize the concept of tracing index (see Section
2) to the numerical situation. For this purpose, in the following definition, we introduce the
notion of approximate tracing index of P.

Definition 1. We define the approximate tracing index of P as degt(S
PP
ǫ ), where

SPP
ǫ (t, s) = ǫ–gcd(HPP

1 , HPP
2 ), HPP

j (t, s) = pj1(t)pj2(s)− pj1(s)pj2(t), j = 1, 2.

We denote it as ǫ–index(P). Furthermore, P is said to be approximately improper or ǫ–
improper if ǫ–index(P) > 1. Otherwise, P is said to be approximately proper or ǫ–proper.

8



Remark 2. Obviously the notion of approximate tracing index generalizes the concept of
tracing index. In particular, if ǫ–index(P) = 1 then index(P) = 1.

Remark 3. In order to compute the polynomial SPP
ǫ , one should note that:

1. There are different ǫ–gcd algorithms proposed for inexact polynomials (see for instance,
[3, 4, 10, 21, 40]). Some typical algorithms of univariate polynomials are included
in the mathematical softwares, for example, Maple provides some ǫ–gcd algorithms
in the package SNAP. We here introduce the ǫ–gcd algorithm for a pair of univariate
numeric polynomials by using QR factoring. It is implemented in Maple as the function
QRGCD. The QRGCD(f, g, x, ǫ) function returns univariate numeric polynomials
u, v, d such that d is an ǫ–gcd for the input polynomials f and g, and u, v satisfy (with
high probability)

‖uf + vg − d‖ < ǫ‖(f, g, u, v, d)‖, ‖f − df1‖ < ǫ‖f‖, and ‖g − dg1‖ < ǫ‖g‖,

where the polynomials f1 and f2 are cofactors of f and g with respect to the divisor d,
‖·‖ ∈ R denotes the infinity norm (that is, ‖h‖ computes the maximum of the absolute
values of the coefficients of a polynomial h(x) ∈ C[x], with respect to the variable x;
for complex coefficients, ‖h‖ finds the maximum of the absolute values of the real and
imaginary parts), and ‖(f, g, u, v, d)‖ := max{‖f‖, ‖g‖, ‖u‖, ‖v‖, ‖d‖}.

2. In the symbolic situation, one can get the tracing index with probability one by counting
the common solutions for a specialized s0 (see Remark 1). For the numerical situa-
tion, we can fix s = s0 ∈ C as a specialization and find the ǫ–gcd for two univariate
polynomials HPP

1 (t, s0) and HPP
2 (t, s0), under tolerance ǫ. Hence, we first can com-

pute the approximate tracing index by the specialization and then, we can recover an
ǫ–gcd defined by the polynomial SPP

ǫ (t, s). More precisely, SPP
ǫ (t, s) can be found from

several SPP
ǫ (t, sk), k = 1, . . . , n, whose degrees equal to the approximate tracing index.

The polynomial SPP
ǫ (t, s) can be computed using least squares method while n is greater

than the number of the unterminated coefficients (see the method presented in [31]).
Note that the approximate tracing index is related to the selected ǫ, and the used ǫ–gcd
algorithm.

In the following example, we show how to compute the polynomial SPP
ǫ for a given

algebraic plane curve defined by a parametrization P with perturbed float coefficients.

Example 2. Let ǫ = 0.01, and the rational curve C defined by the parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
=

(
t4 − .2502500000 + .0005000000000 t

t4 + .2500000000 + .0002500000000 t2
,

t2 − .0002500000000

t4 + .2500000000 + .0002500000000 t2

)
.

C is a quartic curve but approximately a multiple conic curve (see Figure 2). Using the
SNAP package included in Maple, one has that ǫ–gcd(pj1, pj2) = 1, j = 1, 2. We compute
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the polynomials

HPP
1 (t, s) = 8004000 s4 + 4000 s4 t2 − 8004000 t4 − 1001 t2 + 8000 s t4 + 2000 s+ 2 s t2

− 4000 t4 s2 + 1001 s2 − 8000 t s4 − 2000 t− 2 t s2,

HPP
2 (t, s) = 16000000 t4 s2 + 4000001 s2 − 4000 t4 − 4000001 t2 − 16000000 s4 t2 + 4000 s4.

Now, we determine the polynomial SPP
ǫ , and we get

SPP
ǫ (t, s) ≈ǫ 52160t

2 + 83t+ (−83t− 83)s− 52077s2.

Then, ǫ–index(P) = degt(S
PP
ǫ ) = 2 (see Definition 1).

Once the polynomial SPP
ǫ is computed, we consider the rational function R(t) similarly

as in step 4 of the symbolic algorithm (the details will be developed in Subsection 3.3),
and in step 5 we compute the same resultant (the details will be developed in Subsection
3.4). Again, since we are working with approximate mathematical objects, the resultant
does not factor as in the symbolic case (see Theorem 2). That is, if the input is an exact
parametrization, the symbolic algorithm in Section 2 outputs the parametrization Q(t) =
(q11(t)/q12(t), q21(t)/q22(t)) ∈ C(t)2, where

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)) = (qk2(s)xi − qk1(s))
deg(R),

and Gk(t, xk) = xkpk2(t) − pk1(t), k = 1, 2. However, in our case, qk1(s)/qk2(s) will not be
exact roots of the polynomials Lk(s, xk) (see Theorem 2) but ǫ–roots or ǫ–points (see [24]).
Thus, one may expect that a small perturbation of Lk, provides a new polynomial that
factorizes as above and the root of this new polynomial provides the output parametrization.

In order to develop this idea, we need to go into detail about the notion of ǫ–point. This
concept was introduced in [24] as follows: given a tolerance ǫ > 0, and a non-zero polynomial
A ∈ C[t, s], we say that (t0, s0) ∈ C

2 is an ǫ–point of A, if |A(t0, s0))| ≤ ǫ‖A‖, where ‖·‖ ∈ R

denotes the infinity norm (that is, ‖A‖ computes the maximum of the absolute values of
the coefficients of a polynomial A ∈ C[t, s], with respect to the variables t, s; for complex
coefficients, ‖A‖ finds the maximum of the absolute values of the real and imaginary parts),
and | · | is the absolute value. An ǫ–point (t0, s0) ∈ C2 of a polynomial A ∈ C[t, s] is
represented as A(t0, s0) ≈ǫ 0 (for further details in this notion see [24, 25, 26, 29]).

In Definition 2, we generalize this concept and in particular the operator ≈ǫ. More
precisely, we present the notion of ǫ–point for points of the form (t, r(t)) ∈ C(t)2. For this
purpose, in the following, num(τ) represents the numerator of a rational function τ(t) ∈ C(t).
Furthermore, throughout the paper, we use the infinity norm, and we denote it as ‖ · ‖ (see
the paragraph above). Note that since in our situation all the norms are equivalent, one
may reason similarly with a different norm.
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Definition 2. Given two non-zero polynomials Ai ∈ C[t, s] with ‖Ai‖ = 1, i = 1, 2, we say
that A1 ≈ǫ A2, if ‖A1 − A2‖ ≤ ǫ and degt(A1) = degt(A2), degs(A1) = degs(A2). Further-
more, given r(t) ∈ C(t), and a non-zero polynomial A ∈ C[t, s], we say that A(t, r(t)) ≈ǫ 0
if ‖num(A(t, r(t)))‖ ≤ ǫ‖A‖.

Now, we observe that from the symbolic point of view, it holds that P = Q ◦ R if and
only if S(t, R(t)) = 0 (see Section 2). In Definition 3, we translate this fact to the numerical
field. For this purpose, we use Definition 2.

Definition 3. We say that P(t) ∼ǫ (Q ◦ r)(t) if SPQ
ǫ (t, r(t)) ≈ǫ 0, where r(t) ∈ C(t).

Remark 4. Throughout the paper, we assume that P(t) 6∼ǫ (a, b) ∈ C2. Thus, we have that
degt(S

PP
ǫ ) ≥ 1. Indeed: note that HPP

j (t, s) ≈ǫ (t− s)Nj(t, s), where Nj ∈ C[t, s], j = 1, 2.
It holds that Nj 6= 0, j = 1, 2; otherwise, SPP

ǫ (t, s) ≈ǫ 0, and in particular SPP
ǫ (t, s0) ≈ǫ 0

for s0 ∈ C satisfying that p12(s0)p22(s0) 6= 0. Then, P(t) ∼ǫ P(s0) ∈ C2 which is impossible,
and thus Nj 6= 0, j = 1, 2. Hence, SPP

ǫ (t, s) ≈ǫ (t− s)N(t, s), where N ∈ C[t, s] \ {0}.

Remark 5. From Remark 4, we get that ǫ–index(P) = 1 if and only if SPP
ǫ (t, s) ≈ǫ (t− s).

Now, we are ready to introduce the notions of ǫ–numerical reparametrization and ǫ–
proper reparametrization. For this purpose, we use Definition 3.

