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Abstract 

With the advent of advanced computer technology, many computer-aided systems 

have evolved to assist in medical related work including treatment, diagnosis, and even 

surgery. In modern neurosurgery, Magnetic Resonance Image guided stereotactic surgery 

exactly complies with this trend. It is a minimally invasive operation being much safer 

than the traditional open-skull surgery, and offers higher precision and more effective 

operating procedures compared to conventional craniotomy. However, such operations 

still face significant challenges of planning the optimal neurosurgical path in order to 

reach the ideal position without damage to important internal structures. This research 

aims to address this major challenge. 

The work begins with an investigation of the problem of distortion induced by MR 

images. It then goes on to build a template of the Circle of Wills brain vessels, realized 

from a collection of Magnetic Resonance Angiography images, which is needed to 

maintain operating standards when, as in many cases, Magnetic Resonance Angiography 

images are not available for patients. Demographic data of brain tumours are also studied 

to obtain further understanding of diseased human brains through the development of an 

effect classifier. 

The developed system allows the internal brain structure to be ‗seen‘ clearly before 

the surgery, giving surgeons a clear picture and thereby makes a significant contribution 

to the eventual development of a fully automatic path planning system. 
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1. Introduction 

In the late 20
th

 century, computer technology had been applied to the field of 

neurosurgery by some forward-looking scientists. The development of surgical robotic 

technology, computerised navigational systems and the establishment of community 

networks have made it possible to perform computer-assisted neurosurgery by the end of 

the 20
th

 century[1,2]. The accurate, expeditious and reliable stereotactic operation, which 

is a branch of computer-assisted neurosurgery, has saved many lives all over the world so 

far and has become more and more popular both with doctors and patients[3].  

     Nowadays, image-guided stereotactic neurosurgical operation is widely employed by 

functional neurosurgery, pathological biopsy as well as cysti-liquid aspiration [4,5,6]. 

With a remarkable curative effect, stereotactic operation has been used mainly to treat 

craniopharyngioma. Craniopharyngiomas are congenital epithelial tumours arising along 

the path of the craniopharyngeal duct[7]. They may be diagnosed during childhood or 

adult life and are often associated with an enigmatic and unpredictable growth pattern. 

Despite their benign histological appearance, their often infiltrative tendency into critical 

parasellar structures and their aggressive behaviour, even after apparently successful 

therapy, may result in significant morbidity and mortality posing a considerable medical 

and social problem [8]. However, doctors rest their hope to cure this disease on 

stereotactic neurosurgical operation because it is effective, reliable and multi-operable 

[9,10].  

As one of the most important elements in computer-assisted stereotactic neurosurgery, 

image guidance has been widely integrated into the practice of cranial surgery and some 

specific spinal surgeries [11]. Above all, image data which is used in stereotactic 

operations must be clear, accurate and distortionless irrespective of which domains, such 

as, Magnetic Resonance Image (MRI), Computer Tomography (CT) or fused images. 

Images can be utilised to guide a surgeon in two ways in the practical stereotactic 

operation [12], which can be demonstrated in two steps as follows: 
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1. Registration of a patient’s medical images (CT or MR images etc.) onto the 

physical space of the same patient’s anatomy. Various images data, brain atlases or 

vessels‘ distribution for instance, can be added in during the process, so that all of the 

information may be used simultaneously [13]. To realise the registration of the images 

data onto the physical space of the patient‘s anatomy, a physical device is used to link 

them with each other. These physical devices, relative to the patient‘s head, must be 

immovable and can be displayed on both CT and MR images, such as a head frame with 

a contrast agent inside or adhesive fiducial markers fixed to the patient‘s skin.   

2. Provision of image information to the surgeon in an intuitionistic, interactive 

and useful way. Having accomplished registration, an image-guide system can display 

image data in different planes and reconstruct them into pseudo three-dimensional data in 

a manner more relevant to the surgeon. The image data display allows surgeons the 

ability to perform many tasks that include reformatting of images, multiple user-selected 

two or three-dimensional display formats, virtual reality and augmented reality interface 

and treatment planning. This can be converted to enable the robot to perform a 

neurosurgical operation [14]. 

The accurate stereotactic operation relies on clear and distortionless medical images, 

while the safety and effective operation depends on professional knowledge and clinical 

experience. Surgical path planning is at the very core of computer-assisted neurosurgery. 

Normally, a neurosurgeon designs an effective and safe path to the lesion depending on 

his/her clinical experience. However, for a junior doctor who is not so competent in 

planning a perfect path, there is no reliable module that can provide valuable planning 

automatically. Although a few existent systems have the training interface in path 

planning for junior doctors, it is still a long way from a practical implementation.  

This study investigates how the process of image guided stereotactic operation may 

be automated. From the beginning, MR images were analysed by a distortion correction 

module to ensure the precision of the medical images. Then, MR images were detected 

by a classification module to pick up an image series with tumours. After that, a standard 

vessel template was implanted in the image series to build a 3D brain model with 
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tumours and vessels. Finally, based on the 3D brain model, a neurosurgical path planning 

module can generate a practical surgical path that is able to guide a neurosurgical 

stereotactic operation. The flow chart of this process is shown below (Figure. 1.1). The 

aim of this work is to develop this system, which can promote medical doctors 

performing stereotactic operations as easily as possible, and can provide training for basic 

neurosurgical education. To achieve this goal, different kinds of medical images such as 

MRI, CT, Magnetic Resonance Angiography (MRA) and stereotactic operation path 

planning interface snapshots are analyzed by diverse means in this study, and new 

approaches and modules are developed, which in turn ensure the reliability and security 

of automatic surgical path planning system.  

 

 

 

 

 

 

 

 

 

Figure1.1 A flowchart of automatic surgical path planning system process for stereotactic 

operations
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Neurosurgical Path Planning 

Normal Subjects 

MRA 

Vessel Templates 

Neurosurgical Operation 



Chapter 2    Literature Review 

 

  
Page 4 

 

  

2. Literature Review 

The brain is the most complex organ in the human body. Through the centuries, many 

serious health hazards associated with various brain diseases have been identified. 

Neurosurgery is the medical specialty concerned with the prevention, diagnosis, 

treatment, and rehabilitation of disorders which affect the nervous system, especially the 

brain, in a surgical manner. However, in the past, intracranial operations were dangerous 

to the patient and only used to treat a small proportion of brain diseases. 

With rapid development of medical imaging techniques, CT and MR have been 

employed as the primary means to diagnose brain disease and to guide intracranial 

operations. A traditional intracranial operation is performed as follow: find the bodily 

superficial projection of the lesion, design the scalp insection, remove a part of the bone 

from the skull to expose the brain and then, remove the lesion. The bone flap is 

temporarily removed, then replaced and stitched with the rest of the tissue after the lesion 

has been taken out. Therefore, a traditional intracranial operation is called a craniotomy. 

Thus, craniotomy brings more surgical injuries, and the outcome of the operation is more 

determined by the neurosurgeon‘s surgical skills and experience. 

Alternatively, some other ‗craniotomy‘ procedures may utilize the guidance of 

computers and imaging to reach the precise location within the brain that is to be treated. 

This intracranial operation cuts a small in section and drills a small hole in the skull 

instead of making a bone flap, which is known as a key-hole technique. This technique 

requires the use of a frame placed onto the skull or a frameless system using superficially 

placed marks on the scalp. Scans made of the brain, in conjunction with these computers 

and localizing frames, provide a three-dimensional image, for example, of a tumour 

within the brain. It is useful in making the distinction between tumour tissue and healthy 

tissue and reaching the precise location of the abnormal tissue. When either of these 

imaging procedures is used along with the ‗craniotomy‘ procedure, it is called a 

stereotactic operation. 

http://www.newscientist.com/channel/being-human/brain/dn7974
http://en.wikipedia.org/wiki/Human_brain


Chapter 2    Literature Review 

 

  
Page 5 

 

  

2.1 The development status of brain stereotactic operation and 

frameless stereotactic neurosurgical robot 

2.1.1 The development of brain stereotactic operative technique 

It has a history of more than 100 years, since the stereotactic operative technique was 

invented. There are three stages in the development: 1) the stage of the brain function 

orientation in animal studies, 2) the stage of the X-ray ventriculography orientation in 

clinical applications of extrapyramidal system disease, 3) the stage of the nervous system 

anatomic imaging guided three-dimensional orientation in treatments of diverse brain 

diseases. The details are as follow: 

2.1.1.1 The stage of brain function orientation in animal studies 

As early as 1889, Prof. Zernov, an anatomist at the Muscovite University, developed 

the first stereotactic apparatus in the world. The apparatus, called an encephalometer, was 

designed using the principle of spherical polar coordinates to calculate the coordinate 

data of the target, and made use of experimental study of brain function orientation. 

Several years later, Rossolimo improved the encephalometer to the brain topograph, and 

made more attempts at experimental studies. These were the rudiments of modern 

stereotactic apparatus.  

In 1908, two British scientists, Sir Victor Horsley, a physician and neurosurgeon, and 

Robert H. Clarke, a physiologist, working at University College London Hospital, 

invented the Horsley–Clarke apparatus based on the Cartesian (three-orthogonal axis) 

system [15]. It was huge and complex (with 151 components), and was used initially for 

animal experimentation. It made a great contribution to further basic and clinical research 

on the central nervous system. Improved designs of their original device came into use in 

the 1930s for animal experimentation and are still in wide use today in all animal 

neuroscience laboratories. However, using the Horsley–Clarke apparatus for human 

http://en.wikipedia.org/wiki/Victor_Horsley
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Animal_experimentation
http://en.wikipedia.org/wiki/Neuroscience
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brains was difficult because of the inability to visualize intracranial anatomic detail via 

radiography. 

