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Abstract 

Introduction: Retinal imaging is a fundamental tool in ophthalmic diagnostics. The potential use of 

retinal imaging within screening programs, with consequent need to analyze large numbers of 

images with high throughput, is pushing the digital image analysis field to find new solutions for the 

extraction of specific information from the retinal image. Areas covered: The aim of this review is to 

explore the latest progress in image processing techniques able to recognize specific retinal image 

features and potential features of disease. In particular, this review aims to describe publically 

available retinal image databases, highlight different performance evaluators commonly used within 

the field, outline current approaches in feature-based retinal image analysis and to map related 

trends. Expert Commentary: This review found two key areas to be addressed for the future 

development of automatic retinal image analysis: fundus image quality and the affect image 

processing may impose on relevant clinical information within the images. Performance evaluators 

of the algorithms reviewed are very promising, however absolute values are difficult to interpret 

when validating system suitability for use within clinical practice.    

Keywords: feature extraction, retinal images, segmentation, fundoscopy, image processing, fundus 

imaging, retinal photography, retina 

1. Introduction 

In medical practice, the role of image analysis to assist clinical decision making has spread across all 

specialties, including ophthalmology [1]. The complex task of obtaining clinically relevant 

information from a fundus image is the result of the ophthalmologist’s knowledge, training and 

experience. One of the most ambitious objectives for computer scientists is to transfer these 

learning and decision-making mechanisms into algorithms able to assist the physicians in performing 

this task [2].  



The urgency to achieve this goal has been highlighted by the WHO as a result of the recent 

epidemiological studies regarding diabetic retinopathy (DR), age-related macular degeneration 

(AMD), glaucoma and other ocular pathologies [3,4]. Retinal imaging technology has proven to be 

very effective for screening and detection of pathologies of the fundus [5], serving as a powerful 

diagnostic tool in ophthalmology, boosting the image data acquisition process. Furthermore, the 

development of community-specific retinal imaging solutions, such as leveraging mobile health 

technology, overcomes the need for skilled personnel to capture images, allowing retinal images to 

be acquired within the community, even when trained personnel is not available, such as in middle 

and low-income countries [6,7]. This scenario is challenging healthcare delivery infrastructure with 

the problem of analyzing the resulting increasingly large number of images. Advancements in 

computing technology have provided scientists with solutions, which enable analysis of vast 

quantities of data in an acceptable timeframe. 

The main issue to solve is the translation of digital image information into meaningful content for 

the clinicians, in terms of clinical relevance. In digital imaging, an image is essentially described as a 

two-dimensional matrix of image points (pixels), each with their own discrete intensity level and 

spatial position [8]. The general approach for image feature extraction involves several stages, 

typically: a pre-processing stage for contrast enhancement or non-uniformity equalization, image 

segmentation, feature extraction and image classification [9]. In order to mimic the human 

diagnostic process, an algorithm must therefore apply some rules or constraints to detect a pattern, 

a trend, or a common characteristic within the pixels [10].  

This review aims to offer an overview of recent developments of feature extraction techniques for 

fundus images. Clinicians extract information from images relying on different image features, such 

as color, shape, contrast, depending on the features analyzed. Similarly, in image processing, the 

information extraction strategy varies according to the retinal object involved. To underline this 



conceptual path, in this review we have divided the feature extraction techniques according to the 

retinal object concerned. 

2. Retinal image databases 

The availability of publicly accessible image databases is a key factor underpinning the development 

of feature extraction strategies. Procedures such as algorithm validation or training require an 

increasing amount of data to be processed. This necessity has driven several research groups to 

make their own retinal image datasets publically available. This trend resulted in the generation of 

databases with a wide variety of different pathological signs in high resolution. Most databases 

include the ground truth of pathologies or manual segmentation of the retinal components (optic 

nerve head (ONH), blood vessel network and macula), and instructions for use. This allows 

comparison of the performance of algorithms within the same fundus image, with reference to the 

reliable implementation of a gold-standard procedure. A brief summary of the publicly available 

databases encountered in the course of this review is given, sorted by clinical target, highlighting 

their respective advantages for feature-based algorithm development. For convenience, the main 

characteristics and the key information of each database are summarized in Table 1. 

2.1 Optic Nerve Head - DRIONS�DB (Digital Retinal Images for Optic Nerve Segmentation Database) 

� Public database of retinal images for ONH segmentation [11], consisting of 110 color digital retinal 

images. The optic disc (OD) contour was annotated by two medical experts with 36 landmarks. 

RIM-ONE � Fundus image database with accurate gold standards for the ONH evaluation provided by 

different experts [12]. It includes stereo images from healthy eyes and glaucomatous eyes at 

different stages. The last release (RIM-ONE Release 3), provides 159 images. Ground truth 

measurements of the OD and optic cup (OC) are provided by two ophthalmology experts.  



2.2 Blood Vessels - DRIVE (Digital Retinal Images for Vessel Extraction) – Also known as Utrecht 

database, was released to enable comparative studies on segmentation of blood vessels [13]. 40 

color fundus images randomly selected from a DR screening program in the Netherlands; seven of 

these contain signs of mild early DR. The dataset is divided into two sets of 20 images, for training 

and testing of machine learning algorithms [14,15]. For both sets, manual segmentation of the 

vasculature is available. The DRIVE website allows researchers to share the results of performance of 

their respective algorithms for vessel segmentation implemented using this database. 

REVIEW (Retinal Vessel Image set for Estimation of Widths) � Designed to support the evaluation of 

techniques for measuring retinal vessel width [16]. 16 images with 193 vessel segments manually 

identified, divided into 4 sub-sets (described in Table 1), showing a variety of pathologies and vessel 

types. The image sets contain 5066 manually marked profiles. 

CHASE_DB1 (Child Heart Health Study in England) – 28 color images of ocular fundi from 14 multi-

ethnic patients in the Child Heart and Health Study in England program [17,18]. Ocular imaging was 

carried out in over 1000 British primary school children to demonstrate associations between retinal 

vessel tortuosity and early risk factors for cardiovascular disease. It contains two groups of images 

characterized by having non-uniform background illumination, poor contrast of blood vessels as 

compared with the background and wider arterioles with a bright central vessel reflex. The vessel 

segmentation is provided by two different observers. 

HRF (High-Resolution Fundus) Image Database – Created to support comparative studies on 

automatic segmentation algorithms on ocular fundus images, this public database contains 45 

images: 15 healthy patients, 15 DR patients and 15 Glaucoma patients [19]. From the webpage, the 

manual vessel segmentation and the OD detection are made available for each retinal image.   

STARE (STructured Analysis of the Retina) – Part of a project initiated in 1975 by Michael Goldbaum, 

at the University of California, San Diego (USA), for feature analysis in retinal images [20]. Composed 



of 400 images, giving a wide range of anatomical and pathological features alongside manual 

segmentations. Manual blood vessel segmentation and artery/vein labelling is provided; ONH 

detection algorithms are also proposed [21]. 44 different pathological features were identified and 

linked to 13 different pathologies.  

VICAVR � Retinal images used for the computation of artery/vein classification [22]. The database 

currently contains 58 OD-centered images, including the caliber of the vessels measured at different 

radii from the OD, as well as the vessel type labelled by three experts.  

INSPIRE-AVR – Released by a research group at the University of Porto (Portugal) as part of a retinal 

computer-aided diagnostic system development (RetinaCAD), aimed at the early diagnosis of 

diabetes, hypertension and cardiovascular pathologies [23-25]. It contains 40 high-resolution OD-

centered images complete with ground truth of blood vessels and OD, and the arteriolar-to-venular 

ratio. The reference standard of the vasculature was obtained by an expert who manually labelled 

the vessel centerline segments in each image. The OD boundary of each image was approximated by 

an ellipse fitted to 16 points marked up by an expert. The arteriolar-to-venular ratio values were 

estimated by an automatic method. 

BioImLab – Created by the Laboratory of Biomedical Imaging at the University of Padova (Italy) for 

retinal vessel tortuosity evaluation [26]. 60 images of retinal vessels from 34 subjects (normal and 

hypertensive) and information about their manually estimated tortuosity are included.  

2.3 Abnormalities - ImageRet � Collated to develop image processing methods to assist the 

diagnosis of DR, split into two sub-databases, DIARETDB0 and DIARETDB1 (now implemented in 

DIARETDB1 V2.1) [27,28]. The first contains 130 color fundus images, 20 normal and 110 with signs 

of DR. The second consists of 89 color fundus images, 84 containing at least mild non-proliferative 

signs of DR, 5 are not pathological. Expert annotated ground truth for several well-known diabetic 

fundus lesions (exudates, microaneurysms and hemorrhages) are also provided. 



Messidor � So far, the largest database available of retinal images released to improve the 

development of automatic diagnostic algorithms for DR [29]. 1200 color fundus photographs with 

two diagnostic assessments of the retinopathy grade and the risk of macula edema by a medical 

expert are provided. 

e-ophtha – Designed for research in DR, it contains color fundus images obtained from the 

examinations of patients during 2008-2009 through the OPHDIAT network [30]. Divided into two sub 

databases, e-ophtha-MA (MicroAneurysms), and e-ophtha-EX (EXudates). e-ophtha-MA contains 148 

images with microaneurysms or small hemorrhages and 233 images with no lesion. e-ophtha-EX 

contains 47 images with exudates and 35 images with no lesion. Both datasets contain a manual 

segmentation of relevant abnormalities. 

The datasets HEI-MED and ARIA, used in some recent works, are no longer publicly available from 

the links referenced.  Nevertheless, because they were employed in the validation process of some 

of the techniques taken in consideration, they are briefly described. 

HEI-MED (Hamilton Eye Institute Macular Edema Dataset) � The HEI-MED project collects 169 retinal 

images, with a reasonable mixture of ethnicities and disease state, to train and test algorithm 

performance of hard exudate detection and diabetic macular edema assessment [31]. Collected 

from a telemedicine network program for DR diagnosis, it was developed by the Hamilton Eye 

Institute, the Image Science and Machine Vision Group at ORNL with the collaboration of the 

University of Bourgogne. The images were graded by an expert into three quality levels, poor, good 

and excellent. 

ARIA - Acquired by clinicians of St. Pauls Eye Unit and University of Liverpool (UK) it consists of 450 

images divided into three categories: diabetic, AMD and healthy subjects. The ground truth ONH 

boundaries are manually delimited by trained experts [32-35]. 



 

3. Performance evaluation 

To perform an objective assessment of the outputs of an algorithm for image processing, 

quantitative metrics have been proposed. These measurements allow comparison of the outcome of 

a feature extraction method, with a reference standard, in order to perform its validation [36].  

Algorithms used in feature extraction techniques, such as segmentation or object location, work on 

the image’s pixels. Therefore, the rules used to classify pixels in terms of pertinence to an object or 

not, generate four possible classification outcomes. True positive (TP) and True Negative (TN) denote 

a pixel correctly identified as part of the object or the non-object, while False Positive (FP) and False 

Negative (FN) denote the pixels incorrectly classified. We note that this approach, which is well 

suited to the fine granularity of pixel data, does not equate to the retrieval of the subtended 

information content performed by a clinician. Therefore, starting from this pixel-classification, 

several mathematical and statistical measures of the performance of an image processing algorithm 

can be employed. 

At present, our review has not identified any uniformity amongst the researchers beyond a 

quantification in terms of pixels being correctly attributed to specific features [33,37,38]. 

All the diverse techniques found during this literature review are therefore individually detailed in 

Table 2.  

4. Current Status of Features-based techniques 

In this review, we are dealing specifically with the recent feature-based techniques that exploit the 

visual (morphological, spectral) characteristics of the objects. Therefore, we have divided the 



approaches to retinal object segmentation, according to the feature involved. A summary of 

anatomical feature techniques and outcome results reviewed can be found in Table 3. 

4.1 Anatomical Structures 

Optic Nerve Head - The OD size, together with cup morphology, and its relationship with the total 

disc margin is particularly important in the context of glaucoma disc grading.  The neuroretinal rim 

describes the margin between disc cup circumference and total disc circumference, comprising the 

retinal nerve fiber axons. Loss of these axons underpins the pattern of field loss observed in 

glaucoma. The OD typically presents on a fundus image as a bright circle or ellipse with yellow or 

white coloring [39] and is usually identified from the red channel of an image due to the highest 

contrast difference with the background retina [40,41]. The location of the OD can be used as a 

reference point to establish the position of the macula on the fundus image [42]. The OC is observed 

as a brighter circular feature within the OD area, as shown in Figure 1, which can be segmented 

using the green channel where a high level of contrast is observed [43].  

There are many well-documented techniques to localize and segment the OD such as using image 

contrast and brightness [44,45], deformable model [42], principal component analysis [46] and 

pyramidal decomposition and template matching [38]. The methods reviewed in this paper describe 

some of the more recent techniques that extend or continue the existing published work as 

reviewed by Mookiah et al., Haleem et al. and Raja et al. [38,47,48] focusing on robust methods that 

accurately identify boundaries of the OD and OC for automatic computer-assisted feature detection 

and diagnosis of pathologies. 

To improve robustness when identifying the OD or OC boundary, adaptive filters have been 

implemented by Issac et al. [43] and Dashtbozorg et al. [24]. These segmentation techniques can 

adapt the filter applied to the image, independently from the image spatial resolution and field of 



view (FOV). This enabled their segmentation techniques to be applied to a much larger range of 

images for validation, prospectively simplifying implementation into a real clinical environment. 

An advancement in using image brightness to segment the OD and OC was demonstrated by Issac et 

al. [43] with the aim of improving automatic glaucoma classification. Statistical measures such as the 

mean and standard deviation of pixel intensities are used to determine an adaptive threshold, to 

identify OD and OC boundaries. The main advantage of this technique was its invariance to the 

quality of the image and the noise content, providing a more robust segmentation for cup to disc 

ratio measurements. Glaucoma detection results found this technique to be 94.4% accuracy (Acc) 

with 100% sensitivity (Se) and 90% specificity (Sp), performed on a local database of 67 images. 

Dashtbozorg et al. recently demonstrated an adaptive automated OD segmentation, focusing on 

providing meaningful results in images that contain severe pathological evidence [24]. Classified as a 

template matching method (finding elements of an image that match a template), a sliding band 

filter (SBF) was used which enhanced bright regions of the image, implemented in locating the OD 

center and boundary. Blood vessels were removed from the images and a low-resolution SBF was 

applied to the fundus image to initially locate the OD center. A second adaptive high-resolution SBF 

is applied to the image once the OD center has been found, to isolate the OD boundary, which was 

segmented and smoothed. This method was proven to demonstrate better detection results in 

comparison to recently published techniques, with an Acc of 99.9% and 99.6% on the MESSIDOR and 

INSPIRE-AVR databases respectively. However, it was noted that if the initial center detection phase 

was incorrect, the OD detection was more likely to fail.  

Evidence of pathology or poor initial image acquisition can give rise to images with artifacts or poorly 

defined object boundaries. These artifacts cause problems when trying to segment the OD or OC as 

a specific boundary is sought out from the image using a variety of different image characteristics. 

Development of segmentation methods by Dashtbozorg et al. [24] and Mookiah et al. [49] were 

focused on identifying boundaries. Mookiah et al. used Attanassov intuitionistic fuzzy histon 



segmentation to identify a fuzzy or unclear boundary. This method was found to identify the OD 

boundary with 93.4% Acc and an F-score of 0.92 on 100 images, without any shape constraints being 

applied on healthy, DR and Glaucoma cases. This study compared results with other conventional 

histogram based segmentation techniques (Otsu [50] and Gradient Vector Flow [51]) and was found 

to be superior at detecting unclear OD boundaries.  

Another technique adapted to improve the accuracy of OD boundary segmentation is to implement 

prior knowledge into the computer processing. Prior knowledge based on anatomical features of the 

retina was implemented by Cheng et al. [52] and Basit and Fraz [53]. Cheng et al. used superpixels 

which are local and coherent regions of pixels that are clustered together as they contain similar 

features, allowing one to differentiate the OD region from the peri-papillary atrophy by comparing 

the textures of the two anatomical structures [52]. They classified pixels as either disc or non-disc 

and then applied a deformable body to identify the contour boundary. To identify the OC boundary 

prior knowledge has been incorporated by applying a region of interest (ROI) from the segmented 

OD, reducing the area in which superpixels are classified as cup or non-cup pixels. One limitation of 

this method was the trained classifier used for cup segmentation was dominated by medium sized 

cups, and therefore underestimation of very large cups, and overestimation of small cups was 

observed.  This method for OD and OC segmentation achieved an area under the curve (AUC) of 

0.800, 0.039 lower than the manual disc and cup boundary determination. Basit and Fraz [53] 

focused on accurate detection and extraction of the OD region by ensuring that OD detection is as 

specific as possible. The OD center was detected using knowledge that the OD appears as a bright 

spot and therefore contains maximum intensity pixels. Initially, the main blood vessels were 

extracted and removed. Regions of maximum pixel intensity were found and underwent further 

classification to specifically differentiate the OD from other bright spots. The constraints applied for 

differentiation took into account existing knowledge of the OD and restricted the candidate region 

to not be at the image boundary, and that a main vessel was found in the neighborhood of the 



candidate region. Any maxima that were isolated that did not meet the constraints applied were 

deleted. Once the region was correctly isolated, a region-based segmentation (watershed transform) 

was applied to segment the OD boundary. This method reported results of an average OD detection 

Acc of 98.9% with an average Sp and Se of 99.2% and 76.2% respectively for SHIFA (local database), 

DRIVE and CHASE_DB1 and DIARETDB1. However, this method had limitations that if the vessels 

were not extracted accurately or the OD did not contain a region of maximum intensity, the location 

constraints could not be applied and the initial detection phase failed. 

Reza et al. [54] looked to significantly reduce the computer processing time of each image by 

automatically detecting the OD region using a curve operator, inspired by the work performed by Lu 

and Lim [55]. The benefit of this method was that by not having to apply a background mask or 

segment the vessels, the processing time per image was reduced, which would enable a higher 

throughput of data when used in computer-aided diagnosis. The curve operator was fast and 

efficient for OD region detection, at the expense of boundary detection accuracy. This compromise 

may not be necessary as Welfer et al. [56] achieved a detection Acc of 97.7% taking 7.89s per image 

on DIARETDB1 in comparison to the reported 94.4% in 6.13s per image using this technique. The 

curve operator of Reza et al. located the ROI by searching for a circular area that was either brighter 

or darker than the background pixels, and further specified the correct region by selecting a region 

that contained a gradient of color or pixel intensity across the OD area from the temporal edge 

(brighter) to the nasal edge (darker). A limitation of this method was that the curve operator failed if 

the OD region is not distinguishable from the background in terms of pixel intensity as this technique 

relies on the concept that the OD is either notably brighter or darker than the background.  

Blood Vessels - Retinal blood vessels, along with the ONH, are one of the clearest and most well-

defined objects in a fundus image. Therefore, their segmentation is used not just to detect 

pathologies directly connected to the retinal vascular structures, but also as landmarks for several 

position detection and registration techniques [57-59]. The retinal blood vessels network originates 



from the central retinal artery, that arise out of the center of the ONH and spread all over the retina 

surface forming, along with its three layers of capillary network, a tree-shape structure [60], as 

shown in Figure 2. The quantitative analysis and classification of the architectural features of this 

tree-like network allows the monitoring and detection of several pathologies. In DR, for instance, 

high blood sugar level and ischemia can alter the natural elasticity of the inner walls of the vessels, 

especially in small capillaries, creating bulges and new vessels in the late proliferative stage. 

Measuring the width (cross-section diameter), tortuosity (relative curvature), branching morphology 

(angle and coefficient) and fractal dimension of the vasculature allows the detection of blood filled 

dilatations, called microaneurysms, and of new vascularization [59,61-63]. Changes in these 

biomarkers can also be statistically related to hypertension, obesity, cardiovascular disease, 

cerebrovascular diseases and stroke, increasingly common conditions globally [64-68]. The 

classification of the blood vessels into arteries and veins can be obtained by the intensity level and 

color information extraction [69,70]. 

To isolate an element of the image with a characteristic intensity level, a good preliminary strategy is 

to identify the color channel with the highest contrast between that element and the other retinal 

structures and apply a threshold. Unfortunately, in images with pathological features or in the 

presence of artifacts and noise, this method produces a runaway number of FP and FN. To target the 

segmentation process specifically on blood vessels it is necessary to make a step forward and 

develop a method able to exploit morphological features. 

Retinal vessels can easily be distinguished among the set of objects that lie on the ocular fundus 

image by their piecewise linear shape, the tree-shape branching and the decrease in diameter as 

they move radially outward from the OD.  

A matched filter exploits the abovementioned features along with the assumption that the cross-

sectional pixel intensity profile of the vessels has a Gaussian-like profile [71,72]. An example has 



been proposed by Odstrcilik et al. [19]. Here, a contrast enhancement algorithm was applied to the 

green channel, where the contrast between vessels and other structures is maximal. This algorithm 

equalizes the non-uniform illumination of the fundus image and increases the contrast of those 

structures with an intensity level very different from the background (vessels, exudates and 

hemorrhages). After this pre-processing step, five different filters, with a Gaussian-like profile, were 

applied to extract the vasculature, designed to cover the blood vessel width range. The final binary 

representation of the vascular tree was then obtained by thresholding the histogram and removing 

the unconnected objects. This method was tested on the DRIVE, STARE and the HRF database. The 

Se and Sp were 78.5% and 95.1% respectively for the first two databases with an Acc of 93.4%, and 

79.0% and 97.5% respectively for the HRF database with an Acc of 97.4%. 

A line detector not based on the Gaussian profile of the vessel was designed by Nguyen et al. [73]. 

Here, an optimized line detector was used to detect the vessels. The common limits of this 

technique, that includes FPs at regions close to strong vessels and the merger of nearby vessels, 

have been partially overcome by combining two different approaches. First, by reducing the length 

of the aligned lines of the detector, avoiding the inclusion of adjacent vessel pixels. Secondly, 

background noise was reduced by increasing the dynamic range of the intensity levels of the pixels 

using a local contrast enhancement. The resulting effect was tested on the DRIVE and STARE 

databases, with an Acc of 94.1% and 93.2% respectively. 

Akram and Khan used a 2-D Gabor wavelet to enhance vascular structures and thin vessels [74]. This 

directional selective algorithm has the double advantage of filtering out background noise and 

adjusting its detectability level by tuning the spatial frequency of the wavelet. The result of this 

enhancement was used as an input for multi-layered thresholding. In this last stage, several levels of 

threshold values and validation masks were applied with different rules, eliminating false edges and 

generating a binary map of the blood vessels. This technique obtained good results in DRIVE and 

STARE, with an Acc of 94.7% and 95.0% respectively. 



To avoid the issues related to the learning process of image classifiers (learning rate, learning epoch 

and local minima) Bala and Vijayachitra implemented an Extreme Learning Machine classifier [75]. 

An Extreme Learning Machine is a feedforward neural network used to handle problems difficult to 

solve with classical parametric techniques [76]. In particular, the authors chose to employ a three-

step single hidden layer feedforward neural network. This artificial network has three layers (input, 

hidden and output) of interconnected nodes that mimics the neurons in a brain. The features used 

to train this neural network were extracted from the pre-processed retinal image (histogram 

equalization and segmented by a matched filter). Among the features extracted and used to classify 

retinal images there are some first and second order statistical texture values, such as entropy, 

energy, correlation and homogeneity. The method was tested on DIARETDB0 and DRIVE databases 

obtaining a Se of 96.7% and 100%, Sp of 100% and 94.1% and an Acc of 97.5% and 95.0% 

respectively. Neural networks have also been used by Liskowski and Krawiec [77], who designed a 

pre-trained convolutional neural network for vascular segmentation. This multi-layer approach, 

based on the succession of convolutional, pooling and fully connected layers, has been applied on 

STARE and DRIVE datasets achieving an Acc up to 97.0% and 95.1% respectively. 

 

Azzopardi et al. adopted a strategy that aimed to automatically segment vessel trees in low quality 

retinal images [78]. In the pre-processing stage, several algorithms were applied to smooth the 

strong contrast around the circular border of the FOV area and to enhance the overall contrast of 

the fundus image. The smoothing technique, developed by Sores at al. [79], performs dilation of the 

border, replacing every black pixel with the mean value of its neighbors inside the ROI. This process 

was repeated several times, augmenting the radius of the ROI by one pixel per iteration. The 

enhancement was achieved using a histogram equalization algorithm developed by Pizer at al. [80]. 

The actual segmentation, based on a computational model called bar-selective combination of 

shifted filter responses (B-COSFIRE), employed some difference-of-Gaussian filters to detect the 



change of intensity typical of a vessel-object. Of particular interest is the design of different 

difference-of-Gaussian functions, an excitatory one and an inhibitory one, that simulate the behavior 

of some groups of cells in the lateral geniculate nucleus of the visual path. This trainable filter has 

shown to be computationally efficient. By tuning the values of the blurring and shifting operators, 

used to increase its detectability property, B-COSFIRE filter was able to detect vessels in different 

orientation and the end of the vessel. Tests on DRIVE, STARE and CHASE_DB1 obtained values of Se 

and Sp up to 77.2% and 97.0% respectively. 

A segmentation technique that doesn’t require any pre-processing or training was devised by Wang 

et al. [81]. To create the binary map of the vessel tree the authors combined a novel vessel 

enhancement method, based on the matched filters with multiwavelet kernels, and a multiscale 

hierarchical decomposition as a vessel locator. To achieve the first task, the filters that better match 

the multimodal profile of the vessels, caused by their central specular reflection, were selected. The 

filter was applied to the image at several orientations in order to find the maximum, hence the 

profile of the vessel. This multiscale hierarchical decomposition technique allows the detection of 

the vessels and the reduction of the noise at the same iteration. This is possible through the 

minimization of the total variation function which decomposes the image into two components, 

namely; the part that contains the features of interest and a part related to the noise. The ability of 

this algorithm to identify small features without confusing them with noise is the main goal of this 

strategy. An adaptive thresholder is then applied to obtain the binary map. The quantitative analysis 

of this technique conduced on DRIVE and STARE datasets revealed an Acc of 94.6% and 95.2% 

respectively. 

4.2 Macula and Fovea 

The central area of the retina is the macula (macula lutea), measuring 5.5mm diameter, the macula 

exhibits an oval shape, centered between the vascular arcades and OD. Moving from the peripheral 



towards the central region of the retina, a dramatic change in the distribution of the photoreceptors 

(cones and rods) is observed. While the density of rods radially decreases, the cones density reaches 

its peak. When dissected from the underlying choroid, the macula has a yellow appearance owing to 

xanthophyll pigments. This protective pigmentation produces a gradual darkening appearance 

clearly visible in the digital retinal image. The central 1.5mm of the macula comprises the fovea 

(fovea centralis), which is caters for high spatial acuity and color vision. The foveola is the central 

0.35mm diameter region where the cone photoreceptors are most densely packed. The central 150 

micron depression within the foveola is called the umbo. A region within the fovea devoid of blood 

vessels is the foveal avascular zone. The center of this area is considered the center of the macula, 

and the focus of fixation.  

Locating the position of the macula and fovea is crucial in the automatic detection of pathology 

related to diabetes, such as diabetic maculopathy. If disease in this area becomes chronic, damage 

to the composite photoreceptors becomes irreversible [82]. There is increasing evidence that as the 

surviving diabetic population ages, blindness secondary to maculopathy exceeds that of proliferative 

retinopathy [83]. 

As observed from the literature, most of the techniques used to locate the ROI containing the 

macula rely on some anatomical assumptions related to the distance between the fovea and OD 

[46,58,84,85]. The exact location of the fovea is achieved by various algorithms, such as thresholding 

or template matching, usually preceded by a filtering stage where blood vessel abnormalities are 

removed. 

An example of this procedure was presented by Chin et al. [86]. To locate the fovea center the 

authors combined the information provided by the vessels and OD segmentations with some a-priori 

knowledge about the anatomical structure of the retina. To establish the search area, the vessel arch 

was used as template to draw a hypothetical parabola with a vertex on the nasal side of the OD. The 



search interval was selected along the principal meridian of this parabola at a specific distance from 

the disc, in terms of disc diameter (DD). Such distance was estimated calculating the disc-macula 

distance from a sample of 126 images. Inside this area, the window with the minimum number of 

vessel pixels was considered as fovea. To measure the performance of this method the number of 

correct detections (NCD) within 25%DD and 50%DD was performed. MESSIDOR and some images 

from the Tayside diabetic screening program at Ninewells Hospital (Dundee) were used to validate 

the technique. The performance were better on the latter, with a NCD-25% of 51/66 and a NCD-50% 

of 61/66 in high resolution images. 

To overcome the time consuming process of blood vessel segmentation and vascular arch parabola 

fitting, Zheng et al. developed a technique based on anatomical structure constraints and their 

relative location, and on intensity level information related to the OD [87]. In the pre-processing 

stage a course localization of the OD was performed analyzing the intensity levels of red channel of 

the retinal image. After the elimination of the blood vessels, the OD boundary was detected using a 

region-based model [88]. From this boundary a circle was fitted to obtain the position and radius of 

the OD. This information was used to provide constraints in order to narrow the search area for the 

fovea.  To locate the temporal side of the OD the brighter area was detected, the side less covered 

by blood vessels. To this side, the distance of 2.5 OD diameter off the center of the OD and 5-degree 

below, referred to the x axis of the image, was selected as research area. The final position of the 

fovea was then detected by applying a morphological geodesic reconstruction [89]. This allows the 

removal of all the undesirable features, such as bright spots, vessels and so on. The outcome is a 

connected area with constant intensity level. The geometrical center of this area is the fovea center. 

This method was performed on DRIVE, obtaining a detection success rate of 100%, on HEI-MED 

obtaining 98.8% and DIARETDB1 with 93.3%. 

An extraction method independent from geometrical relationship estimation and blood vessel 

removal was described by Medhi and Dandapat [82]. In this work the color intensity normalization 



and the contrast enhancement of the retinal image in the pre-processing stage involved the use of 

different color spaces. The first color normalization took place in the luminance plane of YIQ color 

space, where the Y plane was modified according to a specific parametric rule proposed by Sánchez 

et al. [90]. A second transformation was applied on the HIS color space. To detect the circular region 

containing the macula the authors used two sets of information: the absence of blood vessels and 

the location of the OD. Because the superior and the inferior arteries of the retina are arranged 

horizontally with respect to the macula in a fundus image, a horizontal canny edge detector was 

used to find them. Within the central region between these arteries, the macula and fovea were 

located. The intensity value was then inverted and the binary image of the macula region obtained 

through an Otsu’s thresholding. A further Hough transformation was applied to the edges of the 

macula in order to define the circular geometry of the macula and its center, the fovea. A well-

established way to evaluate the performances of macula detection methods is to measure the 

Euclidean Distance between the manual segmented image and the one processed by the feature 

extractor algorithm [83]. The analysis was performed on DRIVE and DIARETDB1 datasets obtaining 

an average distance of m=6.88 pixel and a standard deviation of s=5.85 pixel in the first and m=8.90 

pixel and s=12.89 pixel in the second. 

4.3 Abnormalities   

Observed abnormalities that indicate disease can be separated into three categories when analyzing 

an image: bright lesions, dark lesions and new vessels [91], in Figure 3 a broad overview is shown. 

Pathological features represented by bright lesions are exudates (lipoproteins) and cotton wool 

spots (superficial retinal infarcts).  Microaneurysms and hemorrhages (dot, blot and flame) are 

examples of dark lesions. New vessels are dark features that can be detected due to the fact they do 

not take paths of known non-pathological retinal vessels. For detection and classification of 

abnormalities, the principles used to identify known anatomical structures of fundus images are 



modified to optimize the detection of each lesion type. A list of the techniques and outcome results 

for abnormalities can be found in Table 4. 

Bright Lesions � Automatic screening for DR and AMD requires the detection and segmentation of 

abnormal bright lesions so that the disease progression can be interpreted [34,35,92,93]. Bright 

lesions appear as blob-like structures characterized by varying levels of intensity, often appearing as 

the features in the retinal image with the highest absolute luminance [93].   

Zhang et al. [92] detected exudates on retinal images with the aim of improving retinal screening for 

DR by automatically identifying normal exams in a tele-medicine network. This was the first reported 

method to identify and classify reflections and artifacts during the pre-processing stage, preventing 

their inclusion in the subsequent manual exudate identification process. Regions of known 

brightness on an ocular fundus image, such as the OD, bright regions at the border and the FOV 

contour are removed to isolate abnormal bright regions. These bright regions underwent a 

classification process to identify exudates from the known variability in shape and contrast of 

exudates. This method for exudate segmentation and classification produced an AUC of 0.950 when 

validated on the e-ophtha EX database.  

Mookiah et al. [34,35] have recently published two different methods to classify images as normal or 

as containing AMD. The main advantage of both of these methods is that no prior segmentation of 

lesions and anatomical structures was required. In [34] potential exudates were detected by 

analyzing changes in texture properties by looking at regions of pixels rather than individual pixel 

values. Statistical ranking was performed in order to classify whether the image was normal or AMD 

was present. In [35] lesions are detected due to the change they cause in spatial orientation and 

color intensity of fundus images. Empirical mode decomposition detects these non-linear changes in 

pixels and decomposes the data into a small number of components. These components were then 

classified to determine whether AMD was present in the image or not. Empirical mode 



decomposition has been used to analyze biomedical signals previously [94], however this is the first 

reported use applied to AMD detection. In [34], results were reported with an Acc of 97.6% and 

90.68% on the STARE and ARIA databases respectively whereas [35] reported results of 100% Acc for 

STARE and 85.1% Acc for ARIA when classifying the presence of AMD. Both techniques were 

therefore suggested to be suitable for AMD clinical screening.  

Dark Lesions – Figueiredo et al. [95] developed an automated system for the classification of DR 

lesions such as, microaneurysms, hemorrhages and bright lesions using suitable binary classifiers. 

Analysis of several wavelet bands, thresholding and segmentation are used to retain relevant and 

remove redundant information. This process was repeated at multiple stages for optimal detection 

of each lesion type dependent on its intrinsic properties. Validation of the automated system was 

performed on the HEI-MED, MESSIDOR, DIARETDB0 and DIARETDB1 databases along with private 

databases provided by retinal specialists. Detection performance for microaneurysms was 93% Se 

and 89% Sp, hemorrhages was 86% Se and 90% Sp and bright lesions was 90% Se and 97% Sp. When 

considered together as an automated screening system for DR, an average of 95-100% Se and 70% 

Sp were achieved.  

Seoud et al. [96] demonstrated a method, aimed at automated tele-medicine detection and severity 

grading of DR, which was able to differentiate microaneurysms and hemorrhages without specific 

segmentation of each feature. Microaneurysms were distinguished from hemorrhages by the shape 

characteristics of each lesion, microaneurysm being determined to be a small red dot whilst a 

hemorrhage was more likely to be represented by an elongated red structure. Using this prior 

knowledge of how each lesion presents on an image, potential lesions were detected using 

thresholding and classified using dynamic shape features (region classification based on shape) to 

differentiate false positives from true lesions rather than template matching. The advantage of this 

technique is that prior vessel segmentation is not required, the types of red lesions can be 

differentiated from one another, and classification of images containing pathology is good (based on 



red lesions only) as only one lesion was needed to be detected to infer the presence of pathology. 

However, severity grading may be currently insufficient in the current implementation due to the 

difficulty in distinguishing between normal and DR1 images.  

5. Expert commentary 

The prospect of obtaining reliable clinical software for the assessment of fundus images is becoming 

more and more solid. The significant amount of retinal images made publically available is one of the 

key factors in determining this trend. In particular, the publication of databases with different 

pathological signs, graded by experts, is allowing research groups to validate and compare their 

techniques. Nevertheless, there are two main issues that must be addressed in automatic retinal 

image analysis: the quality of fundus imaging (level of resolution, uniformity, dynamic, noise and 

artifacts) and the alteration of the information content caused by the image processing itself. If the 

first one is going to be overcome by the constant improvement and spread of high quality image 

sensor technology, the second one will still remain a trade-off [37,38,47].  

The basic concept of using an algorithm to detect a feature inside a 2D matrix of pixels is based on 

the definition of rules that act on the digital data features, rather than on the anatomical feature 

itself. Therefore, in order to design the algorithmic constraints, researchers are commonly induced 

to consider the “digital characteristic” of the retinal object (intensity level and spatial position of the 

pixels), rather than its clinically relevant information. The result is that the effectiveness of this 

approach is strongly influenced by the quality and the variability within the digital features, for 

example those caused by different environmental conditions, differences between subjects and 

instrumentation.  

Filtering techniques with few constraints, like model-based and matching methods, may not be 

robust enough to consider this high variability. On the other hand, supervised algorithms may 

require several levels of rules and large amounts of data to be trained. The pre-processing stage 



used to partially overcome this variability, enhancing specific characteristics of the digital image, 

does not take into consideration the loss of information content caused by this data-transformation. 

This aspect is hardly ever considered in the works reviewed but could play a role in the identification 

of the clinically relevant information within the retinal image.  

The performance, in terms of sensitivity and specificity attained by the automated grading software 

considered in this paper, show values well above 90%. However, absolute values of these are 

difficult to interpret when deciding whether an algorithm would perform effectively within a 

screening program [97]. Such feature-based validation procedures are necessary for the assessment 

of automatic grading systems suitability for clinical adoption. The societal and economic benefits of 

this would be profound. 

6. Five-year view 

The urgency of reducing avoidable blindness and visual impairments in low- and middle-income 

countries has been highlighted by the WHO [3,4]. A promising strategy able to overcome the lack of 

general practitioners and infrastructure is offered by automatic retinal image analysis [1,2]. Even in 

high-income settings, where DR and maculopathy are significant [3], this technology may facilitate 

and accelerate the population screening procedure and reduce costs. For example, an analysis by 

Scotland et al. found that a national automated screening program for DR in Scotland ought to cost 

230,400 GBP for 160,000 patients, representing savings of over 200,000 GBP compared to its manual 

counterpart [98].  Furthermore, the diffusion of everyday devices able to speed up this process, such 

as smartphones [6,7], is challenging researchers to deliver a reliable and robust system for automatic 

grading of retinal imaging. 

The adoption of machine learning algorithms and neural networks for pattern recognition and 

classification is a strategy increasingly taken into account by the research community, as highlighted 

by the volume of related presentations at 2015 IEEE EMBC, producing promising results. The natural 



propensity of these data processing algorithms for dealing with a high variability of data and their 

recognition of relevant medical features through a training process, is something very close to the 

cognitive process employed by a physician. The public availability of retinal datasets is boosting this 

process and challenging the researchers to deal with large-scale unstructured medical images. 

Research enhanced by Google Deep Mind could produce promising developments in this area [99].  

As the technology of image sensors are developed over the next 5 years, this quantity of data is set 

to increase, including high-resolution images, less affected by noise and artifacts. Furthermore, its 

diffusion worldwide will allow to achieve a wide range of pathological variability.  

The approval of automated grading systems within population-wide screening programs [97] has 

been the result of a direct comparison between the manual and automatic detection rate in 

different clinical environments. However, the current validation assessment is based on parameters 

usually employed in the digital image processing field. Although this approach was justified by the 

connection between the digital information of the fundus image and its processing, a better 

definition of the clinical information content of the retinal image is expected over the next few 

years, along with a better description of the performance evaluation. 

7. Key issues  

• Screening programs are fundamental in preventing and identifying treatable pathologies, 

which account for 80% of the global number of blind people. 

• The assessment of retinal images is a time consuming process that requires fragile 

instrumentation, related logistics and infrastructure, and the presence of a trained person, 

conditions difficult to achieve in low- and middle-income countries. 

• The development of community-specific retinal imaging solutions, such as mobile phone 

technology for mHealth, and the increase in quality and diffusion of imaging technology 

promise to overcome the problem of obtaining affordable high-quality retinal images. 



• To deal with the high number of fundus images thus generated, researchers are developing 

several strategies for automatic and semi-automatic systems. 

• The definition of links between clinically relevant information and the digital information 

within the image’s pixels is the key aspect in integrating the feature assessment process, 

employed by clinicians, into an algorithmic process. 

• For different retinal features, different techniques are adopted, highlighting the specificity of 

the digital information used to evaluate different parameters. 

• Training and validation processes for algorithms are made more easily accessible by the 

diffusion of publicly available databases. 

• The evaluators used to compare the algorithmic performance are not immediately 

interpretable when defining their usability in screening program.   

• The rapid diffusion of these software into clinical setting, over the next 5 years, will provide 

a new definition of performance and a better understanding of clinically relevant 

information in digital imaging. 
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Table 1 - Summary of publicly available databases of fundus images for retinal image analysis 

 

Retinal Image Database 
No. of 

Images 
Fundus Camera System 

Spatial Resolution 

(pixels) 

Field of 

View 

(FOV) 

Ground Truth or  

Expert Grading’s 

DRIVE (Utrecht Database) - Digital 

Retinal Images for Vessel Extraction 
40 

Canon CR5  

(Canon Corp., 

Tokyo, Japan) 

768 x 564 45° 
Blood Vessel 

Segmentation 

REVIEW - Retinal Vessel Image Set 

for Estimation of Widths 

HRIS - High Resolution Image Set 

VDIS - Vascular Disease Image Set  

CLRIS - Central Light Reflex Image Set 

KPIS - Kick Point Image Set 

16 

HRIS - Canon 60 UV  

VDIS - Zeiss fundus camera    

CLRIS - Zeiss FF 450  

     (Carl Zeiss AG, 

Oberkochen, Germany)       

KPIS - Canon 60 UV  

(Canon Corp.) 

HRIS - 3584 x 2438 

VDIS - 1360 x 1024 

CLRIS - 2160 x 1440 

KPIS - 3300 x 2600 

HRIS - 60° 

VDIS - 50° 

CLRIS - 50° 

KPIS - 60° 

Blood Vessel 

Segmentation 

CHASE_DB1 - Child Heart and Health 

Study in England 
28 

Nidek NM-200-D  

(Nidek Co., Ltd., 

Gamagori, Japan) 

1280 x 960 30° 
Blood Vessel 

Segmentation 

HRF - High Resolution Fundus Image 

Database 
45 

Canon CF-60 Uvi 

Canon EOS 20D  

(Canon Corp.) 

3504 x 2336 60° 

Blood Vessel 

Segmentation - 

Optic Disc (OD) 

detection (center 

and radius) 

STARE - Structured Analysis of the 

Retina 
81 

TopCon TRV-50   

(Topcon Corp.,  

Tokyo, Japan) 

700 x 605 35° 

Blood Vessel 

Segmentation - 

Artery/Vein 

Labelling 

VICAVR 58 

TopCon camera  

NW-100  

(Topcon Corp.) 

768 x 584 - 

Vessels Caliber - 

Artery/Vein 

Labelling 

INSPIRE- AVR 40 
Zeiss Fundus Camera 

(Carl Zeiss AG) 
2392 × 2048 30° 

Artery/Vein 

labelling - OD 

Segmentation 

BioImLab 60 
TopCon TRC-50  

(Topcon Corp.) 
1300 x 1100 50° 

Vessels Tortuosity 

Evaluation 

DRIONS-DB - Digital Retinal Images 

for Optic Nerve Segmentation 

Database 

110 

35mm Film Colour 

Fundus Camera 

Digitised using HP-

PhotoSmart-S20 scanner 

(HP, Palo Alto, CA, USA) 

600 x 400 - OD Segmentation 

RIM-ONE 159 

Nidek  AFC-210 

(Nidek Co., Ltd.) 

Canon EOS 5D 

(Canon Corp.) 

2144 x 1424  

(stereo images) 
- 

OD and Optic Cup 

Segmentation 

ImageRet 219 
Digital Fundus Camera - 

Settings Unknown 
1500 x 1152 50° 

Diabetic 

Retinopathy (DR) 

Lesions Grading 

MESSIDOR 1200 
TopCon TRC NW6 

(Topcon Corp.) 

1440 x 960 or  

2240 x 1488 or  

2304 x 1536 

45° 

DR Grading - 

Macula Edema 

Risk Level 

E-Ophtha 463 
Telemedical Network  

 Various Cameras used 

EX (2048 x 1360 

and 1440 x 960)  

MA (1440 x 960 

and 2544 x 1696) 

- 
DR Lesions 

Grading 

HEI-MED - Hamilton Eye Institute 

Macular Edema Dataset 
169 

Zeiss Visucam PRO 

 fundus camera 

(Carl Zeiss AG) 

2196 × 1958 45° - 

ARIA - Automated Retinal Image 

Analysis 
450 

Zeiss FF450+  

Fundus Camera 

(Carl Zeiss AG) 

768 x 576 50° 

Optic Nerve Head 

boundary 

segmentation 



                         Table 2 - Performance Evaluators – Statistical measures mostly used for the evaluation process of feature extraction methods. 

 

 

  

Measure Description Formula 

Sensitivity (Se) or True Positive Fraction (TPF) or 

Recall (Rec) 

The proportion of pixels that are correctly 

identified as object 

 

Specificity (Sp) or True Negative Fraction (TNF) 
The proportion of pixels that are correctly 

identified as non-object 

 

Precision or Positive Predicted Value (PPV) 
The proportion of positive results that are true 

positive 

 

Negative Predicted Value (NPV) 
The proportion of negative results that are true 

negative 

 

Accuracy (Ac or Acc) 
It describe the closeness of a measurement to 

the true value 

 

False Positive Fraction (FPF) 
The proportion of pixels that are not correctly 

identified as object 

 

False Negative Fraction (FNF) 
The proportion of pixels that are not correctly 

identified as non-object 

 

Receiver Operating Characteristic (ROC) It plots the TPF versus the FPF - 

Area under the curve (AUC) 
The area under the ROC (AUC=1 in an optimal 

system) 

 

Mathew's correlation coeffcient (MCC) 
Used in machine learning as a measure of the 

quality of binary (two-class) classifications 

 

F-score Measure of a test's accuracy 

 

Euclidean distance (D) 
Measure the distance between two points in a 

2D space. If P(p1,p2) and Q(q1,q2) 
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Table 3 – List of the reviewed methods regarding retinal image anatomical features and their outcome results 

  

  Authors Methods Databases Performances 

O
p

ti
c 

N
e

rv
e

 

Issac et al. [43] Adaptive image thresholding to identify OD and OC boundaries Local Dataset Se 100%, Sp 90.0%, Acc 94.4%. 

Dashtbozorg et al. [24] Sliding Band Filter. MESSIDOR; INSPIRE-AVR Acc 99.9%; Acc 99.6%. 

Mookiah et al. [49] Attanassov intuitionistic fuzzy histon segmentation. Local Dataset Acc 93.4%, F-score 0.92. 

Cheng et al. [52] Superpixel Classification. MESSIDOR AUC 0.800. 

Basit and Fraz [53] 
Morphological Operations, Smoothing filters and Watershed 

Transform. 

SHIFA (local database); 

DRIVE; CHASE_DB1; 

DIARETDB1 

AVG Se 99.2%; AVG Sp 76.2%;  AVG Acc 

98.9%. 

Reza et al. [54] Curve Operator for automatic OD detection. STARE; DIARETDB1 Acc 87.7%;  Acc 94.4%. 

B
lo

o
d

 V
e

ss
e

ls
 

Odstrcilik et al. [19] 
Illumination correction, contrast equalizatrion, 2D Mached filtering, 

thresholding. 
HRF; DRIVE; STARE 

Se 78.6%, Sp 97.5%, Acc 95.4%, AUC 0.974;       

Se 70.6%, Sp 96.9%, Acc 93.4%, AUC 0.952;       

Se 78.5%, Sp 95.1%, Acc 93.4%, AUC 0.957. 

Akram and Khan [74] 2D Gabor wavelet, multilayer and adaptive thresholding. DRIVE; STARE Acc 94.7%; Acc 95.0%. 

Bala and Vijayachitra [75] 

Mached filtering, local entropy thresholding, Grey lavel co-occurrence 

matrix for features extraction and Extreme learning machnine for 

classification. 

DIARETDB0; DRIVE 
Se 96.7%, Sp 100%, Acc 97.5%;  

Se 100%, Sp 94.1%, Acc 95.0%. 

Liskowski and Krawiec [77] Convolutional Neural Network. DRIVE; STARE Acc 95.0%, AUC 0.97; Acc 95.7%, AUC 0.979. 

Azzopardi et al. [78] Difference-of-Gaussians filtering (B-COSFIRE). DRIVE; STARE; CHASE_DB1 

Se 76.6%, Sp 97.0%, Acc 94.3%, AUC 0.961;       

Se 77.2%, Sp 97.0%, Acc 95.0%, AUC 0.956;       

Se 75.9%, Sp 95.9%, Acc 93.9%, AUC 0.949. 

Wang et al. [81] 
Multiwavelet kernels vessel enhancement, hierarchical optimal 

decomposition, adaptive thresholding. 
DRIVE; STARE Acc 94.6%; Acc 95.2%. 

M
a

cu
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 &
 F

o
v

e
a

 

Chin et al. [86] 

OD location and vasculature map via geometrical approximation and 

VAMPIRE, location of the ROI via anatomical priors and fovea location 

with highest likelihood after 2D Gaussian mask filtering. 

Local Dataset; MESSIDOR 

Fovea detection rate (FDR) within 25%DD 

77.3%, FDR 50%DD 92.4% (with good quality 

images); FDR 25%DD 56.2%, FDR 50%DD 

79.8% (with no risk of macula aedema 

images). 

Zheng et al. [87] 

OD location via thresholding, morphological bottom-hat transform for 

blood vessel elimination, OD boundary detection and circle fitting, 

fovea location via anatomical constraints and morphological geodesic 

transform. 

DRIVE; HEI-MED; DIARETDB1 FDR 100%; FDR 98.8%; FDR 93.3%. 

Medhi and Dandapat [82] 

OD detection via thresholding, fovea detection via Canny edge 

detector, Othsu thresholding, Hough transform and anatomical 

constriants. 

DRIVE; DIARETDB1 FDR 100% D 6.88; FDR 95.51%, D 8.90. 



 

 

 

Table 4 – List of the reviewed methods regarding retinal image abnormalities and their outcome results 

 

  Authors Methods Databases Performances 

A
b

n
o

rm
a

li
ti

e
s 

Zhang et al. [92] 
Removal of known anatomical 'bright' features, classification of any 

remaining 'bright' areas. 

e-optha EX; DIARETDB1v2; 

MESSIDOR; HEI-MED 

AUC 0.950; AUC 0.950; AUC 0.930; AUC 

0.940. 

Mookiah et al. [34] Local configuration Pattern analysis and statistical ranking. STARE, ARIA Acc 97.6%; Acc 90.7%. 

Mookiah et al. [35] Empirical Mode Decomposition. STARE, ARIA Acc 100%; Acc 85.1%. 

Figueirdo et al. [95] Binary Classifiers to identify lesion tpye - Analysis of wavelet bands. Local Datasets (Retmarker) 

Microaneurysms - Se 93.0%, Sp 89.0%, 

Hemorrhages - Se 86.0%, Sp 90.0%, 

Bright Lesions - Se 90.0%, Sp 97.0%. 

Seoud et al. [96] Dynamic Shape Features. MESSIDOR 

AUC 0.899 (Lesion Detection), 

AUC 0.916 (Image classification - 

referable/non-referable). 
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List of Abbreviations 

1. DR diabetic retinopathy 

2. AMD age-related macular degeneration 

3. ONH optic nerve head 

4. OD optic disc 

5. OC optic cup 

6. TP true positive 

7. TN true negative 

8. FP false positive 

9. FN false negative 

10. FOV field of view 

11. Acc Accuracy 

12. Se Sensitivity 

13. Sp Specificity 

14. SBF sliding band filter 

15. ROI region of interest 

16. AUC area under the curve 

17. B-COSFIRE bar-selective combination of shifted filter responses 

18. DD disc diameter 

19. NCD number of correct detections 

20. FDR  Fovea detection rate 


