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Abstract. In this paper, we will present observer and output-based con-
troller design methods for linear complementarity systems (LCS) employ-
ing a passivity approach. Given various inherent properties of LCS, such
as the presence of state jumps, mode dynamics described by DAEs, and
regions (“invariants”) for certain modes being lower dimensional, several
proposed observers and controllers for other classes of hybrid dynamical
systems do not apply. We will provide sufficient conditions for the ob-
server design for a LCS, which is effective also in the presence of state
jumps. Using the certainty equivalence approach we obtain output-based
controllers for which we will derive a separation principle.

1 Introduction

Complementarity systems form a class of hybrid dynamical systems that re-
ceived considerable attention in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The linear
complementarity system LCS(A, B, C, D, E, F ) is given by

ẋ(t) = Ax(t) + Bw(t) + Eu(t) (1a)

z(t) = Cx(t) + Dw(t) + Fu(t) (1b)

0 ≤ z(t) ⊥ w(t) ≥ 0, (1c)

where the inequalities are interpreted componentwise and ⊥ indicates the orthog-
onality between the vectors z(t) and w(t), i.e, z�(t)w(t) = 0. The complemen-
tarity conditions (1c) constitute a particular set of equalities and inequalities,
which are related to the well-known relations between the constraint variables
and Lagrange multipliers in the Karush-Kuhn-Tucker conditions for optimality,
the voltage-current relationship of ideal diodes, the conditions between unilateral
constraints and reaction forces in constrained mechanics, etc. As such, the com-
plementarity framework includes mechanical systems with unilateral constraints,
constrained optimal control problems, switched electrical circuits, etc.

Although LCS has its own peculiarities, it has connections to other classes of
hybrid systems. Indeed, observe that (1c) implies that wi(t) = 0 or zi(t) = 0
for all i ∈ m̄ := {1, . . . , m}. As a consequence, the system (1) has 2m modes.
Each mode can be characterized by the active index set J ⊆ m̄, which indicates
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260 W.P.M.H. Heemels et al.

zi = 0, i ∈ J, and wi = 0, i ∈ Jc, where Jc := {i ∈ m̄ | i �∈ J}. For mode J the
dynamics is given by the linear differential and algebraic equations (DAEs)

ẋ(t) = Ax(t) + Bw(t) + Eu(t), (2a)

z(t) = Cx(t) + Dw(t) + Fu(t), (2b)

zi(t) = 0, i ∈ J, and wi(t) = 0, i ∈ Jc, (2c)

The evolution of system (1) will be governed by (2) for mode J as long as the
remaining inequalities (“the invariant” in the terminology of hybrid automata
[11, 12, 13]) in (1c)

zi(t) ≥ 0, i ∈ Jc and wi(t) ≥ 0, i ∈ J (3)

are satisfied. Impending violation of (3) will trigger a mode change. As a conse-
quence, during the evolution in time of the system several mode dynamics will
be active successively. This indicates that LCS might be recast within the hy-
brid automaton framework [11,12,13]. However, with exception only of the very
simplest cases, the reformulation of LCS dynamics into the hybrid automaton
framework leads to voluminous and opaque system descriptions. This effect is
already evident in the example worked out in [14], which concerns an electrical
circuit with two diodes. Alternatively one can rewrite LCS in the formulation
ẋ ∈ F (x) for x ∈ C and x+ ∈ G(x) for x ∈ D, as used for instance in [15]. Again,
the transformation is in general cumbersome, and the resulting system data F ,
G, C and D do generally not satisfy the assumptions adopted in [15] (cf. the
example below). Structural properties become harder to study and compactness
of descriptions is lost when LCS are translated to such generic frameworks.

