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Within the strongly regulated avionic engineering field, conventional graphical desktop hardware and software application
programming interface (API) cannot be used because they do not conform to the avionic certification standards. We observe the
need for better avionic graphical hardware, but system engineers lack system design tools related to graphical hardware. .e
endorsement of an optimal hardware architecture by estimating the performance of a graphical software, when a stable rendering
engine does not yet exist, represents a major challenge. As proven by previous hardware emulation tools, there is also a potential
for development cost reduction, by enabling developers to have a first estimation of the performance of its graphical engine early
in the development cycle. In this paper, we propose to replace expensive development platforms by predictive software running on
a desktop computer. More precisely, we present a system design tool that helps predict the rendering performance of graphical
hardware based on the OpenGL Safety Critical API. First, we create nonparametric models of the underlying hardware, with
machine learning, by analyzing the instantaneous frames per second (FPS) of the rendering of a synthetic 3D scene and by drawing
multiple times with various characteristics that are typically found in synthetic vision applications. .e number of characteristic
combinations used during this supervised training phase is a subset of all possible combinations, but performance predictions can
be arbitrarily extrapolated. To validate our models, we render an industrial scene with characteristic combinations not used during
the training phase and we compare the predictions to those real values. We find a median prediction error of less than 4 FPS.

1. Introduction

In recent years, there has been an increased interest in the
avionics industry to implement high-performance graphical
applications like synthetic vision systems (SVSs) that display
pertinent and critical features of the environment external to
the aircraft [1]. .is has promoted the advent of faster
graphical processing hardware. Because it is a highly regulated
field, conventional desktop and embedded graphics hardware
could not be used because they do not conform to the DO-
178C and DO-254 avionic certification standards (the in-
ternational standards titled “RTCA DO-178C—Software
Considerations in Airborne Systems and Equipment Certi-
fication” and “DO-254—Design Assurance Guidance for

Airborne Electronic Hardware” are the primary standards for
commercial avionics software and hardware development)
[2, 3]. Considering the need of avionic hardware with higher
performance, we observe that graphical application devel-
opment tools and hardware benchmarks and simulators
available for conventional embedded or desktop graphical
applications seem still to be missing for avionics applications.
.is fact is made especially clear when a quick search through
the specifications of the most renowned tools such as Nvidia
Nsight [4], AMD PerfStudio [5], or SPECViewPerf [6] lead to
the same conclusions. Even though, there are some WYSI-
WYG (“what you see is what you get”) GUI toolboxes
available for the ARINC-661 standard [7, 8], it seems that
there is no performance benchmark, performance prediction

Hindawi
Scientific Programming
Volume 2019, Article ID 9195845, 15 pages
https://doi.org/10.1155/2019/9195845

mailto:guy.bois@polymtl.ca
http://orcid.org/0000-0002-7595-9975
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9195845


tool, or performance-correct simulator available for graphical
avionic hardware. .e interest in having such tools is espe-
cially significant because most development processes include
a design phase before the actual implementation. Taking the
example on the classical V-Model [9], designers must make
choices in regard to the purchase or the in-house develop-
ment of graphical hardware. But as they want to evaluate the
performance of such hardware relating to the choices made,
they need some kind of performance metrics and bench-
marks. .is benchmarking tool should be provided by the
software development team but as the project is still in the
design phase, they have not yet necessarily implemented
a graphical engine to enable performance testing. Perfor-
mance prediction can be useful to (1) further extrapolate the
benchmark performance results for any volume of graphical
data sent to the hardware and (2) reduce the number of
benchmarks required to evaluate various use cases. Going
further, the performance models generated can then be used
to develop a performance-correct hardware simulator that
developers can use on their workstation, in order to have
a general preview of the efficacy of their software, before
executing it on the real system. As this is the case with the
most hardware emulation tools, this reduces the development
costs by facilitating functional verification of the system [10].

In this work, we demonstrate two prototype tools that can
be used as a pipeline to evaluate and then predict the per-
formance of graphical hardware..e first tool is a benchmark
that can generate and then render custom procedural scenes
according to a set of scene characteristics such as the number
of vertices, size of textures, and more. It evaluates and outputs
the number of frames generated per seconds (FPS). .e
second tool takes the output of a certain number of executions
of the benchmark and generates a nonparametric perfor-
mance model, by using machine learning algorithms on the
performance data. .ose performance models can then ex-
trapolate predictions of performance for any dense 3D scene
rendered on this piece of hardware. We evaluated the dis-
tribution of prediction errors experimentally to find that most
prediction errors will not exceed 4 FPS.

In the rest of the paper, Section 2 presents the main
problems which make inadequate the aforementioned
existing tools for the avionics industry. It also presents the
work related to the various algorithms and methods used by
those standard tools. Section 3 presents the first contribution
which is the graphical avionic application benchmarking
tool. .en, Section 4 presents the second contribution which
is the performance model generation tool. Section 5 presents
the experimental method used to evaluate the prediction
power of these models. Section 6 presents analyses and
discusses the achieved prediction error distributions. Finally,
Section 7 provides information for those who would like to
repeat the experiment.

2. Background

Among the differences between conventional (consumer
market) and avionics graphic hardware development, three
are denoted as especially standing out. .e first is the use of
OpenGL SC instead of OpenGL ES or the full OpenGL API

to communicate with the hardware [11]. .e second is the
use of a fixed graphics pipeline instead of letting the pos-
sibilities of using shaders or custom programs that can be
sent to the graphics hardware tomodify the functionalities of
certain areas of the rendering pipeline [12]. Finally, there is
the research interest in the development of DO-254-com-
pliant graphical hardware, in the form of software GPUs,
FPGAs, and CPU/GPU on-a-chip to name a few [2]. .e
nature of the hardware is then not necessarily a processor,
and certain metrics specific to that nature cannot be applied,
such as instruction count. Also, avionics graphical hardware
is usually a very secured black box that cannot be intruded to
actually perform the instruction count metrics on the in-
ternal programs. .us, performance benchmark and pre-
diction tools in an avionics context should account for these
specificities. By only using the functions available in
OpenGL SC to evaluate the performance of the hardware, we
make sure of the following two points: (1) to use the standard
fixed pipeline that accompanies this version of the API and
(2) to be independent on the nature of the underlying
hardware beyond that interface.