2.1.1.2 The stage of x-ray ventriculography orientation in clinical 

applications of extrapyramidal system disease 

With the use of X-rays, some of intracranial structures became visible. Brain 

radiography (particularly ventriculography) permitted the visualization of intracranial 

anatomic reference points or landmarks. The first stereotactic devices for humans used 

the pineal gland and the foramen of Monro as landmarks. Later, other anatomic reference 

points such as the anterior and posterior commissures were used as intracranial landmarks. 

These landmarks were used with a brain atlas to estimate the location of intracranial 

anatomic structures that were not visible in radiographs. 

Two American neurosurgeons, Ernest A. Spiegel and Henry T. Wycis, in 1947, 

developed the first stereotactic apparatus that were used for brain surgery in humans [16]. 

Spiegel and Wycis used the Cartesian coordinate system (also called the translational 

system) for their device. In addition, they compiled the first atlas of brain stereotactic 

operation in the world, and first applied the stereotactic technique to treat central nervous 

system disease.  

Leksell's apparatus used the polar coordinate system (also called spherical) that was 

far easier to use and calibrate in the operating room. The stereotactic localization system 

was also used by Leksell in his next invention, a device for radiosurgery of the brain. 

This system is also used by the Gamma Knife device, and by other neurosurgeons, using 

other radiation therapy [17]. Leksell significantly affected the development of the 

stereotactic technique and to date, derivatives of Leksell‘s apparatus still have a wide 

application in modern neurosurgery.   

http://en.wikipedia.org/wiki/Radiography
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2.1.1.3 The stage of the nervous system anatomic imaging guided three-

dimensional orientation in treatments of diverse brain diseases 

The invention of computerised tomography in the 1970s, and magnetic resonance 

imaging of the brain in the 1980s, has resulted in a seismic shift in the development of 

nerve system localization diagnosis. In 1978, Russell A. Brown, an American physician 

and computer scientist, developed a device known as the N-localizer that guides 

stereotactic surgery using tomographic images that are obtained via medical imaging 

technologies from CT [18,19]. The N-localizer significantly improves surgical precision 

because MRI and CT permit accurate visualization of intracranial anatomic detail. The N-

localizer creates extra-cranial fiducial marks or landmarks in each tomographic image. 

These fiducial marks specify the spatial orientation of that image with respect to the 

stereotactic instrument. Usually, the N-localizer is fixed with a detachable head frame to 

perform the stereotactic operation, namely the frame stereotactic operation which is 

widely used today.  

The development of surgical robotic technology, computerized navigational systems 

and the establishment of community networks with high-speed data transfer have made 

robot-assisted frameless stereotactic operation possible. Comparing with the frame 

stereotactic technique, the frameless technique is more comfortable for the patient 

because it no longer requires a frame to be attached to the patient‘s head. In addition, 

sticky fiducial marks on the patient‘s scalp can be used to register the anatomic structure 

to corresponding medical images. Moreover, fiducial-based registration is more accurate 

than the use of anatomical landmarks [20].  

Although the brain stereotactic operation technique has developed late in mainland 

China, some of the hospitals have been making great progress in this field. A series of 

technical innovations have resulted in greater accuracy of surgical localization, minimal 

invasion and optimized surgery outcomes. Surgical robotics also plays significant roles in 

facilitating the development of surgical instruments and sharing medical expertise 

between large and small, urban and rural hospitals [21]. In neurosurgery, telementoring 
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systems have made it possible for an expert surgeon in a major health care centre to 

provide real-time guidance for another surgeon in a remote location [22]. Based on such 

progress, the Navy General Hospital of the Chinese People‘s Liberation Army and the 

Yan‘an University Affiliated Hospital jointly performed successfully telemanipulation 

frameless stereotactic operations using the CAS-BH5 robot system. This preliminary data 

indicates that telemanipulation in frameless stereotactic surgeries is feasible, reliable and 

safe [23]. 

The stereotactic technique has continued to evolve, and at present employs an 

elaborate mixture of image-guided surgery that uses computed tomography, magnetic 

resonance imaging and stereotactic localization, will facilitate collaboration between 

surgeons, enhance training, allow for sharing of resources, and have wide applications in 

the field of neurosurgery in the future. 

2.2 The progress of craniopharyngiomas treatment 

2.2.1 Brief introduction to craniopharyngiomas 

Craniopharyngiomas are epithelial tumours arising along the path of the 

craniopharyngeal duct. Craniopharyngiomas may arise anywhere along the 

craniopharyngeal canal, but most of them are located in the sellar/parasellar region. 

In 1857, Zenker was the first to indentify masses of cells resembling squamous 

epithelium along the pars distalis and pars tuberalis of the pituitary [24]. Since then, 

many doctors reported and described successively the occupying lesions at the sellar 

region which were different from the common brain tumour such as the glioma and 

meningioma [25, 26]. Because the histology was not developed enough to detect all 

histopathologic changes of the tissue, craniopharyngiomas were not described completely 

until 1932. Susman, in 1932, detected the squamous epithelial cells in the pituitary glands 

of childhood populations, indicating the formation of the complete concept [27]. In the 

same year, Cushing introduced the name ‗craniopharyngioma‘ as a new neurological 
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terminology [28]. However, the first attempt for surgical removal of the tumour by Dr. A. 

E. Halstead in St. Luke‘s Hospital, while it was not diagnosed as craniopharyngioma, was 

reported in 1910 by Lewis [29]. 

2.2.2 The clinical manifestations of craniopharyngiomas 

The intracranial occupying lesions cause various clinical manifestations depending on 

the location, the size, and the growth potential of the lesions. Likewise, the potential 

proximity to and the subsequent pressure effects of craniopharyngiomas on vital 

structures of the brain (visual pathways, brain parenchyma, ventricular system, major 

blood vessels, and hypothalamo-pituitary system) predispose the patients to multiple 

clinical manifestations [30, 31]. The duration of the symptoms until diagnosis ranges 

between 1 week and 372 months [32]. Headaches, nausea/vomiting, visual disturbances, 

growth failure (inchildren), and hypogonadism (in adults) are the most frequently 

reported. Other less common or rare features include motor disorders, such as hemi- or 

monoparesis, seizures, psychiatric symptoms, such as emotional lability, hallucinations, 

paranoic delusions, autonomic disturbances, precocious puberty, the syndrome of 

inappropriate secretion of antidiuretic hormone, chemical meningitis due to spontaneous 

cyst rupture, hearing loss, anosmia, photophobia, emaciation, Weber‘s syndrome 

(ipsilateral III cranial nerve palsy with contra-lateral hemiplegia due to midbrain 

infarction), and Wallenberg‘s syndrome (signs due to occlusion of the posterior inferior 

cerebellar artery) [30, 33, 34, 35]. On the other hand, the hypothalamo-pituitary function 

at presentation may be severely compromised; interestingly, in a series of 122 patients, 

85% had one to three hormone deficits [36]. 

It has been implied that the presenting clinical manifestations may be distinct in the 

various age groups, with most commonly reported symptoms of raised intracranial 

pressure in young children, sexual immaturity in adolescents, visual field defects and 

features of hypopituitarism in young and middle-aged adults [37], and mental changes in 

elderly subjects [38]. In a large series of patients, comparing the presenting 

manifestations between childhood and adult populations, apart from headaches, 
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nausea/vomiting, papilloedema, and cranial nerve palsies, which were more frequent in 

children (probably associated with the high rates of hydrocephalus in this age group), no 

further differences in the clinical picture, the symptoms duration, and the rates of 

ndocrine deficits were found [32]. 

2.2.3 The imaging features of craniopharyngiomas 

In modern neurosurgery, computed tomography (CT), magnetic resonance imaging 

(MRI), and occasionally, cerebral angiography are useful tools for the neuroradiological 

characterization of the craniopharyngiomas. Although plain skull x-ray films have been 

superseded by newer imaging techniques, they may still be used to show an abnormal 

sella and tumour calcification [39].  

CT produces a volume of data that can be manipulated in order to demonstrate 

various bodily structures based on their ability to block an x-ray beam. Pre- and post-

contrast enhanced images in the axial plane followed by post-contrast coronal images 

have been advocated [40]. The CT appearance of craniopharyngiomas depends on the 

proportion of the solid and the cystic components; they are usually of mixed attenuation, 

the cyst fluid has low density, and the contrast medium enhances any solid portion, as 

well as the cyst capsule [40] (Figure 2.2.1).  
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Figure 2.2.1Axial unenhanced (A) and contrast-enhanced (B) brain demonstrate a 

craniopharyngioma locating suprasellar region with different contents 

MRI makes use of the property of nuclear magnetic resonance to image nuclei of 

atoms inside the body. MRI, particularly after contrast enhancement, is valuable for the 

topographic and structural analysis of these tumours [41, 42]. The appearance of the 

craniopharyngioma depends on the proportion of the solid and cystic components, the 

content of the cyst(s) (cholesterol, keratin, hemorrhage), and the amount of calcification 

present. The signal of a solid tumour is iso- or hypointense relative to the brain on 

precontrast T1W sequences showing enhancement after gadolinium, whereas it is usually 

of mixed hypo- or hyperintensity on T2W sequences [43]. Calcification is difficult to 

detect on MRI studies, but if a large area is present, it maybe seen as a low signal on 

T1W and T2W sequences. The cystic component is usually hypointense on T1W and 

hyperintense on T2W sequences [43]. Protein, cholesterol, and methemoglobin may 

cause a high signal on T1W images [41], whereas very concentrated protein, calcification, 

and various blood products may be associated with a low T2W signal [44]. Post contrast 

T1-weighted images demonstrate the thin peripheral contrast-enhancing rim of the cyst 

[43]. Interestingly, edema in the adjacent brain parenchyma are presenting a reaction to 

the craniopharyngioma itself or a focal disturbance in the cerebrospinal fluid (CSF) flow 
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spreading along the visual pathways may be present, providing a useful MRI finding for 

distinguishing craniopharyngiomas from other common parasellar tumours [45, 46]. 