To show further links between LCS and other (sub)classes of hybrid dynamical
systems, let us consider an LCS with one complementarity pair and F = 0:

ẋ = Ax + bw + eu; z = c�x + dw; 0 ≤ z ⊥ w ≥ 0 (4)

where A ∈ R
n×n, b ∈ R

n×1, c ∈ R
n×1, d ∈ R, and 0 �= e ∈ R

n×1. As either z = 0
or w = 0, this system has two modes. When d > 0, one can rewrite (4) as

ẋ =

�
Ax + eu if c�x ≥ 0,

(A − bd−1c�)x + eu if c�x ≤ 0,
(5)

which is a piecewise linear (PWL) system [16]. When d = 0 and c�b > 0, we
have

ẋ =

�
Ax + eu if (c�x > 0) or (c�x = 0 and c�Ax + c�eu ≥ 0),

P (Ax + eu) if c�x = 0 and c�Ax + c�eu < 0.
(6)

where P = I−b(c�b)−1c�. In this case one has also a bimodal PWL system, but
the second subsystem ‘lives’ on a lower dimensional subspace given by c�x = 0,
which is a situation hardly studied within the realm of PWL systems. Note also
that for c�x < 0, there is no smooth evolution possible and state jumps will
occur. In this situation, LCS can also be considered as differential inclusions
(DIs) with normal cones as their set values (see e.g. [7]). These DIs do in general
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not satisfy the boundedness conditions of its values nor the upper semicontinuity
properties as often used within the context of DIs. In the case when d = c�b = 0,
c�ab > 0 and e = 0 (no external inputs) the flow set, i.e. the set of states from
which the system can continue with a smooth solution temporarily [15], is given
by all x0 such that (c�x0, c

�Ax0) � 0 (see [2, Thm. 6.8]), where � denotes the
lexicographic ordering. This indicates that the flow set has no simple closedness
properties. This indicates that although LCS have connections to PWL systems
and other classes of hybrid systems, they also have their own peculiarities. For
instance, the presence of state jumps (think of impacts in constrained mechanical
systems) in continuous-time LCS, differentiates them from much of the work
done for continuous-time PWL systems. Although for discrete-time LCS strong
equivalence links have been established in [17] with piecewise affine systems [16]
and other classes of hybrid models such as min-max-plus-scaling systems [18]
and mixed logic dynamic systems [19], in the continuous-time framework, which
is the natural habitat for most of the LCS applications, such broad equivalence
relations are out of the question. There are relations though of LCS to other
specific classes of nonsmooth systems such as the mentioned “normal cone DIs”
and projected dynamical systems [7, 8].

The attention that LCS received recently is not surprising given the broad
range of interesting applications. The research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] focussed
on several fundamental system-theoretic issues like well-posedness, discretiza-
tion (simulation), controllability, observability, stabilizability and stability. In
this paper the emphasis will be on observer-based controller design, a topic that
is hardly touched upon for LCS. We will adopt a “certainty equivalence con-
trol” approach, where one designs output feedback controllers that generate the
control input via a state feedback law using an estimate of the state, which is
obtained from an observer. For linear systems, the separation principle gives a
formal justification of this approach. Due to the absence of a general controller-
observer separation principle for nonlinear systems and certainly hybrid systems,
the observer-based controller may not result in a stable closed-loop system.

Several interesting papers are available on observer design for hybrid systems,
especially in the context of switched and piecewise linear systems, e.g. [20, 21,
22, 23, 24]. Unfortunately, these results do not apply to LCS as LCS typically
exhibit lower dimensional regions and state jumps. Observer and observer-based
controller design methods for Lur’e type systems as studied in [25, 26, 27, 28]
are also related to LCS. Indeed, one can consider LCS as a kind of Lur’e type
systems in which the linear system (1a)-(1b) is interconnected with the non-
smooth and unbounded complementarity relations in (1c). Typically, the results
in [25,26,27,28] study locally Lipschitz slope restricted nonlinearities in the feed-
back path. As such their conditions do not allow for the non-smoothness and set-
valued nonlinearities (and even state jumps) as induced by the complementarity
relations. Observer designs for differential inclusions with bounded set-values are
treated in [29]. Since complementarity conditions are unbounded, [29] does not
cover LCS.In summary, although there are various interesting approaches for
hybrid observer design, none of them includes (all) the peculiarities of LCS.
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Before focussing on controller and observer design for LCS, we will explain the
solution concepts for LCS and also extend available well-posedness (existence
and uniqueness of solutions) results for LCS to include external inputs. This
will result in global existence results thereby excluding the Zeno phenomenon of
livelock (an infinite number of discrete actions on one time instant) and providing
continuations beyond accumulation points of mode switching times. Next, we will
present passivity conditions for state feedback design and observer design for
LCS. Interestingly, this means that we will present methods for observer design
for systems without knowing the mode and allowing for state resets. Next we
will present a separation principle for this class of hybrid dynamical systems.