Definition 4. Let P(t) = (p1(t), p2(t)) ∈ C(t)2 be a rational parametrization of a given
plane curve C. We say that a parametrization Q(t) = (q1(t), q2(t)) ∈ C(t)2 is an ǫ–numerical
reparametrization of P(t) if there exists R(t) = M(t)/N(t) ∈ C(t) \ C, ǫ–gcd(M,N) = 1,
such that P ∼ǫ Q ◦ R. In addition, if ǫ–index(Q) = 1, then we say that Q is an ǫ–proper
reparametrization of P.

Example 3. In Example 5, we will show that

Q(t) =

(
t2 + .000005006649227t− .2494538109

t2 − .0002445955365t+ .2492042101
,

−.9984087427t− .0002529376363

t2 − .0002445955365t+ .2492042101

)

is an ǫ–proper reparametrization of the parametrization P introduced in Example 2. More
precisely, it holds that P ∼ǫ Q ◦ R, where R(t) = 52160t2+83t

−52077
(see Example 4). In Figure 3,

we plot the input curve C and the output curve D.
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3.2. Some Previous Results

Using the concepts introduced in Subsection 3.1, we obtain some important properties
that will be used to construct the ǫ–numerical reparametrization in Subsections 3.3 and 3.4.
In particular, we characterize whether a given ǫ–numerical reparametrization Q is ǫ–proper
(see Definition 4). We start with a technical result that will play an important role to prove
the main theorem (Theorem 1).

Proposition 1. Let Q(t) = (q1(t), q2(t)) ∈ C(t)2, qj = qj1/qj2, ǫ–gcd(qj1, qj2) = 1, j = 1, 2
be such that Q(t) 6∼ǫ (a, b) ∈ C2. Let R(t) = M(t)/N(t) ∈ C(t) \ C, ǫ–gcd(M,N) = 1. Up
to constants in C \ {0}, it holds that

SQ(R)Q(R)
ǫ (t, s) ≈ǫ num(SQQ

ǫ (R(t), R(s))).

Proof. From the definition of SQQ
ǫ (t, s), there are M1,M2 ∈ C[t, s] satisfying that

HQQ
j (t, s) ≈ǫ S

QQ
ǫ (t, s)Mj(t, s), j = 1, 2, and ǫ–gcd(M1,M2) = 1 (1)

(see Definition 2). Now, taking into account the definition of S
Q(R)Q(R)
ǫ , one gets that

SQ(R)Q(R)
ǫ (t, s) = ǫ–gcd(H

Q(R)Q(R)
1 (t, s), H

Q(R)Q(R)
2 (t, s)). (2)

In addition, it holds that

ǫ–gcd(H
Q(R)Q(R)
1 (t, s),H

Q(R)Q(R)
2 (t, s)) = ǫ–gcd(num(HQQ

1 (R(t), R(s))),num(HQQ
2 (R(t), R(s)))).

(3)

In order to prove (3), we assume that deg(qi2) ≥ deg(qi1) (otherwise, we reason similarly),
and we consider q∗ij(x, y) ∈ C[x, y] the homogenization of the polynomial qij(x) ∈ C[x] with
respect to the variable x, and α := deg(qi2)− deg(qi1). Under these conditions, equality (3)
follows since

H
Q(R)Q(R)
i (t, s) = num

(
qi1(R(t))

qi2(R(t))
− qi1(R(s))

qi2(R(s))

)
=

N(t)αq∗i1(M(t), N(t))q∗i2(M(s), N(s))−N(s)αq∗i1(M(s), N(s))q∗i2(M(t), N(t)),

and
num(HQQ

i (R(t), R(s))) = num (qi1(R(t))qi2(R(s))− qi1(R(s))qi2(R(t))) =

numer

(
q∗i1(M(t), N(t))q∗i2(M(s), N(s))

N(t)deg(qi1)N(s)deg(qi2)
− q∗i1(M(s), N(s))q∗i2(M(t), N(t))

N(t)deg(qi2)N(s)deg(qi1)

)
=

N(t)αq∗i1(M(t), N(t))q∗i2(M(s), N(s))−N(s)αq∗i1(M(s), N(s))q∗i2(M(t), N(t)).

Thus, from the above equalities, one deduces that

SQ(R)Q(R)
ǫ (t, s)

(2) and (3)
︷︸︸︷
= ǫ–gcd(num(HQQ

1 (R(t), R(s))), num(HQQ
2 (R(t), R(s))))

(1)
︷︸︸︷≈ǫ
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ǫ–gcd(num(SQQ
ǫ (R(t), R(s)))num(M1(R(t), R(s))), num(SQQ

ǫ (R(t), R(s)))num(M2(R(t), R(s))))

= num(SQQ
ǫ (R(t), R(s)))M(t, s),

whereM(t, s) := ǫ–gcd(num(M1(R(t), R(s))), num(M2(R(t), R(s)))). Since ǫ–gcd(M1,M2) =
1, we have that M(t, s) = 1, and we conclude that

SQ(R)Q(R)
ǫ (t, s) ≈ǫ num(SQQ

ǫ (R(t), R(s))).

In the following, we consider Q(t) ∈ C(t)2 an ǫ–numerical reparametrization of P(t).
Hence, P ∼ǫ Q ◦ R where R(t) = M(t)/N(t) ∈ C(t) \ C (see Definition 4). Under these
conditions, in the following results we characterize whether Q is ǫ–proper. This characteri-
zation is based in ǫ–index(P) (see Theorem 1 and Corollary 1), and in the polynomial SPP

ǫ

(see Corollary 2).

Theorem 1. Q is ǫ–proper if and only if ǫ–index(P) = deg(R).

Proof. If ǫ–index(Q) = 1, from Proposition 1 and Remark 5, one gets that

SPP
ǫ (t, s) ≈ǫ num(SQQ

ǫ (R(t), R(s))) ≈ǫ num(R(t)−R(s)) = M(t)N(s) −M(s)N(t).

Therefore, ǫ–index(P) = degt(S
PP
ǫ ) = deg(R) (see Definitions 1 and 2). Reciprocally, from

Proposition 1, we have that

SPP
ǫ (t, s) ≈ǫ num(SQQ

ǫ (R(t), R(s)))

which implies that degt(S
PP
ǫ ) = degt(S

QQ
ǫ )deg(R) (see Definition 2). Therefore, if ǫ–index(P) =

deg(R), then degt(S
QQ
ǫ ) = 1 and thus Q is ǫ–proper (see Definition 1).

Corollary 1. It holds that ǫ–index(P) = ǫ–index(Q)deg(R).

Proof. Reasoning as in the proof of Theorem 1, one gets that degt(S
PP
ǫ ) = degt(S

QQ
ǫ )deg(R).

Thus, from Definition 1, we conclude that ǫ–index(P) = ǫ–index(Q)deg(R).

Corollary 2. Q is ǫ–proper if and only if

SPP
ǫ (t, s) ≈ǫ num(R(t)− R(s)) = M(t)N(s)−M(s)N(t).

Proof. If ǫ–index(Q) = 1, reasoning as in the proof of Theorem 1, one deduces that
SPP
ǫ (t, s) ≈ǫ M(t)N(s)−M(s)N(t). Reciprocally, if SPP

ǫ (t, s) ≈ǫ num(R(t)−R(s)), we get
that ǫ–index(P) = degt(S

PP
ǫ ) = deg(R) (see Definition 2). Thus, Corollary 1 implies that

Q is ǫ–proper.
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3.3. Construction of the Rational Function R(t)

In this section, we construct a rational function R(t) ∈ C(t) \ C such that there exists
an ǫ–proper reparametrization of P. That is, there exists Q such that P ∼ǫ Q◦R and Q is
ǫ–proper (see Theorem 2 and Corollary 3 in Subsection 3.4). Hence, we are addressing the
existence of the ǫ–proper reparameterization.

For this purpose, we first note that in the symbolic case, once the polynomial S(t, s) is
computed (see step 2 of the algorithm presented in Section 2), we get R(t) as follows: let
S(t, s) = gcd(H1(t, s), H2(t, s)) = Cm(t)s

m + · · · + C0(t), where Hj(t, s) = pj1(t)pj2(s) −
pj1(s)pj2(t), j = 1, 2. Then, we consider R(t) = Ci(t)/Cj(t) such that Cj(t), Ci(t) are ob-
tained from the polynomial S(t, s) satisfying that gcd(Cj, Ci) = 1, and CjCi 6∈ C (see step 4
in the symbolic algorithm presented in Section 2). We note that in the symbolic situation,
Lemma 3 in [22] states that, up to constants in C \ {0},

S(t, s) = num

(
Ci(t)

Cj(t)
− Ci(s)

Cj(s)

)
= Cm(t)s

m + Cm−1(t)s
m−1 + · · ·+ C0(t),

and S(t, s) = num(R(t)− R(s)). This is the reason why one considers R(t) = Ci(t)/Cj(t).

From the numerical point of view, the idea is similar as in the symbolic case. More
precisely, we first write

SPP
ǫ (t, s) = Cm(t)s

m + Cm−1(t)s
m−1 + · · ·+ C0(t). (4)

Now, from Corollary 2, we have that

SPP
ǫ (t, s) ≈ǫ num(R(t)− R(s)),

where R(t) = M(t)/N(t) ∈ C(t) \ C is the unknown rational function we are looking for.

