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Abstract

The evaluation of retina structures has been of great interest because it could be used

as a non-intrusive diagnosis in modern ophthalmology to detect many important eye

diseases as well as cardiovascular disorders. A variety of retinal image analysis tools

have been developed to assist ophthalmologists and eye diseases experts by reducing

the time required in eye screening, optimising the costs as well as providing efficient

disease treatment and management systems. A key component in these tools is the

segmentation and quantification of retina structures. However, the imaging artefacts

such as noise, intensity homogeneity and the overlapping tissue of retina structures can

cause significant degradations to the performance of these automated image analysis

tools.

This thesis aims to provide robust and reliable automated retinal image analysis

technique to allow for early detection of various retinal and other diseases. In par-

ticular, four innovative segmentation methods have been proposed, including two for

retinal vessel network segmentation, two for optic disc segmentation and one for retina

nerve fibre layers detection. First, three pre-processing operations are combined in

the segmentation method to remove noise and enhance the appearance of the blood

vessel in the image, and a Mixture of Gaussians is used to extract the blood vessel

tree. Second, a graph cut segmentation approach is introduced, which incorporates the

mechanism of vectors flux into the graph formulation to allow for the segmentation of

very narrow blood vessels. Third, the optic disc segmentation is performed using two

alternative methods: the Markov random field image reconstruction approach detects

the optic disc by removing the blood vessels from the optic disc area, and the graph cut

with compensation factor method achieves that using prior information of the blood

vessels. Fourth, the boundaries of the retinal nerve fibre layer (RNFL) are detected

by adapting a graph cut segmentation technique that includes a kernel-induced space

and a continuous multiplier based max-flow algorithm. The strong experimental re-

sults of our retinal blood vessel segmentation methods including Mixture of Gaussian,
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Graph Cut achieved an average accuracy of 94.33%, 94.27% respectively. Our optic

disc segmentation methods including Markov Random Field and Compensation Factor

also achieved an average sensitivity of 92.85% and 85.70% respectively. These results

obtained on several public datasets and compared with existing methods have shown

that our proposed methods are robust and efficient in the segmenting retinal structures

such the blood vessels and the optic disc.
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Chapter 1

Introduction

Recently, much of the research in retinal structures analysis has been deployed in reti-

nal image analysis for diagnosis and prevention of ocular diseases including glaucoma

and age-related macular degeneration, the third and the first most common causes of

vision loss in the developed world. These techniques are also used in the diagnosis of a

number of systematic disorders such as diabetes retinopathy, the second most common

reason of blindness in the developed world, several cardiovascular diseases such as mul-

tiple sclerosis, hypertensive retinopathy and risk of stroke. Thus retinal segmentation

methods assist ophthalmologists and eye diseases experts by reducing the time required

in eye screening, optimising the costs as well as providing efficient disease treatment

and management systems [PP93], [EGSEB11].

Early retinal structures detection methods are defined in terms of the structures

they segment. The vessel segmentation includes the pixel processing based and vessel

tracking based methods [FCS+03] and the optic disc segmentation methods consist

of the deformable-based and the shape-based template matching methods [CLX+13].

Even though, the use of these methods in retinal disease diagnosis has been seen to

evolve swiftly in the recent years. The evaluation of the retinal structures (blood

vessels, optic disc and Retinal Nerve Fibre Layer) can be complex and requires time

and attention. An accurate and efficient detection of changes occurring on retinal
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structures during the development of diseases remain one of the main issues in retinal

image segmentation. Several segmentation algorithms, based on the early approaches,

fail to extract the complete structure, due to the quality of the images (poor contrast,

intensity inhomogeneity or noise). Many of these methods are also source dependent,

therefore they cannot perform well on images from different sources.

This study brings together the different fields of image segmentation, image process-

ing, data analysis and ophthalmology, along with many others such as signal processing

and statistical modelling, all of which make important contributions to the extraction

of the retina structures. The focus of this project is to address issues in the segmenta-

tion of the retina structures considered to be the most important indicators of retinal

and cardiovascular diseases, which include:

• Accurate segmentation of retinal blood vessel network in the fundus retinal im-

ages.

• Detection and segmentation of the optic disc in the retinal photograph with no

restrictions on the shapes, sizes and locations of the optic disc.

• Boundary detection of the retinal fibre layers in the optic coherence tomography

(OCT) image captured around the optic nerve head for glaucomatous evolution.

The proposed methods could be used to support a non-intrusive diagnosis in modern

ophthalmology for early detection of retinal diseases, treatment evaluation or clinical

study.

1.1 Retinal Image Analysis and Early Detection of Reti-

nal Diseases

At this stage, it is important to highlight the necessity of performing this research

and acquire some knowledge about the retinal image analysis. The high cost asso-

ciated with eye examination and the increased number of retinal photographs to be
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analysed are the key motivation for the introduction of automated image analysis in

modern ophthalmology. The adoption of more sophisticate retinal imaging tools in

ophthalmology has dramatically increased the amount of image data produced in reti-

nal imaging evaluation. The amount of retinal image generated by these imaging tools

has overwhelmed the clinicians ability to fully and accurately evaluate it. In addition

to this ever-increasing image data, clinicians are forced to perform the image analysis

by hand, which can be time consuming and tedious. Often the results of this analysis

are subjective and open to human error. Therefore, the need for reliable computerised

techniques in retinal image analysis is substantial. This can reduce the time required

for retinal imaging exams and increase the accuracy of results. Furthermore, the au-

tomated methods can allow the use of Teleophthalmology for detection and grading of

retinal diseases in remote regions worldwide [GUFG+02]. Since screening and disease

management processes can be different, they both need effective and reliable quantita-

tive retinal image evaluation techniques capable of providing meaningful information

of any retinal specific imaging test.

Early diagnosis and timely management of retinal diseases have been shown to pre-

vent or reduce blindness in patients with retinal disorders such as glaucoma, age-related

macular degeneration and diabetic retinopathy [BMDC00], [KMFL92], [AGS10].

During this retinal diseases detection process, the images of a patients retinas are

captured either with a fundus camera or OCT imaging tools, then an automated image

analysis application is used to evaluate the images in order to provide meaningful results

about the condition of the patients eye.

While it is shown that early detection and timely management of retinal diseases

is able to prevent loss of vision and blindness, an increasing number of patients with

retinal complications such as diabetic retinopathy, glaucoma and age-related macular

degeneration do not undergo any form of eye exams. This scenario is due to the costs

related with the screenings and the lack of a more effective automated diagnosis method

[NASC14]. Guidelines reported by the American Diabetes Association showed that over
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50% of diabetes patients in US did not receive any form of exam. However the number

of retinal images produced has increased with the adaption of telemedicine [CWB+07]

and the deployment of more sophisticated image tools [HIF+10]. In the UK only, more

than 1.7 million diabetes patients were provided with diabetic retinopathy screening

between 2007−2008 [AGS10]. In addition to detecting retinal diseases, it is necessary to

highlight the importance of retinal image analysis in determining risk factors associated

with cardiovascular diseases. Retinal images are used to measure retinal blood vessel

properties (arterial to venous diameter ratio) that can provide information about the

risk for hypertension, myocardial infract or stroke [LWMW08], [AGS10].

The challenge facing modern Ophthalmology today is to provide effective and reli-

able automated image analysis tools to make the early diagnosis widely accessible by

cutting the cost and manpower needed while maintaining a high quality of diseases

detection processes.

1.2 Retinal Structures Extraction

As explained earlier, the morphology of the retina structures is the key indicator of

retinal diseases as well as cardiovascular complications. Eye experts spend a great deal

of time and energy to evaluate these structures in retinal photographs. However, the

segmentation tools can allow an automated analysis of retinal photographs so that only

images with retinal complications are reviewed by eye experts. Several segmentation

methods have been developed including:

• Location and segmentation of retinal blood vessel networks.

• Location and segmentation of fovea.

• Location and segmentation of the optic disc.

• Segmentation of abnormalities (haemorrhages, neovascularisations, drusen, nerve

fibre infracts, lesions ect).
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This study focuses only on the segmentation of retinal blood vessel networks, optic

disc and the RNFL. Many different algorithms have been published for the segmentation

of these structures in recent years. These algorithms perform the segmentation based

either on the pixel intensity, colour, texture or prior information about the shape and

size of the retina features. It is important to note that most of these methods fail to

provide a complete segmentation of the retinal structures due to the imaging artefacts

such as noises, intensity inhomogeneity, the poor contrast between the retina features

and the image background, the variety of the image sources or the designing of the

different algorithms of the methods. All these concepts will be explained in more

details in the next chapters.

The current challenges in retinal image analysis can be expressed as follows:

• Accessibility of retinal image analysis tools capable of accurately locating and

segmenting retinal structures that can be affected by the diseases regardless of

their shapes, sizes, locations and the image conditions (poor contrast, intensity

inhomogeneity or noises) and their sources.

• Lack of quantitative indices reflecting the retina structures morphology.

• Lack of analysis tool applicable of segmenting retinal structures from different

sources.

• Unavailability of efficient image analysis tools (fast in processing the images).

1.2.1 Challenges in Retinal Blood Vessel Networks Segmentation

Various retinal blood vessel segmentation methods have been implemented, but the

similarities among these methods are not obvious as different terms are used for the

same approaches. For example, detector correlation, kernel convolution and template

matching all define the same concept. But all these methods can be classified either as

pixel based approaches or as vessel tracking based approaches. An accurate segmenta-

tion of the blood vessel networks is one of the most important steps of retinal diseases
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analysis. This is because the vessel tree is the starting point of many of other de-

tection operations such as optic disc segmentation [FGR04], retinal image registration

[RHdC04], retinal pathologies segmentation and quantification [JWA03]. However, an

accurate segmentation of the retina blood vessel network is a complex task for many

reasons including the intensity inhomogeneity, the poor contrast between the vessels

and the background, the presence of noise in the image and the change in vessel width,

shape and brightness.

Figure 1.1: Illustration of retinal blood vessel segmentation. (a) White arrows show
the boundary of the retina, the boundary of the optic disc and the pathologies, black
arrows indicate narrow and low contrast blood vessels. (b) White arrows highlight
the variation of the image intensity and black arrows show the thin vessels with low
contrast. All the above may cause errors in vessel networks segmentation.

In addition to these factors, the presence of pathologies such exudates and lesions

causes a significant degradation to the performance of the automated blood vessel

segmentation techniques. Figure 1.1 shows the illustration of some challenges of the

retinal blood vessel segmentation. These challenges can be summarised as follows:

• The intensity inhomogeneity of retinal images, cause an overlap between vessel

pixels and background pixels intensity distribution.
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• Poor contrast between the vessels and the background with some background

noise.

• A wide range of vessels widths, which consist of narrow and large vessels.

• The overlapping tissues, including the optic disc, the retina boundary and patholo-

gies cause significant degradation to the automated vessels segmentation methods.

• Narrow blood vessels often appear darker making the segmentation difficult.

• Wider blood vessels can often show some bright strip passing through the centre

making difficult to automatically distinguish neighbouring vessels.

1.2.2 Challenges in Optic Disc Segmentation

Optic disc morphology is a key indicator of the presence of glaucomatous damage. The

glaucomatous damage is mainly detected by identifying the changes in shape, colour

or depth in the optic disc [LC03]. The optic disc detection is usually performed in

two stages, the localisation of the optic disc position and the detection of the disc

boundary. The optic disc segmentation methods in the literature are grouped into

three major approaches, which include pixel classification based methods, deformable-

based methods and template based methods [CLX+13]. We will provide more detailed

explanation and limitations of the methods in the coming chapters.

An automated segmentation of the optic disc can be complicated, even impossible

at times due to the following changes:

• Obstruction of the blood vessel in the optic disc region.

• Ill define boundaries of the optic disc.

• Intensity variations around the optic disc boundaries due to pathological changes

and imaging artefacts.

• Variety of disc shapes and boundaries.
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• Distractions caused by retinal pathologies.

Figure 1.2 shows some sample images to illustration the above conditions.

Figure 1.2: Illustration of retinal optic disc detection. (a) Dashed white circle defines
the boundary of the optic disc, white arrows shows the intrusion of vessels in the
optic disc region and black arrows indicate bright lesions. (b) White arrows show the
optic disc completely covered by haemorrhaging. (c) Dashed white circle highlights
the boundary of the optic disc, which is distorted by the swelling shown by the black
arrows. (d) Ill-defined disc boundary shown by the dashed circle and intensity variation
near the optic disc due to atrophy indicated by the black arrows. All of which cause
errors in the segmentation.
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1.2.3 Challenges in RNFL Detection

The adaptation of OCT imaging in ophthalmology has allowed direct visualisation and

assessment of the retina and its different layer structures. Recently a combination of

OCT imaging techniques and image analysis methods have been used in glaucoma-

tous damage diagnosis by segmenting and measuring the RNFL thickness [MHMT10],

[AGS10]. Most of the early methods were solely based on pixel intensity variation pro-

cessing operations along A-scan profile [KBR01] and other segmentations techniques

using image gradients, prior layer shape information and many other constraints to

perform the segmentation of the layers. These methods include active contours, graph

cut and machine learning approaches.

Figure 1.3: Illustration of RNFL detection in noisy OCT scan. Left: green circle
indicates the scan of the retina. Right: shows the detection of the RNFL thickness
indicated in yellow with the segmentation lines in red, the blue arrow highlights the
segmentation error. [Sco10].

Even though, the use of OCT imaging in glaucoma evaluation has been seen to

evolve rapidly in recent years, an accurate automated segmentation of the retinal struc-

tures layers can be complex and remain the main issue in the diagnosis of the retinal

OCT scan. Many of the above automated methods for retinal layer detection often fail
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due to the corruption of OCT scans by non-Gaussian noise [SXY99], the high variance

of pixel intensity values across OCT scans [KBR01], the motion artefacts and the de-

crease of scan quality during the scanning operations [SSPF07]. The affect of noise and

poor scanning quality on an automated RNFL detection method is shown in Figure 1.3.

1.3 Contributions

When this project began, retinal image analysis was a research topic that had already

influenced a large number of medical image analysis research groups worldwide. With

the deployment of more sophisticated retinal imaging systems, many segmentation

algorithms have been implemented to extract the structures of the retina, known to

hold some key information of the retinal and systemic diseases. These techniques have

often been used to assist ophthalmologists and eye experts to perform efficient and

reliable retinal disease assessment and management.

Retinal blood vessel segmentation techniques were applied on fundus retinal images

to extract the vessel networks, optic disc and pathologies. The RNFL extraction meth-

ods have also been used on a variety of fundus and OCT photographs of the retina to

provide more meaningful information about retinal diseases. In attempting to apply

these methods to real life retinal images, noise, intensity inhomogeneity, algorithmic

complexity, and many other imaging artefacts all became key obstacles to be overcome

in automated retinal structures segmentation.

To tackle the above issues, the existing techniques require more robust image pro-

cessing operations as well as incorporation of some prior knowledge about different

retina structures. Focus was placed on noise estimation operations that were used to

improve the appearance of features in the image. A careful selection and combina-

tion of processing techniques was conducted to allow more complete extraction of the

different retinal structures. This research incorporates some of the previous work in

image segmentation to guide the development of novel segmentation methods designed
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to provide and accurately extract the structures in retinal photographs.

The work proposed in this thesis is by no means complete, but it provides the

essential knowledge in segmenting the structures of the retina to allow more complete

use of the retinal image analysis tools to day-to-day work in modern ophthalmology.

The main contributions of this thesis can be summarised as follows:

• One of the key contributions of this study is the implementation of unsupervised

techniques , which have achieved similar results as supervised techniques. Unlike

many supervised retinal structures segmentation methods, which can achieve a

great segmentation performance but often dependent on the image dataset and

training set (manually labelled structures), our segmentation methods are capable

of achieving good results in retinal photographs from different sources without

the need for a specific training operation. Using our proposed methods could

reduce the time and the work required for traditional supervised retinal structures

segmentation.

• Removal of noise in retinal image. Imaging artefacts such noise and intensity in-

homogeneity cause significant degradation to the performance of automated seg-

mentation. Thus careful pre-processing experiments were conducted on fundus

and OCT retinal photographs, to define a unique processing operation capable of

reducing noise and other imaging artefacts in both type of images without cor-

rupting the image information as seen with some mathematical image processing

operators. The combination of pre-processing techniques such as bias correction,

which is often used on CT images to move noise and distance transform were

used to enhance the appearance of the retinal structures while keeping the image

information. This process allows a more complete segmentation of the target

structures.

• Incorporation of prior information about the retina structure. One of our main

contributions was to incorporate prior information of the retina structures and
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the flux of vectors into the graph cut energy formulation to perform the segmen-

tation of the structures. Since the boundaries of some of the retinal structures

are ill-defined, the incorporation of this knowledge into the graph energy formu-

lation can guide the detection operations of the target structure. This allows the

segmentation of thin blood vessels and provides an optimal solution during the

detection of the optic disc boundaries.

• The extraction of overlapping tissues. The intrusion of retinal blood vessel into

the optic disc region known as overlapping tissue has caused many of the fail-

ures seen in optic disc segmentations by breaking the disc boundaries. The pro-

posed methods address this issue by either discriminating the blood vessels using

Markov random field reconstruction or by incorporating them using the graph

cut with compensation factor. We believe that both methods can be useful in

other applications of the overlapping tissue segmentation.

• Accurate location of the optic disc in the fundus retinal image. The location of

the optic disc is one of the key steps for the detection of its boundaries. Most the

optic disc segmentation methods ipn the literature use the brightness feature of

the optic disc to locate its position, this technique can falsely locate the position

of the disc, when the retinal images exhibit pathologies such as bright lesions,

drusen or swelling. We address this problem by adapting the method presented in

[WSK+10] using segmented blood vessel networks and the intensity of the optic

disc to find the convergence point of the blood vessel networks, which represents

the centre of the optic disc.

• Robust detection of RNFL in the OCT scan around the optic nerve head. Since

the boundaries of RNFL can be ill-defined due to the shadows of the blood vessels

and the intensity variation across the scans, the proposed method detects the

layers by incorporating a kernel-induced space into a graph segmentation. This

maps the original scan into a higher dimensional kernel space to allow better layer
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detection. Prior knowledge of the RNFL and the RPE was used to accurately

detect the RPE known to be the most difficult layer to segment.

1.4 Thesis Outline

This section provides a guide to the contents of each chapter within this thesis. Each

chapter is an independent section of research in its own right. They will follow the same

format, which includes the detailed introduction of the problem, the explanation of the

techniques used and the experimentation results. As with all traditional research, the

chapters in this thesis collectively provide an evolution of ideas, following an unravelling

story into the use of the computer-aided diagnosis in modern ophthalmology.

Chapter 2 provides general background knowledge that is relevant to each chapter.

It includes general materials relating to the computer-aided diagnosis and the current

imaging tools employed to capture the photographs of the retina. It also provides brief

introduction to the eye anatomy, the retinal and systemic diseases including glaucoma,

diabetic retinopathy, age-related macular degeneration and cardiovascular disorders.

Chapters 3 and 4 will introduce the segmentation of retinal blood vessel networks.

Chapter 3 provides the retinal blood segmentation using the pixel processing based

method, which combines the bias correction, adaptive histogram equalisation and dis-

tance transform with a probabilistic modelling algorithm to extract the vessel tree.

While chapter 4 improves the vessel extraction using the graph cut segmentation tech-

nique.

Chapter 5 will introduce the detection of retinal optic disc. In this work, we provide

two different methods including the Markov random field (MRF) reconstruction and

graph cut with compensation factor. MRF reconstruction performs the optic disc seg-

mentation with removing the blood vessels in the disc region, while the latter performs

the same segmentation by incorporating the blood vessel using local information of the

vessels pixels.

35



1.4. Thesis Outline 1. Introduction

Chapter 6 was introduced to provide more efficient evaluation of glaucomatous

damage in addition to the methods proposed in chapter 5. Unlike latter methods, this

technique is applied on the OCT scan, which provides more detailed photography of

the retina structures. The retinal layers are detected on OCT circular scans including

RNFL thickness.

Chapter 7 provides discussions of the work proposed in this thesis and highlights

future research directions currently under investigation.
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Chapter 2

Some Background

This chapter provides a thorough background of the retinal structures anal-

ysis. The literature on this particular topic is vast, but we will highlight the

most relevant to this study.

2.1 A brief introduction to Retinal Image Analysis

Rapid advances in technology and its application in medical imaging have improved

the quality of health care through earlier diagnosis of diseases and limiting the use of

invasive treatment techniques such as surgery. Computer-aided diagnosis (CAD) has

become one of the most important and widely used fields within medical imaging tech-

nology and diagnosis radiology [Doi07], [GM96], [VGtHRV01], [KXM+96], [MDC+90],

[GSP+02], [FU01]. Recently the number of research publications on subjects related

to CAD has significantly increased due to the demand in medical image analysis tools

[Doi14]. The basic concept of CAD in modern health care systems is to use a computer

algorithm to output information as a second opinion to physicians and health care

specialists performing complicated diagnosis [Doi14],[Doi07]. To identify or prevent

diseases affecting the brain, retina, bones, chest, breast, liver, lung, kidney and the

vessel network systems.
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The images of these organs are acquired through machines such as computed to-

mography (CT), X-rays, Magnetic resonance (MRI), ultrasound, fundus camera, and

optical coherence tomography camera. The images are analysed by health professionals

or image analysis algorithms in CAD to make a meaningful decision about the progress

of the diseases and make treatment evaluations [Doi14]. These analysis methods are

known to be non-intrusive approaches. Several research applications in the medical

image analysis field have been deployed in medical care for diagnosis and prevention of

diseases like breast cancer, diabetic retinopathy, glaucoma, arthritis, cerebral, tumours,

kidney dysfunctions, lung diseases to cite few [Doi07],[CDV+90], [EGSEB11], [FU01],

[LLS+05], [GSP+02], [SLS+05]. A key component in the CAD tools is the segmen-

tation, quantification and registration of medical image structures but each technique

may be used for a specific task, and there are no generic techniques for the wide ranges

of tasks. For example various segmentation methods have been deployed for detection

and quantification of different lesions in medical imaging [PP93], [EGSEB11]. These

methods have helped health specialists improve the quality of the diagnosis process.

In this study, we will provide segmentation methods for detection and analysis

of retinal diseases. The proposed methods could be used to support a non-intrusive

diagnosis in modern ophthalmology for early detection of retinal diseases, treatment

evaluation or clinical study. Before we explore different segmentation methods and the

nature of research, which have been done in this review, it was important to highlight

the necessity of performing this research and acquire some knowledge about the imaging

tools and eye diseases we are trying to detect using some computer algorithms.

2.2 A Brief Introduction to retinal Diseases

The retina is a light sensitive layer cell at the back of the eye that generates a neu-

ral signal for vision, as seen in Figure 2.1. The function and structure of the retina

allows for non-invasive observation of retinal disorders and diseases that affect blood
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circulation and the brain. These diseases include glaucoma, retinal occlusion, macular

degeneration, and diabetic retinopathy, hypertensive retinopathy and multiple sclerosis

just to mention a few.

Before we explore different methods and the nature of research which has been done

in this review, it is important to highlight the necessity of performing this research and

briefly describe the eye anatomy and the diseases we are trying to detect using computer

algorithms.

Figure 2.1: Illustration of eye anatomy showing a cross-sectional view of the eye and
its structures from [wik14a].
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2.2.1 Eye Anatomy

To assess and manage the progress of retinal abnormalities, it is very important to

understand the function of all the different tissues of the eye. A cross-sectional view

of the eye and its structures are shown in Figure 2.1. The visible parts a human eye

consists of

• A transparent cornea about 8mm of diameter at the front of the eye, this allows

the light to enter the eye.

• A white opaque sclera normally about 12mm of diameter is the outer layer of the

eye which provides resistance to both internal and external forces and preserves

the shape of the globe.

• A coloured iris (brown, green, blue or mix of these colours), which expands and

contracts to let the right amount of light-ray into the eye.

• Finally a black pupil, which channels the light-ray to the lens.