2 Preliminaries

R denotes the real numbers, R+ := [0,∞) the nonnegative real numbers, L2(T )
the square integrable functions on a time-interval T ⊆ R, and B the Bohl func-
tions (i.e. functions having strictly proper rational Laplace transforms) defined
on R+. Note that sines, cosines, exponentials, polynomials and their sums and
products are all Bohl functions. The distribution δ

(i)
t stands for the i-th dis-

tributional derivative of the Dirac impulse supported at t. The dual cone of
a set Q ⊆ R

n is defined by Q∗ = {x ∈ R
n|x�y ≥ 0 for all y ∈ Q}. For a

positive integer m, the set m̄ is defined as {1, 2, . . . , m} and 2m̄ denotes the
collection of all subsets of m̄. A vector u ∈ R

k is called nonnegative, denoted
by u ≥ 0, if ui ≥ 0 for all i ∈ k̄. This means that inequalities for vectors are
interpreted componentwise. The orthogonality u�y = 0 between two vectors
u ∈ R

k and y ∈ R
k is denoted by u ⊥ y. As usual, we say that (A, B, C)

(or sometimes (A, B, C, D)) is minimal, when the matrices [B AB . . . An−1B]
and [C� A�C� . . . (A�)n−1C�] have full rank. A matrix M ∈ R

k×k is called
positive definite (not necessarily symmetric), if x�Mx > 0 for all x �= 0. It
is called nonnegative definite, if x�Mx ≥ 0 for all x ∈ R

k. For a matrix
M ∈ R

k×l we denote its kernel by kerM := {x ∈ R
l | Mx = 0} and its im-

age by imM := {Mx | x ∈ R
l}. Finally, for two linear subspaces V1 and V2

we write V1 ⊕ V2 = V , if V = V1 + V2 = {v1 + v2 | v1 ∈ V1, v2 ∈ V2} and
V1 ∩ V2 = {0}.

2.1 Linear Complementarity Problem

We define the linear complementarity problem LCP(q, M) (see [30] for a survey)
with data q ∈ R

k and M ∈ R
k×k by the problem of finding z ∈ R

k such that
0 ≤ z ⊥ q + Mz ≥ 0. The solution set of LCP(q, M) will be denoted by
SOL(q, M). The notation K(M) will denote the set {q | LCP(q, M) is solvable}.

Let a matrix M of size k×k and two subsets I and J of k̄ of the same cardinal-
ity be given. The (I, J)-submatrix of M is the submatrix MIJ := (Mij)i∈I,j∈J .
The (I, J)-minor is defined as the determinant of MIJ . The (I, I)-submatrices
and -minors are also known as the principal submatrices and the principals mi-
nors. M is called a P-matrix if all its principal minors are positive. P-matrices
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play an important role in linear complementarity problems, as the following
result is well known (cf. [30, thm. 3.3.7]).

Theorem 1. For a given matrix M ∈ R
k×k, the problem LCP(q, M) has a

unique solution for all vectors q ∈ R
k if and only if M is a P-matrix.

2.2 Passivity of a Linear System

We will recall the notion of passivity as it is defined in [31] for a linear system

Σ(A, B, C, D) : ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Du(t). (7)

Definition 1. [31] The system Σ(A, B, C, D) given by (7) is said to be passive
if there exists a function V : R

n → R+ (called a storage function), such that

V (x(t0)) +

� t1

t0

u�(t)y(t)dt ≥ V (x(t1))

holds for all t1 ≥ t0, and for all solutions (u, x, y) ∈ Lm+n+m
2 (t0, t1) of (7).

Next, we quote a very well-known characterization of passivity.

Theorem 2. [31] Assume that (A, B, C) is minimal. Then the following state-
ments are equivalent:

1. Σ(A, B, C, D) is passive.
2. The following matrix inequalities have a solution

P = P� > 0 and

�
A�P + PA PB − C�

B�P − C −(D + D�)

�
≤ 0. (8)

Moreover, V (x) = 1
2x�Px defines a quadratic storage function if and only if P

satisfies the linear matrix inequalities (8).

Next we will define strict passivity of (7).