Taking into account that, up to constants in C \ {0},

num

(
Ci(t)

Cj(t)
− Ci(s)

Cj(s)

)
= Cm(t)s

m + Cm−1(t)s
m−1 + · · ·+ C0(t), (5)

where Ci, Cj are such that CiCj 6∈ C, and gcd(Ci, Cj) = 1 (see Lemma 3 in [22]), and
reasoning as in the symbolic case, we consider

R(t) =
Ci(t)

Cj(t)
∈ C(t) \ C,

where Ci and Cj are from (4) satisfying that:

1) CiCj 6∈ C, 2) ǫ–gcd(Ci, Cj) = 1.

Under these conditions, we observe that from equality (5), it holds that SPP
ǫ (t, s) ≈ǫ

num(R(t)−R(s)).

In the following proposition, we prove that the polynomials Ci, Cj satisfying conditions
1) and 2) above exist.
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Proposition 2. Let

SPP
ǫ (t, s) = Cm(t)s

m + Cm−1(t)s
m−1 + · · ·+ C0(t).

It holds that there exist Ci and Cj , i, j ∈ {0, . . . , m}, i 6= j, satisfying that

1) CiCj 6∈ C,

2) ǫ–gcd(Ci, Cj) = 1.

Proof. First, taking into account Remark 4, we have that SPP
ǫ (t, s) ≈ǫ (t − s)N(t, s).

Thus, there exists Ci 6∈ C for some i = 0, . . . , m, and m ≥ 1. Then, condition 1 holds.
Now, let us suppose that C0 6∈ C, and let us prove that there exists i ∈ {1, . . . , m} such that
ǫ–gcd(C0, Ci) = 1. Let us assume that ǫ–gcd(C0, Ci) 6= 1 for every i ∈ {1, . . . , m}. Then, we
get that Ci 6∈ C for every i ∈ {0, . . . , m} and hence, each pair of polynomials Ci, Cj satisfies
condition 1. If ǫ–gcd(Ci, Cj) = 1 for some i, j ∈ {0, . . . , m}, i 6= j, we get that condition
2 holds. Otherwise, ǫ–gcd(Ci, Cj) 6= 1 for every i, j ∈ {0, . . . , m}, i 6= j, and thus M(t) :=
ǫ–gcd(C1, . . . , Cm) ∈ C(t) \C. Let t0 ∈ C such that M(t0) = 0, and p12(t0)p22(t0) 6= 0 (since
we have approximate mathematical objects and in exact computation gcd(C0, . . . , Cm) = 1,
we get that this t0 exists). Then, SPP

ǫ (t0, s) ≈ǫ 0 which implies that P(t) ∼ǫ P(t0) ∈ C2

(note that p12(t0)p22(t0) 6= 0). This is impossible, since by Remark 4, P(t) 6∼ǫ (a, b) ∈ C2.

In Example 4, we consider the plane curve introduced in Example 2, and we show how
to construct the rational function R(t).

Example 4. Continuing with Example 2, we get that

SPP
ǫ (t, s) ≈ǫ C0(t) + C1(t)s+ C2(t)s

2,

where C0(t) = 52160t2+83t, C1(t) = −83t− 83, and C2(t) = −52077. Observe that C0 and
C2 satisfy the conditions in Proposition 2. Thus, we may consider the rational function

R(t) =
C0(t)

C2(t)
=

52160t2 + 83t

−52077
.

3.4. Construction of the ǫ-Numerical Reparametrization Q(t)

In the following, we consider the rational function R(t) = Ci(t)
Cj(t)

∈ C(t) \ C computed in

Subsection 3.3. Then, we have that SPP
ǫ (t, s) ≈ǫ num(R(t)− R(s)). Hence, from Corollary

2, if Q is such that P ∼ǫ Q◦R, then Q is ǫ–proper. Thus, in the following, we focus on the
computation of Q satisfying that P ∼ǫ Q ◦R.

For this purpose, we observe that in the symbolic case, once the rational function R is
computed (see step 4 of the algorithm in Section 2), we consider the polynomials

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)) = (qk2(s)xk − qk1(s))
deg(R),
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where Gk(t, xk) = xkpk2(t) − pk1(t) for k = 1, 2 (see step 5 of the algorithm in Section 2).
Thus, the output parametrization Q is given by the roots with respect to the variable xk of
the polynomial Lk. That is, Q(t) = (q11(t)/q12(t), q21(t)/q22(t)) ∈ C(t)2 (see step 6 in the
symbolic algorithm presented in Section 2).

From the numerical point of view, the idea is similar as in the symbolic case. More
precisely, we compute the same resultants as in the symbolic case, and the “approximate”
roots of these polynomials with respect to the variable xk will provide the parametrization
Q (see Theorem 2).

Theorem 2. Let

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)), where Gk(t, xk) = xkpk2(t)− pk1(t), k = 1, 2.

If

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), ‖num(Wk(R, pk))‖ ≤ ‖HPQ

k ‖ℓ, k = 1, 2,

where ℓ := deg(R), and ǫ–gcd(qk1, qk2) = 1, then Q(s) =
(

q11(s)
q12(s)

, q21(s)
q22(s)

)
is an ǫ-numerical

reparametrization of P.

Proof. First, we observe that Lk 6= 0 (otherwise, Gk and sCj(t) − Ci(t) have a common
factor depending on t, which is impossible because gcd(Ci, Cj) = 1). In addition, it holds
that degxk

(Lk) = deg(R). Indeed, since

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)),

we get that, up to constants in C(s) \ {0},

Lk(s, xk) =
∏

{αℓ | sCj(αℓ)−Ci(αℓ)=0}

Gk(αℓ, xk),

(see Sections 5.8 and 5.9 in [36]), and thus

degxk
(Lk) = degt(sCj(t)− Ci(t))degxk

(Gk(t, xk)) = deg(R).

In addition, from degxk
(Lk) = deg(R), we deduce that degxk

(Wk) ≤ ℓ. In fact, since we are
working with approximate mathematical objects, we may assume without loss of generality
that degxk

(Wk) = ℓ.
Now, taking into account the properties of the resultant (see Section 2), one has that

0 = Lk(R(t), pk(t)) = (pk(t)qk2(R(t))− qk1(R(t)))ℓ + ǫℓWk(R(t), pk(t)).

Then,

num(HPQ
k (t, R(t)))ℓ = ǫℓek(t), where ek := −Wk(R(t), pk(t))pk2(t)

ℓC
ℓ deg(qk)
j , k = 1, 2.
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Since degxk
(Wk) = ℓ, and degs(Wk) = ℓ deg(qk) (see Corollary 4), one has that

ek = −num(Wk(R(t), pk(t))) ∈ C[t]

(i.e. the denominator ofWk(R(t), pk(t)) is canceled with pk2(t)
ℓCj(t)

ℓdeg(qk)). Therefore, from
num(HPQ

k (t, R(t)))ℓ = ǫℓek(t), and taking into account that ‖num(Wk(R, pk))‖ ≤ ‖HPQ
k ‖ℓ,

we get that
‖num(HPQ

k (t, R(t)))‖ℓ = ǫℓ‖ek‖ ≤ ǫℓ‖HPQ
k ‖ℓ,

which implies that HPQ
k (t, R(t)) ≈ǫ 0 (see Definition 2). Thus, SPQ

ǫ (t, R(t)) ≈ǫ 0, and then
P(t) ∼ǫ (Q ◦R)(t).

Remark 6. From the proof of Theorem 2, we get that degxk
(Lk) = degxk

(Wk) = deg(R) = ℓ

Remark 7. If the tolerance in Theorem 2 changes (that is, instead ǫ we have ǫ), Theorem
2 provides an ǫ-numerical reparametrization of P. More precisely, if

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), ‖num(Wk(R, pk))‖ ≤ ‖HPQ

k ‖ℓ,

where ℓ = deg(R) and ǫ–gcd(qk1, qk2) = 1, then Q(s) =
(

q11(s)
q12(s)

, q21(s)
q22(s)

)
is an ǫ–numerical

reparametrization of P.

3.5. Properties of the ǫ–Numerical Reparametrization Q(t)

Let Q be the ǫ–numerical reparametrization of P computed in Theorem 2. In the follow-
ing, we present some corollaries obtained from Theorem 2, where some properties concerning
Q are provided (for this purpose, results in Subsection 3.2 are used). In particular, we show
that Q is ǫ–proper (see Corollary 3) and we prove that deg(P) = deg(Q)deg(R) (see Corol-
lary 4). This last equality also holds in the symbolic case, and it shows the expected property
that the degree of the rational functions defining the ǫ–proper parametrization Q is lower
than the non ǫ–proper input parametrization P.

In addition, we show how the parametrization Q can be computed from the expression
obtained in Theorem 2 (see Corollary 6).

Corollary 3. Q is ǫ–proper.

Proof. Since R(t) = Ci(t)
Cj(t)

∈ C(t) \C is such that SPP
ǫ (t, s) ≈ǫ num(R(t)−R(s)), and Q is

an ǫ-numerical reparametrization of P (see Theorem 2), from Corollary 2, we conclude that
Q is ǫ–proper.