To the best of our knowledge, graphics hardware per-
formance prediction in the avionics context does not exist in
the literature. Looking for methods to closely related fields
would thus be the best approach. It is then interesting to look
over the literature to find the methods that have been used in
a conventional desktop and embedded context. It is also
interesting to widen this review to general computer
hardware and microarchitecture, as well as graphical
hardware performance prediction. Numerous benchmarks
for graphic hardware exist in the conventional context, such
as SPECViewPerf or Basemark [6, 13], to name a few. Even if
they do not satisfy the special problematic of the avionics
needs, their workflow can be a source of inspiration. For
example, SPECViewPerf allows users to create a list of tests,
each varying different characteristics of the scenes or the
render state, such as local illumination models, culling,
texture filters, simple, or double buffering. It then returns the
average FPS attained during the rendering of the scene for
each test. .e use of the average FPS might be more sig-
nificant for the user, but because the FPS distribution is not
normal it loses a lot of statistical significance. As for the
performance prediction tools, they tend to be made available
by the graphic hardware manufacturers such as the
NVIDIA®Nsight™ [4] or the AMDGPU PerfStudio [5]..e
problemwith these tools is that they are only available for the
desktop and embedded domain and are not adapted to the
needs of avionics, as explained previously. It is still in-
teresting to review the literature to better understand how
those profiling tools might work internally. .ere are three
main approaches to generate models: analytical modeling,
parametric modeling, and machine learning. Analytical
models attempt to create mathematical models that repre-
sent performance as a set of functions describing the
hardware. .ey often use metrics such as instruction count
and properties such as frequency clock of the processor
[14–17]. .e main issue with these methods is that they
require a good understanding of the hardware’s inner
workings, which is difficult in an avionics context because
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they are secured black box entities. Also, because of the fixed
pipeline of the graphics card, system engineers cannot obtain
the inner programs operating the pipeline and thus cannot
use analytical metrics such as instruction count. Also, the
literature seems to indicate that it is very difficult to truly
identify all factors influencing performance and thus to
mathematically model them. However, there is one ana-
lytical model that has the potential to be used in an avionic
context. It is a function that estimates the transfer time of
data from the main to the graphic memory [18].

.e creation of parametric models implies the use of
parametric regressions such as linear or polynomial re-
gressions. It has been used for microarchitecture and CPU
design-space exploration [19–22], but because we only have
access to the interface of the hardware, it is hard to identify
all the factors influencing the performance. .us, these
methods would have difficulty to explain most of the var-
iance of the performance data and can then perform poorly.
.is is usually solved by using nonparametric regression
models created with machine learning.

Even though there are a large number of machine
learning that can be used to create performance models, we
identified four algorithms that are mainly used throughout
the literature to generate performance models in the specific
case of processors, microarchitecture explorations, or par-
allel applications: regression trees, random forest, multiple
additive regression trees (MART), and artificial neural
networks. Performance and power consumption prediction
in the case of design-space exploration of general purpose
CPUs has been achieved with random forests [23] and
MART [24, 25]. Regression trees [26] have been used for
performance and power prediction of a GPU. Artificial
neural networks have successfully been used for perfor-
mance prediction of a parallelized application [21], but also
for workload characterization of general purpose processors
[27, 28], superscalar processors [29], and microarchitectures
[30]. A variant of the MARTmethod has also been used for
predicting performances of distributed systems [31]. Re-
gression trees are usually less accurate, and its more robust
version, the random forest, is usually preferred. Madougou
et al. [25] used nvprof, a visual profiler, to collect perfor-
mance metrics (cache miss, throughput, etc.) and events of
CUDA kernels running on NVIDIA GPUs. .e data are
stored in a database and further used for model building.
.is approach seems very promising but cannot be easily
adapted to the needs of avionics, as explained previously.

Another problem with tree-based methods is their low
performance to predict values from predictors out of the
range of the values of the observations used to train them
(extrapolation). Recent work on hybrid models generated
from a mix of machine learning and first-principle models
has also yielded good results for similar applications [32–34].

3. Avionics Graphic Hardware
Performance Benchmarking

.ere are two main steps in the creation of our performance
models. First, a benchmark must be executed to gather
performance data for various scene characteristics. .e GPU

benchmarking consists in itself in the generation of a cus-
tomizable synthetic 3D scene and in the analysis of the
render time of each frame. Second, performance models are
generated with machine learning from the performance data
obtained in the first step. For our experimental purposes, we
add a model validation phase to evaluate the predictive
power of those performance models by comparing the
predictions with the render time of a customizable and
distinct validation 3D scene. Figure 1 presents this dataflow.
.e remainder of this section will present the requirements
and the implementation of our proposed avionics GPU
benchmarking tool.

Performance data acquisition for a piece of hardware is
achieved with our benchmarking tool as follows. First,
a synthetic scene is generated according to various pa-
rameters. .en, the scene is rendered and explored by
following a specific camera movement pattern. Finally, a last
analysis step is performed to evaluate for each frame the
percentage of the number of vertices of the scene that has
been rendered. We use a study case from an industrial
partner to enable us to enumerate the various characteristics
of graphical data that might have an impact on the rendering
performance of an avionic graphical application. .e study
case was a SVS using tile-based terrain rendering.