Definition 2. Σ(A, B, C, D) is called strictly passive, if there are P and ε > 0
with

P = P� > 0 and

�
A�P + PA + εP PB − C�

B�P − C −(D + D�)

�
≤ 0. (9)

The following technical assumption will be used below. Its former part is stan-
dard in the literature on dissipative systems, see e.g. [31]. Both conditions are
related to removing specific kinds of redundancy in the system description.

Assumption 3. (A, B, C) is minimal and
�

B

D + D�

�
has full column rank.
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3 Linear Complementarity Systems and Initial Solution

We now are going to study the behaviour of the LCS given in (1). Before present-
ing a global solution concept that incorporates the switching of modes, we will
first concentrate on what we call “initial solutions,” which are trajectories that
satisfy the dynamics of one mode only and that satisfy the inequality conditions
possibly only in their beginning. We will employ the theory of distributions in
formalizing the solution concept, since the abrupt changes in the trajectories
(e.g. impacts in mechanics) can be modeled adequately by Dirac impulses (see
also Example 1 below). To do so, we recall the concepts of Bohl distribution and
initial solution [2].

Definition 3. We call w a Bohl distribution, if w = wimp + wreg with wimp =
∑l

i=0 w−iδ
(i)
0 for w−i ∈ R and wreg ∈ B. We call wimp the impulsive part of w

and wreg the regular part of w. The space of all Bohl distributions is denoted by
Bimp.

Note that Bohl distributions have rational Laplace transforms. It seems natural
to call a (smooth) Bohl function w ∈ B initially nonnegative if there exists an
ε > 0 such that w(t) ≥ 0 for all t ∈ [0, ε). Note that a Bohl function w is initially
nonnegative if and only if there exists a σ0 ∈ R such that its Laplace transform
satisfies ŵ(σ) ≥ 0 for all σ ≥ σ0. Hence, there is a connection between small time
values for time functions and large values for the indeterminate s in the Laplace
transform. This fact is closely related to the well-known initial value theorem.
The definition of initial nonnegativity for Bohl distributions will be based on
this observation (see also [2]).

Definition 4. We call a Bohl distribution w initially nonnegative, if its Laplace
transform ŵ(s) satisfies ŵ(σ) ≥ 0 for all sufficiently large real σ.

To relate the definition to the time domain, note that a scalar-valued Bohl
distribution w without derivatives of the Dirac impulse (i.e. wimp = w0δ for some
w0 ∈ R) is initially nonnegative if and only if either w0 > 0, or w0 = 0 and there
exists an ε > 0 such that wreg(t) ≥ 0 for all t ∈ [0, ε). With these notions we can
recall the concept of an initial solution [2]. Loosely speaking, an initial solution
to (1) with initial state x0 and Bohl input u ∈ Bk is a triple (w, x, z) ∈ Bm+n+m

imp

satisfying (2) for some mode I and satisfying (3) either on a time interval of
positive length or on a time instant at which Dirac distributions are active.

At this point we only allow Bohl functions (combinations of sines, cosines,
exponentials and polynomials) as inputs. In the global solution concept we will
allow the inputs to be concatenations of Bohl functions (i.e., piecewise Bohl),
which may be discontinuous.

Definition 5. The distribution (w, x, z) ∈ Bm+n+m
imp is said to be an initial solu-

tion to (1) with initial state x0 and input u ∈ Bk if

1. ẋ = Ax+Bw+Eu+x0δ0 and z = Cx+Dw+Fu as equalities of distributions.
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2. there exists an J ⊆ m such that wi = 0, i ∈ Ic and zi = 0, i ∈ J as equalities
of distributions.

3. w and z are initially nonnegative.

The statements 1 and 2 in the definition above express that an initial solution
satisfies the dynamics (2) for mode J on the time-interval R+ and the initial
condition x(0) = x0.

Example 1. Consider the system ẋ(t) = w(t), z(t) = x(t) together with (1c).
This represents an electrical network consisting of a capacitor connected to a
diode. The current is equal to w and the voltage across the capacitor is equal
to z = x. For initial state x(0) = 1, (w, x, z) with w = 0 and z(t) = x(t) = 1
for all t ∈ R is an initial solution. This corresponds to the case that the diode
is blocking and there is no (nonzero) current in the network. To show that the
distributional framework is convenient, consider the initial state x(0) = −1, for
which (w, x, z) with w = δ, x(t) = z(t) = 0, t > 0 is the unique initial solution.
This corresponds to an instantaneous discharge of the capacitor at time instant 0
resulting in a state jump from x(0) = −1 to 0 at time 0 induced by the impulse.