(Figure. 2.2.2) 

 

Figure 2.2.2 Axial brain CT demonstrates a craniopharyngioma locating suprasellar 

region with cyst capsule and coarse calcification, and dilatation of the temporal horns of 

the lateral ventricles 

It is reported that the proportions of the craniopharyngiomas components were 

different. Their consistency is purely or predominantly cystic in 46–64% of the cases, 

purely or predominantly solid in 18–39%, and mixed in 8–36% [47, 48]. Notably, apart 

from rare cases with a significant cystic component, most of the intraventricular 

craniopharyngiomas have been reported as solid [49]. These determine the specific 

treatments to different craniopharyngiomas as described below.  

Apart from the inherent imaging features of craniopharyngiomas, CT or MRI also 
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show the pressure effects on surrounding structures, such as pituitary, hypothalamus and 

commissural optica. Hydrocephalus has been reported in 20–38% of the cases, it is 

probably more frequent in childhood populations (41–54% in children and 12–30% in 

adults for reasons not yet clarified [50, 47, 36]). 

2.2.4 The treatment options of craniopharyngiomas 

Craniopharyngiomas are an example of a benign tumour but with a malignant growth 

tendency. Since growth mode is unpredictable, craniopharyngiomas bring great surgical 

challenge, even with the advent of modern neurosurgical techniques. Their often large 

size, sharp and irregular margins, and their adherence to vital neurovascular structures do 

not allow a clear line of cleavage, and thus, make complete resection difficult and 

potentially hazardous to critical brain areas. Nevertheless, craniopharyngiomas have a 

high recurrence rate.  

2.2.4.1 The surgical excision with or without adjuvant conventional 

external beam irradiation 

Surgical excision is the primary therapy for craniopharyngiomas. The surgical 

approach should provide wide exposure of all parts of the tumour and minimize the 

damage to vital structures. Its choice depends on the location, the consistency, the degree 

of calcification, the shape and size of the tumour, as well as on the surgeon‘s preference 

and experience. Resection is usually attempted by craniotomy through a large number of 

approaches used alone or in combination for difficult tumours [51, 52, 53]. The less 

traumatic transsphenoidal route is best reserved for smaller intrasellar-infradiaphragmatic 

tumours [51, 54]. For massive lesions, a two-stage removal may be necessary: 

transsphenoidal debulking followed by craniotomy several weeks later. This policy may 

allow the tumour to descend caudally, facilitating its further resection during the second 

surgery [55, 56]. In cases of hydrocephalus, resection can be achieved more easily after 

decompression of the ventricles and stabilization of the clinical status of the patient. 
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Similarly, when large cystic components are present, fluid aspiration provides relief of 

the obstructive manifestations and facilitates the consecutive removal of the solid tumour 

portion; the latter should not be delayed for more than a few weeks, due to the significant 

risk of a cyst refilling [47]. 

Surgery combined or not with adjuvant external beam irradiation is currently one of 

the most widely used first therapeutic approaches for craniopharyngiomas. However, 

there tumours were considered radioresistant until 1937 when Carpenter first described 

the beneficial effects of radiotherapy after aspiration of cyst contents [57]. As to the 

recurrence rate, radiotherapy following radicality of resection show that gross total 

removal is associated with recurrence rates of 0–62% at 10-yr follow-up [47, 55, 52]. 

These are significantly lower than the ones following partial or subtotal removal (25–100% 

at 10-yr follow-up) [47, 55, 52]. Although not widely accepted, it has been proposed that 

the tumour control correlates with the irradiation dose [58, 59]. Thus, it seems likely that 

surgical resection combined with adjuvant external beam irradiation is the first option to 

treat primary craniopharyngiomas.  

The management of recurrent tumours remains difficult, because scarring/adhesions 

from previous operations or radiation decrease the possibility of successful excision. 

Actually, the success rate of total removal drops dramatically (0–25%), when compared 

with primary surgery, and there is increased perioperative morbidity and mortality (10.5–

24%), suggesting that for many recurrent lesions palliative surgery is the most realistic 

target [47, 52]. There was also no significant difference in the tumour control among 

patients offered adjuvant radiotherapy after primary surgery and those receiving 

irradiation for recurrence. Although the two treatment groups may not be comparable in 

terms of tumour aggressiveness, some of  neurosurgeons proposed that radiotherapy may 

be equally effective at the time of recurrence [60]. Therefore, a consensus has been 

reached by many doctors that therapy, such as radiotherapy, are more likely to be 

employed to treat recurrent craniopharyngiomas instead of intracranial resection.  
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2.2.4.2 The intracystic irradiation 

As a very important application of the brain stereotactic technique, intracystic 

irradiation, was first applied to treat craniopharyngiomas by Leksell in 1952 [61]. It 

involves stereotactically guided instillation of β-emitting isotopes into cystic 

craniopharyngiomas delivering higher radiation doses to the cyst lining than the ones 

offered by conventional external beam radiotherapy. The beneficial effect is achieved 

through destruction of the secretory epithelial lining causing elimination of the fluid 

production and cyst shrinkage [62]. Subsequent studies assessed the efficacy of various 

β-and γ-emitting isotopes (mainly 
32

phosphate, 
90

yttrium, 
186

rhenium, and 
198

gold); 

because none of them has the ideal physical and biological profile (i.e. pure β-emitter 

with short half-life and with tissue penetrance limited to cover only the cyst wall), there is 

no consensus on which therapeutic agent is the most suitable [63, 64, 65, 66]. 

It is worthwhile to note that the neurosurgery department of the Navy General 

Hospital in China performed a large number of intracystic irradiation operations 

employing the stereotactic technique, which achieved a good outcome [67, 68]. Sun 

reported that a treated group with 26 senior patients received stereotactic cystic fluid 

aspiration and 
32

P intracavitary irradiation. Among them, 10 patients were treated with 

gamma knife surgery in solid part of the tumors. The volume of stereotactic cystic fluid 

aspiration varied from 1.5 to 27ml (average 11.3ml). Visual acuity and fields improved in 

11 patients at different degrees postoperative instantly. No severe complications occurred 

in these patients. 26 patients were followed up from 12 months to 22 years (mean, 

46months). The actuarial tumor control rates were 83.3%. 10 patients received combined 

therapy and gamma knife surgery, of which 9 were followed up. The control rates for the 

solid part of tumors was 88.9%. He drew a conclusion that stereotactic 
32

P intracavitary 

irradiation is a simple, safe and effective method for craniopharyngiomas. For the 

patients who cannot endure a craniotomy or have postoperative residual and recurrent 

craniopharyngiomas, stereotactic cystic fluid aspiration and intracavitary brachytherapy 

can be used for the cystic part and gamma knife surgery for the solid part of the tumors 

[68]. 
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In summary, intracavitary irradiation seems to offer a good prospect for the reduction 

or stabilization of cystic craniopharyngiomas. This effect, combined with its reported low 

surgical morbidity and mortality, renders this management option attractive for 

predominantly cystic tumors and particularly the monocystic ones. In the mean time, the 

risk of isotope leakage into the surrounding structures may be eliminated by adopting 

appropriate technical measures, such as accurate volume determination of the cyst and 

cyst puncture with a very small needle [69]. 

2.2.4.3 Stereotactic radiosurgery 

Stereotactic radiosurgery delivers a single fraction of high dose ionizing radiation on 

precisely mapped targets, keeping the exposure of adjacent structures to a minimum and 

possibly reducing the late radiation-induced adverse sequelae. Tumour volume and close 

attachment to critical structures are limiting factors for its application, with 10 and 15 Gy 

being the maximum tolerated doses for the optic apparatus and other cranial nerves, 

respectively [70]. Its role in the treatment of craniopharyngiomas has been assessed in a 

small number of reports, which cover relatively short follow-up periods. 

Yu, a neurosurgeon of the Navy General Hospital, offered combined treatment with 

stereotactic instillation of 
32

P (for cystic parts) and gamma knife surgery (for solid parts) 

in 46 patients [mean age, 39 years (range, 3–60);28 had previously undergone total or SR 

with or without external beam radiotherapy, and 14 had previously received stereotactic 

intracavitary irradiation]. The marginal dose of gamma knife therapy was between 8 and 

18 Gy, and the inner surface of the cyst wall received a cumulative dose of 250 Gy. Three 

subjects received another radioisotope injection due to cyst recurrence. The assessment of 

the imaging outcome of 38 patients after a mean follow-up of 16 months showed that the 

tumor control rate (disappearance, decrease, or no change) was 90% in solid and 85.7% 

in mixed tumors (92.1% for their solid segment) [67]. 

In a word, stereotactic radiosurgery achieves tumor control in a substantial number of 

patients with small volume lesions. It may be particularly useful for well-defined residual 
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tissue after surgery or for the treatment of small solid recurrent tumors, especially after 

failure of conventional radiotherapy. 

2.2.5 Therapeutic strategy 

A clear consensus on the best therapeutic approach of primary or recurrent 

craniopharyngiomas has not been established as yet. Based on the reports in this chapter, 

a therapeutic strategy is proposed and is shown in Figure.2.2.3. 

As long as pressure effects appear, therapeutic intervention is suggested for all 

patients with imaging consistent with a craniopharyngioma. Clinical and radiological 

factors at presentation may guide the initial approach. When compressive signs or 

symptoms are evident, surgical excision is considered necessary, which in cases of 

predominantly cystic lesions may be facilitated by previous fluid aspiration. Resection is 

reasonable, provided it is performed by skilled neurosurgical hands and hazardous 

manipulations to critical brain areas are avoided. In view of the poor local control rates 

associated with radiographically confirmed residual tumours and the high morbidity and 

mortality after reoperation(s), in cases of non-total removal and conservative surgery, 

postoperative irradiation is recommended. Although this policy is debated for young 

children, the radiation toxicity to the developing brain needs to be balanced with the risks 

of a recurrent mass and subsequent possible multiple surgical procedures. In small tumors 

not causing pressure effects (visual, neurological, hypothalamic), radiotherapy (preceded 

by biopsy for confirmation of the diagnosis) offers an attractive option for avoiding the 

risks of surgery. In predominantly cystic craniopharyngiomas, previous aspiration of the 

fluid may decrease the adverse sequelae of possible cyst enlargement during irradiation. 

