3,004 research outputs found

    Output-Feedback Control of Nonlinear Systems using Control Contraction Metrics and Convex Optimization

    Get PDF
    Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs by showing that a pair of "dual" observer and controller problems can be solved using pointwise linear matrix inequalities, and that when a solution exists a separation principle holds. That is, a stabilizing output-feedback controller can be found. The procedure is demonstrated using a benchmark problem of nonlinear control: the Moore-Greitzer jet engine compressor model.Comment: Conference submissio

    Nonlinear stochastic controllers for semiactive and regenerative structural systems, with guaranteed quadratic performance margins

    Get PDF
    In many applications of vibration control, the circumstances of the application impose constraints on the energy available for the actuation of control forces. Semiactive dampers (i.e., viscous dampers with controllable coefficients) constitute the simplest example of such actuation in structural control applications. Regenerative Force Actuation (RFA) networks are an extension of semiactive devices, in which mechanical energy is first converted to electrical energy, which is then dissipated in a controllable resistive network. A fairly general class of semiactive and regenerative systems can be characterized by a differential equation which is bilinear (i.e., linear in state, linear in control input, but nonlinear in both). This paper presents a general approach to bilinear feedback control system design for semiactive and regenerative systems, which is analytically guaranteed to out-perform optimal linear viscous damping in stationary stochastic response, under the familiar Quadratic Gaussian performance measure. The design for full-state feedback and for the more practical case of noise-corrupted and incomplete measurements (i.e., output feedback) are separately discussed. Variants of the theory are shown to exist for other quadratic performance measures, including risk-sensitive and multi-objective frameworks. An illustrative application to civil engineering is presented

    On Observer-Based Control of Nonlinear Systems

    Get PDF
    Filtering and reconstruction of signals play a fundamental role in modern signal processing, telecommunications, and control theory and are used in numerous applications. The feedback principle is an important concept in control theory. Many different control strategies are based on the assumption that all internal states of the control object are available for feedback. In most cases, however, only a few of the states or some functions of the states can be measured. This circumstance raises the need for techniques, which makes it possible not only to estimate states, but also to derive control laws that guarantee stability when using the estimated states instead of the true ones. For linear systems, the separation principle assures stability for the use of converging state estimates in a stabilizing state feedback control law. In general, however, the combination of separately designed state observers and state feedback controllers does not preserve performance, robustness, or even stability of each of the separate designs. In this thesis, the problems of observer design and observer-based control for nonlinear systems are addressed. The deterministic continuous-time systems have been in focus. Stability analysis related to the Positive Real Lemma with relevance for output feedback control is presented. Separation results for a class of nonholonomic nonlinear systems, where the combination of independently designed observers and state-feedback controllers assures stability in the output tracking problem are shown. In addition, a generalization to the observer-backstepping method where the controller is designed with respect to estimated states, taking into account the effects of the estimation errors, is presented. Velocity observers with application to ship dynamics and mechanical manipulators are also presented

    Parameter Estimation of Sigmoid Superpositions: Dynamical System Approach

    Full text link
    Superposition of sigmoid function over a finite time interval is shown to be equivalent to the linear combination of the solutions of a linearly parameterized system of logistic differential equations. Due to the linearity with respect to the parameters of the system, it is possible to design an effective procedure for parameter adjustment. Stability properties of this procedure are analyzed. Strategies shown in earlier studies to facilitate learning such as randomization of a learning sequence and adding specially designed disturbances during the learning phase are requirements for guaranteeing convergence in the learning scheme proposed.Comment: 30 pages, 7 figure
    corecore