This circuit example indicates that there is a clear physical interpretation of
the impulses in initial solutions to model the abrupt changes in trajectories of
electrical circuits (see also [3, 14]). Also for mechanical systems, these initial
solutions induce state jumps with a clear physical meaning (related to inelastic
restitution laws) as shown in [2].

4 Initial and Local Well-Posedness

In this section, we are interested in existence and uniqueness of initial solutions,
and we will provide an extension to a local well-posedness result.

Definition 6. A rational matrix H(s) ∈ R
l×l(s) is said to be of index r, if it is

invertible as a rational matrix and s−rH−1(s) is proper. It is said to be totally
of index r, if all its principal submatrices HJJ (s) for J ⊂ l̄ are of index r.

The theorem below is an extension of a result proven in [5] that used F = 0.

Theorem 4. Consider an LCS with external inputs given by (1) such that
G(s) = C(sI − A)−1B + D is totally of index 1 and G(σ) is a P-matrix for
sufficiently large σ. Define QD := SOL(0, D) = {v ∈ R

m | 0 ≤ v ⊥ Dv ≥ 0}
and let K(D) be the set {q ∈ R

m | LCP (q, D) solvable}.
1. For arbitrary initial state x0 ∈ R

n and any input u ∈ Bk, there exists exactly
one initial solution, which will be denoted by (wx0,u, xx0,u, zx0,u).

2. No initial solution contains derivatives of the Dirac distribution. Moreover,

wx0,u
imp = w0δ0; xx0,u

imp = 0; zx0,u
imp = Dw0δ0 for some w0 ∈ QD.

3. For all x0 ∈ R
n and u ∈ Bk it holds that Cx0 + Fu(0) + CBw0 ∈ K(D).
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4. The initial solution (wx0,u, xx0,u, zx0,u) is smooth (i.e., has a zero impulsive
part) if and only if Cx0 + Fu(0) ∈ K(D).

The impulsive part wx0,u
imp = w0δ0 of the initial solution induces a state jump

from x0 to x0 + Bw0, which in circuits might correspond to infinitely large
currents related to instantaneous discharges of capacitors (see Example 1) and
in mechanical systems to infinite reaction forces that cause resets in the velocities
of impacting bodies.

Theorem 5. Consider an LCS with (A, B, C, D) is passive and Assumption 3
holds. Then G(s) = C(sI − A)−1B + D is totally of index 1 and both G(σ) and
D + s−1CB are P-matrices for sufficiently large σ. In this case the results of
Theorem 4 hold for (1) with K(D) = Q∗

D.

For brevity we skip the proof (see e.g. [3] for the case F = 0.) Theorem 4 gives
explicit conditions for existence and uniqueness of solutions.The second state-
ment indicates that derivatives of Dirac distributions are absent in the behaviour
of LCS of index 1. The fourth statement gives necessary and sufficient condition
for an initial solution to be smooth. In particular, a LCS satisfying the condi-
tions of Theorem 5 is “impulse-free” (no state jumps), if QD =SOL(0, D) = {0}
(or, in terms of [30], if D is an R0-matrix). Note that in this case Q∗

D = R
m. In

case the matrix [C F ] has full row rank, this condition is also necessary. Other
sufficient conditions, that are more easy to verify, are D being a positive definite
matrix, or Ker(D + D�) ∩ R

m
+ = {0}. For the general case of (not necessarily

passive) systems with transfer functions totally of index 1, Theorem 4 implies
that K(D) = R

m (in terms of [30] this means that the matrix D should be a
so-called Q-matrix) is sufficient for the system being impulse-free. One condition
that guarantees this is that wT Dw > 0 for all w ∈ R

m
+ and w �= 0.