The therapeutic decisions for recurrent disease depend on the nature of the previous 

interventions and the severity of the clinical picture. In recurrent lesions not previously 

irradiated, radiotherapy seems beneficial. Given the high morbidity and mortality 

accompanying repeated surgery, this option is suggested only in cases of acute pressure 

effects. 
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The plans for control of further local failure are individualized and include the 

alternatives of gamma knife radiosurgery, cyst controlling procedures, surgical debulking 

(for significant solid life-threatening component), and systemic chemotherapy. 

 

 

Figure 2.2.3 Therapeutic strategy of craniopharyngioma 

       

No matter whether it is a primary or recurrence, stereotactic operation is the best 

technique for aspiration and biopsy of craniopharyngiomas. In addition, stereotactic 

operation is particularly suited to predominantly cystic craniopharyngiomas since it is 

minimally-invasive, effective and repeatable. Using the frame or frameless stereotactic 

technique, a large number of craniopharyngiomas patients received operations and 
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yielded desirable outcomes in the Navy General Hospital [68, 67, 9]. It is reasonable to 

say that craniopharyngiomas are the major form of the sellar/parasellar tumour, and the 

feature data of craniopharyngiomas are representative. Moreover, the same types of 

tumour make it simpler for analysis, comparison and induction. Therefore, image data of 

craniopharyngiomas were collected as research objects to analyze the relationship among 

the lesions, brain blood vessels and the neurosurgical path in this study. 

2.3 The progress in the correction of MR images distortion 

MR scanners use strong magnetic fields to form images of the human body. Most 

medical applications rely on detecting a radio frequency signal emitted by excited 

hydrogen atoms in the body (present in any tissue containing water molecules) using 

energy from an oscillating magnetic field applied at the appropriate resonant frequency. 

The orientation of the image is controlled by varying the main magnetic field using 

gradient coils. As these coils are rapidly switched on and off they create the characteristic 

repetitive noises of an MRI scanner. The contrast between different tissues is determined 

by the rate at which excited atoms return to the equilibrium state. As a common 

examination, MRI is often used for diagnosis as well as treatment, especially in the 

neurosurgical area. MR image guided neurosurgery is one of the favoured applications 

for the usage of MRI in the clinic, and has become very popular because it provides 

accurate, informative and high-resolution medical images. An accurate MRI requires a 

magnetic field that is both strong and uniform, however, the condition of a magnetic field 

has not always been satisfied. 

2.3.1 Progress in the correction of MR images distortion before or 

during the process of MR scan 

An unclear MR image can be caused by MRI distortions, due to undesired 

components such as non-linearity of the gradients and static magnetic field 

inhomogeneity [71,72]. Using a Fourier transform image formation method, Kawanaka 
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et.al sought a relationship between these undesired components and the image distortion. 

They also proposed a way of estimating the undesired components of fields from the 

image conventionally reconstructed from an appropriately designed reference object. The 

proposed method can be utilized not only for the measurement of static and gradient 

fields but also for the correction of image distortion[71]. The study focused on the 

distortion caused by the magnetic field, and tried to correct it before images had been 

generated. In other words, to correct MR image distortions during the process of an MR 

scan. 

On the other hand, a patient‘s body, with different proportions of tissues (fat and 

muscle, etc.), will perturb the magnetic field. Motions of the patient, implantable devices, 

such as dentures, will also induce field inhomogeneity. Many approaches have been 

developed including choosing maximum read-out and slice selection gradients [72] and 

the registration of fiducial markers [73]. In 1992, Bakker et. al reported an approach to 

analyze the machine-dependent and object-induced geometric distortion in a 1.5T MR 

scanner. System related imperfections were measured by systematic variation of the 

strength, direction, and polarity of the read-out gradient in imaging experiments on a grid 

of cylindrical sample tubes. Field related errors were shown to be inversely proportional 

to gradient strength, whereas gradient related errors turned out to be virtually independent 

of gradient strength. These experiments revealed a negligible influence of the object on 

the gradient error distribution, and lead to the conclusion that correction for the 

nonlinearity of the gradients only requires the application of system dependent correction 

factors. In the study, correction of system related geometric distortions in MR images can 

readily be performed by looking up the distortion value and replacing by real sample 

parameters. However, this correction had to be done manually at that time.  

In another way, the static magnetic inhomogeneity were analyzed by varying the 

direction of the read-out gradient in Moerland‘s study in 1995 [73]. For the purposes of 

accuracy assessment, external and internal landmarks were inducted in their study. Tubes 

attached to the cast and in the localization frame served as external landmarks. In the 

midsagittal plane the brain-sinussphenoidolis interface, the pituitary gland-sinus 



Chapter 2    Literature Review 

 

  Page 

21 

 

  

sphenoidalis-interface, the sphenoid-bone and the corpora of the cervical vertebra served 

as internal landmarks. Landmark displacements as observed in the reversed read-out 

gradient experiments were analyzed with respect to the contributions of machine-related 

static magnetic field inhomogeneity and susceptibility and chemical shift artifacts. The 

result showed that machine-related, chemical shift and susceptibility-induced static 

magnetic field inhomogeneity were of the same order, resulting in spatial distortions 

between -2mm and +2mm with only negative values for the chemical shift effect. After 

correction for the machine imperfections and susceptibility artifacts, the geometric 

accuracy of the landmark in the localization was better than 1.3 mm. Thus, Moerland and 

his colleagues developed an approach to intensively analyze the factors causing field 

inhomogeneity and corrected the distortion separately.  

In 1995, Maciunas et. al also reported a universal method for geometric correction of 

MRI [74]. In their study, patients with a so-called Kelly-Groerss modified Todd-Wells 

stereotactic frame and implantation of four skull-mounted fiducial markers underwent 

imaging with MR scans. As the reference, CT images were acquired simultaneously. 

After obtaining each MR image, an additional MR image was acquired with identical 

imaging parameters, except that the read-out gradient was reversed. The MR images were 

corrected for scale distortion by using the stercotactic frame as an object of known shape 

and size to estimate a scale factor for the three directions. A new image, without 

inhomogeneity distortion, was then generated from the pair of distorted images acquired 

with reversed readout gradient.  The Euclidean error of the distance between the target 

centroids in MR was calculated as the target registration error. As a result, the Euclidean 

error in target registration between CT and MR was significantly reduced.  

In the same year as Maciunas‘s study was published, Balac and Caloz reported their 

study concerning MRI distortion caused by magnetic susceptibility artifacts [75]. Since 

some of the artificial implants, a paramagnetic material for instance, have magnetic 

properties, they might disturb the magnetic field in the MR scanner. In their study, a 

mathematical model was employed to numerically compute the disturbances induced by 

the implant. Since the method is linked to an artifact reconstruction model to get 
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simulated images, it has to be well suited for general three dimensional geometries and to 

provide very accurate results in a fine grid around the implants. 

At present, each MR scanner used in almost all the modern polyclinic hospitals has its 

own module to reduce the machine-related distortion to a minimum level automatically, 

and head motions can be detected by some modules [76], but it still cannot eliminate the 

distortion entirely. For example, the motions of the patient during the MR scan, metal 

implants in the body and the flexible background magnetic field might lead to inevasible 

MR image distortions which could rarely be eliminated by the integrated modules. 

Therefore, another method that will possibly wipe out MRI distortions by analyzing the 

existing MR images is required. 

2.3.2 Progress in the correction of MR images distortion after the 

process of MR scan 

All the methods, as described above, for detection and correction of MRI distortions 

were performed by measuring the gradient of the magnetic field or using spatial markers. 

These approaches need standard samples or similar devices beforehand, and then analyze 

the relationship between the original objects and output MR images. These have to be 

done before or during the process of an MR scan, which in turn develop the accuracy of 

subsequent MR images. To analyze the existing MR images, other references need to be 

introduced.  

A number of approaches have been tried to analyze MRI distortions with reference to 

CT images that are considered as distortion-free. One of the most popular algorithms 

applied in registering two sets of image data was presented by Arun et.al, based on the 

singular value decomposition (SVD) of a matrix, for finding the least-squares solution of 

distortion factors [77]. The SVD, in linear algebra is a factorization of a real or complex 

matrix, with many useful applications in signal processing and statistics. It is also very 

popular in data processing and information analyzing [78]. In their study, two 3D point 

sets (pi); i=1, 2, 3…, N (here, p’I are considered as 3×1column matrices) were given 
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p’i=Rpi+ T + Ni                                                     (2.1) 

where R is a 3 × 3 rotation matrix, T is a translation vector (3 × 1 column matrix), and Ni 

is a noise vector (Formula 2.1.). The SVD of the 3 × 3 matrix was used to find the least-

squares solution for minimizing R and T. This algorithm has been used in the registration 

of two sets of fiducial markers originating from CT and MR images, and inspired a 

number of scientists to expand it. Subsequently, a series of algorithms and applications 

were developed based on Arun‘s study. However, as an important parameter, a scaling 

factor had not been determined in Arun‘s procedure (Figure 2.3).  

 

Figure 2.3 Schematic diagram of decomposing distortion factor into rotation, translation 

and scaling factor 

Based around a singular value decomposition similar to Arun et.al, Challis expanded 

their algorithm to allow for the determination of a constant scaling factor [79]. The 

procedure, which requires the coordinates of three or more noncollinear points, is based 

around the singular value decomposition, and provides a least-squares estimate of the 

rigid body transformation parameters. In his study, the procedure was used to determine 

the attitude of a rigid body, and for osteometric scaling. 