Remark 8. Corollaries 1 and 3 imply that ℓ = ǫ–index(P), where ℓ = deg(R) is introduced
in Theorem 2.
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Corollary 4. It holds that deg(P) = deg(Q)deg(R).

Proof. First, we observe that degs(Wk) = deg(pk), for k = 1, 2. Indeed, since

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)),

we get that, up to constants in C(xk) \ {0},

Lk(s, xk) =
∏

{βℓ |Gk(βℓ,xk)=0}

sCj(βℓ)− Ci(βℓ),

(see Sections 5.8 and 5.9 in [36]), and thus

degs(Lk) = degs(sCj(t)− Ci(t))degt(Gk(t, xk)) = deg(pk).

Since we are working with approximate mathematical objects, we may assume that degs(Wk) =
degs(Lk). On the other side, from Theorem 2, we have that

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), k = 1, 2.

Since we are working numerically, we may assume without loss of generality that

degs(Wk) = degs((xkqk2(s)− qk1(s))
ℓ) = ℓ deg(qk).

Therefore, ℓ deg(qk) = deg(pk), k = 1, 2, which implies that

deg(P) = deg(Q)ℓ = deg(Q)deg(R)

(from Theorem 2, we have that ℓ = deg(R) ).

Corollary 5. Under the conditions of Theorem 2, it holds that

Rest(pk2(t), sCj(t)− Ci(t)) = qk2(s)
ℓ + ǫℓbk(s), bk ∈ C[s]

and qk2(s)
ℓ + ǫℓbk(s) 6= 0, for k = 1, 2.

Proof. From Theorem 2 and Corollary 4, we have that

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), k = 1, 2,

and degs(Wk) = ℓ deg(qk) = deg(pk). Let L∗
k(s, xk, x3) be the homogeneous form of the

polynomial Lk(s, xk) with respect to the variable xk. Using the specialization resultant
property (see Section 2), we deduce that

L∗
k(s, xk, x3) = Rest(xkpk2(t)− x3pk1(t), sCj(t)− Ci(t)) =

= (xkqk2(s)− x3qk1(s))
ℓ + ǫℓbk(s)x

ℓ
k + ǫℓx3U

∗
k (s, xk, x3),
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where U∗(s, xk, x3) denotes the homogeneous form of the polynomial Wk(s, xk)− bk(s)x
ℓ
k ∈

(C[s])[xk], and bk is the leading coefficient of Wk with respect to xk (that is, bk is the
coefficient of Wk with respect to xℓ

k; note that by Remark 6, we have that degxk
(Wk) =

deg(R) = ℓ). Hence, from the specialization resultant property (see Section 2), we get

L∗
k(s, 1, 0) = Rest(pk2(t), sCj(t)− Ci(t)) = qk2(s)

ℓ + ǫℓbk(s), k = 1, 2.

Finally, we note that qk2(s)
ℓ + ǫℓbk(s) 6= 0, for k = 1, 2. Otherwise, Rest(pk2(t), sCj(t) −

Ci(t)) = 0 which would imply that gcd(pk2, Ci, Cj) 6= 1 (see the properties of the resultant
in Section 2). This is impossible since gcd(Ci, Cj) = 1 (see Subsection 3.3).

In the following, we consider the parametrization

Q̃(s) = (q̃1(s), q̃2(s)) =

(
q̃11(s)

q̃12(s)
,
q̃21(s)

q̃22(s)

)
=

(
q11(s)q12(s)

ℓ−1 + ǫℓa1(s)/ℓ

q22(s)ℓ + ǫℓb1(s)
,
q21(s)q22(s)

ℓ−1 + ǫℓa2(s)/ℓ

q22(s)ℓ + ǫℓb2(s)

)
.

Observe that Q̃ can be further simplified by removing the approximate gcd from the nu-
merator and denominator (for instance, one may use QRGCD algorithm to compute an
approximate gcd of two univariate polynomials; see statement 1 in Remark 3). The simpli-

fication of Q̃ will provide the searched rational parametrization Q(s) =
(

q11(s)
q12(s)

, q21(s)
q22(s)

)
.

Corollary 6 shows how Q̃ can be easily computed from the polynomial Lk introduced in
Theorem 2

Corollary 6. Under the conditions of Theorem 2, it holds that

1. degxk

(
∂ℓ−1Lk

∂ℓ−1xk
(s, xk)

)
= 1 and

∂ℓ−1Lk

∂ℓ−1xk
(s, q̃k(s)) = 0, k = 1, 2.

2.
∂ℓ−1Lk

∂ℓ−1xk
=

−coeff(Lk, x
ℓ−1
k )/ℓ

coeff(Lk, xℓ
k)

, k = 1, 2, where coeff(pol, var) denotes the coefficient of

a polynomial pol with respect to var.

Proof. In order to prove statement 1, we first note that from Theorem 2,

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), k = 1, 2,

where degs(Wk) = ℓ deg(qk) = deg(pk) (see Corollary 4). Thus,

∂ℓ−1Lk

∂ℓ−1xk

(s, xk) = ℓ!xkqk2(s)
ℓ − ℓ!qk1(s)qk2(s)

ℓ−1 + ℓ!ǫℓxkbk(s)− (ℓ− 1)!ǫℓak(s),
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where bk(s) is the coefficient ofWk with respect to xℓ
k (by Remark 6, we have that degxk

(Wk) =

deg(R) = ℓ), and ak(s) is the coefficient of Wk with respect to xℓ−1
k . Note that from Corol-

lary 5, we have that qk2(s)
ℓ + ǫℓbk(s) 6= 0 and thus, degxk

(
∂ℓ−1Lk

∂ℓ−1xk
(s, xk)

)
= 1. In addition,

clearly one has that
∂ℓ−1Lk

∂ℓ−1xk
(s, q̃k(s)) = 0, k = 1, 2.

Statement 2 is obtained from statement 1 using that:

coeff(Lk, x
ℓ
k) = qk2(s)

ℓ+ǫℓbk(s), and coeff(Lk, x
ℓ−1
k ) = −ℓqk2(s)

ℓ−1qk1(s)−ǫℓak(s), k = 1, 2.

Remark 9. In the following, we denote by D̃ the plane curve defined by the parametrization

Q̃(s) =
(

q̃11(s)
q̃12(s)

, q̃21(s)
q̃22(s)

)
introduced above. In addition, let D be the plane curve defined by the

parametrization Q(s) =
(

q11(s)
q12(s)

, q21(s)
q22(s)

)
obtained by removing the approximate gcd from the

numerator and denominator of each component of Q̃ (see statement 1 in Remark 3). In

Section 4, we will analyze the relationship between the input curve C and D̃ (see Subsection
4.1). Afterwards, since the simplification modifies the geometry (at infinity) of the reparam-
eterized curve, we provide some error bounds that measure the closeness between the curves
C and D (see Subsection 4.2).

In Example 5, we show how to construct the ǫ–numerical reparametrization Q. In
particular, we illustrate Theorem 2 and Corollary 6. For this purpose, we consider the plane
curve introduced in Example 2, and we use the rational function R constructed in Example
4.

Example 5. Continuing with Example 4, we obtain that

R(t) =
C0(t)

C2(t)
=

52160t2 + 83t

−52077
.

Note that deg(R) = ℓ = 2. Now, we show how to compute the ǫ–numerical reparametrization
Q. For this purpose, we determine the polynomials

L1(s, x1) = Rest(G1(t, x1), sC2(t)− C0(t)) = .06216533631 x1 − .2494530177 s2 +
.1389703128 10−5 s− .6226547971 10−4s x1 + .2480131435 10−3s2 x1 + .03105156714 x2

1 +
.2492050357 s2 x2

1−.6346614958 10−4s x2
1+.5000000000 s4 x2

1−1. s4 x1+.2496021856 10−3s3 x1−
.2496021856 10−3s3 x2

1 + .5000000000 s4 + .03111380032,

L2(s, x2) = Rest(G2(t, x2), sC2(t)− C0(t)) = .6188610482 10−4x2 + .2492049406 x2 s+
.4992043712 s2 + .2492050042 10−3s− .1268068308 10−5 x2 s

2 + .03110105693 x2
2 −

.6356730153 10−4x2
2 s+.2496022171 x2

2 s
2−.2500000000 10−3x2

2 s
3+x2 s

3+.5007968969 x2
2 s

4+
.3078504788 10−7,
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Input curve C (left), partial enlarged view of C (right)

Curves C and D̃ (left), partial enlarged view of C and D̃ (right)

Figure 2: Curves C and D̃

where Gk(t, xk) = xkpk2(t) − pk1(t), k = 1, 2. Now, we compute the root in the variable xk

of the polynomial ∂Lk

∂xk
(s, xk) (see Corollary 6). We get the curve D̃ defined by the rational

parametrization

Q̃(t) =

(−.06216533631 + .00006226547971t− .0002480131435t2 + t4 − .0002496021856t3

−.0001269322992t+ t4 + .06210313427 + .4984100713t2 − .0004992043712t3
,

−.00006178762808− .2488083914t+ .000001266050484t2 − .9984087423t3

−.0001269322992t+ t4 + .06210313427 + .4984100713t2 − .0004992043712t3

)
.