Note that the first statement in Theorem 4 by itself does not immediately
guarantee the existence of a solution on a time interval with positive length. The
reason is that an initial solution with a non-zero impulsive part may only be valid
at the time instant on which the Dirac distribution is active. If the impulsive part
of the (unique) initial solution is equal to w0δ0, the state after re-initialization is
equal to x0+Bw0. From this “next” initial state again an initial solution has to be
determined, which might in principle also have a non-zero impulsive part, which
results in another state jump. As a consequence, the occurrence of infinitely
many jumps at t = 0 without any smooth continuation on a positive length
time interval is not immediately excluded (sometimes called “livelock” in hybrid
systems theory). However, Theorem 4 excludes this kind of Zeno phenomenon:
if smooth continuation is not directly possible from x0, it is possible after one
re-initialization. Indeed, since C(x0 + Bw0) + Fu(0) = Cx0 + Fu(0) + CBw0 ∈
K(D), it follows from the fourth claim that the initial solution corresponding to
x0 + Bw0 and input u is smooth. This initial solution satisfies the (in)equalities
in (1) on an interval of the form (0, ε) with ε > 0 by definition and hence, we
proved a local existence and uniqueness result. However, we still have to show
global existence of solutions as other kinds of Zeno behaviour (accumulation of
mode switching times) might prevent this.
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5 Global Well-Posedness

Before we can formulate a global well-posedness theorem, we need to define a
class of allowable input functions and the global solution concept.

Definition 7. A function u : R+ → R is called a piecewise Bohl function, if

– u is right-continuous, i.e. limt↓τ u(t) = u(τ) for all τ ∈ R+

– for all τ ∈ R+ there are ε > 0 and v ∈ B such that u(t) = v(t) for all
t ∈ (τ, τ + ε)

– u is locally bounded in the sense that for any interval [0, T ] there is a constant
M such that |u(t)| ≤ M for all t ∈ [0, T ].

We denote this function space as PB. A distribution u : R+ → R is called
piecewise Bohl with first order impulses, if u is the sum of a piecewise Bohl
function ureg and the distribution uimp =

∑
θ∈Γ wθδθ, where Γ = {τi}i is a

finite or countable subset of R+, which is isolated 1. We denote this distribution
space by PB0.

Definition 8. Let (w, x, z) ∈ PBm+n+m
0 be given with

wimp =
∑

θ∈Γ

wθδθ, ximp =
∑

θ∈Γ

xθδθ, zimp =
∑

θ∈Γ

zθδθ

for wθ ∈ R
m, xθ ∈ R

n and wθ ∈ R
m for θ ∈ Γ and some Γ . Then we call

(w, x, z) a (global) solution to LCS (1) with input function u ∈ PB and initial
state x0, if the following properties hold.

1. For any interval (a, b) such that (a, b) ∩ Γ = ∅ the restriction xreg |(a,b) is
(absolutely) continuous and satisfies (1) for almost all t ∈ (a, b)

2. For each θ ∈ Γ the corresponding impulse (wθδθ, x
θδθ, z

θδθ) is equal to
the impulsive part of the unique initial solution2 to (1) with initial state
xreg(θ−) := limt↑θ xreg(t) (taken equal to x0 for θ = 0) and input t �→
u(t − θ).

3. For times θ ∈ Γ it holds that xreg(θ+) = xreg(θ−) + Bwθ with wθ the
multiplier of Dirac pulse supported at θ.

Theorem 6. Consider an LCS with external inputs given by (1) such that
G(s) = C(sI −A)−1B +D is totally of index 1 and G(σ) is a P-matrix for suffi-
ciently large σ. The LCS (1) has a unique (global) solution (w, x, z) ∈ PBk+n+k

0

for any initial state x0 and input u ∈ PBk. Moreover, ximp = 0 and impulses in
(w, z) can only show up at the initial time and times for which Fu is discontin-
uous (i.e. Γ in Definition 8 can be taken as a subset of {0} ∪ Γ d

Fu).

1 The set Γ ⊆ R is called isolated, if for all τ ∈ Γ there is an ε > 0 such that
Γ ∩ (τ − ε, τ + ε) = {τ}.

2 Note that we shift time over θ to be able to use the definition of an initial solution,
which is given for an initial condition at t = 0.
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Proof. The proof follows along similar lines as the proof of the case F = 0 as
given in the thesis [5] by carefully incorporating the presence of impulses (see
also [3] for the passive case). ��
This theorem implies that if Fu is continuous, jumps of the state can only occur
at the initial time instant 0.