In order to estimate the medical imaging distortion from two m-D point set patterns, 

the classic least square algorithm using SVD was often used, but the algorithm was not 

perfect. Ramos et. al improved the least square algorithm and proposed a formulation by 

the use of total least squares, where both data sets are treated as noise [80]. Here, the 
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noise vector was emphasized as an important parameter because 2 sets of image data 

could be corrupted by noise. The new algorithm takes advantage of the noise structure in 

the data. That is, they assumed there was noise present in both data patterns, as well as a 

noise-free column for the translation vector. Also, the proposed algorithm computed all 

the parameters at once, without averaging the data. In their study, they treated the image 

registration problem from a mixed least square-total least square point of view, and 

gained positive results.  

These algorithms consider the noise as coming from one image only, when in fact 

both images are corrupted by noise. In addition, these algorithms may suffer from round-

off accumulation errors due to an SVD of a matrix product between two noises corrupted 

matrices. 

CT is considered as distortionless because the X-ray, which is used by CT scanners to 

generate images, penetrates the tissues of human‘s body in a straight line with little 

diffraction. Thus, CT images are often referenced by MR images to correct MRI 

distortions. In Alexander‘s study, an image fusion technique based on a chamfer 

matching algorithm was used to eliminate MR image distortion. The fusion process relies 

on the automatic segmentation of the surfaces of the bony anatomy in both CT and MR 

volumes. The bone surfaces from CT are aligned to the bone surfaces in MR using the 

chamfer matching method. As the result, the post fusion images between the CT and MR 

anatomy as visualized by the soft tissue components inside the skull are quite overlapping 

[81].  

Similarly, Cohen et al demonstrated that a method of co-registered CT and MR 

images by matching cranial landmarks in the two scans, and software which was based 

on least-squares fitting was used to make comparisons among all the landmarks. They 

testified that their method has increased MR image accuracy [82]. Eggers et. al scanned 

two human cadaver heads using MRI, while CT scans of the same heads were used as a 

benchmark. Using a stereotactic frame, corresponding images of MRI and CT were 

superimposed and the concordance of the images of the mandibular nerve in MRI with 



Chapter 2    Literature Review 

 

  Page 

25 

 

  

those of the mandibular canal in CT was assessed. Eventually, they drew the conclusion 

that MRI of the mandibular nerve is sufficiently accurate [83].  

The algorithms mentioned above are widely employed in medical registration, which 

are applied generally to register MR images with reference to CT images or to coregister 

them with each other.  

2.3.3 Progress in the correction of MR images distortion using spatial 

references 

In recent years, a number of methods have employed special phantoms for mapping 

geometric distortions in MR images. The phantom described in Wang‘s et al paper was 

designed based on the concept that a point in space can be defined using three orthogonal 

planes. The phantom contained over ten thousand control points to ensure the accuracy of 

the mapping system [84]. It was also reported in another paper that a large 3D phantom 

with spherical balls was used to characterize geometric distortion [85]. Although it is an 

effective way to correct MR distortion in accordance with a hypostatic phantom, it is still 

hard to realize without powerful engineering technical support.  

In this research, we seek to develop a new way to detect and eliminate MR distortion, 

ensuring MR data in this study are accurate and reliable. The method will be described 

below.  

2.4 Overview of cerebral vascular system 

As a great oxygen expenditure organ of the human body, more than 20% of the 

oxygen we breathe is consumed by brain. It must receive a sufficient blood supply 

otherwise cerebral ischemia symptoms such as megrim, apopsychia and limb weakness 

may occur [86]. There are four ascending arteries that supply to the cerebral circulation; 

two carotidarteries and two vertebral arteries. Some variation is occasionally found in 

these vessels. The left common carotidartery derives directly from the aortic arch, while 
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the right common carotid emanates from the brachiocephalic artery coming from the 

aortic arch. The brachiocephalic artery derives to the right vertebral artery. The 3
rd 

major 

artery to branch off the aortic arch is the left subclavian artery. The left vertebral artery 

branches off the left subclavian shortly after it branches out from the aortic arch. (Figure. 

2.4.1) 

 

Figure. 2.4.1 Carotid and vertebral arteries deriving the aortic arch and secondary vessels 

2.4.1 Carotid system 

The common carotid arteries also proceed in a rostral direction in a more 

anteriorposition in the neck. At nearly the level of the fourth cervical vertebra, the 

common carotids bifurcate, forming the internal and external carotidarteries. The latter go 

on to supply the extracranial tissues of the face and most parts of the dura. The internal 

carotid arteries go ahead into the cranial cavity where they eventually give rise to the 

right and left anterior (ACA) and middle cerebral (MCA) arteries, the four remaining 

cerebral vessels. 
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Just prior to entering the circle of Willis (see below) where the internal carotid and 

vertebral systems confluence via connecting vessels or communicalis arteriae, the 

internal carotids give rise to two major vessels, the ophthalmic artery and the anterior 

choroidal artery. Besides to supplying structures around the eye and the anteriorportion of 

the dura, one branch of the ophthalmic artery enters the eye goes along with the optic 

nerve and supplies the retina. The anterior choroidal artery will be described in greater 

detail later. As its name shows, it is important in supplying the choroidplexus (lateral 

ventricles), but also supplies parts of the visual and motor systems structures and the 

temporal poles. 

2.4.1.1 Circle of Willis 

The internal carotid communicates vertebral vascular systems at the base of the brain, 

anterior to the brainstem and beneath the optic chiasm (Figure. 2.4.2). This 

communication or anastomosis is known as the circle of Willis, a 17th century anatomist 

(Thomas Willis, 1621–1675). The circle of Willis provides a potential blood flow for 

collateral blood supply following the possible block of one of the major cranial arteries 

feeding into it. However, this potential collateral system has big variability by different 

individuals and can be influenced by several factors. This ―circle‖ is formed by the 

presence of ―communicating‖ arteries that link the right and left internal carotids by the 

vertebral circulation. Just rostral to the third cranial nerves, slightly posterior to the 

mammillary bodies, the basilar artery bifurcates, turning into the right and left posterior 

cerebral arteries (PCA). Close to the bifurcation, each posterior artery sends an anterior 

branch that connects to the internal carotidsipsi laterally. These connecting vessels are the 

posterior communicating arteries.  

As to the bilateral internal carotids, they divide into the middle and anterior cerebral 

arteries. The middle cerebral artery (MCA), which is the primary extension of the internal 

carotid, goes dorsal-laterally up through the lateral fissure between the temporal and 

frontal lobes. The anterior cerebral artery (ACA) initially remains more medial as it 

proceeds anteriorly toward the frontal lobe, goes through the fissurae interhemisphaerica. 
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Just anterior to the optic chiasm, the anterior communicating artery connects the two 

anterior cerebral arteries, in turn completing the circle. 

However, the above description of the circle of Willis represents the more typical 

pattern, some individual variations may be noted. Although the presence of a completed 

―circle‖ in the majority of individuals, since there is little ―communication‖ between the 

right and left internal carotids via these communicating arteries, they may not be much 

blood flowing around the circle. This relative lack of flow around the circle of Willis 

seems primarily to be the fact that: 1)the interconnecting arteries themselves are often 

relatively small, 2)there is relatively equal hemodynamic pressure from one arterial 

system to the other arteries, thus not encouraging flow between the systems. Nevertheless, 

if at a certain time one of the major arteries, one of the internal carotids for instance, 

becomes gradually stenosed, a pressure gradient makes the shunting of blood from one 

side to the other artery. As a result of this shunting of blood flows through the posterior 

and/or anterior communicating arteries, the interconnecting arteries gradually enlarge, 

creating a larger flow, thus facilitating more shunting of blood. So, it is possible to find 

that a fairly complete thrombotic occlusion of one internal carotid arteries with little if 

any clinical manifestations of compromise of cerebral blood flow [86]. But, if such an 

occlusion were to occur more acutely, as a result of an embolus for instance [87], the 

interconnecting vessels would not have time to adapt and a major stroke is likely to ensue. 
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Figure. 2.4.2 Ventral view (sketch and MRA) of vertebral–basilar system and its 

relationship to the brainstem and carotid circulation 

The “circle of Willis”is creating anastomoses between the posterior and carotid 

circulations. Figure below: MRA showing same vessels from axial perspectives. 
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2.4.1.2 Anterior Cerebral Artery 

As described above, the ACA originates at the bifurcation of the internal carotid into 

the middle and anterior cerebral arteries. The ACA, normally smaller than the MCA, 

proceeds frontally along the base of the frontal lobe. Shortly after their site of origin, the 

anterior communicating artery links the two ACAs. Aneurysms have a tendency to 

develop at sites where proximal branching of the arteries occurs [88], and the ACA is a 

common site for such aneurysms. After to the anterior communicating artery, the main 

branch of the ACA proceeds anterior-dorsally through the fissure interhemispheric. It 

then curves around the corpus callosum genu and crawls the corpus callosum posteriorly 

along its dorsal surface in the callosal sulcus, which seats between the corpus callosum 

and the cingulate gyrus (Figure. 2.4.3). This part of the ACA is known as the 

pericallosalartery. Normally, a second more dorsally positioned branching of the ACA 

follows the cingulate sulcus, namely the calloso marginal artery. The anterior cerebral 

artery also sends off secondary arteries that supply such as the orbital, front lobe polar 

and the medial frontal and parietal cortices, including most if not all of the cingulate 

gyrus. Branches of this artery also supply the genu and more or less the anterior two 

thirds of the corpus callosum body, as well as parts of the anteroventral striatum and the 

anterior limb of the internal capsule. As shown in (Figure. 2.4.4), the distal branches of 

this anterior system also tend to overlap slightly onto the dorsal–lateral surface of the 

frontal and parietal lobes. 
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Figure.2.4.3 Midsagittal view of the cerebral hemisphere shows the general distribution 

of the main branches of the anterior and posterior cerebral arteries 

 

Figure 2.4.4 Lateral view illustrates the distribution of the middle cerebral artery 

The main trunk of the MCA comes off the internal carotid and reaches the surface of the 

hemispheres by passing through the lateral fissure. As illustrated in Figure.2.4.4, the 
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anterior and posteriorcirculations are most prominent on the medial surface of the 

cerebral hemispheres, but also extend slightly onto the lateral surface of the hemispheres 

where they anastomose with the terminal branches of the MCA. 