System performances can bemeasured in several ways by
test benches. For a 3D graphics system, one of the most
effective methods is to try to reproduce the behaviour of
a real system [35]. .us, we characterized our industrial
partner’s study case to extract an exhaustive list of all the
graphical features to take into account while implementing
our benchmarking tool. Our tool tests these features one by
one, by inputting a set of values to test per feature. It then
outputs results that give a precise idea of how each graphical
feature impacts rendering performance. .e graphical fea-
tures involved in our industrial partner’s study case and
which we tested in our tool are as follows:

(1) Number of vertices per 3D object (terrain tile)
(2) Number of 3D objects per scene
(3) Size of the texture applied on 3D objects
(4) Local illumination model, either per-vertices (flat) or

per-fragment (smooth)
(5) Presence or absence of fog effect
(6) Dimension of the camera frustum
(7) Degree of object occlusion in the scene

.ose parameters follow the hypothesis that the prin-
cipal factors that would influence the performances are
directly related to the amount of data sent through the
graphic pipeline. .e amount of work required by the
graphic hardware would be in relation to the amount of data
needed to be rendered because of the amount of operations
required to send all these data across the pipeline.

Compared to the list of features tested in a contemporary
graphical benchmark, this set list brings us back to the
beginnings of 3D graphics era. .e reason why this list is
made of basic graphic features is because critical graphical
avionic software uses a version of OpenGL which is stripped
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down to its simplest form: OpenGL Safety Critical (SC) [36].
.is simple API was specifically designed for safety-critical
environments because it is easier and faster to certify.
OpenGL SC was also designed for embedded system limited
hardware resources and processing power.

Nowadays, graphical benchmarks are designed for new
generation graphic cards, game consoles, or smartphones.
.ese platforms were designed to deliver a gigantic graphical
processing power in a noncritical environment. It is thus
normal that this kind of product has its own set of
benchmarking tools. Basemark® ES 2.0 [37] (and now
Basemark ES 3.0 [13]), one of the most popular graphical
benchmarking suite for GPUs used in the mobile device
industry, offers benchmarks that are not suitable for avionics
platforms for several reasons:

(1) It uses OpenGL ES 2.0 which is an API too rich and
complex to be a reasonable candidate for the full
development of a certifiable driver on safety-critical
platform [12].

(2) Sophisticated lighting methods are tested like per-
pixel lighting (used to create bump mapping effects),
lightmap (used to create static shadow effects), or
shadow mapping (used to create dynamic shading
effects). Although these lighting methods offer rich
visual effects, they remain pointless within an avionic
context, where rendering accuracy is the main
concern for 3D graphics.

(3) Various image processing effects are tested like tilt
and shift effect, bloom effect, or anamorphic lens
flares effect. More complex lightning models such as
Phong interpolation and particle effects are also
tested (usually by implementing shaders). Once
again, these visual effects will not enhance the ac-
curacy of rendering, and also shaders are not sup-
ported in OpenGL SC.

(4) Results and metrics resulting from these kinds of
benchmarks are usually undocumented nebulous
scores. .ose scores are useful when we want to
compare GPUs between them, but they cannot be
helpful when system architects want to figure out if
a particular piece of hardware satisfied a graphical
software processing requirement. When designing
a safety-critical system, metrics like GPU’s RAM
loading time (bandwidth, latency), level of image
detail (maximum number of polygons and 3D

objects per scene), and maximum size of textures or
the processing time per frame are much more sig-
nificant data.

Since the current graphical benchmarking tools were not
designed for a safety-critical environment, we thus decided
to implement specialized benchmarking tool for the avionic
industry.

Based on this analysis, from those 7 factors, we divide
a tile-based synthetic scene that would evaluate rendering
performance based on these factors. .e benchmark tool
takes a list of “tests” as input. Each test influences the
generation of the procedural 3D scene by manipulating
a combination of those factors..e output of the benchmark
tool is a file with time performance according to the inputted
characteristics. Each test is designed to evaluate the per-
formance of the scene rendered by varying one of the
characteristics and keeping fixed every other. Consider, for
instance, the tile resolution test, for each value, the
benchmark will be executed, and a vector of performance
will be outputted. During this test every other characteristics
(e.g., the number of tiles or the size of textures) shall be fixed.
It is important to mention that tile-based scenes are stored as
height maps or even dense 3D scenes, removing the need for
analyzing the number of triangles or faces because it can
always be derived or approximated from the number of
vertices.

3.1. Synthetic Scene Generation. Each tile of our synthetic
scene contains a single pyramidal-shaped mesh. We used
this shape because it can model various ground topography
by varying the height of the pyramid. Furthermore, it enables
the possibility to have an object occlusion when the camera
is at a low altitude and it is oriented perpendicularly to the
ground. Also, this shape is easy to generate from a mathe-
matical model. .e remaining of this subsection presents
how the visual components of the procedural 3D scene are
generated and how they help to produce more representative
performance data.

3.1.1. Tiles’ Dimensions. Tiles have a fixed dimension in
OpenGL units, but the number of vertices it can contain can
vary depending on the corresponding benchmark input
value. To simplify the vertices count of our models, we use
a per-dimension count c for the square base of the pyramids,

Customizable
synthetic scene

generation

Synthetic scene
performance

benchmarking

Synthetic scene
performance

analysis

Performance model
generation

Performance model
validation

Customizable
validation scenes

Figure 1: Dataflow of the proposed tool in an experimental context.
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meaning that each tile has a resolution of c2 vertices. When
the perspective distortion is not applied, each vertex of the
pyramid is at equal distance of its neighbours in the XZ plane
(Figure 2).

3.1.2. Noise. To further reproduce a realistic ground to-
pography, we add random noise to the pyramid faces to
unsmooth them..e quantity of noise applied is more or less
10% of the height of the pyramids and is only applied to the
Y coordinates (attributed to the height) as shown in Figure 3.
.is proportionality helps to keep the general shape of the
pyramid, regardless of its height.

3.1.3. Grid Generation. .e grid of tiles is generated
according to the corresponding benchmark input value. As
for the tile resolutions, the grid size is measured as a per-
dimension value v, meaning that the total grid size is v2, and
thus the grid has a square shape. In a real context, a LOD
functionality is usually implemented, making farthest tiles
load at a lower resolution and nearest tiles at a full reso-
lution. However, because we evaluate the worst-case exe-
cution performance of the hardware, every tile has full
resolution.