6 Stability and State Feedback Design for LCS

Let us first define formally what we mean by stability of LCS.

Definition 9. The LCS (1) without inputs (i.e. E = F = 0) is called globally
asymptotically stable (GAS), if

Global existence: for each x0 there exists a global solution to (1) and more-
over, for each T ≥ 0 all solutions (w, x, z) ∈ PBm+n+m

0 to (1) for initial
state x0 defined on [0, T ) can be continued to a global solution on [0,∞);

Lyapunov stability: for each ε > 0 there exists a δ > 0 such that ‖xreg(t)‖ <
ε, for all t ≥ 0 when ‖x0‖ < δ, where (w, x, z) ∈ PBm+n+m

0 is a global
solution in the sense of Definition 8 to (1) for initial state x0;

Attractiveness: limt→∞ xreg(t) = 0 for any global solution (w, x, z) ∈ PB0.

In this section we aim at designing a state feedback controller

u(t) = Kx(t) (10)

that renders the system (1) GAS.

Assumption 7. (A + EK, B, C + FK, D) is strictly passive and minimal.

For necessary and sufficient conditions of “passifiability” for the case D = 0
(i.e. finding K such that (A + EK, B, C + FK, 0) is strictly passive), see [25].

Theorem 8. Consider the LCS (1) and the state feedback (10) and suppose that
Assumptions 3 and 7 hold. Then the closed-loop system (1)-(10) is GAS.

In [3] it was shown that a sufficient condition for GAS is the strict passivity of the
underlying system. The above theorem on state feedback design is a consequence
of that result. After these preparatory steps, we continue with the main results
of this paper related to observer design and output-based controller design.

7 Observer Design

Consider the LCS (1) and assume that only

y(t) = Gx(t) ∈ R
p (11)

is measured instead of the complete state being available for feedback. Based on
this output measurement, we aim at estimating the continuous state x(t) of (1)
using an observer. For the observer design to be meaningful, we have to assume
some conditions of the existence of solutions to the observed system (1).
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Assumption 9. For any initial state x0 and for any input function u ∈ PBk

there exists a global solution (w, x, z) ∈ PBm+n+m
0 to system (1) in the sense of

Definition 8.

The well-posedness theory derived before can be used to guarantee this property.
For instance, Theorem 6 shows that under the assumption that G(s) = C(sI −
A)−1B + D is totally of index 1 and G(σ) is a P-matrix for sufficiently large σ,
Assumption 9 is indeed satisfied.

We propose the following observer for LCS (1) with measured output (11):

˙̂x(t) = Ax̂(t) + Bŵ(t) + Eu(t) + L(y(t) − ŷ(t)) (12a)
ẑ(t) = Cx̂(t) + Dŵ(t) + Fu(t) + M(y(t) − ŷ(t)) (12b)

0 ≤ ẑ(t) ⊥ ŵ(t) ≥ 0. (12c)
ŷ(t) = Gx̂(t), (12d)

where we have two observer gains (L and M).

Assumption 10. (A − LG, B, C − MG, D) is strictly passive and minimal.

First of all, one has to show that the observer structure (12) produces estimates
x̂ of the state x, i.e. that existence of global solutions to (12) is guaranteed
given an initial estimate x̂0 and external inputs u ∈ PBk and y ∈ PBp. Using
Theorem 5 the following result can be proven.

Theorem 11. Consider the observer (12) with external inputs u ∈ PBk and
y ∈ PBp, where y is obtained from the LCS given by (1) and (11) for some
initial state x0 and input u. If Assumption 3 and Assumption 10 are satisfied,
then for any initial state x̂0 there exists a unique global solution (ŵ, x̂, ẑ) to (12).

Since we proved global existence of x̂, we can consider the observation error
e := x − x̂, which evolves according to the following dynamics

ė(t) = (A − LG)e(t) + Bw(t) − Bŵ(t) (13a)
z(t) = Cx(t) + Dw(t) + Fu(t) (13b)
ẑ(t) = Cx̂(t) + Dŵ(t) + Fu(t) + M(y(t) − ŷ(t)) (13c)
0 ≤z(t) ⊥ w(t) ≥ 0, and 0 ≤ ẑ(t) ⊥ ŵ(t) ≥ 0 (13d)

Theorem 12. Consider the error dynamics (13) such that Assumption 3, As-
sumption 9 and Assumption 10 hold. Then the error dynamics is GAS3.