2.4.1.3 Middle Cerebral Artery 

The larger middle cerebral artery is most likely the direct continuation of the internal 

carotid artery. This, combined with its larger inradium, and forming greater 

hemodynamic flow, increases the probability that emboli emanating from the heart or 

carotid vessels will affect the distribution of the MCA [89] rather than going up through 

the ACA. After dividing from the terminal end of the internal carotid, the MCA goes 

dorsolaterally into the lower aspect of the lateral fissure. Within the frontal–parietal 

operculum in the region of the insularcortex, the MCA separates into various cortical 

branches (varying from one individual to another) that come off from the superior surface 

of the lateral fissure. These MCA branches including the orbitofrontal, prefrontal, central, 

postcentral, anterior and posterior parietal, angular, and the posterior, middle, anterior 

and polar temporal arteries supply almost the whole lateral convexities of the frontal, 

parietal, and temporal lobes. This adds up to most of the lateral surface of the brain. The 

MCA also provides blood flow to the cortex of the insula and the claustrum. Penetrating 

arteries such as medial and lateral lenticulostriate arteries, coming off the MCA, supply 

other internal subcortical structures. The terminals of both the anterior and posterior 

cerebral arteries, which mainly supply the medial cortical surfaces, extend slightly onto 

the dorsolateral and ventrolateral surface of all lobes where they overlap with the 

terminals of the MCA. This region of overlap is indicated to as the watershed or border 

zone areas, and as we shall see may become important in certain hypotensive states [89] 

or in some cases infarction of the internal carotid artery and hypertension. 

2.4.2 Vertebral system 

The vertebral arteries proceed in their rostral course along the ventral surface of the 
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cervical spine and become encased in its bony processes, namely the transverse foramen. 

After entering the foramen magnum, the vertebral arteries lie adjacent to the ventral 

surface of the medulla in the brainstem, namely the basilar sulcus. Then, these two 

vertebral arteries join to form the singular basilar artery at the level of the pontine–

medullary junction (Figure. 2.4.2and 2.4.5). Finally, the basilar artery itself will bifurcate 

just above the pons, at the level of the midbrain, emit the two posterior cerebral arteries 

(PCA). As shown in Figure. 2.4.2 and 2.4.3, there are several prominent cortical branches 

of the PCA such as the parietooccipital artery, the calcarine artery (which supplies 

Brodmann‘s area 17, the primary visual cortex), the anterior and posterior temporal 

branches of the PCA (supplying the ventral and medial surfaces of the temporal lobes, 

including parts of the hippocampus). 

 

Figure 2.4.5 Lateral view of the vertebral–basilar system shows its relationship to the 

internal carotid artery 
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The Figure also shows the distal part of the vertebral artery passing through the 

transverse processes of the cervical vertebrae before entering the foramen magnum and 

forming the basilar artery. 

In addition to the posterior cerebral arteries, the vertebral and basilar arteries emit 

multiple branches throughout their course along the brainstem. These branches, as shown 

in Figure 2.4.2, represent the main source of blood supply both to the brainstem and the 

cerebellum, as well as to the cervical part of the spinal cord. There are three main 

branches of the vertebral arteries: 1) the anterior spinal artery, 2) the posterior spinal 

arteries, and 3) the posterior inferior cerebellar arteries. After the vertebral arteries join to 

form the basilar artery, the latter emit two other major vessels supplying the cerebellum 

and brainstem: the anterior inferior cerebellar and the superior cerebellar arteries. The 

anterior inferior cerebellar artery supplies the anterior and inferior parts of the cerebellum 

and the caudal pons. The superior cerebellar artery supplies the superior aspect of the 

cerebellum, the rostral pons, and portions of the midbrain. Other smaller arteries, namely 

pontine branches derived from the basilar artery and supply brainstem structures, 

particularly the pons. The areas supplied by the posterior cerebal artery will be described 

below. 

2.4.3 Posterior cerebral artery 

As mentioned earlier, the posterior cerebral arteries are part of the vertebral system 

and are formed by the bifurcation of the basilar artery. After their origination at the level 

of the midbrain, they round posteriorly around the midbrain with the main trunks 

remaining on the medial surface of the occipital–temporal lobes (shown in Figure2.4.3). 

Branches of the PCA supply the inferior and medial part of the temporal lobe, except for 

the temporal pole. This includes part of the hippocampal gyrus and the parahippocampal 

and occipitotemporal gyri. However, part of the hippocampus is supplied by the anterior 

choroidalartery. As shown in Figure2.4.3, occipital branches of the PCA supply the 

medialportions of the occipital lobe, the lingual gyrus and cuneus, including the 

primaryvisual cortex, and parts of the medial superior parietal lobule. The 
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corpuscallosum splenium also is supplied by the PCA system. Similar to the above, the 

terminals of the PCA tend to overlap and anastomose with the terminal branches of the 

ACA and the MCA both on the margins of the lateral convexities as well as on the medial 

surfaces of the hemispheres. 

2.4.4 Summary of the arterial blood supply to the brain 

In general, the brainstem (midbrain, pons, and medulla) and cerebellum as well as the 

upper part of the spinal cord primarily are supplied by vessels arising from the vertebral 

and basilar arteries. A part of midbrain structures also are supplied by the anterior such as 

substantia nigra, and posterior such as tectum. The lateral convexity of the cerebral 

hemispheres is basically supplied by the branches of the MCA, which along with the 

ACA come off from the bifurcation of the internal carotid arteries. However, both the 

ACA and PCA overlap the distribution of the MCA on the margins of the lateral surface 

of the hemispheres. 

The inferior and medial surfaces of the hemispheres are supplied by the ACA and 

PCA. The ACA supplies the orbital and medial surface of the frontal lobes, including the 

sensorimotor regions for the lower limbs and most of the remaining medial parietal 

cortices, the cingulate gyrus, and most of the anterior 2/3 of the corpus callosum. The 

PCA supplies the medial surface of the occipital cortex, including the visual areas, parts 

of the medial superior parietal lobule, most of the medial and inferior temporal lobe, and 

the splenium of the corpus callosum. 

The basal ganglia primarily are supplied by the lenticulostriate arteries that emit from 

the proximal part of the MCA. However, parts of these structures also are supplied by the 

anterior choroidal artery and small vessels emiting off the posterior communicating artery. 

The thalamus mainly is supplied by the smaller vessels that come off the PCA and 

posterior communicating arteries, including the thalamoperforating, inferior thalamic, 

thalamogeniculate, and posterior choroidal arteries. The anterior choroidal arteries also 

may make a minor contribution to these areas. The anterior hypothalamus mainly is 

supplied by the small penetrating, anteromedial vessels deriving from the ACA and/or 
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anterior communicating artery surround the circle of Willis, while the more posterior part 

of the hypothalamus are supplied by the posterior penetrating arteries. 

Most of the anterior and posterior limb of the internal capsule also is supplied by the 

lenticulostriate arteries. Small arteries that derive directly from the internal carotid may 

supply the genu. The anterior choroidal artery normally supplies some of the more ventral 

portions of the posterior limb, as well as the retrolenticular portions. 

The visual system is supplied by multiple vessels. The retina of each eye is 

exclusively supplied by its corresponding ophthalmic artery from the internal carotid. The 

optic nerves, optic chiasm, and the initial segment of the optic tracts mainly are supplied 

by the penetrating arteries derived from the ACA and the anterior communicating artery. 

Small vessels from the internal carotid or middle arteries primarily supply the more 

anterior part of the optic tract. The more posterior parts of the tract, along with parts of 

the lateral geniculates, are supplied by the anterior choroidal arteries. The lateral 

geniculates are supplied by the posterolateral penetrating arteries of the posterior artery 

system. The superior optic radiations are supplied by the posterior cortical branches of 

the middle cerebral artery, while the inferior radiations are supplied by the posterior 

cerebral artery (PCA). The primary visual cortex and parts of the secondary visual cortex 

are supplied by the PCA as well. 

The motor system also is subserved by a variety of vessels [89]. The disruption of any 

of these vessels can produce a weakness or paralysis. The primary motor cortex that 

conducts the face, hands, and trunk is supplied by the MCA, whereas the legs, especially 

the lower legs and feet, are represented on the medial surface of the hemispheres, and 

thus are supplied by the ACA. The MCA and ACA watershed territory supplies the motor 

cortex that mediates control of the proximal arm and proximal leg. The basal ganglia and 

internal capsule primarily are supplied by the lenticulostriate arteries (branches of the 

MCA), although some input is derived from the anterior choroidal and posterior 

penetrating arteries. The corticospinal tracts are supplied by various small vessels 

deriving both from the internal carotid and posterior cerebral artery systems at the level 

of the midbrain and by branches of the basilar and vertebral arteries at the level of the 
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pons and medulla. The cerebellum, the disruption of which can lead to difficulties with 

balance, coordination, and weakness, is supplied by the superior cerebellar artery, the 

anterior and posterior cerebellar arteries that derive from the vertebral system. 

The arterial blood supply pattern described above is extremely important to clinical 

practice as well as the research in this study. It provides the theoretical basis for building 

the vascular template study which is described below.  