In Figure 2, we plot the curves C and D̃. We observe that the input curve, C, and its
approximate one, D̃, are almost overlapped in the view of big scalar, so we enlarge a small
part to show the difference (note that for a better view, the coordinate scale may not be 1 : 1).

Finally, we simplify Q̃ by removing the approximate gcd from the numerator and denomina-
tor of each component of Q̃ (see statement 1 in Remark 3 and Remark 9). We get the curve
D defined by the ǫ–numerical reparametrization

Q(t) =

(
t2 + .000005006649227t− .2494538109

t2 − .0002445955365t+ .2492042101
,

−.9984087427t− .0002529376363

t2 − .0002445955365t+ .2492042101

)
.
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In Figure 3, we plot the curves C and D. Similarly as above, we observe that the input curve,
C, and its approximate one, D, are almost overlapped in the view of big scalar, so we enlarge
a small part to show the difference.

Input curve C (left), curve D (right)

Curves C and D (left), partial enlarged view of C and D (right)

Figure 3: Curves C and D

One may check that the equality

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), ‖num(Wk(R, pk))‖ ≤ ‖HPQ

k ‖ℓ, k = 1, 2

holds. Then, Q is an ǫ–proper reparametrization of P (see Theorem 2 and Corollary 3).

Finally, we observe that deg(P) = deg(Q)deg(R) (see Corollary 4), and then the degree of
the ǫ–proper parametrization Q is lower than the non ǫ–proper input parametrization P.

4. Error Analysis

In this section, we show how the input curve and the output curve are related. For this
purpose, we consider two different subsections. The first one (Subsection 4.1) shows the

relationship between the input curve C and the curve D̃. More precisely, it is proved that
deg(f) = deg(h), where f ∈ C[x1, x2] is an irreducible polynomial defining implicitly the

curve C, and h ∈ C[x1, x2] is an irreducible polynomial defining implicitly the curve D̃ (see
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Theorem 3). Moreover, we prove that the homogeneous form of maximum degree of both

curves, C and D̃, is the same. Thus, in particular these two curves have the same points at
infinity (see Theorem 4).

The parametrization Q̃ should be further simplified to obtain the searched parametriza-
tion Q. However, when we simplify Q̃, the curve D̃ defined by Q̃ changes (the infinity points
are not the same because the numerical simplification). Thus, in Subsection 4.2, we provide
some error bounds that measure the closeness between the curves C and D (see Theorem 5).

4.1. The Curves C and D̃

In this subsection, we consider the input curve C defined by the rational parametrization
P = (p11

p12
, p21
p22

), gcd(pk1, pk2) = 1, k = 1, 2, with index(P) = 1, and the output curve D̃
defined by the parametrization Q̃ =

(
q̃11
q̃12

, q̃21
q̃22

)
, gcd(q̃k1, q̃k2) = 1, k = 1, 2. We may assume

without loss of generality that index(Q̃) = 1 (note that we are working with approximate
mathematical objects and then, with probability almost one, degt(S) = 1, where S is the
polynomial introduced in Section 2).

Under these conditions, we first prove that these two curves have the same degree.

Theorem 3. The curves C and D̃ have the same degree.

Proof. First, we may write without loss of generality the parametrization P such that the
denominators of both components are the same. That is, P = (p11

p12
, p21
p12

). In addition, since P
is expected to be given with perturbed float coefficients, we may assume that gcd(pk1, p12) =
1, k = 1, 2. Furthermore, from Corollary 5,

Rest(pk2(t), sCj(t)− Ci(t)) = qk2(s)
ℓ + ǫℓbk(s) = q̃k2(s), k = 1, 2

which implies that if p12 = p22, then q̃12 = q̃22 (that is, the denominators of both compo-

nents of the parametrization Q̃ are the same). In addition, we may assume that deg(pk1) =
deg(p12) and deg(q̃k1) = deg(q̃12), for k = 1, 2 (otherwise, one may apply on both parametriza-
tions a birational parameter transformation). Thus,

deg(p1) = deg(p2) = deg(p11) = deg(p21) = deg(p12), and

deg(q̃1) = deg(q̃2) = deg(q̃11) = deg(q̃21) = deg(q̃12).

Under these conditions, from Theorem 6.3.1 in [32], we have that all the infinity points of

D̃ are reachable by the corresponding projective parametrization

Q̃∗(s, w) = (q̃∗11(s, w), q̃
∗
21(s, w), q̃

∗
12(s, w)) .

Furthermore, since deg(q̃11) = deg(q̃21) = deg(q̃12), it holds that q̃
∗
12(s0, w0) = 0 if and only

if q̃12(s0) = 0.
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Now, taking into account that index(Q̃) = 1 , we apply Theorem 4.3.8 in [32], and we
have that degx1

(h) = degx2
(h) = deg(q̃1) = deg(q̃2), where h ∈ C[x1, x2], deg(h) = r, is

an irreducible polynomial defining implicitly the curve D̃. In addition, we observe that
xk, k = 1, 2 does not divide (exactly) hr, where hr is the homogeneous form of maximum
degree of the polynomial h. That is, hr(1, 0)hr(0, 1) 6= 0. Indeed, if hr(1, 0) = 0 (similarly
if hr(0, 1) = 0), one gets that there exists si ∈ C such that q̃12(si) = q̃21(si) = 0. This is
impossible, because we have assumed that gcd(q̃12, q̃21) = 1.

Therefore, we conclude that

deg(h) = r = degx1
(h) = degx2

(h) = deg(q̃1) = deg(q̃2) = deg(q̃11) = deg(q̃21) = deg(q̃12).

In addition, since
Rest(p12(t), sCj(t)− Ci(t)) = q̃12(s),

(see Corollary 5), we get that deg(q̃12) = degs(sCj(t) − Ci(t))deg(p12) = deg(p12) (see
Sections 5.8 and 5.9 in [36]), and hence r = deg(h) = deg(p12).

Now, we reason with the input curve C. For this purpose, we consider f ∈ C[x1, x2], deg(f) =
d, an irreducible polynomial defining implicitly the curve C. Since index(P) = 1, we reason
as above and we get that degx1

(f) = degx2
(f) = deg(p1) = deg(p2). We also get that

fd(1, 0)fd(0, 1) 6= 0, where fd is the homogeneous form of maximum degree of the polynomial
f (taking into account that gcd(p12, pk1) = 1, k = 1, 2 may reason similarly as above), and
thus

deg(f) = d = degx1
(f) = degx2

(f) = deg(p1) = deg(p2) = deg(p11) = deg(p21) = deg(p12).

Since r = deg(h) = deg(p12), we conclude that d = deg(f) = deg(h) = deg(pk) = deg(q̃k).

From Theorem 3, we can deduce that the curves C and D̃ have the same behavior at
infinity. More precisely, in Theorem 4, we show that the homogeneous form of maximum
degree of h is equal to the homogeneous form of maximum degree of f .

Theorem 4. The implicit equations defining the curves C and D̃ have the same homoge-
neous form of maximum degree. Hence both curves have the same points at infinity.

Proof. First, we assume that we are under the conditions stated in the proof of Theorem
3. Then, in particular C is defined parametrically by P = (p11/p12, p21/p12) and implicitly by

f(x1, x2) ∈ C[x1, x2], and D̃ is given parametrically by Q̃ = (q̃11/q̃12, q̃21/q̃12) and implicitly

by h(x1, x2) ∈ C[x1, x2]. In addition, P, Q̃ and f, h satisfy the properties stated in the proof
of Theorem 3.

Under these conditions, and taking into account that index(P) = 1, we apply Theorem
4.5.3 in [32], and one has that

f(x1, x2)
index(P) = Rest(G1(t, x1), G2(t, x2)), where Gk(t, xk) = xkp12(t)− pk1(t), k = 1, 2.
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Now, we consider the polynomials

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)), k = 1, 2,

introduced in Theorem 2. By Corollary 6, we have that

Lk(s, xk) = xℓ
kq̃12 − ℓxℓ−1

k q̃k1 + Ak(s, xk), degxk
(Ak) ≤ ℓ− 2, k = 1, 2.

Let us prove that there exists a non-empty open subset Ω ⊂ C2, such that for every q ∈ Ω
with f(q) = 0, it holds that R(q) = 0, where R(x1, x2) := Ress(L1, L2). Thus, one would
deduce that f divides R. Indeed, first we observe that R 6= 0, because there does not exist
any factor depending on s that divides Lk (note that gcd(q12, qk1) = 1). Now, let

Ω := {q ∈ C
2 | lc(G1, t)(q)lc(G2, t)(q)D2(q)Cj(P−1(q)) 6= 0},

where P−1(x1, x2) = D1(x1, x2)/D2(x1, x2) (note that index(P) = 1 and then, there exists
the inverse of P in C(x1, x2) \ C). Observe that Ω is a non-empty open subset of C2 since

lc(G1, t)(x1)lc(G2, t)(x2)D2(x1, x2)Cj(P−1(x1, x2)) 6= 0.