When a ray of light passes through the visible parts of the eye and reaches the

lens, the lens optically directs the light into the interior chamber to the vitreous be-

fore reaching the retina layer. The retina is mainly supported by the retina pigment

epithelium, the choroid and the sclera. Approximately 65% of the retina blood supply

passes through the choroid and 35% through the retina vasculature network [AGS10],

Figure 2.2(b) shows the illustration of the retinal layers. The retina and the choroid

consist of the following layers:

1. The internal limiting membrane: it separates the retina from the vitreous;

2. The retinal nerve fibre layer: axons of the ganglion cells through which the visual

signal is transmitted to the visual cortex;

3. The ganglion cell layer: the nuclei or the cell bodies of the ganglion cells;
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Figure 2.2: (a) Fundus photograph of the retina showing different structures of the
retina. (b) Illustration of cellular layers of the retina form [Wik14b].
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4. The inner plexiform layer: The axons of the bipolar cells, dendrites of the ganglion

cells;

5. The inner nuclear layer: the nuclei or cell bodies of the horizontal cells, the bipolar

cells;

6. The outer plexiform layer: The horizontal cell dendrites and the inner segments

of the photoreceptors (rods and cones);

7. The outer nuclear layer: the cell bodies of the photoreceptors rods and cones;

8. The external or outer limiting membrane;

9. Photoreceptor, bacillary layers: the inner and outer segments of rods and cones

photoreceptors;

10. The pigmented epithelium.

Below the pigmented epithelium there are 4 other layers, from the outside to the

inside of the retina:

1. The Bruchs membrane: limiting the pigmented epithelium from the choroid;

2. The choriocapilaris or capillaries of the choroid;

3. The large choroid blood vessels or choroid plexus;

4. The sclera: the white part of the eye.

After passing through the anterior chamber of the eye and the retina. The light

continues travelling through all the layers until it reaches the rods (the photoreceptor

layers). Once at the photoreceptor layers, the luminance of the light activates the rods

and the cones. This produces a chemical reaction with the cones and the rods causing

a propagation of neural signal that stimulates bipolar cells. The process activates the

retina ganglion cells (RGCs) and the signal passes through the axons of the ganglion
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cells or retinal nerve fibre layer (RNFL) and optic nerve to reach the visual centre at

the back of the brain via the optic nerve head (ONH). At this point, the neural signal

undergoes further processing in the visual cortex of the brain before vision take place.

At this stage it is important to provide some information about retinal diseases and

the damage they cause on the structure and the function of the retina.

2.2.2 Retinal Diseases

Many diseases originate either from the eye (glaucoma, macular degeneration), cardio-

vascular network (hypertension, multiple sclerosis or risk of stroke) can be noticeable

in the retina [AGS10]. It is estimated that 37 millions people globally are blind caused

mainly by cataract, glaucoma, diabetic retinopathy and age-related macular degenera-

tion [FR05]. A non-invasive retinal imaging techniques can be use to assess and manage

many of these diseases including

Glaucoma

Glaucoma ruins the vision by damaging the optic nerve that carries visual signals to

the brain and it is considered to be the second highest cause of permanent blindness

worldwide [QB06] [TNPD95]. In 2002, the number of people blinded by glaucoma was

projected to be 4.5 million worldwide, and this number is estimated to increase to

11.2 million by 2020 [BGLR08]. According to the World Health Organization 2020 the

number of people with glaucoma will reach 79.6 million by 2020. Less than 50% of

those affected by glaucoma in the developed world are not aware of their conditions

due to the silent progress of the disease [QB06]. In the UK alone there are more than

500, 000 suffering from glaucoma and it is estimated that 67% of those are undetected.

This number is must higher in developing countries with over 90% of people affected

by glaucoma are not being aware of it [Moo14a].

Glaucomatous damage is a disease with no cure and its causes are not fully known.

However some studies have shown that, glaucoma can be caused by the increase of
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Figure 2.3: Schematic drawing of glaucomatous damage. (a) The aqueous humour in
blue flowing around the front the eye’s chamber as shown by the green arrow to the
drain trabecular meshwork (blue dots). (b) The aqueous humour flowing into the eye’s
anterior chamber as the trabecular meshwork is blocked exerting pressure on the optic
nerve head and damaging the nerve from [Gla13].
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eye pressure, which can damage the ganglion cells and their axons and if not treated

can lead to irreversible vision loss. Thus glaucomatous damage is characterized by a

structure change leading to functional damage [QAG82]. The increase of the intraocular

pressure (IOP) is often associated with clear watery fluid known as aqueous humour,

which flows through the eye’s anterior chamber to nourish tissues in the eye and keeps

the eye healthy (correctly sending visual information to the brain), as illustrated in

Figure 2.3(a). The IOP rises when this fluid is trapped in the eye chamber, caused

by a blockage of the drainage system (trabecular meshwork) located between the iris

and the cornea. This can exert a great pressure on the optic nerve head damaging the

ganglion cells and their axons, see Figure 2.3(b). High IOP is known to trigger the

glaucomatous damage, but several researchers have also shown that people with normal

IOP may also suffer from glaucoma. In all cases high IOP is considered as a risk factor

for glaucomatous damage, together with other factors such as age, high myopia and

family history.

Early detection and management of glaucoma has been shown to reduce the risk

of irreversible visual loss by glaucomatous damage [HLB+02] [BLHH07]. Since the

glaucomatous damage directly affects the structures of the optic nerve head (ONH) by

cupping the optic disc, as seen in Figure 2.4(d). The damage can be assessed through a

2-D fundus retinal photography or a 3-D structural view of the retina tissue in an OCT

image. This evaluation is performed by defining the ratio of the optic disc cup and the

neuroretinal rim region (cup to disc ratio) [AGS10]. A direct measurement of the retinal

RNFL thickness can also provide key structural changes of the RFNL by glaucomatous

damage. Moreover typical glaucoma assessments includes tonometry, perimetry, oph-

thalmoscope, gonioscopy and pachymetry. All these examinations manage glaucoma

with IOP lowering drops or through surgery in some refractory conditions. Further

information about glaucoma can be found in [QB06] and [BLHH07].
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Diabetes

Diabetic retinopathy is an ocular manifestation of diabetes which causes damage to the

retina. Diabetes mellitus is a chronic disease caused by a high level of sugar (plasma

glucose over 7.0 mmol/l) in the blood, which damage blood vessels, nerve cells as well

as the kidneys, heart, brain and the retina (diabetic retinopathy) [AGS10]. American

diabetes association [WRG+04] has estimated the number of people living with diabetes

to be 171 million worldwide in 2000, approximately 2.8% of the world population. This

number will rise to 366 million by 2030 around 4.4% of the world population. More

research from the International Diabetes Federation (IDF) has estimated the number

of people living with diabetes to be 382 million worldwide in 2013, this number will

rise to 592 million in 2035 [ABC+13]. The causes of diabetes are not fully known but

they are partially linked to life style, unhealthy diet, obesity, genetic background and

lack of exercise.

There are mainly two types of diabetes (type 1 and type 2). Type 1 diabetes is

generally found in young adults or children, known as Juvenile or insulin dependent

diabetes. According to figures approximately 1 in 300 people in the UK live with type

1 diabetes. This chronic disease can progress very rapidly sometimes within days or

weeks since the pancreas stops producing insulin. Type 1 diabetes is considered to be

an autoimmune disease, as the patients immune system produces antibodies to attack

the beta cells in the pancreas responsible of making the insulin in the body [HSKG13],

[ADD+98] , this reaction in the body of the patient can destroy the beta cells. It is

understood that a reaction in the body triggers the immune system to produce those

antibodies. However the cause of this phenomenon is not known to date but the results

of some studies have shown that a virus is responsible for triggering the immune system

into creating the antibodies to destroy the cells that generate insulin and type 1 diabetes

is often linked to different genetic and environmental factors [HSKG13], [ADD+98]. The

deficiency of insulin secretion means that type 1 diabetes patients require continuous

insulin replacement therapy. Unlike type 1, type 2 diabetes often affects people over
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the age of 40, but can sometimes develop in younger people. About 90% of all diabetes

cases are of type 2 and it is common in people who are overweight [MPLK11]. Type

2 diabetes develops gradually and the patients still produce insulin but not enough

for all the bodys needs or the cells in the body are unable to properly use the insulin

made by the pancreas. This is known as no-insulin-dependent diabetes or maturity

onset [OKS+82], [RBDO76]. Unlike type 1 diabetes, in type 2 diabetes patients often

do not need insulin treatment to survive. The causes of type 2 diabetes are various

and this type of diabetes is likely to decrease in the future since the identification of

individual pathogenic processes and genetic deficiencies allows better distinction among

them. Nevertheless patients with this type of diabetes are generally obese and obesity

alone can causes some level of insulin- resistance [ADD+98],[KGG+81]. Usually type 2

diabetes develops unnoticed for many years as the hyperglycemia progresses gradually

at the earlier stages and it is not sufficiently severe for the patients to notice symptoms

of the diabetes [Zim92]. However patients can be at high risk of having microvascular

and macrovascular complications [AS95], which can also result in diabetic retinopathy.

Diabetic retinopathy (DR) is considered to be the second most common cause of

vision loss in the developed world. DR damages the blood vessel networks in the retina,

causing an insufficient blood supply in the retina, which can lead to conditions such

as the proliferative diabetic retinopathy (bleeding of new blood vessels) and diabetic

macular edema (damage of photoreceptors) [AGS10], as seen in Figure 2.4(c).

Every patient living with diabetes is at risk of developing DR. The WHO estimated

that over 75% of patients with diabetes for more than 20 years will develop some form

of DR [Org06]. With the increases in number of people with diabetes, the DR is likely

to become the leading cause of vision loss worldwide in the next 20 years with severe

impacts in the poorest countries [ABC+13]. However vision loss or blindness cause by

DR can be prevented through early diagnosis of the disease using non-invasive retinal

imaging techniques [KS00], [LWMW08].
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Figure 2.4: Diseases of the retina. (a) Fundus photograph of the retina of hyperten-
sion patient showing narrow retinal arteriole [LWMW08]. (b) Age-macular degener-
ation fundus retinal photograph with yellow-orange spots. (c) Fundus photograph of
diabetic retinopathy showing deep yellow hard exudate. (d) Fundus photograph of
glaucomatous damage showing change in optic nerve head [Ocu14].

Age-Related Macular Degeneration (AMD)

Age-related macular degeneration is considered to be the leading cause of blindness

in the developed world. In the US only over 11 million people live with AMD. This

number is estimated to 22 million by 2050 [Mac14]. AMD is the cause of vision loss

fro 54% of all bling people in America [FOM+04] and the risk of the AMD increases

from 2% for adults ages (50-59) to 30% for those over 75 of ages. The cost of this

chronic ocular disease is estimated at US343 billion globally and its severity can reduce
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the possibility of employment by 61% and salary by over 39% [AGS10]. There are two

forms of AMD including the dry AMD and wet AMD (choroidal neovascularisation).

• Dry AMD is the early stage of AMD disorder, about 90% of AMD patients develop

a dry AMD. This form of AMD is causes by a build up of waste material under

the macular region and thinning of the retina around the macular area, which

can led to dangerous form of AMD (late AMD) causing gradual damage of vision

acuity [moo14b].

• Wet AMD also known as choroidal neovascularisation (CNV); represents approx-

imately 10% of AMD cases and causing 90% of legal blindness amount AMD

patients [Mac14]. This form of AMD is characterised by ingrowth of abnormal

blood vessels underneath the retina. These vessels can leak blood and fluid within

or below the retina causing severe permanent partial visual loss (central vision)

when blood and fluid reach the centre of the macular, as seen in Figure 2.4(b).

In most cases of severe wet AMD, the vision loss is not total and the AMD sub-

ject can see through the periphery of the retina. The late AMD caused by the

thinning of the retina known as geographic atrophy can cause blindness through

loss of macular tissue without any bleeding of unhealthy blood vessels [moo14b].

Both forms of AMD can be detected through a dilated eye exam, visual acuity test,

fundoscopy and more importantly fundus photography. While the dry AMD can be

slowed through some dietary supplements [AGS10], a severe progress of wet AMD can

be stopped with intravitreal injections of anti-vascular (anti-VEGF) growth medicine

such as ranibizumab [SLF+06], [LMS+12].

Cardiovascular Diseases (CVD)

Cardiovascular diseases are disorders that affected the blood vessels and the heart.

These disorders included [WHO14]:
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• Cerebrovascular disease. This affects blood vessels that transport blood into the

brain.

• Peripheral arterial disease. This abnormality occurs when the blood vessel net-

works supplying the legs and the arms are dysfunctional.

• Deep vein thrombosis and pulmonary embolism. This occurs when blood clots in

the leg vein affecting the lungs and the heart if not treated.

• Rheumatic heart disorder. This is caused by rheumatic fever (from streptococcal

bacteria) damaging the heart valves and muscle.

• Congenial heart disease. Occurs when the heart structure are malformed from

birth. Strokes and heat attacks are usually severe cardiovascular disorders. These

diseases are generally caused by a blockage of blood supply into the brain or heart.

This blockage is usually caused by a deposit of fat on the inner walls of the blood

vessels that carry blood to the brain or heart.

Cardiovascular diseases are considered to be the leading caused of death globally

[A+11]. Approximately 17.3 million people died from cardiovascular diseases in 2008,

around 30% of all global deaths [A+11]. Amount these 17.3 million were caused by

coronary heart disease and 6.2 million were caused by stroke [MPN+11], this number

is estimated to reach 23.3 million by 2030 [A+11], [ML06]. Cardiovascular diseases can

be detected in the retina as they change the structures of the retina blood vessel net-

works,as seen in Figure 2.4. For example, Atherosclerosis and hypertension can affect

the ratio between the diameter of the retina arteries and veins (A/V ratio) [AGS10],

[WSK+04]. The risk of stroke and myocardial infraction increases when the A/V ratio

decreases, caused by the widening of the veins and thinning of the arteries [WSK+04],

[HBK+99].

Furthermore, systemic cardiovascular disorders can also cause arterial and venous

occlusions leading to bleeding in the retina. Most of the cardiovascular diseases can
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be assessed using retinal imaging techniques. Several computer algorithms have been

developed to measure the retina vascular calibre [LWMW08]. These tools can also be

used to assess retinal vessels structures including vessel angle and tortuosity, the length

to diameter ratio of vessel networks, which appear to carry prognostic information

about the risk of cardiovascular diseases [LWMW08], [WWH+06], [PAM+06].

2.3 Introduction to Retinal Imaging Tools

The ocular structures allow us to see the retina non-invasively through the pupil. Thus

with proper imaging tools, we can perform non-invasive observation and imaging of the

retina tissue [AGS10], illustrated in Figure 2.1. Jan Mery a French physician produced

the first image of the retina using a cat. This discovery allowed various researches

in the retina imaging domain until 1853 when the first human retina image was pub-

lished by a Dutch ophthalmologist Van Trigt. With the advance of the technology,

today modern ophthalmology is equipped with more sophisticated retina imaging tools

including fundus photography, optical coherence tomography (OCT) and fluorescein

angiography. These techniques are described below.

2.3.1 Fundus Imaging

Fundus imaging is one the most popular imaging tools. It is extensively used for large-

scale diagnosis of age-related macular degeneration, glaucoma and diabetic retinopathy

[AGS10], [ZZM+02], [SQY+08]. The fundus imaging provides a 2-D representation of

the 3-D retina tissues using reflected light onto an image plane.

Different Fundus Imaging Techniques

There are various retinal-imaging techniques. Most popular fundus imaging includes

the following techniques [AGS10].

• Fundus photography: To analyse retinal diseases, the image is obtained through
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a projection of reflected light from the retina onto a 2-D image plane. With

the fundus photography, the intensity of the images are defined by the amount

of reflected light from the retina of a specific waveband. This includes red-free

photography.

• Colour fundus retinal photography: Unlike a red-free photography the intensities

of the colour fundus retinal image are defined by the amount of reflected light of

red (R), green (G) and blue (B) waveband.

• The large choroid blood vessels or choroid plexus.

• Stereo fundus photography: In this image, the pixels intensities are defined by

the amount of reflected light from separate view angles for depth resolution.

• Hyper-spectral imaging: It is used for retinal diseases examination. With this

imaging technique, we can obtain the spectrum for each pixel in the retinal image.

It uses multiple wavelengths of light to capture an image of the retina. The pixels

intensities of the image are defined by the amount of reflected light of various

specific wavelength bands.

• Scanning laser ophthalmoscopy (SLO): This technique is generally used for diag-

nosis of retinal diseases such glaucoma, age-related degeneration and other retinal

pathologies. This imaging method uses confocal laser scanning microscopy with

vertical and horizontal scanning mirrors allowing the scanning of any specific area

of the retina. The pixels intensities of the image generated by this tool can be

presented by the amount of the reflected single wavelength laser light gained in

a time period.

• Adaptive optics SLO: The imaging model uses a diode laser to generate light,

which is combined into a single mode optical fiber. The pixels intensities values

are defined by the amount of optically confined reflected laser light.
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• Fluorescein angiography and indocyanine angiography: This imaging tool uses a

fluorescent dye and a specific camera to inspect the circulation of the retina. The

examination is performed by injecting the sodium fluorescein into the subjects

circulation and the image is generated by capturing the emitted fluorescence using

blue light [BAS+88]. The intensities of the image are defined by the amount of

reflected light from the fluorescein injected into the circulation.

Figure 2.5(a) shows a Topcon TRC-NW8 Non-Mydriatic Retinal Camera. This camera

provides clean and more detailed high-resolution colour and monochrome image of the

entire retina at true 45% field of view (FOV).

Challenges in Fundus Retinal Imaging

The projection of light through the pupillary plane (pupil, iris) to illuminate the retina

has always been the main technical challenge in retinal photography [Gul10], [AGS10].

The structure of the retina makes it dark internally, therefore to capture the image

of the retina, internal illumination is required. This process is very complicated to

achieve due to the small opening of the iris and the size of the pupil. This makes it

difficult to separate the incoming light to illuminate the retina and the reflected light

from the retina causing an overlap of the two beams, which diminishes or eliminates

image contrast. Path separation mechanisms in the pupillary plane have been used to

address this problem, which create a small optical opening (few millimetres) between

the two lights. However this imaging architecture is technically challenging, making

the retina photography tools expensive and difficult to operate [AGS10].

Although the separation of the two paths (incoming and reflect lights) remains the

key problem in retinal imaging, the progress of the technology has made the fundus

photography more accessible and less dependent on highly skilled ophthalmic photog-

raphers. It has allowed the transition of film based imaging to digital imaging [MS93].

Consequently the communication and the archiving systems have dramatically im-

proved. This has also introduced the electronic health records system in modern oph-
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Figure 2.5: Retina imaging tools. (a) Topcon TRC-NW8 Non-Mydriatic Retinal Cam-
era can produce high resolution color and monochrome images of the retina and the
anterior segment with a 45 degree field of view [Top14]. (b) Volk Pictor is a non-
mydriatic fundus portable digital imaging device that provides a variety of imaging ca-
pabilities including ophthalmic-posterior, ophthalmic-anterior segment, otoscopic and
dermatoscopic [Vol14]. (c) F-10 confocal digital ophthalmoscope from NIDEK provides
high-contrast images of every detail of the retina and choroid [Las14]. (d) Heidelberg
Spectralis HRA + OCT is a Fourier Domain Optical Coherence Tomography system
equipped with ultra-high speed and high resolution OCT retina scanner that can cap-
ture the 3-D images of the retina [Hei].

thalmology [CBM+08], [AGS10]. Progress has also been seen in the manufacturing

of fundus cameras with the invention of non-mydriatic fundus imaging tools, digital

infrared fundus camera and mini-fundus cameras as shown in Figure 2.5(b) allowing
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more effective diagnosis of retinal diseases.

2.3.2 Optical Coherence Tomography (OCT) Imaging

Recently with the progress of the technology, the OCT image techniques including

Heidelberg Retinal Tomography (HRA+OCT, Heidelberg Engineering, Germany) and

the retinal thickness analyser (HRA+OCT, Talia Technology Inc., Tampa, Florida,

USA) have become the most powerful imaging tools for diagnosis and management

of retinal disorders in modern ophthalmology [JC04]. The OCT can capture a cross-

sectional tomographic of the retina as well as the 3-D representation of the retina.

This imaging tool has been used in the treatment and management of retinal diseases

such glaucoma, choroidal neovascularisation, macular edema, vitreomacular traction

and diabetic retinopathy [JC04].

This photography tool was introduced by team of scientists in 1991 [HSL+91], since

then the OCT has been used in ophthalmic applications for diagnosis and management

of retinal diseases [SIL+93], [Pod14]. The OCT technology combines the tomography

and the Michelson interferometry techniques to capture detailed images of the retina

structures [HSL+91]. The principle of the OCT is based upon low coherent light inter-

ferometry (white light interferometry) with a depth-scanning ability [FMW88] [Rie00]

, which can provides images with a resolution of up to 500 micrometres. Since the

resolution in depth or axial depends on the optical bandwidth of the near-infrared light

instead of the optical aperture, the OCT has becomes the best imaging tool to examine

the tissue of the retina, which has a total thickness between 300-500 micrometres mi-

crometres [HSL+91], [AGS10].

To capture a cross-sectional and volume image of the retinal tissues, the low-

coherence near-infrared light of the OCT is split into two arms by a beam splitter,

which include a sample arm and a reference arm. The sample arm is projected to the

retina through the pupillary plane while the reference arm (usually a mirror) is moved

back and forth to create a continuous and changing distance with the beam splitter.
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The reflected light from the retinal tissue layers and the reference arm are combined

to generate an interference pattern. The combination of the two lights occurs only if

the distance between the low-coherence near-infrared light source and the retinal tissue

layers is equal to the distance between the same light source and the reference mirror

[JC04]. The interference pattern is processed into a signal (reflectivity profile) also

known as A-scan or axial depth scans, which includes all the information (location of

structures and special dimensions) about the retinal tissue layers. A two-dimensional

cross sectional image (B-scan) is produced by combining a series of A-scans and a

three-dimensional retinal image may be achieved by a series of stacked and connected

B-scans. Figure 2.6 shows a schematic representation of a time-domain OCT (TD-

OCT) imaging system setup. More information and comprehensive detail about the

OCT imaging tools can be found in [JC04].

Figure 2.6: A schematic diagram of a time-domain OCT (TD-OCT) imaging sys-
tem [Sch14].

The OCT image can provide clear distinction between different retinal tissue layers

because the intensity of the reflected light is usually different for each retinal tissue
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layer. The OCT images are available on grayscale (highly reflected light-beam from

the tissues appears brighter than less highly reflected light-beam) and colour where

different colours represent different degree of reflectivity [JC04]. In most of the current

commercially available OCT imaging tools, highly reflective tissues are represented in

bright colours, usually red and white. Those with low reflectivity are shown with dark

colours such as black and blue, while those with intermediary reflectivity are represented

in green [JC04]. The resolution of the OCT images depends on the axial plane (z axis)

and the transverse plane (x-y axis). The axial plane affects the OCT image resolution

when a short wavelength (cannot reach thick tissues) is used to capture retinal tissues

that contain a high level of water such as vitreous and cornea. Axial resolution can be

improved partially using adequately long wavelength light, allowing better penetration

of light into the retinal tissue layers. In addition to the wavelength, axial resolution

can also be enhanced by a light-beam with a broader spectral bandwidth capable of

producing a short coherence incident light-beam [HSL+91]. Most of the current OCT

scanners use a low coherence super-luminescent light-beam diode source with 820nm.

The transverse plane (x-y axis) resolution usually depends on the number of scans

on the x-axis rather than on wavelength. Current commercially available OCT imaging

tools use sophisticated scanning mode capable of producing 512 separate scan points in

the x-axis compared to 100 scan points of early OCT scanners. The use of better light

detectors and high speed scanning capability have significantly improved the transverse

resolution.