3.1.4. Pyramid Height. .e height of the pyramids varies
from tile to tile, depending on their position in the tile grid,
but the maximum height will never exceed the quarter of the
length of the scene. .is constraint enables the possibility to
have various degrees of object occlusion for the same scene,
depending on the position and orientation of the camera.
Because of the positioning of the camera and the movement
pattern (explained previously), the bigger the tile grid is, the
higher the pyramids are. To obtain consistent scene topol-
ogies for each benchmark test, the pyramid height is cal-
culated from the index of the tile in the grid (Figure 4) and is
always a factor of two from the maximum pyramid height.

3.1.5. Texture Generation. .e OpenGL SC API requires the
use of texture dimensions that are powers of two. For
simplicity, we create RGB-24 procedural textures which
consist of an alternation of white and black texels. For each
vertex of the tile, the texture itself and the texture co-
ordinates are computed before the frame rendering timer
starts. In real cases, this information is normally already
available in some kind of database and not generated in real
time, so it should not be taken into account by the timer
measuring the period taken to draw the frame.

3.2.CameraMovementPattern. According to the case study,
there are three typical use cases for the camera movement
and position patterns:

(1) Low altitude: a small percentage of the scene is
rendered with the possibility of much object
occlusions

(2) Midrange altitude: about half of the 3D objects are
rendered with possibly less object occlusions

(3) High altitude: the whole scene is potentially rendered
with low chances of object occlusions

For each test of a benchmark, the camera position goes
through each of these use cases. To achieve this, the camera
always starts at its maximum height over the tile at the
middle of the grid. .e camera then performs a 360 degrees
rotation in the XZ plane, while also varying its inclination
over the Y-axis depending on its height. After each 360
degrees rotation, the camera height is reduced and there are
eight possible values for each test. .e inclination angle over
the Y-axis is not constant throughout the various heights
taken by the camera, in order to cover the highest possible
number of viewpoints of the scene. At the maximum height,
the inclination leans towards the edges of the grid, and at the
lowest height the camera points perpendicularly towards the
ground. .e camera inclination for every camera height is
calculated with a linear interpolation between the in-
clinations, at maximum andminimum heights. Overall, each
360 degrees rotation of the camera will yield 32 frames for
a total of 320 frames for each benchmark run.

.e camera frustum is created to mimic the one used by
the study case SVS. It implements a 45 degrees horizontal
field of view and a vertical field of view corresponding to the
4 : 3 ratio of the screen, according to the OpenGL standard
perspective matrix. Also, to maximize the precision of the
depth buffer, it is desirable to show a maximum of vertices
with the smallest frustum possible. .e last important pa-
rameter is to define the maximum height of the camera. We
set this limit to the value of the length of the scene in
OpenGL units because the scene will be smaller than the size
of the screen passed that length. .us, the far plane of the
frustum must carefully be chosen in regards of the scene
length as the maximum depth of the scene will most likely
vary accordingly.

3.3. LoadingData to theGraphicMemory. To help reduce the
randomness of the performance of the graphics hardware
and due to the internal properties of most rendering
pipelines, we apply the tipsify algorithm [38] to the vertex
index buffer before sending it to the graphics pipeline. .is
should reduce the average cache miss ratio of the standard
internal vertex program of the fixed pipeline. All the 3D data
is loaded to the graphics memory before beginning the
rendering and the performance timer. Because the scene is
static, no further data need to be sent to the hardware, so the
loading time does not influence the overall performance.
.is would not be the case in a real context, but as presented
in Section 2, the literature presents at least one method to
estimate the influence of data loading during the rendering
process. If needed, the benchmark tool can return the time
required to load this static data from themainmemory to the
graphics memory.

3.4. Analysis of the Percentage of Scene Drawn. .e data sent
to the graphical hardware for rendering usually contain 3D
objects that could be ignored during the rendering process
because they are either unseen or hidden by other 3D
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objects, due to their spatial positioning. .us, culling
methods are commonly used to avoid the rendering of such
objects. .ese methods are (1) the frustum culling which
ignores the rendering of triangles outside of the camera

frustum, (2) the back-face culling which ignores the ren-
dering of triangles that are facing away from the camera
orientation, and (3) the Z-test which ignores the per-frag-
ment operations such as the smooth lighting.

(a) (b)

(c) (d)

Figure 2: Pyramid vertices generated with a c-by-c dimension top facing (a) and front facing (b). Pyramid rendered mesh without added
noise (c) and with added noise (d).

(a) (b) (c)

Figure 3: Various intensity of noise depending on the height of the pyramid. Low-noise amplitude (a) to high-noise amplitude (c).
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As mentioned earlier, the final step of the benchmarking
process is the analysis of the percentage of the vertices of the
scene that were used during the rendering process. To do
this, we count the number of vertices that are in the camera
frustum and also that are part of front facing surfaces. We
used a geometric approach by comparing the position of
each vertex with the six planes of the frustum in order to
determine if the vertex is inside it or not. If it is, the next step
is to determine if it is front or back facing. To do this, we first
transform the normal of the surface, of which the vertex is
a part, fromworld-space to camera-space..en, we compare
the angle between the normal and the camera-space eye
vector, which is a unit vector pointing in the Z-axis. If the
angle is between 90 and 270 degrees, then the vertex is
considered to be front facing. Finally, we can evaluate the
percentage of vertices drawn as the size of the set of vertices
that pass both tests, divided by the total number of vertices in
the scene.

3.5. Rendering Performance Metrics. .e performance
metric returned by the benchmark is the instantaneous
frame per second (IFPS), which is measured for each frame
by inverting the time it took to render the frame. It is more
desirable than a moving-average FPS over multiple frames
because we can then apply more specialized smoothing
operations to eliminate further any outliers. On the other
hand, the benchmark uses a vertical sync of twice the
standard North American screen refresh rate: 120Hz. We
found that not using vertical sync yields a very high rate of
outliers for IFPS greater than 120. Also, using a vsync of 60
FPS may create less accurate models as most of the scene
characteristics will yield the maximum frame rate. Finally, to
ensure the proper calculation of the IFPS for each frame, we
use the glFinish command to synchronize the high resolu-
tion timer with the end of the rendering.