Now, let q = (x0
1, x

0
2) ∈ Ω be such that f(q) = 0 (note that C and C2 \Ω intersect at finitely

many points). Since lc(Gj, t)(q) 6= 0, j = 1, 2, by the resultant property (see Section 2),
there exists t0 ∈ C such that Gk(t0, x

0
k) = 0, k = 1, 2. In addition, since q ∈ Ω, one has that

there exists s0 ∈ C such that s0Cj(t0)−Ci(t0) = 0 (note that t0 = P−1(q), and Cj(t0) 6= 0).
Then, since Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)), we get that Lk(s0, x

0
k) = 0, k = 1, 2.

Hence, by the specialization of the resultant property (see Section 2), we deduce that

R(q) = Ress(L1(s, x1), L2(s, x2))(q) = Ress(L1(s, x
0
1), L2(s, x

0
2)) = 0.

Thus,
R(x1, x2) = f(x1, x2)m(x1, x2), m ∈ C[x1, x2].

Since we are working with approximate mathematical objects, we may assume without loss
of generality that deg{x1,x2}(R) = degs(L1)degs(L2) (see Sections 5.8 and 5.9 in [36]). Then,
if we homogenize the above equation with respect to the variables x1 and x2, we get that

R∗(x1, x2, x3) := Ress(L
∗
1(s, x1, x3), L

∗
2(s, x2, x3)) = F (x1, x2, x3)M(x1, x2, x3),

where F,M ∈ C[x1, x2, x3] are the homogenization of f,m, respectively, with respect to the
variables x1 and x2, and

L∗
k(s, xk, x3) = xℓ

kq̃12 − ℓxℓ−1
k x3q̃k1 + x2

3Ak(s, xk, x3), deg{xk,x3}(Ak) = ℓ− 2, k = 1, 2,

is the homogenization of Lk with respect to x1 and x2. Observe that x3 does not divide M ,
because deg{x1,x2}(R) = degs(L1)degs(L2).

Now, we consider the system defined by the polynomials

L∗
1 = (xℓ

1q̃12+x2
3A1(s, xk, x3))+x3(−ℓxℓ−1

1 q̃11), L
∗
2 = (xℓ

2q̃12+x2
3A2(s, xk, x3))+x3(−ℓxℓ−1

2 q̃21).
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Observe that the two equations are independent. Thus, solving from L∗
1 = 0, we have that

x3 = (xℓ
1q12 + x2

3A1(s, x1, x3))/(ℓx
ℓ−1
1 q̃11). Substituting it in L∗

2, we obtain the following
equivalent system defined by the polynomials L∗

1, and L∗, where

L∗(s, x1, x2, x3) := q̃12(s)x
ℓ−1
1 xℓ−1

2 (−q̃21(s)x1+q̃11(s)x2)+x2
3B(s, x1, x2, x3), B ∈ C[s, x1, x2, x3].

Thus,

R∗(x1, x2, x3) = Ress(L
∗
1(s, x1, x3), L

∗(s, x2, x3)) = F (x1, x2, x3)M(x1, x2, x3).

Using the property of specialization of the resultants, we consider x3 = 0 in the above
equality, and we get that (we remind that x3 does not divide M)

Ress(q̃12(s), x
ℓ−1
1 xℓ−1

2 (−q̃21(s)x1 + q̃11(s)x2)) =

x
deg(q̃12)(ℓ−1)
1 x

deg(q̃12)(ℓ−1)
2 Ress(q̃12(s), (−q̃21(s)x1 + q̃11(s)x2)) = fd(x1, x2)mℓ(x1, x2),

where fd, mℓ are the homogeneous form of maximum degree of F,M , respectively.

On the other side, by applying Theorem 4.5.3 in [32], one also has that

h(x1, x2)
index(Q̃) = Rest(G̃1(t, x1), G̃2(t, x2)), where G̃k(t, xk) = xkq̃12(t)−q̃k1(t), k = 1, 2.

We recall that index(Q̃) = 1. Since we are working with approximate mathematical objects,

similarly as above we may assume that deg{x1,x2}(h) = degt(G̃1)degt(G̃2). Then, if we
homogenize the above equation with respect to the variables x1 and x2, we get that

H(x1, x2, x3) = Rest(G̃
∗
1(t, x1, x3), G̃

∗
2(t, x2, x3)), where G̃∗

k(t, xk, x3) = xkq̃12(t)− q̃k1(t)x3,

and H is the homogenization of h with respect to the variables x1 and x2. Observe that x3

does not divide H because deg{x1,x2}(h) = degt(G̃1)degt(G̃1).

Now, reasoning as above, we have that the system defined by the polynomials G̃∗
1 and G̃∗

2

is equivalent to the system defined by G̃∗
1 and the polynomial G̃∗ = −q̃21(s)x1 + q̃11(s)x2.

Thus,
H(x1, x2, x3) = Rest(G̃

∗
1(t, x1, x3), G̃

∗(t, x1, x2)).

Using the property of specialization of the resultants, we consider x3 = 0 in the above
equality, and we get that (observe that x3 does not divide H)

Ress(q̃12(s),−q̃21(s)x1 + q̃11(s)x2) = hd(x1, x2),

where hd is the homogeneous form of maximum degree of H (we recall that d = deg(f) =
deg(h), see Theorem 3). Thus, since

fd(x1, x2)m(x1, x2) = x
deg(q̃12)(ℓ−1)
1 x

deg(q̃12)(ℓ−1)
2 Ress(q̃12(s), (−q̃21(s)x1 + q̃11(s)x2)) =

x
deg(q̃12)(ℓ−1)
1 x

deg(q̃12)(ℓ−1)
2 hd(x1, x2),

and xk, k = 1, 2, does not divide fd (see proof of Theorem 3), we conclude that hd = fd.

Hence, C and D̃ have the same homogeneous form of maximum degree, and then both curves
have the same degree and the same points at infinity.
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4.2. The Curves C and D
As we know, the parametrization Q̃ should be further simplified to get the parametriza-

tion Q (see Remark 9). By Theorem 3, deg(q̃k) = deg(pk), and from Corollary 4, we need

to look for Q such that ℓ deg(qk) = deg(pk). However, the curve D̃ defined by Q̃ changes

with the simplification of Q̃ (the infinity points vary during the numerical simplification).
This is due to the fact that the input parametrization P and the output parametrization Q
have different degrees (see Corollary 4).

In order to analyze the behavior at affine points, we study the closeness of the curves

C and D, where D is the curve defined by the simplified parametrization Q =
(

q11
q12

, q21
q22

)

(note that by Corollary 3, ǫ–index(Q) = 1), and C is the curve defined by P = (p11
p12

, p21
p22

)

(we remind that P ∼ǫ Q ◦ R, where R(t) ∈ C(t) \ C, and deg(R) = ℓ). For this purpose,
we first assume that deg(pi1) = deg(pi2), and deg(qi1) = deg(qi2), i = 1, 2 (otherwise, one
can apply on both parametrizations a birational parameter transformation). In addition, let
‖p‖ := max{‖p11‖, ‖p21‖, ‖p12‖, ‖p22‖}, and ‖q‖ := max{‖q11‖, ‖q21‖, ‖q12‖, ‖q22‖}.

Finally, we also assume that Theorem 2 holds and then Q is an ǫ–proper reparametriza-
tion of P (see Corollary 3). If Theorem 2 does not hold, one applies Remark 7, and then
Q an ǫ–proper reparametrization of P. In this case, the formula obtained in Theorem 5
remains unchanged except that ǫ becomes ǫ.

Under these conditions, in order to analyze the behavior at affine points, we shall restrict
to an interval where the parametrizations P and Q are both well defined. Thus, the general
strategy is to show that almost all real affine points on D are at a small distance of an affine
real point on C, and reciprocally.

For this purpose, we consider the interval I := (d1, d2) ⊂ R satisfying that for all t0 ∈ I,
there exists M ∈ N such that |qi2(R(t0))| ≥ M , and |pi2(t0)| ≥ M , i = 1, 2. Note that we
can decompose R to a union of finitely many intervals, Ij , j = 1, . . . , n, satisfying the above
condition (that is, the interval without any root of the denominators of the parametrizations;
see [27]). Then we shall reason similarly as in Theorem 5 for each interval Ij , j = 1, . . . , n.

Theorem 5. The following statements hold:

1. Let I := (d1, d2) ⊂ R, and M ∈ N be such that for every t0 ∈ I, it holds that
|qi2(R(t0))| ≥ M , and |pi2(t0)| ≥ M for i = 1, 2. Let d := max{|d1|, |d2|}. Then, for
every t0 ∈ I,

|pi(t0)− qi(R(t0))| ≤ 2/M2ǫ ζ‖p‖‖q‖, i = 1, 2,

where

ζ =





ddeg(P)+1

(d− 1)1/ℓ
if d > 1,

1

(1− d)1/ℓ
if d < 1,

ℓ1/ℓdeg(P)1/ℓ if d = 1.
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2. Ct∈I is contained in the offset region of Ds∈J at distance 4
√
2/M2ǫ ζ ‖p‖‖q‖, where

J = R(I).
3. Ds∈J is contained in the offset region of Ct∈I at distance 4

√
2/M2ǫ ζ ‖p‖‖q‖, where

J = R(I).