Commercially available OCT scanners include the time-domain OCT (TD-OCT)

and the Fourier or spectral domain (SD-OCT). Stratus OCT (Carl Zeiss Meditec Inc.,

Dublin, CA, USA) is one the most popular TD-OCT scanners for retinal imaging in

clinical applications. This imaging tool has an axial resolution ≤ 10µm and a lateral

resolution of 20µm and can acquire 400 A-scans per second, which are joined to form a

two-dimensional cross sectional image (B-scan). These A-scan are captured at different

depths using a mobile reference arm. This mobile reference arm tends to reduce the
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speed of the imaging; consequently the number of A-scans is reduced to prevent error

in retinal tissue mapping when the patient blinked during the imaging process. Due to

its low speed in image acquisition, TD-OCT can only provided the retinal nerve fibre

layer thickness (RNFLT) measurements in a line scan and it cannot generate a 3-D

RNFL structures [SHA+95], [HSL+91].

To address these limitations, the Fourier or spectral domain SD-OCT [WLK+02],

[And] was developed with faster scan capability that provides the most comprehensive

structure of the retina. With these new capabilities, the OCT scanner possesses a

powerful tool that allows a 3-D image of the retina to be formed in routine clinical

scans. Unlike the TD-OCT scanner, the SD-OCT uses a stationary reference mirror

arm and a high-speed camera spectrometer to record interference signal of the reflected

scattered light-beam from all the tissue points simultaneously. The special information

of the image is generated by the Fourier transformation (FT) of the interference signal

and with no mobile reference and high signal processing power, the scan speed of the

SD-OCT scanner is approximately 50-100 times faster than a typical TD-OCT [And].

The current generation of SD-OCT scanners can capture 100, 000 A-scans per second

with an axial resolution of 3 − 5µm and this number can be increased to 250, 000 A-

scans per second with axial resolution of 5− 10µm [And]. A high-resolution SD-OCT

Spectralis HRA+OCT (Heidelberg Engineering, Germany) is widely used SD-OCT

scanner. It combines the Spectralis HRA and Spectralis OCT, capable of producing

retinal scans with fluorescence, angiography and OCT. Figure 2.5(d) shows an image

of SD-OCT Spectralis HRA+OCT. The high-resolution SD-OCT Spectralis has 7µm

depth resolution with a 14µm lateral resolution, it captures around 40000 A-scans per

second and 50 B-scans per second.

Both SD-OCT Spectralis and Stratus OCT can provide single, circle and star scans

as shown in Figure 2.7(a-c). The single and star scans are often used to analyze reti-

nal disorders affecting the macular region such as age-related macular degeneration,

macular hole and retinal detachment. The circular scan is use to assess and manage
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glaucoma by analysing the retinal nerve fibre layer thickness. The RTVue 100 scanner

(Optovue, Fremont, CA, USA) and Spectralis HRA+OCT (Heidelberg Engineering,

Germany) can provide a 3-D volume of the retinal image with 513 by 101 A-scans

around the macular or the optic nerve head (ONH). Figure 2.7(d) shows the 3-D vol-

ume scan of the retina around the macular acquired by the Spectralis HRA+OCT

(Heidelberg Engineering, Germany).

While both the fundus and OCT scanners provide objective information for the

diagnosis of retinal diseases, the interpretation of those images remains subjective es-

pecially when manual planimetry (evaluating images by hand) is used to assess the im-

ages. Reports of several studies [VSS92], [MZB+05], [Lic76], [JC04] have shown great

variation in retinal image evaluation among experts in retinal disorders. Therefore

reliable automated or semi-automated methods for quantitative assessment of retinal

images are attractive in computer-aided diagnosis.

In the next chapters, a review will outline automated methods for retinal diseases

analysis including retinal blood networks segmentation, optic nerve head detection and

retinal nerve fibre thickness assessment using fundus and OCT images. These methods

could allow ophthalmologist or retinal diseases experts to perform mass population

vision examinations for early detection and management of retinal disorders. This

could also prevent and reduce the number of vision disorders and many microvascular

diseases as well as reducing the cost of eye screening around the world.
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Figure 2.7: Different types of retina scanning indicated by the green arrows on the
retina. (a) Single scan. (b) Circle scan. (c) Star scan. (d) 3-D scan.
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Chapter 3

Retinal blood vessels extraction

using Mixture of Gaussians

This chapter contains our first contribution.

3.1 Introduction

The segmentation of the blood vessel network in the retina allows ophthalmologist and

eye care specialists to perform large population vision screening exams for early de-

tection of retinal diseases and treatment evaluation. This non-intrusive diagnosis in

modern ophthalmology could prevent and reduce blindness and many cardiovascular

diseases around the world. An accurate segmentation of retinal blood vessel (vessel

diameter, colour and tortuosity) plays an important role in detecting and treating

symptoms of both the retinal abnormalities and diseases that affect the blood circula-

tion and the brain such as haemorrhages, vein occlusion, neo-vascularisation. However,

the presence of pathologies such as haemorrhage, lesions and swelling in diseased reti-

nas as shown in Figure 3.1(c-d) causes errors in the segmentations. In addition to

the pathologies, the intensity inhomogeneity and the poor contrast of the blood ves-

sels in the retinal photographs cause a significant degradation to the performance of
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automated blood vessel segmentation techniques. The intensity inhomogeneity of the

fundus retinal image is generally attributed to the acquisition of the image under dif-

ferent conditions of illumination as illustrated in Figure 3.1(a). Therefore, a reliable

and robust automated method for retinal blood vessel is attractive in computer aided-

diagnosis.

Figure 3.1: Example of fundus retinal photographs. (a) Healthy retinal image with
well defined blood vessels. (b) Retinal image with intensity inhomogeneity. (c) - (d)
Images of retinas containing lesions.
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3.2 Previous Works

The retinal blood vessel segmentation is one of the most challenging problems in retinal

image analysis. The morphology of the retinal blood vessel is an important structural

indicator for assessing the presence and severity of retinal diseases such as diabetic

retinopathy, hypertension, haemorrhages, vein occlusion and neo-vascularisation. Fur-

thermore, the relative diameters of arteries and veins are a very important indicator of

the risk of systemic diseases such as stroke [AGS10]. Thus an accurate segmentation

of the retinal blood vessels has become more important in modern Ophthalmology.

Several automated and semi-automated techniques have been deployed to segment the

blood vessels in the fundus retinal images. The segmentation of the retinal blood ves-

sels can be divided into two different approaches: the pixel processing based methods

and tracking based methods [FCS+03].

3.2.1 The Pixel Processing Based Approach

The pixel processing based approach uses a two-pass operation to perform the extrac-

tion of the vessel trees from fundus retinal images. The first step of the algorithm

consists of enhancing the appearance of the blood vessel using image processing tech-

niques including morphological techniques and adaptive filtering. The second step of

the operation is to find the blood vessel structures using thinning or branch point op-

erations. This operation locates and classifies each pixel in the retinal image as a vessel

pixel or background pixel.

The pixel processing based approach analyses every pixel in the image and classifies

them by applying multiple operations on each pixel. Some pixel processing techniques

use neutral networks and frequency analysis to define each pixel in the image as a vessel

pixel or a background pixel. Typical pixel processing based approaches are published

in the following:

Hoover et al. [HKG02] proposed a new framework to extract blood vessel from
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fundus retinal images. The proposed method included two steps: the first step consists

of using a set of twelve directional kernels to enhance the appearance of the blood

vessels. And the second step applied the threshold-probing operation to classify each

pixel in the enhanced image as vessel pixel or a background pixel. The technique was

evaluated using the STARE dataset, which was collected by Hoover and his team. The

STARE dataset is publicly available for research and it includes experts hand labelling

of the blood vessels for evaluation of the segmentation results. The dataset is also used

in this work to evaluate the blood vessels segmentation results of our methods.

Mendoca et al. [MC06b] presented a novel automated segmentation of the retinal

blood vessels by combining the detection of centrelines and morphological reconstruc-

tion. The first operation in this segmentation technique is the extraction of vessel cen-

trelines, which are then used to guide the second operation of the segmentation (vessel

filling). A combination of four directional differential operators and vessel-derived fea-

tures are used to classify vessel centreline pixels. Finally the vessel is extracted using

an iterative region growing method.

Staal et al. [SAN+04a] proposed a supervised retinal blood vessel segmentation

in two dimensional colour retinal images. The method uses images primitives, which

are formed from image ridges. The images ridges are first grouped into sets that

approximate straight-line elements. The first step of the algorithm is the selection of

features that are classified by finding the probability of a line element belonging to

a vessel. The line elements are used to partition an image into patches by grouping

pixels to the closest line element. Feature vectors are then computed for every pixel,

which uses properties of the patches and the line elements. The classification of the

feature vectors is performed using a kappa NN-classifier and sequential forward feature

selection.

Soares et al. [SLC+06a] proposed an automated segmentation of the retina vessel

trees using a supervised approach. The algorithm used a feature vectors consisting of

the pixel’s intensity and two-dimensional Gabor wavelet transform responses taken at
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multiple scales. The Gabor wavelet transform is used to enhance the appearance of the

vessels in the image. After feature vector selection based on the pixel’s intensity, the

segmentation is obtained by classifying each image pixel as vessel or non-vessel. This

operation is performed using a Bayesian classifier with class-conditional probability

density functions defined as Gaussian mixtures. The probability distributions used by

the algorithm are derived based on a training set of experts hand labelled pixels.

Chaudhuri et al. [CCK+89b] presented a method for detecting the retinal blood

vessels in the fundus retinal images. This technique is one of the first automated

methods for the segmentation of the retina vascular trees. The algorithm performs the

detection of the vessels pixels using an operator for feature extraction generally based on

both the optical and the special proprieties of the blood vessels. To produce an accurate

segmentation result, the algorithm uses a Gaussian shaped curve to approximate the

grey-level profile of the cross section of a blood vessel. The piecewise linear segment

of the blood vessel in the retinal image is detected with the application of a matched

filter. For these operations, 12 different kernels were used to search for vessel segments

through all the possible directions of blood vessels.

Zana et al. [ZK01] proposed an automated segmentation of the retinal blood vessels

based on mathematical morphology and curvature evaluation for the detection of vessel-

like patterns. In this algorithm, a blood vessel is defined as bright pattern, which

is piece-wise connected, and locally linear. A mathematical morphology is used to

enhance the vessels and reduce the noise in the image. This operation is followed by

the separation of vessels from analogous background patterns using a cross-curvature

evaluation.

3.2.2 The Vessel Tracking Based Approach

The second approach to vessel segmentation is referred to as vessel tracking, vectorial

tracking or tracing [FCS+03]. In contrast to the pixel processing based approach, the

tracking method detects first initial vessel seed points, and then track the rest of the
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vessel pixels across the image by measuring the continuity proprieties of the blood

vessels. Unlike the pixel processing based approach, this approach is used as a single

pass operation, where both the detection of the vessel structures and the recognition

of the structures are generally performed simultaneously .

The tracking based approach included semi-automated tracing and automated trac-

ing. In the semi-automated tracing methods, the user manually selects the initial vessel

seed points. These methods are usually used in quantitative coronary angiography anal-

ysis and they generally provide accurate segmentation of the vessels. In fully automated

tracing, the algorithms automatically select the initial vessel points and most methods

use Gaussian functions to characterise a vessel profile model, which locates a vessel

point for the vessel tracing. They are computationally efficient and more suitable for

retinal image processing. Some examples of the tracking based approaches for blood

vessel segmentation are listed below:

Maritiner-perez et al. [MPHT+07a] proposed a segmentation method of blood ves-

sels from red-free and fluorescein retinal images. This method is based on multi-scale

feature extraction, which uses the first and second spatial derivatives of the image in-

tensity that provides information about vessel topology. A multiple pass region growing

procedure is applied to segment the vessels using both vessel feature information and

spatial information. The multiple pass regions growing operation is performed using

the local maxima over scales of the magnitude of the gradient and the maximum prin-

cipal curvature of the Hessian tensor. The use of multiple pass regions growing allows

this approach to segment blood vessels of different widths, lengths and orientations.

Xu et al. [XL10] proposed a method to segment retinal blood vessels to overcome

the variations in contrast of large and thin vessels. The first step the algorithm is

the segmentation of the blood vessels using adaptive local thresholding. The large

connected components in the binary image are selected as large vessels. The pixels

of the remaining components in the binary image including thin vessels are classified

as vessel pixels and background pixels using Support Vector Machine (SVM). The
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tracking growth algorithm performs the detection of the thin vessel segments to produce

a complete blood vessels network.

Zhou et al [ZRSC94] presented the detection and quantification of retinopathy

using digital angiograms. The algorithm used in the segmentation combined a matched

filter and an adaptive densitometric vessel tracking operation. A matched filter with

a prior knowledge of retinal vessel properties is applied to automatically define the

boundaries of the blood vessels. The midline of the vessel is then tracked using an

adaptive densitometric tracking operation based on local neighbourhood information.

This tracking technique is designed in such way that it achieves high computational

performance in regions where the vessel is relatively straight.

Poletti et al [PR14] proposed a fully automated method for the extraction of retinal

blood vessels using graph search retinal vessel tracking. The first step in this segmen-

tation method is the correction of the luminosity and contrast in the retinal images. A

seed point is defined to identify a set of points as the starting nodes for a simultaneous

searches operation. This operation is performed by means of search trees, where each

search is rooted at a seed point. During the search operation, when two trees meet,

the shortest path that connected them is recorded and set as a new starting point for a

new search. The segmentation is completed by a final step connecting vessel segments.

After the identifications of the vessel axes, the vessel diameter is extracted.

Chutatape et al [CZK98] presented an algorithm for retinal blood vessel detection

and tracking using matched Gaussian and Kalman filters. The segmentation algorithm

included scanning and tracking. A second order derivative Gaussian matched filter is

applied on the retinal image to identify both the centre point and width of a vessel

in its cross sectional profile. The next possible location of the blood vessel segment is

estimated using an extended Kalman filter. A simple branching algorithm is applied

during the tracking to identify the branching in the vessel trees. A combination of

scanning and tracking algorithms work reasonably well in the detection of the blood

vessels as more complete vessel networks were detected by this technique.
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Grisan et al [GPG+04], proposed an automated extraction of the vascular tree in

the retinal image, based on a sparse tracking method. The algorithm starts by pre-

processing pixels in the image to identify a set of seeds to be used as the stating point

of the tracking operation. The tracking operation is performed by moving along the

vessel to analyse and subsequently create a vessel cross sections using a means of a fuzzy

c-means classifier. This process defines the vessel centre and direction of the vessel. A

greedy algorithm connects the vessel segments found in the tracking operation.

Both pixel processing and tracking approaches have their own advantages and lim-

itations over one another. The pixel processing approaches can be categorised into

unsupervised and supervised methods. They provide a complete extraction of the vas-

cular structures in the retinal image since they search all the possible vessel pixels

across the whole image. In the literature, the evaluation of retinal vessel segmenta-

tion based on the accuracy and sensitivity has proved that pixel processing supervised

methods generally outperforms other methods [NSvG+04]. However the supervised

methods need a set of manually labelled retinal vessel images as a training dataset

to achieve a higher segmentation results. Unsupervised methods of the pixel process-

ing generally produce very good segmentation results but the presence of noise and

lesions in some retinal images causes a significant degradation in their performance as

the enhancement operation may pick up some noise and lesions as vessel pixels. This

could lead to false vessel detection in the recognition operation. This problem is also

shared by some supervised methods. Furthermore, the pixel processing approaches are

computationally expensive and require special hardware to be suitable for large image

dataset.

On the other hand, the tracking approaches are computationally efficient and much

faster than the pixels processing methods because they perform the vessel segmenta-

tion using only the pixels in the neighbourhood of the vessels structure and avoid the

processing of every pixel in the image. Nevertheless, these methods lack in extracting

a complete vascular network in the case where there are discontinuities in the vessel
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branches. Additionally, the semi-automated tracking segmentation methods need a

manual input, which requires more time.

In this work we provide an automated pixel processing based blood vessel segmen-

tation method, that include Probabilistic Modelling algorithms. The proposed method

uses the bias correction, adaptive histogram equalisation (AHE) and distance transform

in pre-processing operations to enhance the appearance of the blood vessel networks.

This method could be used as tools for automated eye screening, image registration

and treatment evaluation for retinal diseases.

3.3 Methods

In this section, we discuss automated segmentation of retinal blood vessel in the fundus

retinal image using Mixture of Gaussians algorithm. We use the Mixture of Gaussians

algorithm because it is one of the most powerful methods, which allows to find maxi-

mum likelihood solutions for models with latent variables [DLR77]. The method uses

the bias correction operation [TAC+10a] as pre-processing operations to remove all the

fundus imaging artefacts including noises and intensity inhomogeneity. It also removes

from the image some affects of pathologies such as lesions and swelling. An AHE

and distance transform are applied for further blood vessels enhancements in the im-

ages. This second pre-processing step allows the segmentation of narrow blood vessels.

Figure 3.2 shows an overview diagram of the proposed segmentation method.

3.3.1 Bias Correction

One of the major issues associated with fundus retinal images is the intensity inhomo-

geneity across the images, which causes a significant degradation to the performance

of automated blood vessels segmentation techniques. The intensity inhomogeneity of

the fundus retinal image is generally attributed to the acquisition of the image under

different conditions of illumination. In order to overcome such a problem, we use the
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Figure 3.2: Algorithm of the Mixture of Gaussians.

N4 algorithm of bias correction presented in [TAC+10a] which is a modified version of

the original bias correction proposed N3 algorithm [SZE98] that includes a modified

iterative update within a multi-resolution framework. If we consider a noise free retinal

fundus image v(x), defined as

v̂ (x) = v̂′ (x) + f̂ (x) (3.1)

where v′ (x) is the uncorrupted image, f (x) is the bias field and v̂ (x) = log v (x),

v̂′ (x) = log v′ (x) and f̂ (x) = log f (x). The following iteration solution derived in

[SZE98] is used to define the uncorrupted image at the nth iteration as

v̂′ (x) = v̂ (x)− f̂ (x)

f̂ (x)nr = S∗{v̂′ (x)n−1 − E[v̂′ (x) | v̂′ (x)n−1]} (3.2)

v̂′ (x)n = v̂ (x)− S∗{v̂ (x)− E[v̂′ (x) | v̂′ (x)n−1]} (3.3)
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where f̂ (x)nr is the estimated residual bias field at the nth iteration and E[v̂′ (x) |

v̂′ (x)n−1] is the expected value of the true image given the current estimate of the cor-

rected image and it is defined in [SZE98]. S∗{.} is referred as the B-spline approximator

or the smoothing operator.

The iterative solution used to perform the bias correction is given in (3.3), where

v̂ (x) = v̂′ (x)0 and the initial bias field estimate f̂ (x)0
e is equal to zero. The first

iteration yields

v̂′ (x)1 = v̂ (x)− S∗{v̂ (x)− E[v̂′ (x) | v̂ (x)]}︸ ︷︷ ︸
f̂ (x)1

r

v̂′ (x)2 = v̂′ (x)1 − S∗{v̂′ (x)1 − E[v̂′ (x) | v̂′ (x)1]}︸ ︷︷ ︸
f̂ (x)2

r

v̂′ (x)3 = v̂′ (x)2 − S∗{v̂′ (x)2 − E[v̂′ (x) | v̂′ (x)2]}︸ ︷︷ ︸
f̂ (x)3

r

...

v̂′ (x)n = v̂′ (x)n−1 − S∗{v̂′ (x)n−1 − E[ẑ(x) | v̂′ (x)n−1]}︸ ︷︷ ︸
f̂ (x)nr

(3.4)

For the second iteration, the iteration scheme uses the corrected log v̂′ (x)1 to re-

estimate the expected value of the true image E[v̂′ (x) | v̂′ (x)1], and the bias field

estimate f̂ (x)nr is calculated by inspecting (3.4). The iteration solution is designed to

converge such that the value of f̂ (x)nr → 0. Using (3.4) the total bias field estimate is

obtained as

v̂′ (x)1 = v̂ (x)− f̂ (x)1
r
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v̂′ (x)2 = (v̂ (x)− f̂ (x)1
r)︸ ︷︷ ︸

v̂′ (x)1

−f̂ (x)2
r

v̂′ (x)3 = ((v̂ (x)− f̂ (x)1
r)− f̂ (x)2

r)︸ ︷︷ ︸
v̂′ (x)2

−f̂ (x)3
r

...

v̂′ (x)n = v̂ (x)−
n∑

i=1

f̂ (x)ir (3.5)

Thus, the total bias field estimate at the nth iteration is derived as

f̂ (x)ne =

n∑
i=1

f̂ (x)ir (3.6)

Figure 3.3 presents sample results of the bias corrected images from both data sets

STARE and DRIVE.

3.3.2 Adaptive histogram equalisation and distance transform

We apply an adaptive histogram equalisation [SGLK12] to the bias corrected image to

enhance the contrast between vessel pixels and the background images. The histogram

equalisation is performed using the following equation:

X(enhance) =
∑

q′∈R(q)

( 1

h2
S
(
Xq′ −Xq

)︸ ︷︷ ︸
S
(
d
)

)r
λ (3.7)

where

S(d) =

 1 if d > 0

0 if d < 0

The notation q represents the pixels in the image and q′ is the neighbourhood
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Figure 3.3: Example of Bias correction results. (a) STARE image. (b) STARE bias
field. (c) STARE bias corrected image. (d) DRIVE image. (e)

bias field. (f) DRIVE bias corrected image.

pixels of q, defined by a square window of width h. The value of r indicates the level

of contrast between the vessels and the background, by increasing the value of r, the

contrast between vessel pixels and the background increases. λ is the maximum pixel

value of the input image (λ = 255) and Rq is a set of the neighborhood pixels.

Figure 3.4 shows the output images of the adaptive histogram equalisation with

different values of r and h.

To reduce the noise in the adaptive histogram equalisation image, a binary morpho-

logical open process is used to prune the image by eliminating all the non-vessels pixels.

This process is performed by elimination all the pixels in the misclassified pixels during

the AHE operation. These pixels are discarded by setting a simple, pre-defined set of

pixels number. Any connected pixels less than this number is discarded as noises in

the image. The pruned image is used to create a distance map image using a distance
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Figure 3.4: Adaptive histogram equalisation results. (a) r = 3 , h = 45. (b) r = 6,
45. (c) r = 3, h = 81. (d) r = 6, h = 81.

transform model. The distance transform gives a measure of the separation of pixels

in the image by calculating the distance between each pixel that is set to 0 and the

nearest nonzero pixel for the pruned binary images. This operation provides a distance

map image as seen in Figure 3.5 (d). Finally, a Mixture of Gaussians model is applied

to the distance map image to extract the vessel tree. Figure 3.5 shows different fundus

retinal image datasets with their corresponding distance map images.
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Figure 3.5: (a) STARE image. (b) STARE distance map. (c) DRIVE image. (d)
DRIVE distance map.

3.3.3 Segmentation Algorithms

The extraction of the blood vessels is modelled with probabilistic unobserved variable

model. An unobserved variable is introduced to model the process that determines the

component from which the pixels observation originates. We introduce a binary vector

Uk = {(Uk0, Uk1)}Kk=1 having a 1− of −K representation in which only one of the two

elements in Uk can be equal to 1 and the other is equal to 0. Uk1 = 1 if the ith pixels in

the retinal image (Xi)
M
i (where M is the number of pixels) can be accurately assigned

to K clusters as vessel’s pixel otherwise Uk0 = 1. A marginal distribution or a prior

probability over Uk is defined such that P (Uk = 1) = πk where k = 1, . . .K thus:
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P (Uk) =
K∏
k=1

(πk)Uk (3.8)

where the probability values {πk} must satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1. The aim

in this process is to estimate the unknown parameters representing the mixing value

between the Gaussians and the mean (µk) and covariance (Σk) of each component

θk = (µk,Σk). Thus, the conditional distribution or posterior probability of Xi given a

particular value for Uk is defined as a mixture of two Gaussian distributions.