4. Avionics Graphic Hardware
Performance Modeling

Performance modeling of 3D scenes by using the charac-
teristics of the latter is challenging because it is hard to take
into account the noise made by random events in the ab-
stracted hardware (processor pipeline stall, branching, etc.).

.e first step in the creation of a performance model is to
evaluate which of the benchmark scene characteristics best
explains the variance of FPS. In preliminary tests, we ran the
benchmark by varying the values of one characteristic, while
keeping fixed every other. .is is repeated for each char-
acteristic until all of them have been evaluated. We con-
cluded that the size of the grid of tiles and the resolution of
vertices in each tile are the most significantly well predicted
characteristics by the machine learning algorithms. .e size
of the screen and the size of the texture also contribute to the
variation of the FPS, but they were harder tomodel using our
method. To predict IFPS in terms of texture sizes and screen
sizes, a distinct performance model must be generated for
each of their combinations, by training it with a subset of
every possible combination of grid size, tile resolution, and
percentage of vertices rendered. .is limitation is being
worked on as a future contribution. To generalize tile-based
scenes to dense voxelized scenes without fixed resolutions in
each voxel, the tile resolutions can be replaced by the mean
number of vertices per voxel.

Besides, another key factor in the creation of good
models is the fact that they can be generated efficiently
without the need to feed the FPS obtained for every possible
combination of scene characteristics to the learning algo-
rithms. .is number has been calculated to be about 58
million combinations of grid size and number of vertices.
Compared to this number, the number of combinations of
texture sizes (10) and of screen sizes (5) is relatively small.
Generating a distinct performance model for each combi-
nation of texture and screen sizes would be a more trivial
task, if the number of combinations of grid size, tile reso-
lution, and percentage of vertices rendered could be reduced.
To organize those performance models, we create a three-
level tree, where the first two levels represent the combi-
nations of texture and grid size..e third level contains a leaf
pointing to a nonparametric model trained with machine
learning that predicts IFPS in terms of grid sizes and tile
resolutions. .ose nonparametric models are created by
feeding the machine learning algorithms with only a small
percentage of the performance of the whole combinations of
grid sizes, tile resolutions, and percentage of vertices, while
keeping fixed the texture and screen size characteristics
according to the leaf parents..e choice of the subset of total
grid sizes and tile resolution combinations to use is chosen
by selecting those inducing the worst-case rendering per-
formance. We run the benchmark only twice by running the
tile resolution and grid size variation tests and by concat-
enating the output performance vectors of each. .e
characteristics evaluated by the benchmark for the training
dataset are shown in Table 1.

4.1. Machine Learning Algorithms Configuration. As stated
in Section 2, three machine learning algorithms are of special
interest for the task of performance prediction in the case of
processors and parallel applications: random forest, MART,
and artificial neural networks. We offer the comparison
between the predictive powers of nonparametric models
trained with each of these algorithms in order to determine

Figure 4: Overall generated synthetic scene with pyramids height
varying according to their position in the grid.
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which one is the most suited for this application. We chose
those algorithms to reflect the previous work of the scientific
programming community as we felt they would be the best
fit for GPU prediction. Other machine learning methods are
present in the literature such as Bayesian networks and
gradient boosting machines, to name a few, but have not
been considered in the current experiment. Each of these
algorithms has to be configured before its use: the number of
hidden layers and the number of nodes per layers in the
artificial neural networks, the number of bootstrapped trees
in the case of random forest, or the number of weak learners
in the case of MART. Most of the time, there is no single
optimal parameter. It usually takes the form of a range of
values. .ese ranges were found during preliminary ex-
perimentation and are given in Table 2. In the case of ar-
tificial neural networks, we used a multilayer feedforward
perceptron trained with backpropagation based on the
Levenberg–Marquardt algorithm. We also try to improve
the problem generalization and reduce overfitting by using
early stopping methods and scaling the input performance
values in the range [−1, 1]. Early stoppingmethods consist in
stopping prematurely the training of the neural network
when some conditions are met. It can be after a certain
number of epoch (1000 in our case), when the performance
metric has reached a certain threshold (mean squared error
is 0.0). But the most commonly used early stopping method
is to divide the training dataset in two subsets: a training
subset (70% of the initial dataset) and a validation subset
(remaining 30%). After each epoch, the neural network
makes predictions using the validation dataset and training
is stopped when those predictions are accurate enough (e.g.,
error metric between the prediction and the predicted value
is lower than a certain threshold).

Because of the random nature of the optimality of
a parameter value, we create three performance models for
each machine learning algorithm. .e first model uses the
lowest parameter value, the second model uses the middle
range one, and the last model uses the upper one. During the
validation phase, we retain the model which yields the lowest
prediction error.

4.2. Performance Data Smoothing. .e performance data
output by the benchmark itself is randomly biased because it
cannot explain some of the variance of IFPS, which can vary
even for scenes with similar characteristics. .e fact that we
only analyze the input and output of a graphical hardware
black box partially explains the variance because many in-
ternal factors can influence the output for the same input:
cache misses ratio, processor instruction pipeline, and in-
struction branching unpredictability to name a few. Because

the program running on the hardware is fixed, we can as-
sume that these factors are not enough random to make the
analysis of input/output unusable for performance pre-
diction. To reduce this noise in the benchmark output data,
we apply an outlier-robust locally weighted scatterplot
smoothing. .is method, known as LOESS, requires larger
datasets than the moving average method but yields a more
accurate smoothing. Similar to the moving average method,
this smoothing procedure will average the value of a data
point by analyzing its k-nearest points. In the case of the
LOESS method, for each point of the dataset, a local linear
polynomial regression of one or two degrees is computed
with their k-nearest points, by using a weighted least square
giving more importance to data points near the analyzed
initial point. .e analyzed data point value is then corrected
to the value predicted by the regression model. More in-
formation is available in [39]. In our case, the k-nearest
points correspond to the IFPS of the 6 frames preceding and
the 6 frames following the analyzed frame. .e use of the k-
nearest frames is possible because the characteristics of the
scene between adjacent frames are spatially related. .is can
be generalized to most graphical applications because the
movement of the camera is usually continuous.