Proof. Firstly, statement (1) implies statements (2) and (3). To see this, we note that for
almost all real affine points Q ∈ D there exists an affine real point P ∈ C such that

‖P −Q‖2 ≤ 2
√
2/M2ǫ ζ ‖p‖‖q‖.

Indeed, using statement (1), we have

‖P −Q‖2 =
√
(p1(t0)− q1(R(t0)))2 + (p2(t0)− q2(R(t0))2 ≤

√
(2/M2ǫ ζ‖p‖‖q‖)2 + (2/M2ǫ ζ‖p‖‖q‖)2 ≤ 2

√
2/M2ǫ ζ ‖p‖‖q‖.

Now, reasoning as in Section 2.2 in [13], we deduce statements (2) and (3).

We next prove statement (1). By the proof of Theorem 2, we have

HPQ
i (t, R(t))ℓ = (pi1(t)q12(R(t))− qi1(R(t))p12(t))

ℓ = ǫℓei(t), where

ei(t) = −num(Wi(R(t), pi(t))) = ei,0 + ei,1t+ . . .+ ei,ni
tni ∈ C[t], and

‖ei‖ = ‖num(Wi(R, pi))‖ ≤ ‖HPQ
i ‖ℓ.

In addition, since ei(t) = −num(Wi(R(t), pi(t))), we have ni := deg(ei) ≤ ℓdeg(P) for
i = 1, 2. Indeed, since degxi

(Wi) = ℓ (see Remark 6), we deduce that

deg(ei) ≤ max{deg(R)degt(Wi), ℓdeg(P)} ≤ max{ℓdeg(P), ℓdeg(P)} = ℓdeg(P).

Under these conditions, for every t0 ∈ I, if d 6= 1, it holds that

|HPQ
i (t0, R(t0))

ℓ| = ǫℓ|ei(t0)| ≤ ǫℓ‖HPQ
i ‖ℓ(|ei,0|+ |ei,1||t0|+ . . .+ |ei,ni

||t0|ni) ≤

ǫℓ‖HPQ
i ‖ℓ(1 + d+ . . .+ dni) = ǫℓ‖HPQ

i ‖ℓ d
ni+1 − 1

d− 1
, i = 1, 2. (6)

If d = 1, then

|HPQ
i (t0, R(t0))

ℓ| ≤ ǫℓ‖HPQ
i ‖ℓ(1+|t0|+. . .+|t0|ni) ≤ ǫℓ‖HPQ

i ‖ℓ(1+1+. . .+1) = ǫℓ‖HPQ
i ‖ℓ ni.

(7)
Therefore, we conclude that:

1. If d > 1, by (6), and taking into account that |qi2(R(t0))| ≥ M , and |pi2(t0)| ≥ M for
i = 1, 2, we obtain that

|pi(t0)− qi(R(t0))| =
|HPQ

i (t0, R(t0))|
|qi2(R(t0))pi2(t0)|

≤ 1/M2ǫ‖HPQ
i ‖d

deg(P)+1/ℓ

(d− 1)1/ℓ
≤

1/M2 ǫ ‖HPQ
i ‖ ddeg(P)+1

(d− 1)1/ℓ
.
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2. If d < 1, from (6), and taking into account that 1 − dni+1 < 1, and |qi2(R(t0))| ≥ M ,
and |pi2(t0)| ≥ M for i = 1, 2, we obtain that

|pi(t0)− qi(R(t0))| =
|HPQ

i (t0, R(t0))|
|qi2(R(t0))pi2(t0)|

≤ 1/M2 ǫ ‖HPQ
i ‖ 1

(1− d)1/ℓ
.

3. If d = 1, from (7), and taking into account that |qi2(R(t0))| ≥ M , and |pi2(t0)| ≥ M
for i = 1, 2, we obtain that

|pi(t0)− qi(R(t0))| =
|HPQ

i (t0, R(t0))|
|qi2(R(t0))pi2(t0)|

≤ 1/M2 ǫ ‖HPQ
i ‖(ℓdeg(P))1/ℓ.

Finally, we have
‖HPQ

i ‖ = ‖pi1(t)qi2(s)− qi1(s)pi2(t)‖ ≤ 2‖p‖‖q‖.

From Theorem 5, we deduce the following corollary:

Corollary 7. Under the conditions of Theorem 5, it holds that:

1. If d ≥ 2, then ζ ≤ ddeg(P)+1.

2. If 1 < d < 2, then ζ ≤ 2deg(P)+1.

Proof. If d ≥ 2, by Theorem 5 we have ζ ≤ ddeg(P)+1

(d−1)1/ℓ
≤ ddeg(P)+1.

If 1 < d < 2,
|HPQ

i (t0, R(t0))
ℓ| ≤ ǫℓ‖HPQ

i ‖ℓ(1 + |t0|+ . . .+ |t0|ni) ≤
ǫℓ‖HPQ

i ‖ℓ(1 + 2 + . . .+ 2ni) ≤ ǫℓ ‖HPQ
i ‖ℓ2ni+1, i = 1, 2.

Thus,

|pi(t0)−qi(R(t0))| =
|HPQ

i (t0, R(t0))|
|q12(R(t0))p12(t0)|

≤ 1/M2 ǫ‖HPQ
i ‖ 2deg(P)+1 ≤ 2/M2 ǫ‖p‖‖q‖ 2deg(P)+1.

The following example shows the error analysis in the computation corresponding to
Example 5. In addition, it illustrates the application of the Theorem 5 and shows the
resemblance between the curves C and D.

Example 6. We consider the rational curves C and D in Example 5 defined by the rational
parametrizations

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
=

(
t4 − .2502500000 + .0005000000000 t

t4 + .2500000000 + .0002500000000 t2
,

t2 − .0002500000000

t4 + .2500000000 + .0002500000000 t2

)
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and

Q(t) =

(
q11(t)

q12(t)
,
q21(t)

q22(t)

)
=

(
t2 + .000005006649227t− .2494538109

t2 − .0002445955365t+ .2492042101
,

−.9984087427t− .0002529376363

t2 − .0002445955365t+ .2492042101

)
,

respectively. We apply Theorem 5, and we consider I = (−1, 1). Thus, d = 1. Let M ∈ N

be such that for every t0 ∈ I, it holds that |qi2(R(t0))| ≥ M , and |pi2(t0)| ≥ M , for i = 1, 2.
We have that M = .2492042100. Then, by Theorem 5, we get that

ζ = ℓ1/ℓdeg(P)1/ℓ = 2.828427125,

and for every t0 ∈ I, it holds that

|pi(t0)− qi(R(t0))| < 2/M2ǫ ζ‖p‖‖q‖ = 0.9108864449, i = 1, 2,

where ‖p‖ = ‖q‖ = 1. In Figure 4, we plot the curves C and D defined by P(t) and Q(t),
respectively, for t ∈ I.

Figure 4: Curves C and D for t ∈ I (left), partial enlarged view of C and D (right)

5. Numeric Algorithm of Reparametrization for Curves

In this section, we apply the results obtained in Section 3 to derive an algorithm that
computes an ǫ–proper reparametrization of a given approximately improper parametrization
of a plane curve. We outline this approach, and we illustrate it with some examples where
we also show the error bound obtained by applying results in Subsection 4.2.
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Numeric Algorithm Reparametrization for Curves.

Input: a tolerance ǫ > 0, and a rational parametrization P(t) =
(

p11(t)
p12(t)

, p21(t)
p22(t)

)
∈ C(t)2,

ǫ–gcd(pi1, pi2) = 1, i = 1, 2, of an algebraic plane curve C.
Output: a rational parametrization Q(t) =

(
q11(t)
q12(t)

, q21(t)
q22(t)

)
∈ C(t)2, ǫ–gcd(qi1, qi2) =

1, i = 1, 2, such that ǫ–index(Q) = 1 and P ∼ǫ Q ◦R, where R(t) ∈ C(t) \ C.
1. Compute the polynomials HPP

k (t, s) = pk1(t)pk2(s)− pk1(s)pk2(t), k = 1, 2.

2. Compute

SPP
ǫ (t, s) = ǫ–gcd(HPP

1 (t, s), HPP
2 (t, s)) ≈ǫ Cm(t)s

m + · · ·+ C0(t),

and ǫ–index(P) := degt(S
PP
ǫ ) (see Definition 1 in Subsection 3.1).

3. If ǫ–index(P) = 1, Return Q(t) = P(t), and R(t) = t. Otherwise go to step 4.

4. Consider R(t) = Ci(t)
Cj(t)

∈ C(t), such that Cj(t), Ci(t) are two of the polynomials

obtained in step 2 satisfying that CjCi 6∈ C, and ǫ–gcd(Cj, Ci) = 1 (see Subsection
3.3).