2.5 Progress in building a vascular template 

As a key principle in neurosurgical path planning, avoiding brain vessels should 

always be complied with. Therefore, the vessels must be visible to the neurosurgeon 

during the process of path planning. Although vascular angiography is the best way to 

show the brain vessels and the golden criterion to diagnose cerebrovascular diseases, 

MRA is another essential examination to the cerebrovascular system, and the latter is 

much easier to acquire. Building an average distribution architecture of brain vessels as a 

template and implanting the template in to patient‘s MR images, will help the 

neurosurgeon to design a safe surgical path.  

As described before, the basic cranial arteries including the circle of Willis are the 

trunks of the brain arteries system, while arterial branches extending from the trunks are 

much smaller. In clinical practice, arterial branches are rarely a hazard for the biopsy 

needle or the electric pole because of the blunt tips of these operative instruments and the 

significant difference of diameters between the vessels and tips. Otherwise, it leads to the 

disastrous outcome if the artery trunk was damaged by any surgical instrument. 

Undoubtedly, to perform a safe stereotactic operation, cerebral vessels must be 

considered by the neurosurgeons using their experience or a visible vascular distribution 

pattern. The aim of this study is to rebuild a visible cerebral vascular distribution pattern 

derived from the existing MRA data, which in turn guides the stereotactic operation.  
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2.5.1 Progress on the calculation of mean dataset 

The difficulty facing the calculation of an average shape from a group of similar 

shapes lie in the fact that there are no correspondences between those shape points, which 

is attributed to unequal numbers of shape points between sample data, the deformable 

nature retained by these points, and the unavailability of standard representations of those 

deformable/non-rigid shapes. As a result, in the field of computer vision, representation 

of shapes involves mathematical modelling using a type of constrained and non-negative 

functions, which has directly led to the requirement of proper statistical models on 

appropriately constrained functional spaces. Subsequently, consideration must be given 

to metrics, probability models and estimators underpinning those representations. As such, 

re-parameterisation of shapes, also known as non-rigid registrations, whereby noise is 

usually taken into account [90], should be invariant of representation spaces as well as 

being easy to implement. Towards this end, in addition to classic curves and surfaces, 

which are a natural choice but difficult to perform statistical analysis, a number of 

representations have been proposed very recently built on statistical models. In [90], 

researchers propose a “spherical”  version of the Fisher-Rao metric for imposing 

Riemannian structure on a collection of related spaces: the space of probability density 

functions, time-warping functions, re-parametrization functions, etc. For another example, 

in [91], a new joint clustering and matching algorithm is proposed which proceeds in 

three steps involving clustering, non-rigid mapping estimation and mean shape estimation.  

Alternatively, in [92], a divergence approach is employed through the definition of 

Havrda-Charvat entropy to contend with the dissimilarity between point sets. 

To define a statistical model of shapes, the underlying space is not a vector one but 

nonlinear (differentiable) manifolds, which has led to the employment of Riemannian 

geometry, within which, points can vary smoothly from one to another owing to the 

formula of inner product on a tangent space. Consequently, the drive to measure the 

distance between two probability distributions has seen a direct rise in the number of 

applications of the Fisher-Rao metric recently, seven decades after it was first published 

in 1945 [93]. More recently, it has also been opted for [94] to construct a 
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neuroanatomical shape atlas with a very promising result. In addition, as a probability 

model, square-root density function is resorted to in this paper since it appears to offer the 

only one invariant of re-parameterisation. 

2.5.2 Progress on the vascular skeletonisation 

Although modern CT or MR scanners have implanted modules to reconstruct arteries, 

veins and other structures into 3D versions, it only shows an individual pattern of these 

structures rather than a common pattern. As to the brain vessels, a common cerebral 

vascular distribution pattern provides more useful information to the neurosurgeons in 

case they cannot acquire patients‘ individual vascular images for some reason. The 

Thinning algorithm is widely use by many studies, such as medical surface reconstruction, 

medial line extraction and generating medial faces [95]. In She‘s study, a novel 3D 

Thinning algorithm, which takes advantages of both parallel and symmetry, is developed. 

This algorithm was validated by 3D image analysis, and the skeleton of 3D objects 

derived from it presents high quality. For instance, the skeletons are accurate, one voxel 

wide (the minimum unit), and the texture of 3D objects were entirely preserved. 

Moreover, the computation of the algorithm is efficient and fast, invariant to rotation, and 

rarely affected by noise and objects boundary complexity.  

In this study, skeletonisation is one of important step to build a cerebral vascular 

template. A similar algorithm is employed by this study to extract the middle line of 

cerebral vascular, and the details will describe below.  

2.6 Progress in surgical path planning image guided 

neurosurgery 

Since neurosurgical stereotactic operation has unparalleled advantages in treating 

craniopharyngiomas and such brain diseases, as described above, stereotactic equipments 

and techniques are widely applied in the most of polyclinics. Basically, the image guided 
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stereotactic system, no matter frame or frameless, consists of three main components: a 

medical images acquiring subsystem, including MR or CT scanner, data transit pathway 

and images matching tools; a stereotactic planning system which provides a platform to 

display the images in 3D version and help neurosurgeons to design a virtual surgical path 

from the surface of the brain to the target; a stereotactic localization and placement 

procedure to perform the operation on the patient. The equipments and operating 

processes are described in detail in the next chapter. In the whole process of stereotactic 

operations, neurosurgeons may pay more attention to surgical path planning because it 

impinges directly upon the outcomes of the operation.  

Modern stereotactic planning systems are computer based. Generally, a surgical path 

planning module in a neurosurgical operative system is composed of an integrated 

manipulative platform which includes hardware, such as postural localizers or robots, and 

software such as a surgical operating system. The module provides an interface for 

neurosurgeons to design a surgical path from their clinical experience. The interfaces of 

common platforms of frame and frameless stereotactic operative systems are shown 

separately in Figure2.5: 

 

Figure 2.5 Interface of frame stereotactic operation for Craniopharyngioma 
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The platforms are usually maneuverable like common computer applications. After 

reconstruction, medical images, such as MR and CT images, are shown in 3D which are 

easy to observe and analyze. A series of medical images can be displayed integrally or 

slice by slice. Depending on this, neurosurgeons will be able to segment the lesion, select 

the path target and design the surgical path. At present, the main factors attributed to the 

definition of a path for a neurosurgeon is the location, size, and shape of a lesion. 

Although a patient‘s pathology also affects the path planning, the former three are 

paramount considerations. A proper surgical path must have relative minimal distance 

between the brain surface and the target without passing through blood vessels, nuclear, 

ventricles, functional areas and other important anatomic structures. In the meantime, 

because of the delicate nature of the brain and the complexity of brain structure, path 

planning is only conducted by experienced surgeons manually. 

2.6.1 Progress in medical images visualizing and surgical path 

planning 

Although the operator‘s clinical experience seems indispensable in surgical path 

planning, some of the scientists are trying to automate this process. Recently, it was 

reported in some papers that the analogous path could be worked out automatically not 

only in an industrial realm but also in medical treatment [96, 97, 98]. Elnagar et.al, 

employing Java, developed an autonomous robot motion planning system which could 

visualize each phase of the planning process graphically [97]. The path planning system 

involves several phases: collision detection, obstacle avoidance, free-path generation and 

then selecting the shortest one. A collision-free path would be figured out after four 

phases‘ computing.  

On the other hand, a group of scientists in Massachusetts Institute of Technology 

Artificial Intelligence Laboratory developed a software package integrating several 

modules which provide capabilities for automatic registration, semi-automatic 

segmentation, 3D surface model generation, 3D visualization, and quantitative analysis of 

various medical scans [98]. The software had covered all the common medical imaging 
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methods, even including real-time intra-operative MR scans, providing a very intuitive 

platform to neurosurgeons. Depending on the platform, neurosurgeons could easily 

realize the relationships among the lesions, blood vessels, functional regions, cranial 

bones and other anatomic structures. In that case, to design a safe and reliable surgical 

path was no longer difficult.  

Similarly, a novel interactive technique has been presented that facilitated path 

planning of surgical therapy in epilepsy for neurosurgeons [99]. The technique 

compounded multi-data obtained from MRI, CT, fMRI or PET together and enable them 

to be visualized. The modules allow surgeons to control the shape of the region of the 

brain that they can visually analyze and modify during exploration and surgery. The basic 

shapes such as simple spherical, cubical, ellipsoidal and cylindrical are provided for 

exploration purposes. In addition, it integrated a cropping tool with the image-guided 

navigation system used for epilepsy neurosurgery. These techniques simplified the 

procedures on deciding a safe and reliable surgical path. However, it was one step away 

from automatic path planning since neurosurgeons still had to set the surgical path 

manually in the process. Although it had not been a proper automatic path planning 

system, their development provided the basis for later studies in this research area. 

2.6.2 Progress in automatic surgical path planning 

In 1997, Vaillant et.al developed a widely accepted computer algorithm for 

determining optimal surgical paths for neurosurgical operation [100]. The algorithm 

computes a cost function associated with each point on the outer brain boundary, which is 

treated as a candidate entry point. The cost function is determined based on both a 

segmentation of the patients images into gray and white matter, and a spatially 

transformed atlas of the human brain registered to the patient's MR images. The 

importance value of various structures, such as functional areas, tracts and nerves, can be 

defined on the atlas and transferred onto the patient's images through the spatial 

transformation. The cost of a particular path associated with each critical structure, as 

well as the total cost of each path are computed and displayed, allowing the surgeon to 
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define a low cost path, to visualize an arbitrary cross-section through the patient's MR 

images that contains this path, and to examine all the cross-sectional images orthogonal 

to that path. This algorithm could be employed to design not only craniotomic operations 

but also stereotactic operations.  