4.3. Quantifying Scene Characteristics Equivalency. To fur-
ther help the machine in the performance modeling, we
transform the output format of the benchmark (IFPS in
terms of the number of points, scene or grid size, and
percentage of scene drawn), into a format that is more
similar to the scene characteristics that will be given by the
system designer (IFPS in terms of the number of points and
scenes or grid size). Also, the tool can be more easily used if
the percentages of scene drawn parameter could be omitted:
to have to choose a percentage of scene drawn when que-
rying the tool for predictions might lead to confusion. .us,
it is necessary to internally find a proportionality factor that
can help evaluate the equivalency of performance between
various points in the training data. .e basic assumption is
that the IFPS of a scene drawn with a certain set of char-
acteristics (IFPS1) will be somewhat equivalent to the IFPS of
the same scene drawn with another set of characteristics
(IFPS2) if the characteristics of both scenes follow a certain
proportionality. .e first characteristic in this case is the size
of the scene without accounting for depth: (v1 for the first set
of characteristics and v2 for the other) either in OpenGL
units or in the size of the grid of voxels or tiles in the case of
tile-based applications. .e other characteristic is the tile
resolutions in each tile or voxel c1 and c2. As mentioned
earlier, those concentrations and those sizes in the case of

Table 1: Values used for the tile resolution grid size tests.

Variation test Values of tile
resolution Values of grid size

Tile
resolution

7; 9; 13; 17; 21; 25;
31; 37; 45 25

Grid size 25 7; 9; 13; 17; 21; 25; 31; 37; 45

Table 2: Parameters for the machine learning algorithms used.

Algorithm Parameter nature Optimal range

Artificial neural
network

Number of hidden layers 1
Number of nodes in
the hidden layer [5; 15]

MART Number of weak learners [500; 1000]
Random forest Number of bootstrapped trees [50; 150]
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our benchmark are expressed as a per-dimension value.
.us, they are always equal in 2D (length and width). For
simplicity, we use the following notation:

ci � c
2
widthi � c

2
depthi, (1)

and

vi � v
2
widthi � v

2
depthi. (2)

It implies that

IFPS1 ≈ IFPS2 ⇔
c1
c2
∝

v1
v2

. (3)

Considering that a scene drawn at a certain percentage
p1 with a set of characteristics, then v1 represents the fraction
of the total v2 area that is drawn as

v1 � p1 ∗ v2. (4)

In this case, since v1 and v2 are taken from the same
scene, we have c1 � c2. .erefore,

v1

v2
� p1∗

c1

c2
, (5)

where p1 is the proportionality factor.
.is example uses a single scene with a single set of

characteristics to help find the proportionality factor, but the
formula can also be used to compare scenes with different
initial characteristics, which is a powerful metric for ex-
trapolation. During the design of the typical use case of our
tool, we assumed that the designer would want to request
a performance estimation of the rendering of the scene when
it is entirely drawn, and not just drawn at a certain percentage
(worst-case scenario). A way had to be found to use the p1
factor during the training phase, but to remove the need to use
it in the performance queries, once the model is generated.

From equation (5), we obtain

p1∗
c1

v1
�

c2

v2
. (6)

.en, we found that the machine learning can create
slightly more precise models if p1 is expressed in terms of the
concentration of triangles instead of in terms of the con-
centration of vertices. Considering that in our tile-based
application the number of facesPerTile is obtained as follows:

#facesPerTile � (
�
c

√
− 1)

2∗2. (7)

From the proportionality function (6) and from (7), we
deduce

p1∗
��
c1

√ − 1 
2
∗2

v1
�

��
c2

√ − 1 
2
∗2

v2
� K. (8)

.e left part of equation (8) can be obtained by the scene
characteristics, and the benchmark output performance
metrics provide a value K which in turn allows to find values
for c2 and v2. We are thus capable of obtaining approxi-
mately equal IFPS values between that scene rendered with
c2 and v2 at 100% and the same scene drawn with c1 and v1 at
p1 percent. .e machine learning algorithms are then

trained with a vector containing a certain number of tuples
(IFPS in terms of K and the number of points drawn) where

#pointsDrawn � p1∗#totalNumberOfPoints, (9)

and

#totalNumberOfPoints � c1∗v1. (10)

.e designer can then create a prediction query by in-
putting K and the number of points he desires to render
without having to mind about a percentage of scene drawn
p1. .e tool would then output an IFPS prediction for the
input parameters.

4.4. Identifying the Percentage of Space Parameters Evaluated.
.e best way to predict the performance would be to
evaluate the rendering speed of the scene with every com-
bination of characteristics. In this case, we would not even
need to create nonparametric models, but this could require
the evaluation of millions of possibilities, ending in way too
long computation times (about a year). .is performance
prediction tool thus evaluates a very small subset of all those
combinations in reasonable time (about half an hour). In the
following, we determine the percentage of the number of
combinations that our tool needs to evaluate.

Given:

(i) nscreen � 640 × 480, 800 × 600, 1024 × 768, 1152 ×{

864, 1920 × 960}, the discrete number of studied
screen sizes

(ii) ntexture � x ∣ x � 2i ∧ 1≤ i≤ 10∧x ∈ N , the set of
studied texture sizes

(iii) nvertices � x ∣ 1≤x≤ 1,300,000∧x ∈ N{ }, the set of
all possible quantity of points

(iv) ngrid � x2 ∣ 1≤ x≤ 45∧x ∈ N , the set of studied
tile grid sizes such that each tile has the same size in
OpenGL coordinates

We generalized the concept of tile-based scenes for any
dense scene by removing the tile resolution concept and
replacing it by the concentration of any number of vertices
lower than 1,300,000 divided by any grid size in ngrid. We
chose this maximum number of vertices and also this
maximum grid size arbitrarily as it should cover most data
volumes in most of the hardware use cases. We can then
evaluate the total number of combinations of characteristics
influencing the density of points for every studied screen and
texture sizes NTotal as

NTotal � nvertices


∗ ngrid



∗ nscreen


∗ ntexture


 � 2,925,000,000.