5. For k = 1, 2, compute the polynomials (see Theorem 2 in Subsection 3.4)

Lk(s, xk) = Rest(Gk(t, xk), sCj(t)− Ci(t)), where Gk(t, xk) = xkpk2(t)− pk1(t).

6. For k = 1, 2, compute the root in the variable xk of the polynomial
∂ℓ−1Lk

∂ℓ−1xk

(s, xk)

(see Corollary 6 in Subsection 3.5), where ℓ := deg(R) = ǫ–index(P)

(see Remark 8). Let q̃k(t) = q̃k1(t)/q̃k2(t) be this root, and let Q̃(t) =
(q̃11(t)/q̃12(t), q̃21(t)/q̃22(t)) ∈ C(t)2.

7. Simplify Q̃(t) by removing the approximate gcd from the numerator and denomi-

nator of each component of Q̃ (see Remark 10). Let

Q(t) =

(
q11(t)

q12(t)
,
q21(t)

q22(t)

)
∈ C(t)2, ǫ–gcd(qk1, qk2) = 1, k = 1, 2,

be the obtained parametrization. Check whether the following equality holds

Lk(s, xk) = (xkqk2(s)− qk1(s))
ℓ + ǫℓWk(s, xk), ‖num(Wk(R, pk))‖ ≤ ‖HPQ

k ‖ℓ

(see Theorem 2). If it does not hold, use Remark 7 and compute ǫ.

8. Return Q, R, and the message “Q is an ǫ-proper reparametrization of

P” (or “Q is an ǫ-proper reparametrization of P”, if Remark 7 is applied).

Remark 10. For the simplification of Q̃ in step 7, we compute ǫ–gcd(q̃k1(t), q̃k2(t)), k = 1, 2
under the given tolerance ǫ, and we remove it from q̃k1(t) and q̃k2(t). For this purpose, one
may apply well known ǫ–gcd algorithms proposed for inexact polynomials (see for instance,
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[3, 4, 10, 21, 40]). We use the SNAP package included in Maple (see statement 1 in Remark
3).
Also the ǫ–gcd computation in step 2 is done with the SNAP package included in Maple.

In the following, we illustrate Numeric Algorithm Reparametrization for Curves by one
example in detail (Example 7) and two other examples (Examples 8 and 9). The algorithm
is implemented with the computer algebra system Maple, and we work with floating point
numbers with precision of 10 digits.

Example 7. Let ǫ = 0.0001, and the rational curve C defined by the parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
=

(
.7498125469t6 + t3 + .4973756561

1.749562609t6 + 1.749812547t3 + .2499375156
,

.0002499375156t(10000t5 + 1.)

17.49562609t6 + 17.49812547t3 + 2.499375156

)
.

Using the SNAP package, one has that ǫ–gcd(pj1, pj2) = 1, j = 1, 2. In step 1 of the algo-
rithm, we compute the polynomials

HPP
1 (t, s) = −7004000s6t3−10930000s6+7004000s3t6−9930990s3+10930000t6+9930990t3,

HPP
2 (t, s) = 70010000s6t3 + 10000000s6 + 7000st6 + 7001st3 + 1000s − 70010000s3t6 −

10000000t6 − 7000ts6 − 7001ts3 − 1000t.

Now, we compute the polynomial SPP
ǫ . We have that

SPP
ǫ (t, s) ≈ǫ C0(t) + C1(t)s+ C2(t)s

2 + C3(t)s
3,

where
C0(t) = t(69970939184 + 535492598272100802900t2),

C1(t) = t(−52478204388+535492598272100802900t)−69970939184−535492598272100802900t2,

C2(t) = 63943722313t+ 52478204388, C3 = −535492598336044525213.

Then, ǫ–index(P) = degt(S
PP
ǫ ) = 2 (see Definition 1). Now, we apply step 4 of the algo-

rithm, and we consider

R(t) =
C0(t)

C3(t)
=

−4t(17492734796 + 133873149568025200725t2)

535492598272100802900
.

In steps 5 and 6 of the algorithm, we determine the polynomials Lk(s, xk), and we com-
pute the root in the variable xk of the polynomial ∂Lk

∂xk
(s, xk), k = 1, 2. We get the rational
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parametrization Q̃(t). We simplify Q̃ by removing the approximate gcd from the numera-

tor and denominator of each component of Q̃ (see Remark 10), and we return the curve D
defined by the ǫ–numerical reparametrization

Q(t) =

(
.7498125351t2 + t+ .4973756559

1.749562581t2 + 1.749812559t+ .2499375114
,

.2499375117t2 + .5551941368 10−8t− .5495954487 10−8

1.749562581t2 + 1.749812559t+ .2499375114

)
.

One may check that the equality of Theorem 2 does not hold. However, Remark 7 holds
under ǫ = 0.0005. Then, Q is an ǫ–proper reparametrization of P. In Figure 5, we plot the
input curve C and the output curve D.

Input curve C (left), curve D (right)

Curves C and D (left), partial enlarged view of C and D (right)

Figure 5: Curves C and D

We next perform error analysis by Theorem 5. Let I = (3, 10). Thus, d = 10. Let
M ∈ N be such that for every t0 ∈ I, it holds that |qi2(R(t0))| ≥ M and |pi2(t0)| ≥ M , for
i = 1, 2. We have that M = 1322.925998. Then, by Theorem 5 we deduce that

ζ =
ddeg(P)+1

(d− 1)1/ℓ
= 4807498.567,
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and for every t0 ∈ I, it holds that

|pi(t0)− qi(R(t0))| < 2/M2ǫ ζ‖p‖‖q‖ = .08410680133, i = 1, 2,

where ‖p‖ = 17.49812547, and ‖q‖ = 1.749812559. In Figure 6, we plot the curves C and D
defined by P(t) and Q(t), respectively, for t ∈ I.

Figure 6: Curves C and D for t ∈ I (left), partial enlarged view of C and D (right)

Example 8. Let ǫ = 0.02, and the rational curve C defined by the parametrization

P(t) =

(
t6 − 3t5 − 3.001t4 + 11.001t3 + 9t2 − 15t− 9.002

t2 − t− 2.001
,
t4 − 2.001t3 − 2t2 + 3.002t+ 3

t2 − t− 2.001

)
.

Numeric Algorithm Reparametrization for Curves returns the curve D defined by the ǫ–numerical
reparametrization

Q(t) =

(
0.06667333664 t3 − 0.4000900188 t2 + t− 0.6001100173

0.06667333664 t− 0.1334077982
,

0.06667333662 t2 − 0.2001089149 t+ 0.2000366790

0.06667333664 t− 0.1334077982

)
.

Using Theorem 5, we consider I = (0, 0.5) and for every t0 ∈ I, it holds that

|pi(t0)− qi(R(t0))| ≤ 0.4582153762, i = 1, 2.

In Figure 7, we plot the curves C and D defined by P(t) and Q(t), respectively, for t ∈ I.
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Input curve C (left), curve D (right)

Curves C and D (left), partial enlarged view of C and D (right)

Figure 7: Curves C and D

Example 9. Let ǫ = 0.001, and the rational curve C defined by the parametrization P(t) =

(
20.001 t8 − 40 t5 + 20 t2 + 2 t7 − 2.001 t4 − t6

(t3 − 1.001)3
,
−2 t4 − 6.002 t5 + 6 t2 + 6 t6 − 12.002 t3 + 6.002

(−t2 + t3 − 1) (t3 − 1.001)

)
.

Numeric Algorithm Reparametrization for Curves returns the curve D defined by the ǫ–numerical
reparametrization

Q(t) =

( −t2 + 0.1002417588 t+ 0.04999508896

0.050095827 t3 − 1.520248235 10−5 t2 + 4.9502838 10−8 t− 2.19451487 10−10
,

9.046219880 10−4 t2 + 0.0009044005499 t− 0.0003016044631

0.0001508373032 t2 + 0.0001508171174 t− 1.509849726 10−7

)
.

Using Theorem 5, we consider I = (−5, 5) and for every t0 ∈ I, it holds that

|pi(t0)− qi(R(t0))| ≤ 0.1254659264, i = 1, 2.

In Figure 8, we plot the curves C and D defined by P(t) and Q(t), respectively, for t ∈ I.
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Input curve C (left), curve D (right)

Curves C and D (left), partial enlarged view of C and D (right)

Figure 8: Curves C and D

6. Conclusion

The paper focuses on the problem of numerical proper reparametrization which has both
theoretical and practical significance. Based on the existing results of the symbolic situation
(see [22]), we build the corresponding parallel theory for the numerical situation. For a
given numerical curve, we determine whether it is approximately improper under a given
precision. For the affirmative case, an ǫ–proper reparametrization is computed and it is
proved that the reparameterized curve always lies in a certain offset region of the input one
(and reciprocally). A natural but difficult generalization of the work would be the numerical
proper reparametrization for rational curves and surfaces.
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[28] Pérez-Dı́az, S., Sendra, J.R. (2008). A univariate resultant-based implicitization algorithm for surfaces.

Journal of Symbolic Computation. Vol 43 (2). pp. 118–139.
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