P (Xi | Uk = 1, θk) = N (Xi | µk,Σk)

P (Xi | Uk = 1, θk) =
K∏
k=1

N (Xi | µk,Σk)Uk (3.9)

The joint probability is derived as the product of equations (3.8) and (3.9) to give

P (Xi, Uk | θk) =
K∏
k=1

(πkN (Xi | µk,Σk))Uk (3.10)

where the joint probability P (Xi, Uk | θk) defines a Gaussian mixture, and this model

structure has been used in many problems of classification such as [QL05]. Assuming

that {Xi}Mi are independent and identically distributed and {Uk}Kk is an unobserved

variable, the likelihood is derived by marginalising P (Xi, Uk | θk) over the unobserved

variable. In other words, the marginalised distribution of {Xi}Mi is derived by adding

the joint distribution over all possible states of {Uk}Kk . Our aim is to maximise the

likelihood function that is given by

P (X) =
∑
Uk

P (Xi, Uk | θk) =
∑
Uk

K∏
k=1

(πkN (Xi | µk,Σk))Uk (3.11)

where P (X) is also a Gaussian mixture as the joint probability P (Xi, Uk | θk). As

in vector Uk only one element can be equal to 1, the multiplication and summation
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over k in equation (3.11) can be the exhaustive summation of all possible values of

(πkN (Xi | µk,Σk)) over k. Thus

P (X) =

K∑
k=1

(πkN (Xi | µk,Σk)) (3.12)

Expectation maximisation

To calculate the maximum likelihood estimate of the equation (3.11), we use the expec-

tation maximisation (EM) algorithm as it is the most powerful method for finding max-

imum likelihood solutions for models with latent variables [DLR77]. The EM performs

the segmentation by classifying vessel’s pixels in one class (foreground) and non-vessel’s

pixels in the other (background). The EM output is obtained by iteratively performing

two steps: the expectation E- step computes the expected value of the likelihood func-

tion (pixel class membership function) with respect to the unobserved variables, under

the parameters of a Gaussian Mixture Model and the maximisation M-step, maximises

the likelihood function defined in the E-step until convergence [Bis07].

In the E-step, the posterior probability P = (Uk | Xi, θk) of the unobserved variable

Uk is derived using Bayes theorem as:

P (Uk | Xi, θk) =
P (Xi, Uk | θk)

P (Xi)

Γ (Uk) = P (Uk | Xi, θk) =

∏K
k=1 (πkN (Xi | µk,Σk))Uk∑K
j=1 (πjN (Xi | µj ,Σj))

(3.13)

Therefore the expectation of the unobserved variable Uk is derived with respect to

the distribution of the posterior probability or the responsibility Γ (Uk) that component

k takes for assigning the pixel Xi in the E-step. Then followed by the M-step, which

calculates parameters maximising the expected log likelihood computed in the E-step.

Suppose that the number of pixels in a retinal image is represented by a data set

{xi, . . . xM} and we aim to model this set using a mixture of Gaussians. A M × D
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matrix X is used to represent the pixel data set in which the ith row is defined by

xNi . The corresponding latent variables is represented by a matrix Z of size M × K

in which the ith row is defined by uNi . Assuming that the pixel data points are drawn

independently from the Gaussian distribution, we can define the log of the likelihood

function using equation ( 3.12)

ln{P (X | θ)} =

M∑
i

ln

{
K∑
k=1

(πkN (xi | µk,Σk))

}
(3.14)

The derivative of ln {P (X | θ)} with respect to the means µk of the Gaussian com-

ponents is set to 0 to give.

−
M∑
i=1

(πkN (xi | µk,Σk))∑K
j=1 (πjN (xi | µj ,Σj))

(Σk (xi − µk)) = 0

−
M∑
i=1

Γ (uik) (Σk (xi − µk)) = 0 (3.15)

By multiplying ( 5.7) by
(
Σ−1
k

)
, we define the means as

µk =
1

ηk

{
M∑
i=1

Γ (uik)xi

}
(3.16)

where ηk =
∑M

i=1 Γ (uik) is the total number of pixels assigned to cluster k. We observed

from equation ( 5.8) that the mean for the kth Gaussian component µk is defined by

using a weighted mean of all of the pixels in the data set, where the weighting factor

for the image pixel point xi is derived using the posterior probability Γ (uik). Therefore

a Gaussian component {k} is responsible for generating the image pixel points xi.

Similarly, we maximise ln {P (X | θ)} with respect to the covariances Σk and we

obtain

Σk =
1

ηk

M∑
i=1

Γ (uik) (xi − µk) (xi − µk)N (3.17)
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Like the mean µk, the denominator of ( 5.9) is defined by the total number of pixel

points assigned to cluster k and each pixel point is weighted by the corresponding

posterior probability.

Finally, setting the derivative of ln {P (X | θ)} with respect to (πk) the mixing

coefficients and by using a Lagrange multiplier to satisfy the constraint
∑K

k=1 πk = 1,

we obtain

ln {P (X | θ)}+ λ

{
K∑
k=1

πk − 1

}

M∑
i=1

(πkN (xi | µk,Σk))∑K
j=1 (πjN (xi | µj ,Σj))

+ λ = 0 (3.18)

By multiplying both sides of equation ( 3.18) and summing over k, we obtain the

mixing coefficient as

πk =

∑M
i=1 Γ (uik)

M
(3.19)

From ( 3.19), we can see that the expression of the mixing coefficient for a com-

ponent k is defined by the average responsibility that component k has for assigning

image pixels.

In all, to perform the EM algorithm, we first choose initial values for Gaussians

parameters ( means, covariance and mixing coefficients), then the algorithm iterates

between the E-step and the M-step [Bis07]. The EM algorithm process is summarised

in Figure 3.6. In the E-step, the currents values of the parameters are used to calculate

the values of the Γ (uik) the posterior probabilities (responsibilities) given by equation

(5.7). These probabilities values are used in the M-step to re-calculate the values of

the Gaussians parameters means, covariance and mixing coefficients derived in (5.8),

(5.9), (3.19) respectively. However each update to the Gaussians parameters from the

E-step and the M-step is guaranteed to increase the log likelihood. Figure 3.7(b) shows

the experimental results of EM algorithm for the containing noises. To reduce these
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noises, we applied the length filter operation in following section.

Figure 3.6: The EM algorithm summary.

Length Filter

The result of EM algorithm shown in Figure 3.7(a), exhibit some misclassified pixels

indicated by the red arrows. This increases the false positive rate. To address this

problem, the length-filtering model is designed to eliminate all the non-vessels pixels

in the EM algorithm result image. We adapt the length filter used in [CF03], which
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discards all the groups of pixels with pixel numbers less than a certain number of pixels.

The approach uses connected pixels labelling model, in which each individual object in

the image is defined as connected regions. The approach starts by identifying all the

connected regions, then discards all the connected objects less than a certain number

of pixels using an eight-connected neighbourhood of all surrounding pixels. Finally

label propagation is used and all connected components larger than a certain number

of pixels are labelled as blood vessels. This approach reduces significantly the false

positive. The results of this operation is shown in Figure 3.7(b).

Figure 3.7: Example EM and Length Filter results. (a) EM result with misclassified
pixels indicated by the red arrow. (b) Length filter result of the EM output.

3.4 Experimental results

The method presented in this paper was evaluated on two publicly available retinal

image datasets: STARE [HKG02] and DRIVE [SAN+04a] containing 60 images in

total with 25 of them showing a variety of lesions.

The STARE dataset contains 20 fundus colour retinal images, including 10 healthy

and 10 unhealthy ocular fundus images with a variety of lesions. The images are
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captured by a Topcon TRV-50 fundus camera at 35 ◦ field of view (FOV) and the size

of the image is 700× 605 pixels. The dataset provides two sets of hand labelled images

segmented by two human experts as a ground truth for retinal vessel segmentation

methods. We calculated the mask of the image for this dataset using a simple threshold

technique for each colour channel. We adapt the first expert hand labelled image as

the ground truth to evaluate our segmentation technique.

The DRIVE dataset provided 40 fundus colour ocular images, including 20 training

and images, 20 test images including 15 images with a variety of lesions. These images

are acquired using The Canon CR5 camera at 45 ◦ FOV, digitised at 24 bit with reso-

lution of 565× 584 pixels. The dataset also provides two sets of hand labelled images

segmented by two human experts as ground truth. The first expert hand labelled image

was adapted as ground truth in the evaluation on both the STARE and the DRIVE

datasets.

To facilitate the performance comparison between our methods and other reti-

nal blood vessels segmentation methods, the parameters measuring the performance

(true positive rate, false positive rate and the accuracy rate) of [SAN+04a], [HKG02],

[MC06b] were used to measure the performance of the segmentation. The true positive

rate (TPR) is defined as the ratio of the total number of pixels correctly classified as

vessel pixels to the total number of vessel pixels in the image ground truth. The false

positive rate (FPR) is the ratio of the total number of non vessel pixels in the FOV

classified as vessel pixels to the total number of non vessel pixels inside the FOV of

the ground truth image. Finally the accuracy (ACC) is computed as the sum of true

positives and true negatives over the total number of pixels in a given image. It is

worth mentioning that a perfect segmentation would have a FPR of 0 and a TPR of 1.

All the methods used the first expert hand labelled images as performance reference.
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3.4.1 Segmentation Results on STARE Dataset

The experiment results of different retinal blood vessels segmentation methods on the

STARE dataset are shown in Tables 3.1 and 3.2. The performance results of Staal

et al. [SAN+04a], Mendona et al. [MC06b], Martinez-Perez et al. [MPHT+07b],

Chaudhuri et al. [CCK+89a], Zhang et al. [ZZZK10] , and Hoover et al. [HKG02] were

generated from their original manuscripts. The performance of the different methods

was generated using all the 20 fundus images except the method presented by Staal

[SAN+04a], that used 19 out of the 20 images including 10 healthy and 9 unhealthy

images. Our Mixture of Gaussians has the highest average TPR = 0.7619 and with an

average accuracy of 0.9456, it performs better than the methods presented by Mendoca

et al. [MC06b], Hoover et al [HKG02], Chaudhuri et al. [CCK+89a] and Maritiner-

Perez et al. [MPHT+07b] and its only marginally inferior to the method presented by

Staal et al. [SAN+04a] and hang et al. [ZZZK10]. However as mentioned above the

method presented by Staal et al. uses only 19 images for performance evaluation.

Method TPR FPR Accuracy

2nd human observer [MC06b] 0.8949 0.0610 0.9354
Mendonca [MC06b] 0.6996 0.0270 0.9440

Staal [SAN+04a] 0.6970 0.0190 0.9516
Chaudhuri [CCK+89a] 0.6134 0.0245 0.9384

Maritiner-Perez [MPHT+07b] 0.7506 0.0431 0.9410
Hoover[HKG02] 0.6751 0.0433 0.9267
Zhang [ZZZK10] 0.7177 0.027 0.9484

Gaussian Mixture Models [KSGL+13] 0.6645 0.0216 0.9450
Mixture of Gaussians 0.7619 0.0328 0.9456

Table 3.1: The performance comparisons - STARE dataset (Healthy and unhealthy
retinal images)

We also compared the performance of our method on both healthy and unhealthy

ocular images. The test on healthy retinal images in Table 3.2 shows that the Mixture

of Gaussians achieves the highest average accuracy of (95.54%) compared to all other

alternative methods. It also has the second highest average accuracy after [ZZZK10]

in segmenting unhealthy retinal images.
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Method TPR FPR Accuracy

Unhealthy ocular images

2nd human observer [MC06b] 0.8252 0.0456 0.9425
Mendonca[MC06b] 0.6733 0.0331 0.9388

Hoover[HKG02] 0.6736 0.0528 0.9211
Chaudhuri [CCK+89a] 0.5881 0.0384 0.9276

Zhang [ZZZK10] 0.7166 0.0327 0.9439
Gaussian Mixture Models [KSGL+13] 0.6520 0.0255 0.9411

Mixture of Gaussians 0.7068 0.0324 0.9417

Healthy ocular images

2nd human observer [MC06b] 0.9646 0.0764 0.9283
Mendonca[MC06b] 0.7258 0.0209 0.9492

Hoover[HKG02] 0.6766 0.0338 0.9324
Chaudhuri [CCK+89a] 0.7335 0.0218 0.9486

Zhang [ZZZK10] 0.7526 0.0221 0.9510
Gaussian Mixture Models [KSGL+13] – – –

Mixture of Gaussians 0.8506 0.0300 0.9554

Table 3.2: The performance comparisons - STARE dataset (Healthy vs Unhealthy
retinal images)

3.4.2 Segmentation Results on DRIVE Dataset

Similarly to STARE dataset, The performance results of Staal [SAN+04a], Mendona [MC06b],

Martinez-Perez [MPHT+07b], Chaudhuri [CCK+89a], Perfetti [PRCC07], Garq [GSC07],

Al-Rawi [ARQA07] , Cinsdikici [CA09], Marin [MAGAB11] and Zhang [ZZZK10] were

generated from their original manuscripts. But the performance results of Zana [ZK01]

and Jiang [JM03] techniques were provided by Staal [SAN+04a] as their manuscripts

were published before the DRIVE dataset was available. The performance of all the

methods was based on the 20 test images and the results are shown in Table 3.3. An

overview of the testing results show that our method outperforms all other methods in

term of TFR and with the accuracy, its marginally inferior to the method presented

by Staal et al. [SAN+04a], Marin et al. [MAGAB11], Mendona et al. [MC06b] and the

performance of human experts. Nevertheless it is important to note that the methods

presented Staal et al. and Marin et al. used supervised techniques that generally de-

pend on the training datasets, hence good segmentation results are achieved by classifier
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retraining before experimentations on new datasets.

Method TPR FPR Accuracy

2nd human observer [ZZZK10] 0.7761 0.0275 0.9473
Mendonca [MC06b] 0.7344 0.0236 0.9452

Staal [SAN+04a] 0.7194 0.0227 0.9442
Chaudhuri [CCK+89a] 0.6168 0.0259 0.9284

Maritiner-Perez [MPHT+07b] 0.7246 0.0345 0.9344
Jiang [JM03] - - 0.9112

Perfetti [PRCC07] - - 0.9261
Zana [ZK01] - - 0.9377

Garq [GSC07] - - 0.9361
Marin [MAGAB11] - - 0.9452
Al-Rawi [ARQA07] - - 0.9510
Cinsdikici [CA09] - - 0.9293
Zhang [ZZZK10] 0.7120 0.0276 0.9382

Mixture of Gaussians 0.7466 0.0317 0.9410

Table 3.3: The performance comparisons - DRIVE dataset

Figure 3.8 shows the experimental results of the proposed method, where 3.8(a-c)

shows the input images, 3.8(d-f) the segmentation results and 3.8(g-i) the corresponding

hand labelled blood vessel networks.

3.5 Summary

In this chapter, we describe a process of automated segmentation of the blood vessel

networks in fundus retinal images using a mixture of Gaussians. This method can

be used as a tool for non-invasive diagnosis in modern ophthalmology for mass pa-

tient screening, image registration and retinal disease evaluation and treatment. This

method uses the bias correction as a pre-processing operation to remove noise and

correct the intensity inhomogeneity across the image. An additional processing opera-

tion is used to enhance the appearance of the blood vessel network, including adaptive

histogram equalisation (AHE) and distance transform, the latter operation allows the

segmentation of narrow blood vessels.

The proposed method was tested on 60 fundus retinal images from two public
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Figure 3.8: Sample results of our methods. (a-b) STARE input images and (c) DRIVE
input image .(d-f) The corresponding segmentation results. (g-i) The corresponding
hand labelled blood vessels.

datasets (STARE and DRIVE) including 25 images with a variety of lesions. The

performance on these difficult datasets showed effective agreement with the manual

annotations. The performance evaluations of the proposed method seen in Table 3.1,

3.2 and 3.3 show that our method outperforms most of the alternative methods we

compared to in term of TPR, FPR and ACC.

This method has advantages over tracking-based methods because it applies bias

correction and distance transform on retinal images to enhance vessel appearance and

allows a complete segmentation of retinal blood vessel network. Also our method
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achieves better results over other pixel processing based methods as it corrects the in-

tensity inhomogeneity across retinal images to improve the segmentation of the narrow

blood vessels. The Mixture of Gaussians method also minimises the segmentation of

the optic disc boundary and lesions in the unhealthy retinal images. However, this is

a low-level segmentation method because it combines three pre-processing operations,

which analysis every pixels in the image. The bias correction operation can also remove

the very thin blood vessels.
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Chapter 4

Segmentation of Blood Vessels

Using Graph Cut

This chapter presents our second contribution.

4.1 Introduction

The segmentation of retinal image structures has been of great interest because it could

be used as a non-intrusive diagnosis tool in modern ophthalmology. The morphology of

the retinal blood vessel is an important structural indicator for assessing the presence

and severity of retinal diseases such as diabetic retinopathy, hypertension, glaucoma,

haemorrhages, vein occlusion and neo-vascularisation. The ratio between the diameter

of the retina arteries and veins can also indicate risks of systemic diseases including

stroke, hypertension and myocardial infraction [AGS10]. However to assess the diam-

eter and the tortuosity of retinal blood vessel, manual planimetry has commonly been

used by ophthalmologist, which is generally time consuming and tedious, especially

when the vessel structure are complicated or a large number of images are acquired to

be labelled by hand. Therefore, a reliable automated method for retinal blood vessels

segmentation is attractive in retinal image analysis.
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An automated segmentation and inspection of retinal blood vessel features such as

diameter, colour and tortuosity allows ophthalmologist and eye care specialists to per-

form mass vision screening exams for early detection of retinal diseases and treatment

evaluation. This could prevent and reduce vision impairments, age related diseases and

cut the costs of the eye screening. This examination can also prevent many cardiovas-

cular diseases such as the risk of stroke and hypertension as shown in Figure 4.1.

Figure 4.1: Retinal blood vessel evaluation. (a) Digital retinal image. (b) Measuring
arteriolar and venular caliber. (c) Edge detection. (d) Retinal photograph of a patient
showing narrow retinal arteriole, this patient developed severe hypertension within 10
years of the photography. (e) Retinal photograph of a patient showing wide retinal
venule, this patient developed a fatal stroke within 10 years of the photograph. (a-e)
[LWMW08].

In the literature, several segmentation techniques have been employed for the seg-
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mentation of retinal blood vessel. However the acquisition of fundus retinal images

under different conditions of illumination, resolution and field of view (FOV) and the

overlapping tissue in the retina cause a significant degradation to the performance of au-

tomated blood vessel and segmentations. Thus, there is a need for a reliable technique

for retinal vascular tree network extraction, which preserves various vessel shapes.

We reviewed a number of previous studies of retinal blood vessel segmentation in

chapter 3. The segmentation methods were divided into two groups, pixel-processing-

based and vessel tracking-based methods. Our graph cut method is implemented to

address the issues in the Mixture of Gaussians method described in chapter 3, which is

a low-level method as it uses three pre-processing operations and performs the vessel

extraction by processing all the pixels in the fundus image. The graph cut method

combines pixel-processing-based and vessel tracking-based methods by integrating the

mechanism of flux into graph formation to achieve complete vessel network extraction

including arrow vessels. The proposed method also applies a pre-processing technique

including an adaptive histogram equalisation (AHE) and distance transform to enhance

the appearance of the blood vessel in the retinal image.

4.2 Methods

Blood vessels can be seen as thin elongated structures in the retina, with variation in

width and length. In order to segment the blood vessel from the fundus retinal image,

we implemented a pre-processing technique, which consists of an effective AHE and

robust distance transform. This operation improves the robustness and the accuracy

of the graph cut algorithm. Fig. 4.2 shows the illustration of the vessel segmentation

algorithm.
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Figure 4.2: Vessel segmentation algorithm.

4.2.1 Pre-processing

We apply a contrast enhancement operation to the green channel of the input RGB

(red, green, blue) retinal image, which displays a good contrast between the retinal

blood vessel networks and the background similar to the work presented in [WZL06].

The intensity of the image is inverted, and the illumination is equalised. The resulting

image is enhanced using an adaptive histogram equaliser, given by:

IEnhanced =

 ∑
p′∈R(p)

s (I (p)− I (p′))

h2

r

·M (4.1)

where I is the green channel of the fundus retinal colour image, p denotes a pixel and

p
′

is the neighbourhood pixel around p. p
′ ∈ R(p) is the square window neighbourhood

with length h. s(d) = 1 if d > 0, and s(d) = 0 otherwise with d = s (I (p)− I (p′)).

M = 255 value of the maximum intensity in the image. r is a parameter to control the

level of enhancement. Increasing the value of r and h would also increase the contrast

between vessel pixels and the background as shown in Figure 4.3. The values of the

window length was set to h = 81 and r = 6 by experimentation.

A binary morphological open process and the distance transform operation are
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applied to prune and enhanced image. More information about this process is provided

in Chapter 3 Section 3.3.2. This approach discards all the misclassified pixels and

significantly reduces the false positive, since the enhanced image is used to construct

the graph for the vessel segmentation process. Figure 4.3(e) shows the enhanced vessel

or distance map image.

The distance map image is used to calculate the direction and magnitude of the

vessel gradient. Figure 4.3(f) shows a sample vessel in the distance map image with

black arrows indicating the direction of the gradients respectively. From the sample

vessel image, we can see the centre line with the brightest pixels, which are progressively

reduced in intensity in the direction of the edges (image gradients). The arrows in

Figure. 4.3(f) referred as vector field, which is used to construct the graph in the next

sections.

Figure 4.3: Pre-processing. (a) h = 45, r = 3. (b) h = 45, r = 6. (c) h = 81, r = 3.
(d) h = 81, r = 6. (e) distance map. (f) sample of a vessel with arrows indicating the
vessel gradients.
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4.2.2 Graph construction

The graph cut is an energy based object segmentation approach. The technique is

characterised by an optimisation operation designed to minimise the energy generated

from a given image data. This energy defines the relationship between neighbourhood

pixel elements in an image.

A graph G (ν, ε) is defined as a set of nodes (pixels) ν and a set of undirected edges

ε that connect these neighbouring nodes. The graph included two special nodes, a

foreground terminal (source S) and a background terminal (sink T). ε includes two

types of undirected edges: neighbourhood links (n-links) and terminal links (t-links).

Each pixel p ∈ P (a set of pixels) in the graph presents two t-links {p, S} and {p, T}

connecting it to each terminal while a pair of neighbouring pixels {p, q} ∈ N (number

of pixel neighbour) is connect by a n-links [BJ01]. Thus:

ε = N
⋃
p∈P
{{p, S}, {p, T}, ν = P ∪ {S, T}} (4.2)

An edge e ∈ ε is assigned a weight (cost) We > 0. A cut is defined by a subset of edges

C ∈ ε where G (c) = 〈ν, ε\C〉 separating the graph into two foreground and background

with C defined as |C| =
∑

e∈C We

The Max-Flow algorithm is used to cut the graph and find the optimal segmentation.

Table 4.1 assigns weight to the edges ε in the graph [BJ01].

Edge Weight For

{p, q} B{p, q} {p, q} ∈ N
{p, S} (Foreground) λ ·Rp(Fg) p ∈ P, p /∈ F ∪B

K p ∈ F
0 p ∈ B

{ p, T} (Background) λ ·Rp(Bg) p ∈ P, p /∈ F ∪B
0 p ∈ F
K p ∈ B

Table 4.1: Weight assignment of the edges in the graph.
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where

K = 1 +maxp∈P
∑
{p,q}

Bp,q (4.3)

F and B represent the subsets of pixels selected as foreground and background respec-

tively. Thus F ⊂ P and B ⊂ P such that F ∩ B = ø. Bp,q defines the discontinuity

between neighbouring pixels, and its value is large when the pixel intensities. λ > 0 is

a constant coefficient, which we will define in the energy formulation of the graph.

The graph cut technique is used in our segmentation because it allows the incorpo-

ration of prior knowledge into the graph formulation in order to guide the model and

find the optimal segmentation. Let’s assume A = (A1, Ap, . . . AP ) a binary vector set

of labels assigned to each pixel p in the image, where Ap indicate assignments to pixels

p in P . Therefore, each assignment Ap is either in foreground (Fg) or background

(Bg). Thus the segmentation is obtained by the binary vector A and the constraints

imposed on the regional and boundary proprieties of vector A are derived by the energy

formulation of the graph defined as

E (A) = λ ·R (A) +B (A) (4.4)

where the positive coefficient λ indicates the relative importance of the regional term

(likelihoods of foreground and background) RA against the boundary term (relationship

between neighbourhood pixels) BA. The regional or the likelihood of the foreground

and background is given by

R (A) =
∑
p∈P

Rp (Ap) (4.5)

and the boundary constraints is defined as

B (A) =
∑

p,q∈N
Bp,q · φ (Ap, Aq) (4.6)
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where φ (Ap, Aq) = 1 for Ap 6= Aq and 0 Otherwise.

Bp,q = exp(−(Ip − Iq)2

2σ2
) · 1

dist(p, q)
(4.7)

Rp (Ap) specifies the assignment of pixel p to either the foreground (Fg) or the back-

ground (Bg). Bp,q defines the discontinuity between neighbouring pixels, and it’s value

is large when the pixel intensities Ip and Iq are similar and close to zero when they

different. The value of Bp,q is also affected by the Euclidean distance dist(p, q) between

pixels p and q.

During the minimisation of the graph energy formulation in (4.4) to segment thin

objects like blood vessels, the second term (boundary term) in (4.4) has a tendency

to follow short edges known as “the shrinking bias” [VKR08]. This problem causes a

significant degradation on the performance of the graph cut algorithm on thin elongated

structures like the blood vessels. Figure 4.4 shows an example of the blood vessel

segmentation using the traditional graph formulation [KB05]. From Figure 4.4, it can

be seen that the blood vessel segmentation follows short edges, and tends to shrink

in the search for the cheapest cost. It can also be noticed that λ in (4.4) controls

the relation between boundary and regional terms. Increasing the value of λ, the

likelihood of the pixels belonging to foreground and background (t-links) gains strength

over the regional term (n-links), which slightly improved the segmentation result see

Figure 4.4(d).

To address the above problem, the segmentation of blood vessels using the graph

cut requires special graph formulation. One of the method used to address the shrink-

ing bias problem is to impose an additional connectivity prior, where the user marks

the constrain connectivity [VKR08]. In order to achieve full automated segmentation,

we used the method presented in [KB05], which overcomes the “the shrinking bias” by

adding the mechanism of vectors flux into the construction of the graph. The incor-

poration of vectors flux can improve edge alignment and allows the segmentation of
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Figure 4.4: Retinal blood vessel segmentation using the traditional graph. (a) seeds
initialisation of the input image: red background and green vessels. (b) λ = 20. (c)
λ = 50. (d) λ = 100. Segmented blood vessel networks in green (b-d).

thin objects like blood vessels by keeping a balance between shrinking (length) and

stretching (vectors flux) along the boundary. Figure 4.5 shows flux of vectors v passing

through a given surface S. Our method takes the image gradients of rough blood vessels

from the pre-processing step as vectors v see Figure 4.3(f), and the flux (magnitude,

and direction) of these vectors is incorporated into the graph construction and opti-

mised. Thus the shrinking effect of the minimization energy on the boundary term is

equilibrated with the spreading effect of vectors v flux.

It is been shown in [KB05] that the class of Finsler metrics can described geo-
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Figure 4.5: The flux of vectors v passing through a given surface S.

metric proprieties of the discrete cut metric on regular grids and Finsler length can

be represented by the sum of two terms. Those terms represent the symmetric and

anti-symmetric parts of the cut metric. The symmetric part of the cut defines the

standard geometric length of contour and it is independent of its orientation. The

anti-symmetric part of the cut metric represents the flux of a given vector field through

the contour [KB05].

To address “the shrinking bias” problem seen in Figure 4.4, we have constructed

a graph consisting of a symmetric part g+ (shrinking) and an anti-symmetric part g−

(stretching) by incorporating the flux of vector v into the graph construction. The

symmetric part g+ of the graph corresponds to a cut geometric length and is related

directly with the n-link connections and the anti-symmetric part g− is equal to flux of

vector field v over the cut geometric and it is used to derive the t-links. Thus the blood
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vessels can be segment by keeping a good balance between shrinking and stretching

(flux) throughout the image boundary.

The Symmetric Part of the Graph

The symmetric part of the graph is used to assign weights on the n-link connections

(edges between neighbouring pixels). Let consider a neighbour system of a graph

described by a set of edges ek, where 1 ≤ k ≤ N , for N number of neighbours. Let us

define ek as the shortest vector connecting two pixels in the direction of k, W+
k (p) the

weight of the edge ek at pixel p and W̃+
k (p) a set of the edge weights at pixel p for all

directions. The corresponding edge weights are defined by

ω+ =
1

2
D × g+ (4.8)

where D is a N x N matrix with entries defined as

Dii = − sin(αi+1 − αi−1)

sin(αi+1 − αi)sin(αi − αi−1)
(4.9)

If j + 1 = ±1

Dij =
1

sin (αj − αi)

Dij = 0 Otherwise

where αk is the angle of the edge ek with respect to the positive axis X see Figure 4.6.

In our implementation, we consider a grid map of 16 neighbours with edges ek, k =

1, 2, ..., 16 as seen in Figure 4.6. For each pixel p in the green channel image, the edge

weight W̃+
k (p) is computed according to (4.8). g+ is calculated using the pixel intensity

difference between two given nodes by:

g+ = K · exp
(
−(Ip − Iq)2

σ2

)
(4.10)
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Figure 4.6: Neighborhood system for a grid in the graph.

g+ has a high value for pixels of similar intensities, when Ip − Iq < σ. However if

the pixels are very different Ip − Iq > σ the value of g+ is small, which represents a

poor relation between the pixels, hence they belong to different terminals [BFL06].

The Anti-Symmetric Part of the Graph

We used the term Anti-Symmetry because, the flux (stretching) of vector field v over

the cut geometric balanced the shrinking of blood vessels during the segmentation. This

anti-symmetric part of the graph is defined by the flux of vector field v over the cut

geometric. It is used to assign weights on the t-links (edges between a given pixel and

the terminals) to balance the shrinking effect seen in Figure 4.4. Specific weights for t-

links are obtained based on the decomposition of vector v. Different decompositions of

vectorv may result in different t-links whose weights can be interpreted as an estimation

of divergence. In our implementation, we decomposed the vector v along grid edges
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with the n-links oriented along the main axes, X and Y direction. Thus vector v can be

decomposed as v = vxux + vyuy where ux anduy are unit vectors in X and Y direction

respectively. This decomposition leads to the t-link weights defined as

tp =
δ2

2
[
(
vrightx − vleftx

)
+
(
vupy − vdown

x

)
] (4.11)

where vrightx and vrightx are the components of vector v in X direction taken at the right

and left neighbour of pixel P respectively. vupy and vdown
y are the Y of vector v taken at

the top and down of of pixel P . δ is the size of the cell in the grid map see Figure 4.6.

We add edge (s→ p) with weight C ∗(−tp) if tp < 0, or edge (p→ t) with weight C ∗ tp

otherwise. The parameter C is related to the magnitude of the vector v, thus pixels

in the centre of the blood vessel have a higher connection to the source (foreground)

than pixels in the edge of the blood vessels. Because the distance map is calculated on

the pruned image and vector v is only defined for the pixels detected as blood vessels

in the rough segmentation. For the rest of the pixels in the image, the initialisation of

t-link weights is set as (p→ s) with weight t = 0 and (p→ t) with weight t = K, where

K is the maximum weight sum for a pixel in the symmetric construction. Figure 4.7

shows the segmentation results of the blood vessels using different decomposition of

the vector v generating different t-link weights.

4.3 Experiments

4.3.1 Data

For the vessel segmentation method, we tested our algorithm on two public datasets,

DRIVE [SAN+04b], STARE [HKG00] with a total of 60 images including 25 images

with some variety of lesions.

The DRIVE consists of 40 digital images including 15 images with a variety of

lesions, which were captured from a Canon CR5 non-mydriatic 3CCD camera at 45◦

field of view (FOV). The images have a size of 768× 584 pixels. The dataset includes
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Figure 4.7: Vessel segmentation using the decomposition of vector v: (a) input retinal
image. (b) Blood vessel segmentation using horizontal (X axis) decomposition of vector
v. (c) Blood vessel segmentation using vertical (Y axis) decomposition of vector v.
(d) Blood vessel segmentation result using the decomposition of vector v along X and
Y axes.

masks to separate the FOV from the rest of the image. It included two sets hand labelled

images (set A and set B) for the blood vessel. The set A offers the manually labelled

images for all the images in the dataset, whereas the set B provides the manually

labelled images for half of the dataset. To test our method we adopt the set A hand

labeled images as the benchmark. We manually delimited the optic disc to test the

performance of optic disc segmentation algorithm.
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The STARE dataset consists of 20 images including 10 unhealthy images with a

variety of lesions captured by a TopCon TRV-50 fundus camera at 35◦ FOV. The size

of the images is 700× 605 pixels. We calculated the mask image for this dataset using

a simple threshold technique for each colour channel. The STARE dataset included

images with retinal diseases selected by Hoover et al [HKG00]. It also provides two sets

of hand labelled images performed by two human experts. The first expert labelled

fewer vessel pixels than the second one. To test our method we adopt the first expert

hand labelling as the ground truth.

The performance of the proposed method is compared to alterative retinal blood

vessels segmentation approaches in the literature in term TPR, FPR and ACC defined

in Section 3.4. Our method and all the alternative methods used the first expert hand

labelled images as performance reference.

Most of the alternative methods use the whole image to measure the performance.

In [SAN+04b] all the experiments, are done on the FOV without considering the per-

formance in the dark area outside the FOV. The method in [MC06a] measures the

performance on both the whole image and the FOV. The dark background outside the

FOV in the retinal image is easy to segment. It is an advantage in measuring the true

negatives pixels when the whole image is considered. We have calculated the percent-

age of pixels outside the FOV in the images for the two datasets, which represents

approximately the 25% of the pixels in the whole image. However, it does not affect

all the measurement metrics, except when the true negative value is involved (e.g. ac-

curacy rate). On the other hand, most of the methods use the whole image to measure

their performance, making the comparison fair.

4.3.2 Results of Blood Vessel Segmentation Algorithm on STARE

dataset

Tables 4.2 and 4.3 show performance comparison results of our approach with recent

alternative methods in terms of TPR, FPR and ACC on STARE dataset. The perfor-
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mance results of the second expert hand labelled and the method of Martinez-Perez

et al. [MPHT+07a] and Staal et al. [SAN+04b] are taken from [MPHT+07a]. The re-

sults of the methods proposed by Mendonca et al. [MC06a] and Hoover et al. [HKG00]

are taken from [MC06a] and the approaches of Chaudhuri et al. [CCK+89b], Kaba et

al. [KSGL+13] and Marin et al. [MAGAB11] and Zhang et al. [ZZZK10] were gener-

ated from their original manuscripts. The performance of the segmentation results for

Zhang et al. [ZZZK10], Chaudhuri et al. [CCK+89b] and Soares et al. [SLC+06b] on

both healthy and unhealthy images were taken from [ZZZK10]. The testing includes

all the 20 fundus images except the method proposed by Staal [SAN+04b] which used

19 out of the 20 (10 healthy and 9 unhealthy) images.

In Tables 4.2 the second human expert hand labelled image is considered as the

target performance level with average (TPR = 0.7887) given that the first human ex-

pert hand labelled image was the benchmark. Thus our method needs an improvement

of 10.64% in average true positive whereas Mendona et al., Staal et al., Chaudhuri

et al., Hoover et al., Kaba et al., Martinez-Perez et al. and Zhang et al. have a

room of improvement of 19.55%, 19.81%, 28.17%, 22.00%, 23.06%, 14.45% and 17.74%

respectively.

Method TPR FPR Accuracy

2nd human expert [MPHT+07a] 0.8951 0.0438 0.9522
Hoover[HKG00] 0.6751 0.0433 0.9267
Staal[SAN+04b] 0.6970 0.0190 0.9541

Mendonca[MC06a] 0.6996 0.0270 0.9440
Martinez[MPHT+07a] 0.7506 0.0431 0.9410
Chaudhuri[CCK+89b] 0.6134 0.0245 0.9384

Kaba [KSGL+13] 0.6645 0.0216 0.9450
Zhang [ZZZK10] 0.7177 0.0247 0.9484

Marin [MAGAB11] - - 0.9526
Our method 0.7887 0.0367 0.9441

Table 4.2: Performance comparison of all images (healthy and disease). -
STARE dataset.

Considering the value of average TPR as performance measure, our proposed ap-

105



4.3. Experiments 4. Segmentation of Blood Vessels Using Graph Cut

Heathy images
Method TPR FPR Accuracy

Mendonca[MC06a] 0.7258 0.0209 0.9492
Hoover[HKG00] 0.6766 0.0338 0.9324

Chaudhuri[CCK+89b] 0.7335 0.0218 0.9486
Zhang [ZZZK10] 0.7526 0.0221 0.9510
Soares [SLC+06b] 0.7554 0.0188 0.9542

Our method 0.8717 0.0364 0.9513

Unhealthy images
Method TPR FPR Accuracy

Mendonca[MC06a] 0.6733 0.0331 0.9388
Hoover[HKG00] 0.6736 0.0528 0.9211

Chaudhuri[CCK+89b] 0.5881 0.0384 0.9276
Zhang [ZZZK10] 0.7166 0.0327 0.9439
Soares [SLC+06b] 0.6869 0.0318 0.9416

Our method 0.7057 0.0371 0.9369

Table 4.3: Performance comparison of healthy versus disease images. - STARE
dataset.

proach reaches better performance than all the other methods. However with the

average accuracy rate, our method is only marginally inferior to the methods presented

by Staal et al. [SAN+04b], Kaba et al. [KSGL+13], Marin et al. [MAGAB11] and

Zhang et al. [ZZZK10] but as mentioned above, Staal et al. [SAN+04b] used 19 of the

20 images. Compared to the methods proposed by Hoover et al. [HKG00], Martinez-

Perez et al. [MPHT+07a] and Chaudhuri et al. [CCK+89b], our approach outperforms

the accuracy rate of these techniques and it has approximately the same value of ACC

as Mendonca et al. [MC06a].

Table 4.3 compares the performance of the healthy subject images against the un-

healthy subject images on STARE dataset. The results of the experiments show the

unhealthy ocular images cause a significant degradation to the performance of auto-

mated blood vessels segmentation techniques. An overview of the results shows on

both healthy and unhealthy images, our proposed method achieves better overall av-

erage TPR performance than all the methods. However the average ACC value is

comparable to the performance of Soares et al. [SLC+06b] and Zhang et al. [ZZZK10].
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It outperforms the ACC of Mendonca et al. [MC06a], Hoover et al. [HKG00] and

Chaudhuri et al. [CCK+89b] on both healthy and unhealthy images.

Figure 4.8 shows sample results of the proposed method and the manually labelled

images for STARE data set.

Figure 4.8: The STARE dataset: (a) and (d) retinal images. (b) and (e) Our seg-
mentation results. (c) and (e) Manually labelled results.

4.3.3 Results of Blood Vessel Segmentation Algorithm on DRIVE

dataset

The performance of the segmentation using our method on DRIVE dataset is com-

pared with alternative methods: Zhang et al. [ZZZK10], Soares et al. [SLC+06b], Zana

et al. [ZK01], Garg et al. [GSC07], Perfetti et al. [PRCC07], Al-Rawi et al. [ARQA07]

taken from [ZZZK10]. The results of the second human expert B and the method pro-

posed by Niemeijer et al. [NSvG+04], Mendonca et al. [MC06a] and Staal et al. [SAN+04b]
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were acquired from [MC06a]. Cinsdikici et al. [CA09] and Jiang et al. [JM03] were

generated from Marin et al. [MAGAB11] and finally Ricci et al. [RP07], Soares et

al. [SLC+06b]and Martinez-Perez et al. [MPHT+07a] were used from their original

manuscripts.

Method TPR FPR Accuracy

Human expert B[MC06a] 0.7761 0.0275 0.9473
Staal[SAN+04b] 0.7194 0.0227 0.9442

Mendonca[MC06a] 0.7344 0.0236 0.9452
Niemeijer[NSvG+04] 0.6898 0.0304 0.9417

Jiang[JM03] - - 0.8911
Cinsdikici [CA09] - - 0.9293
Marin [MAGAB11] - - 0.9452

Ricci[RP07] - - 0.9633
Zana[ZK01] - - 0.9377

Garg[GSC07] - - 0.9361
Perfetti[PRCC07] - - 0.9261
Al-Rawi[ARQA07] - - 0.9510
Soares[SLC+06b] - - 0.9466
Zhang[ZZZK10] 0.7120 0.0276 0.9382

Martinez[MPHT+07a] 0.7246 0.0345 0.9344
Our method 0.7512 0.0316 0.9412

Table 4.4: Performance comparison of all images (healthy and disease). -
DRIVE dataset.

The second human expert B hand labelled image [MC06a] is considered as the

target performance level with average (TPR = 0.7761) and (ACC = 0.9473) given the

first human expert A hand labelled image as reference (benchmark). Tables 4.4 shows

the performance of our method against the above methods on DRIVE dataset. Our

method needs an overall improvement of 2.49% and 0.61% in average true positive rate

and average accuracy rate respectively.

Whereas with an average TPR rate of 0.7512, our method achieves better perfor-

mance than all the other methods with respect to the average TPR value. The average

accuracy achieved with our approach on DRIVE outperforms Jiang et al. [JM03], Cins-

dikici et al. [CA09], Zana et al. [ZK01], Garg et al. [GSC07], Zhang et al. [ZZZK10] and

Martinez et al. [MPHT+07a]. But it is marginally inferior to the methods proposed
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Figure 4.9: The DRIVE dataset: (a) and (d) retinal images. (b) and (e) our segmen-
tation results. (c) and (e) Manually labelled results.

by Al-Rawi et al. [ARQA07], Ricci et al. [RP07] and Mendonca et al. [MC06a] and

it is comparable to Soares et al. [SLC+06b], Marin et al. [MAGAB11], Niemeijer et

al. [NSvG+04] and Staal et al. [SAN+04b].

It is important to note that the methods presented by Ricci et al. [RP07], Soares

et al. [SLC+06b], Marin et al. [MAGAB11], Niemeijer et al. [NSvG+04] and Staal

et al. [SAN+04b] used supervised techniques that generally depend on the training

datasets, thus to achieve a good results, classifier re-training is required before per-

forming any experimentation on new datasets.

Figure 4.9 shows sample results of our segmentation method and the manually

labelled images for DRIVE data set. An overview of the testing results on DRIVE in

Table 4.4 shows that our method offers a reliable and robust segmentation solution for

blood vessels. It is clearly observed that our approach reaches better performance in
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terms average true positive rate.

4.4 Summary

This chapter describes a process of automated segmentation of the blood vessel network

in fundus retinal images. The method can be used as a tool for non-invasive diagnosis

technique in modern ophthalmology for mass patient screening, image registration and

retina diseases evaluation and treatment. In order to perform the segmentation of

the blood vessel network in the fundus retinal photography, the algorithm starts by

enhancing the appearance of the blood vessel in the image. This operation known as

pre-processing includes an AHE and distance transform. The results of this operation

improve the robustness and the accuracy of the graph cut segmentation. The energy

formulation of the graph is constructed by integrating the mechanism of flux into the

graph cut algorithm. This allows the segmentation of thin blood vessels in the retinal

image. The proposed method is tested on 60 fundus retinal images from two public

datasets (STARE and DRIVE) including 25 images with a variety of lesions. The

performance of the method was also compared against 10 and 15 other methods on

STARE and DRIVE data sets respectively. The performance of our method on these

difficult datasets demonstrated effective agreement with the manual annotation. The

evaluations also show that our method achieved exceptional performance against the

alternative methods it was compared to. The proposed method also outperforms our

pervious method proposed in Chapter 3, as it is capable of segmenting small and thinner

blood vessels.

Tables 4.2, 4.3 and 4.4 show performance comparison in terms of average true pos-

itive rate, false positive rate and accuracy rate. According to these results, our vessel

segmentation algorithm reaches a acceptable results and outperforms all other methods

in terms of average true positive rate on both STARE and DRIVE images. In terms

of average accuracy, our method outperforms Hoover et al. [HKG00], Martinez-Perez
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et al. [MPHT+07a] and Chaudhuri et al. [CCK+89b] on Stare images. On DRIVE it

performs better than Jiang et al. [JM03], Cinsdikici et al. [CA09], Zana et al. [ZK01],

Garg et al. [GSC07], Zhang et al. [ZZZK10] and Martinez et al. [MPHT+07a]. Nev-

ertheless our method is marginally inferior to the methods presented by Staal et

al. [SAN+04b], Kaba et al. [KSGL+13], Marin et al. [MAGAB11] and Zhang et

al. [ZZZK10] on STARE and Al-Rawi et al. [ARQA07], Ricci et al. [RP07] and Men-

donca et al. [MC06a], Soares et al. [SLC+06b], Marin et al. [MAGAB11] and Staal et

al. [SAN+04b] on DRIVE. Although Soares et al. [SLC+06b], Marin et al. [MAGAB11],

Staal et al. [SAN+04b] and Ricci et al. [RP07] seems to achieve higher accuracy, as su-

pervised techniques, they generally depend on the training datasets, thus to achieve

excellent results, classifier re-training is required before performing any experimen-

tation on new datasets. Further studies in [MAGAB11] proved that these methods

perform well when both training and testing are applied on the same dataset but the

performance deteriorated when the method is tested and trained on different datasets.

Since these methods are sensitive to the training datasets, deploying them for practical

use in retinal blood vessel segmentation would need further improvements as segmen-

tation algorithms must work on retinal images taken under different conditions to be

effective.

Our propose method incorporates prior knowledge of blood vessels to perform the

segmentation and it can be applied on retinal images from multiple sources and under

different conditions without a need for training. This can be seen in the results achieved

by this method on both STARE and DRIVE datasets.

111



Chapter 5

Optic Disc Detection in Fundus

Retinal Images

In this chapter we present our third contribution.

5.1 Introduction

The optic nerve head or optic disc is described in a colour fundus images as a bright

yellowish round area in the retina where the blood vessels converge with a shape that

is approximately elliptical. Its size varies from one patient to another and generally

it has a width of 1.8 ± 0.2 mm and height 1.9 ± 0.2 mm [SBCW99]. This area of

the retina is considered as one of the most important structure of the eye. The blood

vessels in the retina converge into the optic nerve to provide blood to the upper layers

of the retina, it also allows the flow of information from the eye to the brain for further

analysis [HG03]. In general retinal diseases manifest gradually on early stages without

affecting the entire retina. However optic nerve pathology, in contrast to most of the

retinal diseases can cause more severe damages in early stages, because of the essential

role it plays for vision [HG03], [Oys99].

The optic disc is known to be the visible region of a 2-D view optic nerve [HG03].
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Fundus images analysis of the optic disc has been of great interest because it could be

used as a non-intrusive diagnosis for early detection, treatment evaluation of pathologies

such glaucomatous damage and diabetic retinopathy. One of the main indispensable

screening methods of glaucomatous damage is the assessment of the damaged optic

nerve head. Optic nerve head assessment is considered to be more promising than the

traditional assessment methods such as the intraocular pressure measurement and the

visual field test [CLX+13]. The glaucomatous damage is mainly detected by identifying

the changes in shape, colour or depth in the optic disc [LC03]. Thus the optic disc

morphology is an important indicator for the presence of glaucoma and it evaluation can

help minimise the risk of visual loss due to glaucomatous damage. The segmentation

and localisation of the optic disc is also dispensable both in glaucoma assessment and

the analysis of other retinal structures such as the blood vessels and the macula in

computer-aided diagnosis. For example, the location of the optic disc relative to the

macula was used by Tan et al. [TLW+10] to classify left and right eye retinal images. In

addition to the physiological information of the optic disc, an automated detection of

the optic disc location and size is an important factor in quantifying vascular changes

in diabetic retinopathy and analysing of the severity of myopia [WLT+10].

However eye care specialists perform the optic nerve head assessment using man-

ually planimetry (annotations) consisting of manually labelling the optic nerve head.

This form of manual assessment is time consuming, expensive and subjective. There-

fore, reliable automated methods for optic nerve head examination, which preserves

various shapes of the disc would be very valuable and attractive in computer-aided

diagnosis.

Several approaches of automated optic disc segmentation have been presented in

the literature. But one of the main problems for detecting the optic disc in fundus

retinal images is the appearance of the retinal structures in the image. Figure 5.1(a)

shows an healthy retina image where the optic disc region is located at the right side of

the image as bright yellowish round area with well defined shape, colour and size. Fig-
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ure 5.1(b) shows an abnormal retinal image, revealing distorted shape and size caused

by swelling. The segmentation of such optic nerve would be very difficult and require

the combination of several retinal features (shape, colour, size). Figure 5.1(c) shows an

image of the retina affected by central vein and artery occlusion. The haemorrhages

caused by this pathology has completely masked the optic nerve making the disc seg-

mentation impossible. Figure 5.1(d) shows several lesions on the retina, which have

similar brightness as the optic disc. In this case using the brightness as a sole feature

for segmenting the disc can lead to enormous errors. These issues show the difficulty

in optic nerve segmentation and the necessity of robust and reliable technique, which

preserves various optic disc shapes in the presence of different retinal diseases.

5.2 Previous Works

The optic disc detection approaches can be divided into pixel classification based meth-

ods, deformable-based methods and template based methods [CLX+13].

5.2.1 Pixel classification based methods

Most of the pixel classification methods are machine-learning techniques, which in-

clude the feature extraction and classification. Many features of the optic disc such as

intensity, texture, colour, location and gist can be extracted from the fundus retinal

photographs for classification. Pixel feature classification operation uses these fea-

tures to assign a class to a pixel in an image, which can be either optic disc pixel or

background pixel. As a supervised method, the classification is based on the training

operation, where the technique learns to correctly perform the pixels classification from

known classifications. Amount the classification methods the following methods were

successful in segmenting the optic disc in the fundus retinal photographs.

Cheng et al. [CLX+13] proposed superpixel classification based method capable

of performing both the optic disc and optic cup segmentation. The algorithm applies
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Figure 5.1: Retinal images. (a) Healthy retina with well defined optic nerve shape
and size. (b) Optic nerve with distorted shape and size caused by swollen. (c) Optic
nerve obscured by haemorrhages. (d) Optic nerve with lesions.

histogram equalisation to different channels (red, green and blue) of the RGB colour

spaces to enhance the contrast of the images. The hue and saturation of HSV colour

space are also used to forms five channel maps. These five channel maps are used to

compute the histogram of each superpixel. Center surround statistics is used to classify

each superpixel as disc pixel or background pixel. The location of the information was

also used in the feature space to enhance the segmentation.

Wong et al. [WLT+10] presented an automated detection of the optic disc digital
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retinal fundus images using machine learning technique. The method includes the

region of interest detection, the feature extraction and the feature classification. By

using the histogram of the retinal image and the intensity of the optic disc, a region

of interest is defined to design more computationally efficient algorithms. The features

are extracted based on the images colour space and the intensity. A support vector

machine (SVM) is used to perform the classification of each feature pixel as disc or

background pixels.

Abramoff et al. [AAG+07] proposed an automated segmentation method for cup to

disc segmentation in stereo colour images. The algorithm performs the segmentation by

first extracting the pixel features based on pixel intensity and simple edge operators.

A Gaussian steerable filter bank is used on the image to create a large set of pixel

features. This set is used to select an optimal combination of subset including twelve

features. The classification is performed using the k-nearest neighbour (kNN).

5.2.2 Deformable-Based Method

The deformable-based method is an energy-based segmentation, which combine several

features such as inherent connectivity and smoothness. These features allow noise filter-

ing and solve boundary irregularities during segmentation [XPP00]. The deformable-

based method can incorporate a priori knowledge about the location, shape and size

of retinal image structures. The optic head nerve segmentation have deployed three

deformable based methods including gradient-based active contour model, region-based

active contour model and variational level-set based deformable model [JSK11].

In the gradient-based active contour model, the optic disc segmentation is performed

first by initialising the disc contour manually or automatically. An energy term derived

on the image gradient is used to perform the deformation in the contour. For example:

Mendels et al. [MHT99] presented a method based active contours for identifying

the optic disc boundary in retinal images. A pre-processing based on morphological

filtering and local minima detection is used to minimise the obstruction of the blood
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vessels during the detection of the disc boundaries. The algorithm initialises the contour

manually, which is then deformed by an external image derived field known as the

Gradient Vector Flow.

Osareh et al. [OMTM02] proposed the optic disc location method in the retinal

image using colour morphology and snakes. The first step of the algorithm was to

remove the blood vessels in the optic disc region using colour morphology operation

to offset their obstructions during the segmentation. Then, a snake was automatically

initialised around the optic disc and allowed to evolve onto its boundary.

Both methods [MHT99] and [OMTM02] used pre-processing techniques to remove

the blood vessels which causes significant degradation to the segmentation during the

deformation in the contour under the effect of the energy term. But gradient-based

active contour models segment the optic disc by restricting the segmentation results

either to a circular or elliptical shaped object [JSK11]. Examples of this approach are

presented in [LHS+04] and [NPS08].

The variational level-set deformable model was deployed to solve the local gradi-

ent minima problem in the gradient-based active contour model. In this model, the

segmentation is performed by either incorporating the shape model into the energy

formulation or as a post-processing step.

Wong et al. [WLL+08] proposed a variational level-set based automated cup-to-disc

ratio measurement in the retinal images. The algorithm performs the segmentation

of the optic disc and the cup by first estimating the initial contour using threshold

analysis as a pre-processing step. After the segmentation of the disc an ellipse-fitting

post-processing is used to correct the segmentation errors caused by the presence of

the blood vessels in the disc region.

Li et al. [LC03] presented a method based on the extraction of the features in

the retinal images including the optic disc and fovea and the pathology (exudates).

A principal component analysis (PCA) is used to localise the optic disc. Then the

boundary of the optic disc is detected by applying a modified active shape model.
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One of the main problems of variational level-set deformable model is the limitation

of the segmentation range of the optic disc due to the prior shape incorporation in

the energy formulation. This can constraint the segmentation of irregular optic disc

shapes [JSK11]. The method proposed in [XCS+07] overcomes this limitation using

a model free snake technique. This technique a supervised classification to classify

contour points into two set of groups either points belonging to vessel region or points

belonging to the optic disc edge. In addition, the algorithm performs the deformation

of each point using both local and global pixel information to address local gradient

variations.

The region-based approaches have been deployed to overcome some of the issues in

the gradient-based active contour model and the variational level-set deformable model.

This approach is based on Mumford-Shah model [MS89], the optic disc region and the

background are statically modelled and the energy functional is minimised to get the

best segmentation results of the optic disc. The algorithm used in this approach is

more robust against local gradient variation, it allows better segmentation of irregular

disc shapes. Examples of this approach are listed in the following:

Joshi et al. [JSKK10] proposed a approach to detect the optic disc and the cup in

the retinal image using the image regional information. The segmentation is performed

using the shape deformation model by incorporating the relevant disc parameters using

the optic disc and the cup boundaries. A deformable model guided by an energy term

defined by regional statistics is used to detect the optic disc boundary.

Tang et al. [TLvFG06] proposed an effective approach for automated segmentation

of the papilla in fundus retinal image. The algorithm incorporates the Chan-Vese (C-V)

model using level sets and the elliptical shape constraint, which force the deformation

in the contour to stay ellipse. This allows an accurate extraction of the papilla from

the retinal image.

Deformable-based methods are very attractive in optic disc and cup detection as

they can achieve a high performance when the boundaries and the shapes of the optic
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disc are well defined in the retinal images. However, with local gradient variations

(high gradient at vessel locations), the gradient-based active contour model may lead

to a wrong segmentation of the disc boundary [MHT99], [OMTM02]. To address the

local gradient variations some techniques constrain the segmentation results to a shape

model (circular or elliptical) either by incorporating them into the energy formulation

or using them in the post-processing steps of the segmentation. This can limited the

segmentation of irregular optic disc shapes as seen in both variational level-set based

deformable and region-based models [JSK11], [LC03], [JSKK10]. Furthermore, the

deformable-based methods such as the region-based approaches [JSKK10] also suffer

when the object to be segmented cannot be easily modelled in terms of global statistics

[JSK11].

5.2.3 Shape-Based Template Matching Methods

The optic disc segmentation approaches that use the shape-based template matching

methods perform the segmentation by modelling the optic disc as either an elliptical

or a circular object. The matching operation is applied on a given retinal images edge

map. Among these approaches, we have:

Aquino et al. [AGAM10] performed the detection of the optic disc boundary in

digital fundus retinal photographs by morphological, edge detection operations and

feature extraction model. The morphological operation is used to eliminate the vessels

in the optic disc region followed by the edge detection operation and the circular Hough

transform to define a circular optic disc boundary. A location approach based on a

voting is also used to define the optic disc pixels.

Cheng et al. [CLW+11] proposed an automated optic disc segmentation in digital

fundus retinal images. The algorithm starts the disc segmentation by eliminating the

peripapillary atropy (PPA) through edge filtering so that all the non-disc structures are

eliminated from the image to make the segmentation more accurate. The segmentation

is performed by constraining the optic disc boundary to an elliptical shape using Hough
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transform.

Lalonde et al.[LBG01] presented a template based optic disc detection method in

low resolution colour fundus digital retinal images. The disc segmentation is detected

by performing two operations. The first operation uses a Hausdorff based template

matching on edge map. This operation is guided by a second operation, which uses a

pyramidal decomposition for large-scale pixel tracking.

The shape-based template matching methods take advantage of the prior knowl-

edge of the retina structures in the fundus retinal photographs by modelling them

in template-based methodology. Consequently these approaches achieve high perfor-

mance in a given retinal images data set. However the shape-based template matching

methods may lead to erroneous segmentations on new retinal image data set. These

approaches also suffer from the presence of the blood vessels into the optic disc region,

which misguides the segmentation algorithm. In addition, the shape based modelling

of the optic disc boundary puts restrictions for the detection of irregular optic disc

shapes due the pathological changes.

In contrast to previous methods, we proposed two different methods, which find the

convergence of the blood vessel network to define the location of the optic disc. Both

methods use a prior segmented blood vessel network to perform the segmentation of

the optic disc. The evaluations show that our methods achieve successful segmentation

of the optic disc on 129 fundus images including 98 images with variety of lesions.

5.3 Methods

The optic disc segmentation starts by defining the location of the optic disc. This

process used the convergence feature of vessels into the optic disc to estimate its loca-

tion. The disc area is then segmented using two different automated methods (Markov

Random field image reconstruction and Compensation Factor). Both methods use the

convergence feature of the vessels to identify the position of the disc. The Markov
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Random Field (MRF) method is applied to eliminate the vessel from the optic disc

region. This process is known as image reconstruction and it is performed only on the

vessel pixels to avoid the modification of other structures of the image. The recon-

structed image is free of vessel and it is used to segment the optic disc via graph cut.

In contrast to MRF method, the Compensation Factor approach segments the optic

disc using prior local intensity knowledge of the vessels. Figure 5.2 shows the overview

of both the MRF and the Compensation Factor method process.

5.3.1 Optic Disc Location

Inspired by the method proposed in [WSK+10], which effectively locates the optic disc

using the vessels. We use the binary image of vessels segmented in Section 4.2 to find

the location of the optic disc. The process iteratively traces towards the centroid of the

optic disc. The vessel image is pruned using a morphological open process to eliminate

thin vessels and keep the main arcade. The centroid of the arcade is calculated using

the following formulation:

Cx =

K∑
i=1

xi
K

Cy =

K∑
i=1

yi
K

(5.1)

where xi and yi are the coordinates of the pixel in the binary image and K is the

number of pixels set to 1 (pixels marked as blood vessels) in the binary image.

Given the gray scale intensity of a retinal image, we select 1% of the brightest

region. The algorithm detects the brightest region with the most number of pixels to

determine the location of the optic disc with respect to the centroid point (right, left, up

or down). The algorithm adjusts the centroid point iteratively until it reaches the vessel

convergence point or centre of the main arcade (centre of the optic disc) by reducing

the distance from one centroid point to next one in the direction of the brightest region,

and correcting the central position inside the arcade accordingly. Figure 5.3 shows the

process of estimating the location of the of optic disc in a retinal image. It is important
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Figure 5.2: (a) Markov Random Field Image Reconstruction method diagram. (b)
Compensation Factor method diagram.
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to notice that, the vessel convergence point must be detected accurately, since this point

is used to automatically mark foreground seeds. A point on the border of the optic disc

may result in some false foreground seeds. After the detection of the vessel convergence

point, the image is constrained a region of interest (ROI) including the whole area of

the optic disc to minimize the processing time. This ROI is set to a square of 200 by 200

pixels concentric with the detected optic disc centre. Then an automatic initialisation

of seeds (foreground and background) for the graph is performed. A neighbourhood

of 20 pixels of radius around the centre of the optic disc area is marked as foreground

pixels and a band of pixels around the perimeter of the image are selected as background

seeds as shown in Figure 5.4.

5.3.2 Optic Disc Segmentation with Markov Random Field Image

Reconstruction

The high contrast of blood vessels inside the optic disc presented the main difficulty

for it segmentation as it misguides the segmentation through a short path, breaking

the continuity of the optic disc boundary. To address this problem, the MRF based

reconstruction method presented in [EL99] is adapted in our work. We have selected

this approach because of its robustness. The objective of our algorithm is to find a

best match for some missing pixels in the image, however one of the weaknesses of

MRF based reconstruction is the requirement for intensive computation. To overcome

this problem, we have limited the reconstruction to the ROI and using prior segmented

retina vascular tree, the reconstruction was performed in the ROI. An overview diagram

of the optic disc segmentation with Markov random field image reconstruction is shown

in Figure 5.2(a).

Let us consider a pixel neighbourhood w(p) defined as a square window of size W ,

where pixel p is the centre of the neighbourhood . I is the image to be reconstructed and

some of the pixels in I are missing. Our objective is to find the best approximate values

for the missing pixels in I. So let d(w1, w2) represent a perceptual distance between
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Figure 5.3: Optic disc detection. (a) Retinal image green channel with 1% of the
brightest region selected in green colour. (b) Binary segmented blood vessel. (c)
Binary segmented blood vessel after pruning. (d) Sequence of points from the centroid
to vessels convergence point (optic disc location).

two patches that defines their similarity. The exact matching patch corresponds to

d(w′, w(p)) = 0. If we define a set of these patches as Ω(p) = {ω′ ⊂ I : d(ω′, ω(p)) = 0}

the probability density function of p can be estimated with a histogram of all centre

pixel values in Ω(p). However we are considering a finite neighbourhood for p and the

search is limited to the image area, there might not be any exact matches for a patch.

For this reason, we find a collection of patches, which match falls between the best

match and a threshold. The closest match is calculated as ωbest = argminωd(ω(p), ω) ⊂
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Figure 5.4: Optic disc detection. (a) ROI image (b) initialisation of the foreground F
and the background B of the ROI image.

I. All the patches ω with d(ω(p), ω) < (1+ε)d(ω(p), ωbest) are included in the collection

ω′. d(w′, w(p)) is defined as the sum of the absolute differences of the intensities between

patches, so identical patches will result in d(w′, w(p)) = 0. Using the collection of

patches, we create an histogram and select the one with the highest mode. Figure 5.5

shows sample results of the reconstruction. The foreground Fgs and the background

Bgs seeds are initialised in the reconstructed image, which are then used in graph cut

formulation to segment the optic disc. Similar to Figure 5.4, the initialisation of the

foreground Fgs and background Bgs seeds is performed using the reconstructed image.

The graph cut algorithm introduced in Section 4.2.2 is used to separate the fore-

ground and the background by minimising the energy function over the graph and

producing the optimal segmentation of the optic disc in the image. The energy func-

tion of the graph in (4.4) consists of regional and boundary terms. The regional term

(likelihoods of foreground and background) is calculated using (4.5), while the bound-

ary term (relationship between neighbouring pixels) is derived using (4.6). A grid of 16

neighbours N is selected to create links between pixels in the image Im. The Max-Flow

algorithm is used to cut the graph and find the optimal segmentation.
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Figure 5.5: MRF reconstruction applied to retinal images. (Top) (a) and (b) original
gray scale images. (Bottom) (c) and (d) reconstructed images using the MRF based
method.

5.3.3 Optic Disc Segmentation With Compensation Factor

In contrast to MRF image reconstruction, we incorporate the blood vessels into the

graph cut formulation by introducing a compensation factor (Vad). This factor is

derived using prior information of blood vessel. The algorithm diagram of the optic

disc segmentation with Compensation factor is shown in Figure 5.2(b).

The energy function of the graph cut algorithm generally comprises a boundary and

regional terms. The boundary term defined in (4.6) is used to assign weights on the
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edges between the neighbouring pixels (n-links) by measuring the similarity between

neighbouring pixels with respect to the pixel proprieties (intensity, texture, colour).

Therefore pixels with similar intensities have a strong connection. The regional term

in (4.5) is derived to define the likelihood of the pixel belonging to the background or

to the foreground by assigning weights on the edges (t-link) between image pixels and

the two terminals background and foreground seeds. In order to incorporate the blood

vessels into the graph cut formulation, we derived the t-link as follows:

Slink = − lnPr (Ip\Fgseeds) (5.2)

Tlink = − lnPr (Ip\Bgseeds) (5.3)

For p 6= vessel

Slink = − lnPr (Ip\Fgseeds) + Vad (5.4)

Tlink = − lnPr (Ip\Bgseeds) (5.5)

For p = vessel

where p is the pixel in the image, Fgseeds is the intensity distribution of the foreground

seeds, Bgseeds represents the intensity distribution of the background seeds and V ad is

the compensation factor given as:

Vad = maxp∈vessel{− lnPr (Ip\Fgseeds)} (5.6)

The intensity distribution of the blood vessel pixels in the region around the op-

tic disc makes them more likely to belong to background pixels than the foreground

(or the optic disc pixels). Therefore the vessels inside the disc have weak connections

with neighbouring pixels making them likely to be segmented by the graph cut as back-
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ground. We introduce in (5.4) a compensation vector to all s-links of the foreground for

pixels belong to the vascular tree to address this behaviour. Consequently, vessels inside

the optic disc are classified with respect to their neighbourhood connections instead of

their likelihood with the terminals foreground and background seeds. Figure 5.6 shows

sample of images segmented by Compensation Factor. The segmentation of the disc is

affected by the value of V ad, the method achieves poor segmentation results for low

value of V ad. However when the value of the V ad increases, the performance improves

until the value of V ad is high enough to segment the rest of the vessels as foreground.

Figure 5.6: Optic disc segmentation with Compensation Factor method: (a) V ad = 20.
(b) V ad = 100. (c) V ad = 150. (d) V ad = 250.
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5.4 Experiments

The proposed optic disc segmentation method was tested on two public datasets,

DRIVE [SAN+04b] and DIARETDB1 [KKK+07], consisting of 129 images in total

inclunding 99 images with a variety of lesions. The performance of the method is

tested against a number of alternative methods.

The DRIVE consists of 40 digital images including 15 images containing a variety

of lesions. The images were captured from a Canon CR5 non-mydriatic 3CCD camera

at 45◦ field of view (FOV). The images have a size of 768 × 584 pixels. The dataset

includes masks to separate the FOV from the rest of the image. It included two sets

of hand labelled images (set A and set B) for the blood vessel. The set A offers the

manually labelled images for all the images in the dataset, whereas the set B provides

the manually labelled images for half of the dataset. To test our method we adopt the

set A hand labelling as the benchmark. We manually delimited the optic disc to test

the performance of optic disc segmentation algorithm.

The DIARETDB1 dataset consist of 89 colour images with 84 of them contain at

last one indication of lesions. The images were captured with digital fundus camera

at 50 degree filed of view and have a size of 1500 × 1152 pixels. Hand labelled lesion

regions are provided in this dataset by four human experts. However the DIARETDB1

dataset only includes the hand labelled ground truth of lesions but not the blood vessels

and the optic disc. For this reason, we were unable to compare the performance of the

blood vessel segmentation on the DIARETDB1 dataset. Nevertheless we were able to

create the hand labelled ground truth of optic disc to test the performance of the optic

disc segmentation.

The performance results of our approach are compared to the alternative methods:

The adaptive morphological approach by Welfer et al. [WSK+10], the traditional graph

cut technique by Boykov et al. [BFL06] and the topology cut technique proposed by

Zeng et al. [ZSCP08]. Unfortunately it was not possible to test our method against a
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large number of alternative methods, since most of the methods do use a unique bench-

mark to measure the results of the optic disc segmentation, therefore this makes the

comparison of the results difficult. Further comparison is made between our two optic

disc segmentation methods (the Compensation factor and the Markov Random field

image reconstruction). All the methods are tested on the same datasets (DIARETDB1

and DRIVE) of 109 fundus retinal images in total, including those with discernable

optic disc.

The optic disc segmentation performance is evaluated by the overlapping ratio

Oratio and the mean absolute distance MAD. The overlapping ratio is defined to

measure the common area between the optic disc region in the ground truth and the

optic disc region segmented by our method. It is defined by the following formulation:

Oratio =
G
⋂

S

G
⋃

S
(5.7)

where G represents the true optic disc boundary (manually labelled region) and S is

the optic disc boundary segmented by our method. MAD is defined as:

MAD (Gc, Sc) =
1

2

{
1

n

n∑
i=1

d(gci, S) +
1

m

m∑
i=1

d(sci,G)

}
(5.8)

where Gc and Sc are the contours of the segmented regions of the ground truth and our

algorithm respectively. d(ai, B) is the minimum distance from the position of the pixel

ai on the contour A to the contour B. A good segmentation implies a high overlapping

ratio and a low MAD value.

The sensitivity of our method on DIARETDB1 and DRIVE, it is defined as:

Sensitivity =
Tp

Tp + Fn
(5.9)

where Tp and Fn are the number of true positives and the number of false negatives

respectively. The sensitivity indicates the detection of the foreground pixels by the
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segmentation method.

Figure 5.7 (a) and (b) show the optic disc segmentation results of topology cut

technique [ZSCP08], traditional graph cut technique [BFL06] and both our methods the

optic disc segmentation with compensation factor and the optic disc segmentation with

Markov Random field image reconstruction on DIARETDB1 and DRIVE respectively.

Considering the ground truth images, It is clear that both our methods perform better

than alternative methods topology cut technique [ZSCP08] and traditional graph cut

technique [BFL06]. The topology cut technique achieved acceptable results in the

brighter images, characterised by vessels that are more likely to belong to the foreground

(similar intensity as the optic disc). However, the traditional graph cut technique tends

to segment only the brightest region of the disc, this is due to the intrusion of the blood

vessels in the optic disc region, which misguide the segmentation algorithm to follow a

short path.

Table 5.1 shows the performance of our proposed methods with alternative methods

on DIARETDB1 images. The compensation factor and the MRF image reconstruc-

tion segmentation algorithms achieve the overlapping ratio of 0.7594 and 0.7850 and

outperform the approaches in [WSK+10], [ZSCP08] and [BFL06]. However considering

the performance in terms of a mean absolute distance, the MRF image reconstruction

algorithm reaches the lowest value 6.55 and performs better than all the other methods.

Both our methods achieve the highest average sensitivity with 87.50% for MRF image

reconstruction and 86.75% for compensation factor on the DIARETDB1 images.

Table 5.2 shows the performance results of our methods with other alternative

methods in terms of Oratio, MAD and Sensitivity on DRIVE images. An overview

of the segmentation results shows our proposed methods achieved the highest over-

lapping ratio with the minimum MAD value compare to the traditional graph cut

method [BFL06], the topology cut method [ZSCP08], except the Adaptive morpho-

logic [WSK+10], which is marginally inferior to the compensation factor algorithm in

terms of MAD. However, an increase in the overlapping ratio does not necessarily mean
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Figure 5.7: (a) Optic disc segmentation results of DIARETDB1 images: First row
Topology cut, second row Graph cut, third row Compensation factor algorithm, fourth
row Markov Random field image reconstruction algorithm, fifth row Hand labelled.
(b) Optic disc segmentation results of DRIVE images: First row Topology cut, second
row Graph cut, third row Compensation factor algorithm, fourth row Markov Random
field image reconstruction algorithm, fifth row Hand labelled.

a decrease on MAD value. Thus the value of MAD alone is not enough to measure the

performance of segmentation results, but it provides a good reference of the contour

matching with the ground truth contour reference.

Average Average Average
Method ORatio MAD Sensitivity

Topology cut [ZSCP08] 0.3843 17.49 0.5530
Adaptive morphologic [WSK+10] 0.4365 8.31 —

Graph cut [BFL06] 0.5403 10.74 0.7635
Compensation Factor 0.7594 6.18 0.8675

MRF Image Reconstruction 0.7850 6.55 0.8750

Table 5.1: Performance comparison - DIARETDB1 dataset

For further performance comparison, we use the cumulative histogram to compare
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Average Average Average
Method Oratio MAD Sensitivity

Topology Cut [ZSCP08] 0.5591 10.24 0.6512
Adaptive morphologic [WSK+10] 0.4147 5.74 —

Graph cut [BFL06] 0.5532 9.97 0.7398
Compensation Factor 0.709 6.48 0.8464

MRF Image Reconstruction 0.8240 3.39 0.9819

Table 5.2: Performance comparison - DRIVE dataset

the overlapping ratio of our proposed method against Topology Cut [ZSCP08] and

Graph cut [BFL06]. This is done by performing each segmentation method against

the human expert hand labelled image, and the cumulative histogram represents the

frequency of the Oratio value. A perfect segmentation is achieved when the value of

Oratio = 1 and the area under the curve is equal to zero. Figure 5.8 shows the plot-

ted of the cumulative histograms comparison of overlapping ratio for Topology Cut

[ZSCP08] and Graph cut [BFL06], Compensation Factor and MRF image reconstruc-

tion on DIARETDB1 and DRIVE datasets respectively. The overview of the graphs

show that the Compensation Factor and MRF image reconstruction methods achieve

the minimum area under the graph, hence our method outperforms all other methods.

In general the MRF image reconstruction method reaches better results on DRIVE

images, while the Compensation Factor method produces better segmentation results

on DIARETDB1 dataset.

Based on the assumption in Niemeijer et al. [NAVG07] which consider a minimum

overlapping ratio Oratio > 50% as a successful segmentation, the compensation factor

algorithm with 86.52% success performs better on DRIVE than DIARETDB1 and the

segmentation of MRF image reconstruction with 90.00% achieves better results than

the compensation factor algorithm on DRIVE .

133



5.4. Experiments 5. Optic Disc Detection in Fundus Retinal Images

Figure 5.8: Cumulative histogram comparison for overlapping ratio of (a) DI-
ARETDB1 and (b) DRIVE images.
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5.5 Summary

We have presented novel approaches to automated segmentation of optic disc in fundus

retinal images. The proposed methods use the convergence feature of the blood vessel

network into the optic disc region and the feature of disc brightness to locate the

position of the optic disc in the image. The segmented blood vessel network is also

used to perform the MRF image reconstruction and the compensation factor into the

graph cut method.

We have evaluated the performance the proposed methods on 129 fundus retinal im-

ages including 99 images showing a variety of lesions. The methods were also compared

against three other methods in the literature on the same datasets.

On this difficult datasets, the results of the segmentation show that the proposed

methods successfully segmented the optic disc. With an average sensitivity of 86.75%

and 84.64% for the Compensation factor method and 87.50% and 98.19% for MRF

image reconstruction on DIARETDB1 and DRIVE respectively, our methods achieved

the best overall performance.

The results also show that, the MRF image reconstruction algorithm outperforms

the Compensation factor algorithm by 2.56% and 11.5% on DIARETDB1 and DRIVE

images respectively. However it is important to note that, both the MRF image re-

construction and compensation factor algorithms depend on the vessel segmentation

algorithm, for example if the vessel segmentation algorithm achieved a low performance

on severely damaged retinal images, the reconstruction would not defined a meaningful

optic disc region, leading to segmentation errors. However the performance comparison

in Table 5.1 and 5.2 show that the MRF image reconstruction method outperforms in

segmenting the optic disc region on DIARETDB1 dataset in term of averages Oratio,

MAD and Sensitivity. While the compensation factor method achieved better segmen-

tation results on DRIVE dataset in term of the same metrics.

Furthermore, the proposed methods address one of the main issues in medical im-
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age analysis, the overlapping tissue segmentation. Since the blood vessels converse

into the optic disc area and misguide the graph cut algorithm through a short path,

breaking the optic disc boundary. To achieve a good segmentation results, the MRF

image reconstruction algorithm eliminates vessels in the optic disc area without any

modification of the image structures before segmenting the optic disc. On the other

hand the compensation factor incorporates vessels using local intensity characteristic

to perform the optic disc segmentation. We believe that our optic disc methods can be

also useful in other applications of the overlapping tissue segmentation.
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Chapter 6

Retina Layer Segmentation Using

Kernel Graph Cuts

This is our fourth contribution.

6.1 Introduction

Optical coherence tomography (OCT) imaging has been largely used in ophthalmology

as a tool for assessing and monitoring morphological features such as the thickness of

the retinal layers [HSL+91]. The time-domain OCT is one of the first OCT imaging

techniques in retinal diseases diagnosis [SHA+95], [GSH+03]. However this technique

has its limitations. The time domain OCT can only provide the RNFL thickness

measurements in a line scan.

To address these limitations, the Spectral-Domain Optic Coherence Tomography

SD-OCT [FHKEZ95, WLK+02] was developed with faster scan capability that provides

the most comprehensive structure of the retina. With these new capabilities, this

imaging equipment possesses a powerful tool that allows a 3-D image of the retina to

be formed in routine clinical scans. The SD-OCT generates an image by an in-depth

axial scan known as an A-scan. A series of successive A-scans form a cross sectional 2-D
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image known as a B-scan. Using a series of successive B-scans, a 3-D image volume of

the retina is yielded. This new technique is used in modern ophthalmology to assist the

diagnosis of retinal diseases such as glaucoma, diabetic retinopathy, neo-vascularisation,

vein occlusion and many more vision impairment diseases.

The evaluation of the RNFL thickness in glaucomatous damage requires segmenta-

tion of different retinal layers. This process can be time consuming and tedious when

it is done by hand. Therefore there is a need for a robust and reliable automated seg-

mentation algorithm in computer-aided diagnosis, which preserves various retinal layer

shapes.

Circular scan SD-OCT imaging has become one of the best tools for diagnosis of

retinal diseases. This technique provides a more comprehensive detail of the retinal

morphology and layers around the optic disc nerve head (ONH). However accurate au-

tomated segmentation methods are needed to provide the thickness evaluation of these

layers, since manually labelling these retinal layers can be tedious and time consuming.

This chapter presents an automated method that serves this purpose by performing

the segmentation of retinal layers boundaries in a circular scan SD-OCT image acquired

around the ONH. The layers are detected by adapting a graph cut segmentation tech-

nique that includes a kernel-induced space and a continuous multiplier based max-flow

algorithm. Results from scan images acquired with Spectralis HRA+OCT (Heidelberg

Engineering, Germany) prove that the proposed method is robust and efficient in de-

tecting the retinal layer boundaries in images. With a mean absolute deviation (MAD)

of 0.3589± 0.2624 and an average Dice coefficient of 0.9488± 0.0404 pixels for the reti-

nal nerve fiber layer thickness (RNFLT), the proposed method demonstrated effective

agreement with manual annotations.
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6.2 Previous Studies

Recently many methods for retinal layers segmentation in the OCT image have been

extensively studied. Early methods were purely based on pixel intensity variation

(high and low tissue reflectivity) processing operations along A-scan profile [KBR01],

[ISW+05], [CFSP05], [ASG+08]. These methods detected the retinal layer bound-

ary by setting a target threshold value for the layer tissue pixel intensity. They are

computationally efficient, but often suffer because of the variation of intensity within

layers. This inconsistency of intensity is commonly generated by the blood vessels

artefacts (shadows) during the OCT imaging. Some other segmentation techniques

use image gradients, prior layer shape information and many other constraints to per-

form the segmentation of the layers. Some of these segmentation technique are active

contours, graph cut and machine learning approaches. The active contours segmen-

tation technique uses an energy formulation consisting of gradient, edge density and

boundary smoothness. In [MCC+05], Mujat et al performed the segmentation of the

RNFL thickness in SD-OCT image using anisotropic noise suppression operation and

deformable splines. This technique is not affected by any intensity variation but it is

sensitive to the artefacts of the blood vessels in the OCT image. Yazdanpanah et al

[YHSS11], used Chan-Veses energy-minimising active contours to segment the intra-

retinal layers by incorporating a circular shape in order to model the boundaries of

retinal layers. This method is also less affected by the intensity variations, however

the constraints on the boundaries can lead to errors when segmenting irregular layer

shapes. In [NVT+13], Novosel et al utilised Bayesian inference in level sets to segment

three retinal layers in SD-OCT retinal image. All the layers are simultaneously detected

using prior knowledge of the layers. This segmentation approach is also sensitive to

the blood vessel artefacts. Zhu et al [ZCS+10] provided a FloatingCanvas technique

for retinal layer segmentation in 3-D SD-OCT. The algorithm makes use of analytical

surface deformable and prior information about the layers location in the OCT image.
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This method is sensitive to low gradient on the region of the vitreous-RNFL boundary

of some OCT images. Garvin et al [GAK+08] segmented five retinal layers in 3-D

SD-OCT by finding a minimum-cost in a geometric graph formulated from edge in-

formation and priori surface information. This technique was improved in [GAW+09],

which simultaneously segmented retinal layers by learning the cost function and con-

straints from a training set and by using a 3-D graph search technique. The graph

search method was extended in [CLN+10] by Chiu et al, to segment eight retinal layer

boundaries on individual B-scan in the SD-OCT using dynamic programming.

The majority of these methods [MCC+05], [YHSS11], [NVT+13], [ZCS+10], [GAW+09],

[CLN+10] used prior knowledge about the layers to apply constraints such as shapes

and positions on the segmentation algorithms. These constraints can lead to segmen-

tation errors when the algorithms are used on irregular retinal layers or new OCT data

sets. Also the graph-based segmentation methods have problems in finding appropriate

cost functions on the graph formulation to distinguish individual layers. Another issues

with the graph-based segmentation is the efficiency of the optimisation operations to

accurately detect the layers boundaries. Furthermore, segmentation algorithms used

in many commercially available OCT imaging tools encounter enormous problems seg-

menting the RNFL layers in OCT images with poor scanning quality or noise as seen

in Figure 6.1 [Sco10].

The aim of this work is to develop a new automated segmentation method to ad-

dress the limitations of the existing for the RNF detection. It also provides a good

balance between efficiency and robustness. Our method addresses some these segmen-

tation problems using the bias correction algorithm [TAC+10b] to eliminate the image

artefacts and a graph cut based segmentation technique which incorporates the mecha-

nism of the kernel induced function [SMA11] and a continuous Max-flow to allow better

detection of retinal layers. The proposed method also addresses the layers detection

problem in the presence noises reports in [Sco10].

Because of the above advantages, our method performs better than the previous
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Figure 6.1: Error in measuring the RNFL thickness. Top left: circular scan. Top right:
error in segmentation line at the inferior temporal quadrant indicated by the blue arrow
caused by poor scan quality. Bottom right: the inferior temporal RNFL thickness is
measured as abnormal shown by the green arrow. Bottom left: The classification
chart showing the overall results of the RNFL thickness measurement within normal
boundaries. [Sco10].

methods. In particular for difficult cases. We tested our method on 120 SD-OCT

circular scans around the ONH. All the images were acquired with SD-OCT Spectralis

HRA + OCT (Heidelberg Engineering, Germany). We believe our method would

perform well on OCT images with diseases such as exudates, haemorrhage, swelling,

edema, cyst, detachment, epimembrane, because the nature of the problems is similar,

although we do not have access to these types of data currently. Figure 6.2 shows the

different images of the retina in the circular scan.
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Figure 6.2: SD-OCT circular imaging process. (a) Circular scan on the OCT fundus
image. (b) Reitnal tissues (Layers) image from the scan. (c) A 2-D OCT cross-
sectional image of the layers tissues.

6.3 Methods

In this study, the segmentation of retinal layers boundaries including RNFL or inner

limiting membrane (ILM), RNFL-ganglion cell layer (RNFL-GCL) and the retinal pig-

ment epithelium (RPE) was performed. The segmentation method starts by removing

some common medical imaging artefacts from the retinal SD-OTC circular images such

as intensity inhomogeneity and noise. This operation is performed using the bias cor-

rection technique [TAC+10b] and it is expected to improve the robustness of the retinal

tissue layers segmentation. The boundaries of the ILM, RNFL-GCL and RPE are de-

tected by adapting a multiregional graph cut segmentation technique [SMA11], that

includes a kernel induced segmentation functional and a continuous multiplier based

max-flow algorithm [YBT10]. Figure 6.3 shows the illustration of the segmentation

method.

The bias correction operation [TAC+10b] discussed in chapter 3 is used to correct

the intensity inhomogeneity and remove noise from the image. This pre-processing

operation enhances the boundaries of the layers, which reduce false positives during

the segmentation process. Figure 6.4 shows the results of the bias correction operation,

where 6.4(c) is the corrected image with well-defined layers boundaries.
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Figure 6.3: Algorithm of the segmentation method.

6.3.1 Graph construction for the Detection of ILM and RNFL-GCL

Boundaries

The detection of the first two boundaries (ILM and RNFL-GCL) is performed by adapt-

ing the method proposed in [SMA11] and [YBT10], which used a multiregional graph

cut segmentation via a kernel and a continuous Max-Flow respectively. A segmenta-

tion graph is constructed with a data term that uses a kernel induced function. The

operation of the kernel consists of mapping the original nonlinear image data into a

higher dimensional kernel space to allow better separability (linear) in the SD-OCT

data space. The resulting graph formulation is optimised by a continuous Max-Flow

[YBT10] designed to find the minimal energy in the graph segmentation, and provided

a global optimisation.

To perform the segmentation of the ILM and RNFL-GCL boundaries, we represent

each circular B-scan image as a graph G (ν, ε) consisting of a set of vertex or nodes

(pixels) ν and a set of directed edges ε connecting neighbouring pixels. In the circular B-

scan image nested grid, the graph contained two special terminal nodes, a foreground

terminal (source s) in our case the ILM and RNFL-GCL pixels and a background
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Figure 6.4: Pre-processing. (a) SD-OCT circular scan image. (b) Bias image. (c)
Bias corrected image.

terminal (sink t). The edge set ε includes the (n-links) linking two neighbourhood nodes

in the image grid and the terminal links or data edge (s-links and t-links) connecting

the source s and sink t to each node in the image grid respectively. Each pixel p ∈ Ω (a

set of pixels) in the grid is connected to the terminals by s-links with {p, s} and t-links

with {p, t} while a pair of neighbouring pixels {p, q} ∈ N (number of pixel neighbour)

is connected by n-links [BJ01]. The set of connected edges provides a pathway through

which one can travel across the graph. The path preferences are created by assigning

non-negative weight (cost) We > 0 to each edge e ∈ ε. To obtain good segmentation

results of the boundaries, the preferred path should have the minimum total weights
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of edges for travelling from a start node to an end node of the graph. The resulting

path from this operation represents the cut, which separates the image into two disjoint

partitions, including ILM + RNFL-GCL layer and the background.

If we denote s-t the cut that separates the image into two disjoint partitions, this

cut can be defined by a subset of edges C ∈ ε where G (c) = 〈ν, ε\C〉. C is defined as

|C| =
∑

e∈C We. The segmentation into two disjoint regions can be expressed as:

ε = N
⋃
p∈Ω

{{p, s}, {p, t}, ν = Ω ∪ {s, t}} (6.1)

ε = Fg

⋃
Bg, Fs ∩Bt = ø (6.2)

Fg are pixels labelled as foreground (ILM, RNFL-GCL boundaries) while Bg are the

pixels mapped as background.

The energy for each cut which is defined as the minimum total weights of edges can

be defined [YBT10] as:

min C ∈ ε
∑
e∈C

We (6.3)

This cut is computed by a computationally efficient continuous multiplier based

max-flow algorithm [YBT10].

To define the segmentation functional of the graph, let us assume a binary labelling

set A = (A1, Ap, . . . AP ), which is assigned to each pixel p ∈ Ω in the circular image

grid and let Ap indicate assignment to pixels p ∈ Ω. Each assignment Ap in the circular

image grid is either in the foreground Fg (ILM, RNFL-GCL) boundaries or background

(Bg). Thus the segmentation functional can be defined as:

E (A) = λ ·R (A) +B (A) . (6.4)

where R (A) is the data term (regional term) that measures the similarity between
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neighbouring pixels in a circular image Ω. B (A) is the prior (boundary term), for

smoothing regions boundaries and λ a positive coefficient indicating the relative im-

portance of the regional term against the boundary term. The regional (the likelihood

of the foreground and background) can then be written as:

R (A) =
∑
p∈Ω

Rp (Ap) =
∑
Ap∈A

∑
p∈SAp

−log
(
Ip/SAp

)
. (6.5)

where SAp is the image region whose label is Ap and
(
Ip/SAp

)
is the conditional proba-

bility of a pixel in data grid given a model distributions within each image region. If κAp

is the piecewise constant model parameter of image region or image region parameter

SAp , the data term (6.5) can be expressed as:

R (A) =
∑
p∈Ω

Rp (Ap) =
∑
Ap∈A

∑
p∈SAp

(
κAp − Ip

)2
. (6.6)

The boundary term is expressed as follows:

B (A) =
∑

p,q∈N
Bp,q · φ (Ap, Aq) (6.7)

For Ap 6= Aq

φ (Ap, Aq) = 1

φ (Ap, Aq) = 0 Otherwise

Bp,q = exp(−(Ip − Iq)2

2σ2
) · 1

dist(p, q)
(6.8)

where Rp (Ap) assigns pixel p to either ILM, RNFL-GCL boundaries (Fg) or the back-

ground (Bg). Bp,q indicates the discontinuity between neighbouring pixels. The value

of Bp,q is large when Ip and Iq are similar and it is close to zero when Ip and Iq are

different.
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The data term of the graph formulation is defined by first transforming the image

data implicitly using a kernel function where the piecewise constant model of the graph

cut formulation is applicable. This operation allows a better partition of a non-linearly

separable data [SMA11]. If we consider ψ(.) as a non-linear mapping from a data

space Θ to a higher dimensional feature space ∆. The graph cut formulation in (6.4)

becomes:

E
(
{κAp}, Ap

)
=
∑
Ap∈A

∑
p∈SAp

(
ψ
(
κAp

)
− ψ (Ip)

)2
+ λ

∑
p,q∈N

Bp,q · φ (Ap, Aq) . (6.9)

Thus a kernel induced space image segmentation with the graph cut would simply

result in finding the labelling which minimises the graph formulation (6.9).

Using Mercer’s theorem [MMR+01], the kernel function can be expressed as a dot

product in a high dimensional space[SMA11], therefore there is no need to explicitly

know the mapping ψ(.). Consequently a kernel function can be expressed as:

F (Y,Z) = ψ(Y )T · ψ(Z), ∀(Y, Z) ∈ Θ2. (6.10)

where (·) represents the dot product in the feature space.

Substitution of the kernel functions from (6.10) provides

Dk (Ip, κ) = ‖ψ(Ip)− ψ(κ)‖2 = (ψ(Ip)− ψ(κ))T · (ψ(Ip)− ψ(κ))

= ψ(Ip)
Tψ(Ip)− ψ(κ)Tψ(Ip)− ψ(Ip)

Tψ(κ) + ψ(κ)Tψ(κ)

= F (ψ(Ip), ψ(Ip)) + F (ψ(κ), ψ(κ))− 2K (ψ(Ip), ψ(κ))

(6.11)

(6.11) gives a non-Euclidean distance measure in the original data space that corre-

sponds to the square norm in feature space [SMA11], where κ ∈ κAp . Simplifying (6.11)

and substituting in (6.9) gives the kernel induced segmentation function [SMA11] as:
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E
(
{κAp}, Ap

)
=
∑
Ap∈A

∑
p∈SAp

DF

(
Ip, κAp

)
+ λ

∑
p,q∈N

Bp,q · φ (Ap, Aq) . (6.12)

The kernel induced segmentation functional expressed in (6.12) depends on the labelling

function A and the image region parameter κAp .

In our implementation, we use the Radial basis function kernel (RBF) experimen-

tally, because it gives the best experimental results in the detection of ILM and RNFL-

GCL boundaries compare to other kernel functions such as sigmoid kernel and poly-

nomial kernel. The value of sigma was defined experimentally. The kernel function is

defined by:

F (Y, Z) = exp

(
−‖Y − Z‖

2

σ2

)
. (6.13)

The functional in (6.12 ) is optimised using a continuous multiplier based max-

flow algorithm. The multiplier based max-flow algorithm is used because it splits the

optimisation problem into simple sub problems over independent flow variables and is

globally optimised.

6.3.2 Graph Optimisation for the Detection of ILM, RNFL-GCL Bound-

aries

The segmentation functional (6.12) is optimised using a continuous multiplier based

max-flow algorithm [YBT10]. The max-flow algorithm consists of finding the partitions

of the circular image such that the energy functional in (6.12) is minimal.

This optimisation operation separates the circular image into retinal RNFL bound-

aries (ILM+RNFL-GCL) and the photoreceptor layer that includes the RPE layer.

Figure 6.5 shows the segmentation results of the proposed method of ILM and RNFL-

GCL boundaries.
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Figure 6.5: ILM and RNFL-GCL boundaries detection. (a) Circular scan image. (b)
Segmented binary image. (c) ILM and RNFL-GCL boundaries in red.

6.3.3 Detection of the RPE layer Boundaries

The RPE layer detection is performed using prior knowledge about the SD-OCT image

and its features. Based on clinical and tomographical correlation studies [CSMJ+06],

it had been suggested that the RPE-choriocapillaris layer exhibits the most hyper-

reflectivity layer in the retinal SD-OCT imaging. While the RNFL represents some of

the hyper-reflectivity pixels at the top of the retinal SD-OCT image see Figure 6.6(a).

To segment the RPE layer, we first perform the search for all the hyper-reflectivity

pixels (highest intensity values) in circular scam image. These pixels correspond to the

most reflective layer (RPE). However to prevent the algorithm from selecting hyper-

reflectivity pixels in the RNFL that also exhibit some bright pixels, it is helpful to

constrain the search to a region of interest (RPE layer). The boundaries of the RNFL
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Figure 6.6: RPE boundary detection. (a) Hyper-reflectivity pixels in red on RNFL
layer. (b) Selection of region of interest. (c) RPE boundary in green.

is already accurately detected in Section (6.3.1), thus we may set all pixels belonging

to the RNFL to zero before searching for the hyper-reflectivity pixels. By setting the

RNFL pixels to zero, the search area of the bright pixels is limited to the space shown

in Figure 6.6(b).

After the selection of all the hyper-reflectivity points in the region of interest, a

polynomial curve fitting process is used to construct a curve that has the best fit to the

series of hyper-reflectivity pixels. The degree of the polynomial curve in our case was

set to 6. Results of the segmentation of the RPE using the polynomial curve fitting

are shown in Figure 6.6(c).
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6.4 Experiments

The data used in this study was obtained from continuing research and prevention on

retinal diseases such as glaucomatous damage, diabetic retinopathy, age-related, optic

neuropathy, macular degeneration or other significant retinal diseases in Tongren Eye

Hospital. 120 SD-OCT circular scans around ONH were obtained from patients with

an age range of 20-85 years. The scans of both eyes of each patient was acquired with

a high-resolution SD-OCT Spectralis HRA+OCT (Heidelberg Engineering, Germany).

The SD-OCT imaging of the optic nerve was performed using a scan protocol that

applies a circle of diameter 3.4 mm centred on the ONH. Figures 6.2 shows the scan

process of the retinal optic nerve. In Figure 6.2(a) a green circular scanning path of

diameter 3.4 mm centred on the ONH of OCT fundus image is used to capture a scan

of the retinal layers tissues see 6.2(b). Figure 6.2(c) transformation of the circular scan

into a 2-D OCT cross-sectional image (B-scan) of the layers tissues with different layers

boundaries definitions.

6.4.1 Segmentation Accuracy

In this study three retinal boundaries were evaluated including ILM, peripapillary

RNFL-GCL and the RPE as well as the thickness of the RNFL. The measurement of

these boundaries plays an important role in the application of the OCT imaging in

diagnosis and prevention of retinal diseases such as glaucomatous damage.

To evaluate accurately the segmentation of the ILM, RNFL-GCL and the RPE

boundaries by the proposed method, the results of the segmentation were compared to

the manual annotations of the ILM, RNFL-GCL and the RPE in the circular scans. The

mean absolute deviation (MAD), the root-mean-square (RMSE) and the dice coefficient

were used to evaluate the method on the ILM, RNFL-GCL and the RPE against the

corresponding manually labelled images. The MAD, RMSE and the Dice coefficient

are computed as follow:
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MAD(GT,SEG) = 0.5 ∗

(
1

n

n∑
i=1

d(pti, SEG) +
1

m

m∑
i=1

d(psi,GT)

)

RMSE =

√√√√ 1

n

n∑
i=1

(SEGi −GTi)2

Dice =
2|GTi ∩ SEGi|
|GTi|+ |SEGi|

(6.14)

where SEGi is the pixel labelled as retinal Layer by the proposed segmentation method

and GTi is the true retinal layers pixel in the manual annotation image. pti and psi

represent the coordinates of the images, d(pti, SEG) is the distance of pti to the closest

pixel on SEG with the same segmentation label, d(psi,GT) is the distance of psi to

the closest pixel on GT with the same segmentation label, n and m are the number of

points onSEG) and GT respectively.

In addition, further evaluation was conducted on the area between the anterior

(ILM) and posterior (RNFL-GCL) boundaries of the RNFL (RNFL thickness) using

the following evaluation measurement.

TPR =
TP

GTRNFL pixels

FPR =
FP

GTNon RNFL pixels

(6.15)

where TP is the true positive, FP is the false positive and GTRNFL pixels and GTNon RNFL pixels

represent the manually labelled RNFL layer pixels and non RNFL pixels in the image.

Also TPR, FPR are the true positive rate (sensitivity) and the false positive rate.

Table 6.1 shows the evaluation of the proposed method on 120 OCT scans includ-

ing 100 healthy and 20 diseased retina. The RPE boundary detection of all the 120

images with mean RMSE = 0.0124± 0.0124 and MAD = 0.2131± 0.3108 has the low-

est boundary error against the other layers boundaries (ILM and RNFL-GCL). The
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All Images Mean RMSE Mean MAD

ILM 0.0453(0.0276) 0.3931(0.2905)
RNFL-GCL 0.0582(0.0329) 1.2785(1.0523)

RPE 0.0124(0.0124) 0.2131(0.3108)

Table 6.1: Performance evaluation with RMSE (Standard deviation) and
MAD (Standard deviation) for each boundary. The values have units of
pixels - 120 OCT Scans.

Heathy images Mean RMSE Mean MAD

ILM 0.0474(0.0286) 0.4166(0.3023)
RNFL-GCL 0.0610(0.0312) 1.3835(1.0683)

RPE 0.0103(0.0084) 0.1504(0.2565)

Unhealthy images Mean RMSE Mean MAD

ILM 0.0346(0.0198) 0.2753(0.1867)
RNFL-GCL 0.0440(0.0382) 0.7536(0.8002)

RPE 0.0072(0.0129) 0.1379(0.2814)

Table 6.2: Performance comparison of healthy versus disease images -OCT
Scans.

algorithm achieves such a high performance on the RPE boundary detection because it

segments the boundary using polynomial fitting as well as removing all the other hyper-

reflectivity pixels in the image. While in the literature, the RPE boundary is considered

as the most difficult boundary to detect since it has the most hyper-reflectivity pixels

and it is not always visible through all OCT images as it has tendency to appear and

disappear [LCS+13]. This phenomenon is due to the blood vessels artefacts (shadows)

in the OCT retina image.

The ILM boundary detection also has a very low boundary error with mean values

of RMSE = 0.0453 ± 0.0276 and MAD = 0.3931 ± 0.2905. This low error is expected

because the ILM boundary is the location where the retinal tissue layer in the OCT

image has a large gradient, as it is the area where the background and retina tissue

intersected. However the RNFL-GCL boundary also has a low mean RMSE = 0.0582±

0.0329 and a reasonably high MAD = 1.2785 ± 1.0523. This large error is caused by

the presence of the blood vessels shadows on the RNFL- GCL boundary, while manual

segmentation ignores the vessels artefacts. Including these areas of the vessels in the
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automated segmentation can also leaded to some error in assessing the retinal layer

thickness. Figure 6.7(b) shows the segmentation results of the RNFL-GCL boundary

with some blood vessels artefacts indicated with blue arrays.

Table 6.2 shows the evaluation of the proposed method on healthy and diseased

retina including 100 healthy and 20 diseased images. Similar to Table 6.1, in Table 6.2

the RPE boundary achieved the best overall segmentation value in both healthy and

diseased images followed by ILM boundary. The proposed method performed well on

both healthy and diseased images.

Figure 6.7: Results. (a) Circular scan. (b) Segmentation result of the proposed
method. (c) Human manual grading image.

Table 6.3 shows the values of the TPR, FPT and Dice coefficient of the performance

evaluation between the estimated RNFL thickness and the true RNFL thickness. With

the value of TPR = 97.46%, our method achieves very good segmentation results

and it is comparable to the results of the manual segmentation. However the value
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Figure 6.8: Results. (a) Circular scan image. (b) Segmentation result of the proposed
method. (a) Human manual grading image.

of the FPR = 8.67% is slightly higher, this is largely due again to the blood vessels

artefacts around the RNFL-GCL boundary, where the vessels appear as a false positive.

To solve this problem [NVT+13] included the blood vessels areas in the OCT image

from the accuracy evaluation to improve the segmentation errors. Considering the

value of the Dice coefficient Dice = 0.9468 ± 0.0705, RMSE = 0.0835 ± 0.0495 as

performance measures, the proposed method performs well for the segmentation of the

RNFL thickness. Similar to the results in Table 6.1 and Table 6.2, Table 6.3 also shows

higher performance of the proposed method on pathological retina with TPR = 98.59%

and FPR = 5.57%. These results are due to the large gradient on the region of the

ILM boundary and the thin RNF in diseased retina. Figure 6.8 shows the comparison

of the proposed segmentation results on the ILM, RNFL-GCL and RPE boundaries

and the Human manual grading images.
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Images RNFLT std conf

Mean TPR 0.9746 0.0665 ±0.0119
Mean FPR 0.0867 0.1037 ±0.0186
Mean Dice 0.9468 0.0705 ±0.0126

Mean RMSE 0.0835 0.0495 ±0.0089

Heathy images

Mean TPR 0.9792 0.0230 ±0.0045
Mean FPR 0.0919 0.0947 ±0.0186
Mean Dice 0.9473 0.0404 ±0.0079

Mean RMSE 0.0881 0.0418 ±0.0082

Unhealthy images

Mean TPR 0.9859 0.0215 ±0.0042
Mean FPR 0.0557 0.0970 ±0.0190
Mean Dice 0.9676 0.0401 ±0.0079

Mean RMSE 0.0586 0.0521 ±0.01021

Table 6.3: Performance evaluation of TPR, FPR, Dice coefficient and RMSE,
Standard deviation (Std) and the 95% Confidence interval between the es-
timated RNFL thickness and the true RNFL thickness -OCT Scans.

6.4.2 RNFL Thickness Profiles

In addition to the evaluation of the RNFL thickness, we provided the RNFL thickness

profile graph. The thickness profile graph provides the following information:

• The RNFL thickness profile measured along the circular scan of the retina;

• The RNFL thickness profile of the normative database, allowing the comparison

of our segmentation thickness values to the normal range.

This thickness profile graph is obtained from a normative database compiled by

Spectralis HRA+OCT (Heidelberg Engineering GmbH, Germany). Figure 6.9 shows

the thickness profile graph, where the x-axis indicates the length of the circular scan

(position in degree) and the y-axis displays the RNFL thickness in pixels. The colour

coding of the thickness profile graph indicates whether a given retina thickness is within

normal limits (green), outside the normal limits (red) or on the border of normal limits

(yellow).
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(b) 

(a) 

Figure 6.9: (a) Normative database of retinal RNFL thickness. (a) Proposed method
RNFL thickness profile: Green Healthy, Yellow Risk, Red Glaucoma.

The healthy eyes (normal limits or green) is indicated by the thickness values that

fall within the range of 5th − 95th percentile of the RNFL normal profile distribution.

Any RNFL thickness values within this range are considered healthy eyes.
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(a) 

(b) 

Figure 6.10: Results. (a) RNFL thickness profile of healthy retinal images: Green pro-
posed segmentation method, Bleu Manual segmentation. (b) Error in RNFL thickness
profile of healthy retinal images: Green the error, Black lines the standard deviation.

The diseased eyes (red or outside normal limits) is defined when the thinness values

are below 1st percentile of the RNFL thickness of normal distribution. Any RNFL

thickness values within this range are considered disease eyes.
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(a) 

(b) 

Figure 6.11: (a) RNFL thickness profile of retinal images with risk of glaucoma: Yel-
low proposed segmentation method. Blue Manual segmentation. (b) Error in RNFL
thickness profile of retinal images with risk of glaucoma: Yellow the error and Black
lines the standard deviation.

The thickness values within the yellow region are values that are below the 5th

but above the 1th percentiles of normal thickness distribution. So any RNFL thickness

values at this range are at risk of developing the diseases (borderline). Figure 6.9 shows
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(a) 

(b) 

Figure 6.12: (a) RNFL thickness profile of retinal images with glaucoma: Red proposed
segmentation method. Blue Manual segmentation. (b) Error in RNFL thickness profile
of Glaucoma retinal images: Red the error, Black lines the standard deviation.

the RNFL thickness profile for healthy retina in green, retina at risk in yellow and in

red the glaucoma retina.
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In Figure 6.10(a), we provide the average thickness profile graph of the proposed

method on 100 healthy images in Green compared to manually segmented healthy im-

ages in blue and Figure 6.10(b) shows the profile error of healthy retinal images. The

results of this graph show effective agreement with manual annotations and the norma-

tive database as the thickness values of the graph are within the normal limits (green).

Figure 6.11(a) also shows the average thickness profile graph of the proposed method

on 10 retinal images with risk of developing glaucoma in yellow and the corresponding

manually segmented images in blue. Figure 6.11(b) shows the corresponding error of

the profile representation. Similarly, the results in Figure 6.11(a) also demonstrated

successful agreement with normative database since the thickness values of the graph

are within the borderline (yellow).

Figure 6.4.2(a) shows the average thickness profile graph of the proposed method on

10 glaucoma retinal images in red and the corresponding manually segmented images

in blue and the corresponding error profile is also shown in red in Figure (b). The

results also show successful agreement with the normative database since the thickness

values of the graph are within the borderline (red).

6.5 Summary

This study presents an automated approach for retinal layers segmentation by inte-

grating the mechanism of the kernel mapping into the graph cut technique and the

polynomial-fitting algorithm. The overall process includes a pre-processing step that

enhances the contrast of the retinal layers in the SD-OCT circular scan image around

the ONH using a bias correction operation and a segmentation step that includes ker-

nel graph cuts and continuous max-flow algorithms. The method proved to be flexible,

accurate, robust and fast, leading to successful segmentation results of the three main

retinal layers boundaries used to assess and monitor retinal diseases such as glauco-

matous damage. However there are many aspects of this study that can be improved.
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This includes the removal of blood vessel artefacts in the OCT image without affecting

the RNFL thickness measurements and the extension of the proposed method to 3-D

OCT image segmentation. The advantage of the 3-D retinal layers segmentation is to

use the contextual information in the 3-D structure to improve the segmentation of

different layers and also allows the detection of more intra-retinal layers.
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Chapter 7

Conclusion and Future Work

Over the course of the past few years, research in computer-aided diagnosis has been

accelerating in aspects affecting all areas of the medical field. The incentive for this is

obvious, the analysis of medical images can be time consuming, tedious and subjective

when it is done by hand.

The introduction of computer-aided diagnosis in retinal image analysis brought

about a new platform for early detection of retinal diseases as well as cardiovascular

disorders. The structures of the retina such blood vessels, optic disc and RNFL are

considered to be a key indicator of diseases such as diabetic retinopathy, glaucomatous

damage, age-related macular degeneration, hypertension, the risk of stroke and myocar-

dial infraction just to listed a few. Therefore an accurate and effective segmentation of

these structures can improve the productivity of ophthalmologists and eye experts by

reducing the time required for diseases assessment as well as reducing the cost of the

eye screening.

The previous retinal image segmentation methods have led to a familiarity with the

retina structures that was beneficial in the implementation of automated segmentation

techniques capable of extracting a variety of retinal features. However, the imaging

artefacts such as noise, intensity homogeneity and the overlapping tissue of retina

structures can cause significant degradations to the performance of these automated
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image analysis tools.

The aim of this thesis is to provide robust and reliable automated retinal image

analysis technique to facilitate early detection of various retinal and other diseases.

Thus we proposed five innovative segmentation methods, including two for retinal vessel

network segmentation, two for optic disc segmentation and one for retina nerve fibre

layers detection. The strong experimental results, obtained on several public and other

datasets as well as the comparison with existing methods in the literature, have shown

that our proposed methods are robust and efficient in the segmentation of retinal

images.

7.1 Blood Vessel Segmentation

In this thesis, we provide two novel methods for retinal blood vessel network segmen-

tation. The first method in chapter 3 uses the pixel processing approach for complete

extraction of the retina vascular tree fundus retinal images.

This segmentation technique is performed in two-pass operations. A pre-processing

stage, which combines the bias correction operation, an adaptive histogram equalisation

and a distance transform. This pre-processing technique removes noise and adjusts the

contrast of the blood vessels in the image. A distance map of the blood vessel network

is created using a distance transform operation. This operation enhances blood vessel

network and finally a probabilistic modelling including EM is applied to segment the

vascular tree.

This method was evaluated on two fundus image datasets from different sources

(STARE and DRIVE) and the results were also compared to alternative methods in

the literature. The overview of the experimental results shows that our segmentation

method achieves the best overall performance. This result is mainly achieved by the

combination of the three pre-processing operations (bias correction, adaptive histogram

equalisation and distance transform), which removed all the imaging artefacts but kept
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most of the arrow blood vessels. The probabilistic modelling method segments thin

blood vessels and also minimises the segmentation of the optic disc boundary and the

lesions in the unhealthy retinal images.

The probabilistic modelling method achieves better results over other pixel process-

ing based methods because it corrects the imaging artefacts in the fundus retinal images

by combining efficient and robust image processing operations in the pre-processing

stage. The blood vessel extraction is also performed by a probabilistic method capable

of segmenting thin blood vessels. The proposed methods have advantages over tra-

ditional tracking-based methods because they are capable of segmenting a complete

blood vessel network and they are not affected by the discontinuities in the vessel

branches, which cause significant degradations in the performance of tracking-based

methods. However, like a traditional pixel processing method, the proposed method is

a low-level segmentation technique as it processes all the pixels in the fundus retinal

photograph to perform the classification of both vessel and background pixels.

A graph cut segmentation operation was implemented to improve the probabilistic

modelling method by speeding up the blood vessel segmentation process. This method

combines both pixel processing and vessel tracking based methods. Like the proba-

bilistic modelling method, we implemented a pre-processing technique, which consists

of effective AHE and robust distance transform to enhance the contrast between the

blood vessel network and the background. This operation improves the robustness

and the accuracy of the graph cut algorithm. The energy formulation of the graph is

constructed by integrating the mechanism of flux into the graph cut algorithm. This

allows the segmentation of thin blood vessels in the retinal image. The performance

evaluation of this method was carried out on STARE and DRIVE datasets. This per-

formance was compared against 25 other alternative methods in the literature. In term

of TPR, the proposed method achieves the best overall results on both STARE and

DRIVE fundus images.

The graph cut method has advantages over our probabilistic modelling method
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and other pixel processing and vessel tracking based methods as it balances the seg-

mentation of the retinal blood vessel by applying pixel processing techniques in the

pre-processing stage and vessel tracking approach in the segmentation step. The seg-

mentation process also incorporates the mechanism of vectors flux into the graph for-

mulation, which allows the segmentation of more arrow blood vessels. This method can

also achieve high segmentation results on retinal images from a variety of sources with-

out a need of training or adjustments. It could be used to assist ophthalmologists and

eye diseases experts in retinal and cardiovascular diseases evaluation, treatment and

management by reducing the costs and time required in eye screening examinations.

7.2 Optic Disc Segmentation

Chapter 5 provides two different methods of optic disc segmentation including the

Markov random field (MRF) image reconstruction method and the compensation factor

method. Both segmentation methods use structural features of the optic disc such a

convergence feature of the blood vessel network into the optic disc region and the disc

brightness to locate the position of the optic disc in the fundus image. The MRF image

reconstruction method performs optic disc segmentation by first removing the blood

vessel network from the disc area, which misguides the graph segmentation through

a short path, breaking the continuity of the optic disc boundary. Then the graph

cut algorithm is used to define the boundary of the optic disc in the reconstructed

image. The compensation factor method unlike the MRF image reconstruction method

performs the optic disc nerve segmentation using prior information about local intensity

of the blood vessel network. This process incorporates the blood vessels into the graph

cut formulation by introducing a compensation factor. This factor is derived using

prior information about the blood vessel and it minimises the contrast of the blood

vessel network in the optic disc area during the detection of the disc boundary.

The proposed methods are tested on 129 fundus retinal images from two public
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datasets (DIARETDB1 and DRIVE) including 98 images with variety of lesions. The

methods were also compared against three other methods in the literature on the same

datasets. On these difficult datasets, our methods demonstrated effective agreement

with the manual segmentation and outperform all the others alternative methods to

which it was compared.

The key achievement in the optic disc segmentation is that our proposed methods

address one of the main issues in medical image analysis known as the overlapping tissue

segmentation. The presence of the blood vessel network in the optic disc tissue causes a

significant degradation to the optic disc segmentation breaking the disc boundary, this

problem is shared with all the optic disc segmentation methods in the literature. Most

of the methods address this particular issue by removing the blood vessel in the optic

disc area using morphological operations, which can modify the pixel information in

the image, hence misguide the segmentation. But we use an efficient and robust vessel

removing operation (MRF image reconstruction), which replaces the vessel pixels with

neighbouring pixels that have same or similar intensity values. The compensation

factor also uses the vessel information to control the breaking of the disc boundary

during segmentation. However it is important to note that, both the MRF image

reconstruction and compensation factor algorithms depend on the vessel segmentation

algorithm, for example if the vessel segmentation algorithm achieved a low performance

on severely damaged retinal images, the reconstruction and compensation factor would

not defined a meaningful optic disc region, leading to segmentation errors.

We believe that our optic disc methods can be also useful in other applications of

the overlapping tissue segmentation. In addition, our optic disc segmentation methods

can detect and segment the optic disc in the retinal photograph with no restrictions on

the shapes, sizes and locations of the optic disc as well as the sources of the images.

They can be used to help assess and manage the gradual cupping of the optic disc in

glaucomatous damage considered to be the third most common cause of blindness in

the developed world.
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7.3 Retinal Layers Segmentation

Since the cause of glaucoma is not fully known and the fact that glaucomatous damage

affects the structures of the retina. It is important to assess the change occurring

on those structures in the OCT scan to control this disease in addition to the optic

disc evaluation in the fundus photograph. The evaluation of the RNFL thickness in

glaucomatous damage requires segmentation of different retinal layers. This process

can be time consuming and tedious when it is done by hands. In chapter 6, we provide

the segmentation of RNFL, which can be used in modern ophthalmology to assist the

diagnosis of glaucoma.

The proposed method uses the bias correction operation to remove all the imag-

ing artefacts (noises, intensity inhomogeneity). The layers are detected by adapting a

graph cut segmentation technique that includes a kernel-induced space and a contin-

uous multiplier based max-flow algorithm. This approach solves problems related to

variation of intensity within layers in the OCT image, which causes errors in the layers

boundaries segmentation. These problems affects current RNFL segmentation tech-

niques such pixel intensity variation, active contours, graph cut and machine learning

approaches. These issues can also be found in commercially available OCT imaging

tools.

The segmentation graph is formulated with a data term that uses a kernel induced

function, which maps the original nonlinear image data into a higher dimensional ker-

nel space to allow better separation in the OCT image space. This process addresses

the problems of finding appropriate cost functions on the graph formulation to distin-

guish individual layers, which is often found in the graph-based segmentation methods.

The evaluation of the proposed method on 120 OCT scan around the optic nerve

head demonstrated effective agreement with manual annotations. We believe that this

method can be use in glaucoma evaluation to provide reliable RNFL thickness, which

provides key information on glaucomatous damage.
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7.4 Future Work

Recently we have been working with clinical doctors at Tongren Hospital in Beijing and

Moorfield Eye Hospital in London, the aim of this collaboration is to support them with

retinal image analysis algorithms capable of quantifying different retinal tissue layers.

Therefore our future work will be mainly based in implementing of computer algorithms

capable of analysing accurately and more efficiently the OCT scans. This project can

be summarised as follows:

• The detection and the removal of blood vessels artefacts in the OCT image, which

cause a significant degradation to the retinal layer segmentation in the OCT scan.

• The segmentation of retinal layers in 3-D OCT, which can provide more con-

textual information about the retinal layers and improve the segmentation of

difference layers as well as allowing the detection of more inter-retinal layers.

• The 3-D blood vessel segmentation in the OCT scans to better understand dia-

betic retinopathy, age-related macular degeneration and vascular diseases.

• Provide glaucoma assessment tools using both RNFL measurements and the func-

tional visual field point.

• More accurate segmentation of the optic disc using both the 3-D OCT scan and

fundus photograph.

• Quantification of retinal blood vessel diameter, tortuosity as well as the optic disc

and the cup for better analysis of retinal diseases and cardiovascular disorders.
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Russell, Trudy L Burns, and Milan Sonka. Automated 3-d intrareti-

nal layer segmentation of macular spectral-domain optical coherence to-

mography images. Medical Imaging, IEEE Transactions on, 28(9):1436–

1447, 2009. 140

[Gla13] Eye Website, Heartlands NHS, December 2013 2013. 13, 45

[GM96] M Giger and H MacMahon. Computer-aided diagnosis. Radiologic Clin-

ics of North America, 34:565–596, 1996. 38

[GPG+04] Enrico Grisan, Alessandro Pesce, Alfredo Giani, Marco Foracchia, and

Alfredo Ruggeri. A new tracking system for the robust extraction of

retinal vessel structure. In Engineering in Medicine and Biology Society,

178



2004. IEMBS’04. 26th Annual International Conference of the IEEE,

volume 1, pages 1620–1623. IEEE, 2004. 70

[GSC07] Saurabh Garg, Jayanthi Sivaswamy, and Siva Chandra. Unsupervised

curvature-based retinal vessel segmentation. In Biomedical Imaging:

From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Sympo-

sium on, pages 344–347. IEEE, 2007. 86, 87, 107, 108, 111

[GSH+03] Viviane Guedes, Joel S Schuman, Ellen Hertzmark, Gadi Wollstein,

Anthony Correnti, Ronald Mancini, David Lederer, Serineh Voskanian,

Leonardo Velazquez, Helena M Pakter, et al. Optical coherence tomog-

raphy measurement of macular and nerve fiber layer thickness in normal

and glaucomatous human eyes. Ophthalmology, 110(1):177–189, 2003.

137

[GSP+02] Metin N Gurcan, Berkman Sahiner, Nicholas Petrick, Heang-Ping Chan,

Ella A Kazerooni, Philip N Cascade, and Lubomir Hadjiiski. Lung

nodule detection on thoracic computed tomography images: prelimi-

nary evaluation of a computer-aided diagnosis system. Medical Physics,

29(11):2552–2558, 2002. 38, 39
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