(11)

.e tool then needs only to test a small fraction of all
those combinations to produce adequate performance
models. As mentioned earlier, the tool only needs to run two
tests of the benchmark to construct adequate models for
a fixed screen and texture size. Each test is configured
initially to execute the benchmark with nine varying test
parameters as shown in Table 1.
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Given:

(i) NTool, the total number of combinations of char-
acteristics analyzed by the tool

(ii) STrainingSet � 5760, the size of any training dataset
output by the benchmark for a grid size and tile
resolution test with fixed texture and screen size
which corresponds to the number of frames ren-
dered for both tests of the benchmark

We then suppose that each frame rendered during the
benchmarking represents one unique combination of those
billions and find the number of combinations tested by the
tool NTool as

NTool � STrainingSet ∗nscreen ∗ ntexture � PTrainingSet ∗ 288,000.

(12)

.e tool is then guaranteed to train successful models by
using only about 0.0098% of the total combinations of
characteristics.

5. Prediction Error Evaluation

.is section presents the experimental setup and also the
experimental considerations used to validate the predictive
power of the performance model.

5.1. Experimental Setup. We used a Nvidia QuadroFX570,
a graphic card model which should have consistent per-
formance with the current avionic hardware. Since OpenGL
SC consists of a subset of the full OpenGL API’s functions
and that this subset of functions is very similar to the
OpenGL ES 1.x specification, we worked around the absence of
an OpenGL SC driver by using an OpenGL ES 1.x simulator
which transforms the application’s OpenGLES 1.x function calls
to the current installed drivers which is OpenGL. A meticulous
care has been taken to make sure to use only functions available
in the current OpenGL SC specification with the exception of
one very important method, named vertex buffer objects.

.e experiment begins in the training phase with the
generation of the performance models as presented in
Section 4. .e prediction power of those models is then
validated during the validation phase for which an industrial
scene is benchmarked many times with varying character-
istics. .ose performances are then compared to the pre-
dictions generated by the models. .e following sections
explain this validation phase in detail.

5.2. Performance Model Validation. To validate the perfor-
mance model created, we used a 3D scene from the World
CDB representing a hilly location in Quebec, Canada. .e
scene was subsampled to various degrees to enable the
validation of the model at various resolutions. .e models
were first validated for their interpolation predictive power
by comparing the predictions with the validation scene
rendered with characteristics similar to the ones used to train
the models. .e models were then validated for their ex-
trapolation predictive power with the same method but by

rendering the validation scene with characteristics untreated
during the model training. It is also important to select well
those characteristics in order to produce scenes that are not
too easy to render. Because it is easier for the models to
predict the maximum V-synced FPS, the validation scene
characteristics should be selected in a way that makes the
rendering operations generate various percentages of frames
drawn with maximum IFPS. We analyzed the influence of
having about 0%, 50%, or 100% of frames in the dataset
drawn with maximum IFPS. As with the synthetic scenes,
the whole validation scene is loaded in graphic memory
prior to rendering the scene. .erefore, the loading time is
not taken into account during the FPS calculation.

To validate a model, the benchmark is executed, but
instead of displaying the usual synthetic scene, it renders
the one from the World CDB subsampled according to the
various parameters shown in Table 3. Figure 5 shows an
example of the rendering of a CDB tile in our application at
various resolutions. .e output of the validation dataset is
then smoothed in the same way as the training dataset. .e
size of each dataset is 5760 observations and is closely
related to the number of frames produced by each run of
the benchmarking tool from Section 3 (320 frames per
run).

We then compare the smoothed instantaneous FPS of
each frame to the predicted ones with the following metrics.

5.3.Metric Choice and Interpretation. .e choice of a metric
to evaluate the prediction errors is still subject to debate in
the literature [40]. Especially in the case of models generated
with machine learning, the error distribution are rarely
normal-like and thus more than one metrics are commonly
used to help understand and quantify the central tendency of
prediction errors.We use themean absolute prediction error
MAE presented in equation (9) and also the rooted-mean-
squared prediction error RMSE presented in equation (10).
To conform to the literature, we also give the MAE in terms
of relative prediction errors PE presented in equation (13).
Because the error distributions will be most likely not
normal, we also give the median error value which could
yield the most significant central tendency. .is last metric
contribution to the understanding of the distribution is to
indicate that 50% of the prediction errors are lesser than its
value.

MAE �
1
n



n

i�1

FPSi − FPSi


, (13)

RMSE �

���������������������

1
(n− 1)



n

i�1

FPSi − FPSi 
2




, (14)

PE �
1
n



n

i�1

FPSi − FPSi




FPSi

∗100%, (15)

where FPSi is the i-th prediction, FPSi is the i-th measured
value, and n is the number of prediction/measurement pairs.
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6. Results

Results (e.g., Figures 6–9) show that the prediction errors do
not follow a normal distribution, but even though there is
some skewness in them, they still retain a half-bell like
appearance. .e most adequate central tendency metric is
thus the median. Furthermore, the artificial neural network
has a better prediction than the two other algorithmsmost of
the time, followed closely by random forest. Table 4 shows
that the gap between the median prediction errors of both of
these algorithms never exceeds 1 FPS. On the other hand, the
MARTmethod performed poorly on all datasets with a gap
of up to about 12 FPS. Also, the performance models trained
with artificial neural networks made quite good predictions
in an interpolation and extrapolation context, as shown by
the central tendencies of errors of all validation datasets
confounded. Another explanation for the low performance
of the tree-based methods comes from the fact that they do
not perform well for extrapolation as mentioned in Section 2.
.e central tendency gap between those two sets never
exceeds 4 FPS in this experiment. By analyzing the maxi-
mum absolute prediction error of most datasets, we see that
there is a small chance that a very high prediction error is
produced. .ese high errors can be as high as 43 FPS in the
third dataset. Even though the general accuracy of the model
is pretty good, the precision can be improved. Hopefully, the
mode of each error distribution is always the first bin (range
of values) of the histogram, which means that the highest
probability of a prediction error is always the lowest error.

7. Discussion

Figure 10 somehow illustrates why parametric modeling
would perform poorly as it would be hard to assume a geo-
metric relationship between the IFPS and the predictors.

Preliminary work also demonstrated the inefficiency of those
methods, and thus they were not included in this work.

Because there is a very small chance (less than 1%) that
a prediction might have a high error, the final prediction
offered by the tool for a combination of characteristics
should be a weighted average or a robust local regression of
a small set of performance with similar scene characteristics,
in order to help reduce the influence of these prediction
outliers. Also, the scene used to train and validate our
models are all dense, and thus our experiment cannot imply
any significance for sparse scenes. But, as most graphical
applications in an avionics context uses dense scenes, this
should not be a major issue.

We also do not use fog effects in our tools which is
a feature that could be used in a real industrial context as this
feature will be part of next releases of OpenGL SC.

On the other hand, because of the high costs of avionics
hardware, we had to abstract desktop graphic hardware
behind an OpenGL ES 1.x environment to simulate an
OpenGL SC environment which might weaken the corre-
lation of our results to the ones that would be obtained with
real avionics hardware. Related to this issue, we used
standard desktop graphics hardware for the same reason.
.e presented method has been developed to abstract the
nature of the hardware underlying the API, and the use of
full-fledged avionics graphics hardware would improve the
credibility of the results. However, this does not mean that
our method would work for any use case of standard desktop
graphics hardware. It has been designed for the specific
problematic of the avionics industry: fixed graphics pipeline,
use of OpenGL SC (or equivalent), and abstraction of the
underlying hardware. .is is fundamentally the opposite of
the average desktop graphics hardware use case.

We also used only one validation scene subsampled
into four distinct scenes. It could be of interest to reproduce

Table 3: Values of the World CDB scene characteristics.

Dataset Name Varied parameter Tile resolution Grid size % of frames with
maximum IFPS

Validation (CDB scene)

#1 Grid size 25 7; 9; 13; 17; 21; 25; 31; 37; 45 44.38
#2 Grid size 17 7; 9; 13; 17; 21; 25; 31; 37; 45 44.51
#3 Tile resolution 7; 9; 13; 17; 21; 25; 31; 37; 45 25 0%
#4 Tile resolution 7; 9; 13; 17; 21; 25; 31; 37; 45 17 100%

(a) (b) (c)

Figure 5: Mesh and normals of one tile of the validation scene sampled at a resolution of 9× 9 (a), 19×19 (b), and 31× 31 (c) shown before
applying the randomized texture.
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Figure 7: Prediction error distribution of the validation dataset #2
for the artificial neural network.
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Figure 6: Prediction error distribution of the validation dataset #1
for the artificial neural network.
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Figure 8: Prediction error distribution of the validation dataset #3
for the artificial neural network.
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Figure 9: Prediction error distribution of the validation dataset #4
for the artificial neural network.

Table 4: Central tendencies of the prediction error distributions for each machine learning algorithm and for each validation dataset.

Validation dataset name Supervised learning
algorithm RMSE (FPS) Relative prediction

error (%)
Mean absolute prediction

error (FPS)
Median absolute prediction

error (FPS)

#1
Random forest 2.71 2.12 1.36 0.45

MART 9.37 10.15 6.85 4.86
Neural net 2.29 1.99 1.26 0.50

#2
Random forest 10.87 8.74 5.85 2.06

MART 16.53 17.65 12.16 10.39
Neural net 7.90 8.50 5.16 3.51

#3
Random forest 5.94 5.98 4.10 2.79

MART 9.99 10.60 7.51 6.15
Neural net 2.97 3.03 2.39 2.13

#4
Random forest 15.80 9.12 10.94 3.98

MART 30.20 18.78 22.53 15.02
Neural net 4.02 2.58 3.10 3.01

Figures 6–9 present the error distribution of each nonparametric performance model for the four validation scenes.
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the experiment with a bigger dataset of dense scenes.
Considering our results as reproducible, the prediction er-
rors made by our tool would be low enough for industrial
use. Otherwise, we confirm that the central tendency of our
prediction error distributions is similar to the ones presented
in the literature, when these methods are applied to other
kinds of hardware or software performance predictions.

8. Reproducing the Results

As our method includes two important experimental steps:
dataset generation and machine learning, we foresee that the
reader may want to reproduce experimentally either one or
both of these experimental steps by using our dataset or by
regenerating their own datasets to train the neural network.

To generate our training dataset, we used our proce-
durally generated 3D scenes. .e reader may either want to
create its own rendering tool following our specifications or
we could make the C++ code available [41]. To generate the
validation dataset, we rendered a private 3D scene, not
available to the public, but any 3D scene consisting of
a rendered height field could be used instead. We provide
our raw datasets [41], more precisely the performance data
generated by our tool for both 3D scenes, raw and
unsmoothed.

Using our datasets or with a dataset generated by a third
party, the actual training of performance models can be
reproduced. .e reader will have to smooth the data as
described using the LOESS algorithm and use the Matlab
Curve Fitting Toolbox to achieve this. .en, the reader will
have to generate the performance models with the Neural
Network ToolBox. Our Matlab code could also be made
available [41].

9. Conclusion

We have presented a set of tools that enable performance
benchmarking and prediction in an avionics context. .ese
were missing or not offered in the literature. We believe that
avionics system designers and architects could benefit from

these tools as none other are available in the literature. Also,
the performance prediction errors were shown to be rea-
sonably low, thus demonstrating the efficacy of our method.

Future work will include the development of a perfor-
mance-correct simulator for avionics graphics hardware and
also the addition of other scene characteristics like fog effects
or antialiasing in the performance models. Also, it is of
interest to evaluate the possibility to enhance our modeling
by using Bayesian networks, gradient boosting machines,
and hybrid models made from machine learning. Finally, we
plan to automate more our processes and then experiment
different use cases and parameters. .is will help us to
determine with more precision the upper bound of the cost
reduction.
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