Proof. See the report [32]. �	
The theorem shows (under the given hypothesis) that the observer (12) recovers
asymptotically the state of the LCS (1) based on the output (11), even when
the state of the system or observer exhibits state jumps. Since the jumps in
3 Note that the definition of GAS has to be slightly generalized to allow for exogenous

signals.
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both the observer and the observed plant are triggered by discontinuities in the
external signal (due to the low index of the underlying linear system), the time
instants of the jumps coincide for the observer and controller, which is exploited
in the proof. For higher index systems (e.g. mechanical systems with unilateral
constraints) this property is lost, which complicates observer design significantly.

8 Separation Principle: Observer-Based Controller

To design an output-based controller for (1) with (11), we will employ a “cer-
tainty equivalence” approach by using the estimate x̂ obtained from the designed
observer in the state feedback controller, i.e. u(t) = Kx̂(t) = Kx(t)−Ke(t). The
closed-loop system consisting of the system (1), the observer (12) and the con-
troller u(t) = Kx̂(t) becomes�

ẋ
ė

�
=

�
(A + EK) −EK

0 A − LG

�
� �� �

=:Acl

�
x
e

�
+

�
B 0
B −B

�
� �� �

=:Bcl

�
w
ŵ

�
(14a)

�
z
ẑ

�
=

�
C + FK −FK
C + FK −(C + FK − MG)

�
� �� �

=:Ccl

�
x
e

�
+

�
D 0
0 D

�
� �� �

=:Dcl

�
w
ŵ

�
(14b)

0 ≤
�

z
ẑ

�
⊥
�

w
ŵ

�
≥ 0 (14c)

We focus on the so-called basic observer, which is the observer (12) with M = 0
implying that there is only an innovation (output injection) term in the differ-
ential equation (12a) and not in the complementarity relation (12b). We will
return to the extended observer with M �= 0 in Remark 1. We will start by
proving closed-loop well-posedness.

Theorem 13. Consider the system (14) such that Assumptions 3, 7 and 10
with M = 0 are satisfied. The system (14) has for each initial condition x0 and
e0 a unique global solution in the sense of Definition 8. Moreover, only on time
0, there can be a discontinuity in the state trajectory x.

Proof. See the report [32]. �	

Now we can state a separation principle for LCS.

Theorem 14. [Separation principle] Consider the closed-loop LCS (14). If
Assumptions 3, 7 and 10 with M = 0 are satisfied, then the LCS (14) is GAS.

Proof. See the report [32].

Once the observer (12) is included in an observer-based control configuration for
the LCS (1), jumps in the state variable of (14) can only take place at the initial
time (under the given hypothesis of the theorem above). The reason is that for
the ‘open’ LCS (1) the state jumps are triggered by the external signal u, while
the closed-loop system (14) is a ‘closed’ system without external inputs. Note,
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however, that when the observer is applied to an ‘open’ LCS (1), the state of
(1) is still recovered asymptotically (under the hypothesis of Theorem 12) even
when state jumps (triggered by discontinuities in u) remain to be persistently
present. The fact that jumps only occur at the initial time is related to the low
index of the underlying linear system of the LCS (14). In general for systems of
higher index (like constrained mechanical systems) discontinuities are not only
externally triggered by exogenous signals, but also by internal events (impacts).

Remark 1. The extended observer case (i.e. M �= 0) can be covered in a similar
manner as above under the assumption that F = 0.

9 Conclusion

We presented observer and output-based controller design methods for linear
complementarity systems (LCS) employing a passivity approach. We provided
sufficient conditions for the observer design for a LCS, which is effective also
in the presence of state jumps. Using the certainty equivalence approach we
obtained output-based controllers for which we provided a separation principle
in case the basic observer (“M = 0”) is used or there is no direct feedthrough
of the input in the complementarity conditions (“F = 0”). Future work will
involve the study of the full separation principe for both F and M nonzero.
Another important line of future research is the observer and observer-based
control design of LCS for which the underlying linear system is of higher index
(such as constrained mechanical systems.)
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