14 research outputs found

    Avionics graphics hardware performance prediction with machine learning

    Get PDF
    Within the strongly regulated avionic engineering field, conventional graphical desktop hardware and software application programming interface (API) cannot be used because they do not conform to the avionic certification standards. We observe the need for better avionic graphical hardware, but system engineers lack system design tools related to graphical hardware. The endorsement of an optimal hardware architecture by estimating the performance of a graphical software, when a stable rendering engine does not yet exist, represents a major challenge. As proven by previous hardware emulation tools, there is also a potential for development cost reduction, by enabling developers to have a first estimation of the performance of its graphical engine early in the development cycle. In this paper, we propose to replace expensive development platforms by predictive software running on a desktop computer. More precisely, we present a system design tool that helps predict the rendering performance of graphical hardware based on the OpenGL Safety Critical API. First, we create nonparametric models of the underlying hardware, with machine learning, by analyzing the instantaneous frames per second (FPS) of the rendering of a synthetic 3D scene and by drawing multiple times with various characteristics that are typically found in synthetic vision applications. The number of characteristic combinations used during this supervised training phase is a subset of all possible combinations, but performance predictions can be arbitrarily extrapolated. To validate our models, we render an industrial scene with characteristic combinations not used during the training phase and we compare the predictions to those real values. We find a median prediction error of less than 4 FPS

    Graduate Catalog/Supplement 1995-1998

    Get PDF
    Contains course descriptions, University college calendar, and college administration.https://digitalcommons.usu.edu/universitycatalogs/1040/thumbnail.jp

    A study of Quantum ALgorithms with Ion-trap Quantum Computers

    Get PDF
    Quantum computing will be one of the most incredible breakthroughs in science and technology of our generation. Although the ultimate goal of building quantum computers that hold thousands of error-corrected qubits is still beyond our reach, we have made substantial progress. Compared with the first-generation prototypes, holding a few qubits with gate errors of several percent, the latest generation systems can apply more than a hundred gates (with fidelities above 99%99\%) to tens of fully connected qubits. This thesis focuses on the applications of such state-of-the-art ion-trap quantum computers. The latest generation ion-trap quantum computers have become complex enough that automation is necessary for optimal operations. We present a full-stack automation scheme implemented on a system at the University of Maryland. With the automation scheme, the system can operate without human interference for a few days. With automation, such systems can efficiently demonstrate different categories of applications. We present the experimental study of several hybrid algorithms aiming for generation modeling and efficient quantum state preparation. We also present a gate-based digital quantum simulation with the trotterization method. Our result accurately reproduced all the features expected from running the algorithms. Verifying quantum computations with classical simulation is getting increasingly challenging as quantum computers evolve. We present two approaches to validate quantum computations. First, we demonstrate a method based on random measurement for comparing the results from different quantum computers. Our comparison captures the similarities between quantum computers made with the same technology. We then present experimental works in verifying quantum advantage classically with interactive protocols. We show that our results, at scale with real-time interaction, can demonstrate quantum advantages

    Langley Aerospace Research Summer Scholars

    Get PDF
    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Secure multi-party protocols under a modern lens

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 263-272).A secure multi-party computation (MPC) protocol for computing a function f allows a group of parties to jointly evaluate f over their private inputs, such that a computationally bounded adversary who corrupts a subset of the parties can not learn anything beyond the inputs of the corrupted parties and the output of the function f. General MPC completeness theorems in the 1980s showed that every efficiently computable function can be evaluated securely in this fashion [Yao86, GMW87, CCD87, BGW88] using the existence of cryptography. In the following decades, progress has been made toward making MPC protocols efficient enough to be deployed in real-world applications. However, recent technological developments have brought with them a slew of new challenges, from new security threats to a question of whether protocols can scale up with the demand of distributed computations on massive data. Before one can make effective use of MPC, these challenges must be addressed. In this thesis, we focus on two lines of research toward this goal: " Protocols resilient to side-channel attacks. We consider a strengthened adversarial model where, in addition to corrupting a subset of parties, the adversary may leak partial information on the secret states of honest parties during the protocol. In presence of such adversary, we first focus on preserving the correctness guarantees of MPC computations. We then proceed to address security guarantees, using cryptography. We provide two results: an MPC protocol whose security provably "degrades gracefully" with the amount of leakage information obtained by the adversary, and a second protocol which provides complete security assuming a (necessary) one-time preprocessing phase during which leakage cannot occur. * Protocols with scalable communication requirements. We devise MPC protocols with communication locality: namely, each party only needs to communicate with a small (polylog) number of dynamically chosen parties. Our techniques use digital signatures and extend particularly well to the case when the function f is a sublinear algorithm whose execution depends on o(n) of the n parties' inputs.by Elette Chantae Boyle.Ph.D

    1978-1979 Bulletin

    Get PDF
    Volume LXXXIX, Number 5. Scanned from the copy held in the Registrar\u27s Office.https://ecommons.udayton.edu/bulletin/1042/thumbnail.jp

    1981-82, 1982-83 GENERAL ISSUE- BULLETIN

    Get PDF
    1981-82, 1982-83 GENERAL ISSUE- BULLETINhttps://digitalrepository.unm.edu/course_catalogs/1090/thumbnail.jp

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore