910 research outputs found

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    Skeleton-based cerebrovascular quantitative analysis

    Get PDF

    Towards development of automatic path planning system in image-guided neurosurgery

    Get PDF
    With the advent of advanced computer technology, many computer-aided systems have evolved to assist in medical related work including treatment, diagnosis, and even surgery. In modern neurosurgery, Magnetic Resonance Image guided stereotactic surgery exactly complies with this trend. It is a minimally invasive operation being much safer than the traditional open-skull surgery, and offers higher precision and more effective operating procedures compared to conventional craniotomy. However, such operations still face significant challenges of planning the optimal neurosurgical path in order to reach the ideal position without damage to important internal structures. This research aims to address this major challenge. The work begins with an investigation of the problem of distortion induced by MR images. It then goes on to build a template of the Circle of Wills brain vessels, realized from a collection of Magnetic Resonance Angiography images, which is needed to maintain operating standards when, as in many cases, Magnetic Resonance Angiography images are not available for patients. Demographic data of brain tumours are also studied to obtain further understanding of diseased human brains through the development of an effect classifier. The developed system allows the internal brain structure to be ā€˜seenā€™ clearly before the surgery, giving surgeons a clear picture and thereby makes a significant contribution to the eventual development of a fully automatic path planning system

    ā€œLess is moreā€: A dose-response account of intranasal oxytocin pharmacodynamics in the human brain

    Get PDF
    Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. Data availability: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable reques

    Human Treelike Tubular Structure Segmentation: A Comprehensive Review and Future Perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed.Comment: 30 pages, 19 figures, submitted to CBM journa

    A review of feature-based retinal image analysis

    Get PDF
    Retinal imaging is a fundamental tool in ophthalmic diagnostics. The potential use of retinal imaging within screening programs, with consequent need to analyze large numbers of images with high throughput, is pushing the digital image analysis field to find new solutions for the extraction of specific information from the retinal image. The aim of this review is to explore the latest progress in image processing techniques able to recognize specific retinal image features. and potential features of disease. In particular, this review aims to describe publically available retinal image databases, highlight different performance evaluators commonly used within the field, outline current approaches in feature-based retinal image analysis, and to map related trends. This review found two key areas to be addressed for the future development of automatic retinal image analysis: fundus image quality and the affect image processing may impose on relevant clinical information within the images. Performance evaluators of the algorithms reviewed are very promising, however absolute values are difficult to interpret when validating system suitability for use within clinical practice

    Mortality patterns in Oman: demographic and epidemiological review

    Get PDF
    • ā€¦
    corecore