Fuji et.al described a method of automatic neurosurgical path searching, which 

integrated the structure of blood vessels obtained from magnetic resonance angiography 

and brain tissues [101]. Magnetic resonance angiography (MRA) is a group of techniques 

based on MRI to image blood vessels whereby a special contrast agent is administrated to 

patients to highlight the artery trunks, such as the Circle of Willis [102]. Their path 

searching consisted of four steps:  

1. each region of brain tissue was classified into four degrees (importance value 0-3) 

indicating the importance of each different area, then working out the sum of the 

importance values for each possible path;  

2. a module integrated structure of blood vessels picked up the optimal path candidate 

which keeps furthest distance from each vessel;  

3. the paths which have the minimum value could be regarded as the path candidates 

indicating the safest paths; 

4. a path smoothing module reformed the shape of the path candidate to a perfect 

solid line which could, consequently, guide the surgical operation. Although Fuji et.al 

provided a comprehensive system to help neurosurgeons design a perfect path, the 

classification of the importance value is not so specific and MRA is too extravagant for 

ordinary hospitals and average patients. Therefore, the search for optimal neurosurgical 

path planning is far from over.  

As mentioned above in this section, location, size, and shape are the paramount 

consideration in surgical path planning. However, the most important feature of a tumour 

which mainly determines the path is the location of the tumour. Location is a 

determinative factor of the corresponding surgical path because it is always regarded as 

the target of the path by neurosurgeon. A reliable and safe path is a virtual line segment 
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jointing the target and the certain point on the surface of the brain, and is free from 

damaging blood vessels, nuclear, ventricles, functional areas and other important 

anatomic structures. In Fuji‘s study, they integrated the structure of blood vessels 

obtained from the MRA as a criterion to pick up the optimal path candidate [101]. The 

Circle of Willis should be avoided from interacting in the process of surgical path 

planning. To achieve this purpose, building an average distribution of brain vessels based 

on the existing data can overcome the difficulties caused by missing MRA data, 

benefitting doctors and patients, especially for the situation that an MRA scan remains 

inconceivable in a number of hospitals. 
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3 Methodology 

3.1 Methods Outline 

      To find the optimal surgical path for image-guided neurosurgery, the existing CT or 

MR images as well as an existing surgical path are required. All these research samples 

are analyzed by diverse methods to discover the relationship among them. In this study, 

the clinical data are processed as follows (Figure 3.1): 

 

Figure 3.1 A flowchart of clinical data processing in this study 
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MRA data used to build the cerebral vascular template are processed as follows. The 

steps in establishing a template of a mean brain COW structure is schematically 

presented in a flowchart given in Figure 3.2, composing data collection, normalisation, 

vessel extraction, skeletonisation and re-construction, which are detailed in the following 

sections. 

 

 

Figure 3.2 The flow chart of the establishment of a mean architecture of COW 
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received a frame or frameless stereotactic operations in the Navy General Hospital from 

2010 to 2013 were analyzed. All patients were prepared by contrast agent injections 

(Gadopentetic Acid Dimeglumine Salt Injection, Bayer Schering Pharma AG) before 

enhanced MR scans. An axial series of T1- weighted enhanced MR images (4-mm-thick 

slice, twenty-four to thirty-two slices for each patient) was collected from each patient‘s 

MR database. The image series can clearly show tumour range, the solid or cystic part, 

enhanced scanning range and the relationship to adjacent structures. All T1- weighted 

MR scans were acquired within the range of following imaging parameters: TR: 440~500 

ms; TE11~14 ms; resolution: 240
2
, 260

2
 or 280

2
. 

All MRA data were acquired at the Medical Image Centre in the Navy General 

Hospital with a 3.0-T whole-body scanner (Philip3.0T, Philip Medical System) whithout 

contrast agent enhanced.  

 

Figure 3.3 A photo of Signa horizon 1.5T, GE Medical System 

3.2.2 Surgical path collection 

      The CAS-R-2 robot system used in this study was collaboratively developed by 

Beijing University of Aeronautics and Astronautics and the Navy General Hospital for 
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the project Application of Frameless Stereotactic Operations [104, 14]. The CAS-R-2 

system mainly consists of two components: operation planning subsystem and a surgical 

localization and operation subsystem. The operation planning system provides surgeons 

with a simple, true-to-life and high-performance software tool, which generally fulfils the 

following functions: establishing and maintaining case history, entering and 

demonstrating data in the DICOM format, performing three-dimensional reconstruction 

for visualization, and planning the path of puncture. The surgical localization and 

operation subsystem is made up of a mechanical arm with five-degrees of freedom, fixed 

on the top of a stainless steel chassis which is 40 kg in weight and approximately 600 × 

800 × 1,100 mm in volume (Figure 3.4 left). The mechanical arm is used as a probe 

holder through which the surgeon registers the fiducial marks and finally performs the 

stereotactic procedure. The system serves the purposes of tumour modelling, surgical 

path planning, simulating, and frameless stereotactic operation (Figure 3.4 right).  

       After four fiducial marks on a patient‘s forehead are registered by the probe, the 

position of patient‘s head in real space can be detected by the system. Meanwhile, an 

MRI series is reconstructed by the system into a virtual 3D space and four fiducial marks 

shown in the MR images are pointed out manually by the surgeon. Hence, the system 

links the MRI series with a real patient‘s head according to the fiducial marks. Therefore, 

a virtual surgical path shown on the operative interface will guide the puncture needle to 

the same position relative to the patient‘s head in reality. Depending on this interface, the 

surgeon has the ability to design a virtual surgical path which guides the robot arm. The 

snapshot pictures of the interface for each patient were collected for further study (Figure 

3.5).   
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Figure 3.4 Left: Appearance of CAS-R-2 robot system; Right: Performing a frameless 

stereotactic operation with the CAS-R-2 robot system 

 

Figure 3.5 Snapshot picture of the operative interface for frameless stereotactic operation 

MR images on 3 plane, reconstructed MR images, tumour model and virtual surgical path 

are shown on the left part; Features of the tumour, real and target position of robot arm 

are shown on the right part. 
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3.3 Detection of MR images distortion 

Several cases of MRI data and one case of CT images data have been obtained, all of 

which display the same head frame. Images data is compared with various methods. 

Because CT images show clearer head structures and approximate to the real head frame 

without distortion [105], MR images are registered with reference to CT images in the 

steps as follows [106]:  

1. The centre position of each mark was measured using the average location where 

the intensity level was above (or below in case of CT images) the threshold that 

was set empirically; 

2. Calculation of the transformation factor including transformative error, translation 

factors and transformation matrix from a Matlab programme developed by 

ourselves; 

3. The rotation, scaling and translation factors were computed using an existing SVD 

algorithm. 

3.4 Tumours location analysis 

       MRI data were processed on a Lenovo T61 workstation using 3D slicer 4.0.1 

software developed at the Brigham and Women‘s hospital, Harvard University [107, 108]. 

The 3D slicer provides multi modules that analyse the medical images at different levels. 

Modules Editor, Model Maker and Models were used for tumours modelling and 

locations measurement sequentially. Details of models such as volume, surface area and 

pixels are recorded to imply features of the tumour, and the coordinate data of each 

tumour‘s centre is measured with the 3D slicer manually [109]. The methods details are 

shown in the latter part. (Figure 5.1) 
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3.5 Targets and angles of existing surgical path lines analysis 

     To demonstrate the virtual surgical path in an operation planning platform, at least 2 

groups of parameters should be investigated: target and orientation of surgical path. For 

this purpose, coordinate data of the path line target and 3 angles of the surgical path line 

were measured by the following methods: 

      1. In the snapshot picture of operative interface, the surgical target is clearly shown in 

an axial MRI slice. The 3D slicer is then employed to show exactly the same MRI slice 

and display the coordinates of the surgical target corresponding to the target‘s location in 

the snapshot picture. To improve the measurement accuracy, the target coordinates of 

each patient was measured 10 times and the average taken.  

      2. The orientation of surgical path is difficult to measure in reality. In addition, the 

CAS-R-2 robot system is unable to show the position of the probe in virtual 3D space. 

Therefore, the orientation of a surgical path only can be shown as a set of 3 angles with 

reference to 3 imaginary lines of a brain. They are as follow: 1) angle between the 

cerebral midline and projection line of the path on the axial plane; 2) angle made with the 

imaginary line passing through midpoint of two frontal poles to confluence sinus and 

projection line of the path on the sagittal plane; 3) angle between the cerebral midline and 

projection line of the path on the coronal plane. The former lines of these relative angles 

are defined as the datum line. The latter lines revolving clockwise around intersection 

points are recorded as positive degree angles, and vice versa. All of the angles of every 

patient were measured 10 times whereby the average was taken as the final measurement.  

3.6 Coordinate data alignment 

     In practical clinical work, a patient is lying in a supine position on the patient bed in 

the scanner to receive an MR scan. The patient‘s head lies along the midline of the 

scanner cavity during the process of the scan, but the head position is not fixed. Because 

of the different head positions, brain image locates irregularly in an MRI slice. Obviously, 

the situation is unsuitable for scientific research. In this study, to investigate the location 
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of a tumour in a unified space, all coordinate data have been aligned with the following 

steps: 

     1. As a relatively fixed landmark in the brain, the vertex of the fourth ventricle was 

used as an original point to establish coordinate system [110, 111]. Although the adjacent 

structure shifts because of tumour compression, the vertex of the fourth ventricle is 

unlikely affected [112].  With 3D slicer software, the coordinates of the vertex of the 

fourth ventricle were measured 10 times for each MRI series and the average taken.  

     2. A new 3D coordinate system consists of these 4 geometric elements: original point 

(vertex of the fourth ventricle), Y axis (the parallel of the imaginary line between the 

midpoint of the frontal poles and confluence sinus, passing through the original point), X 

axis (the horizontal line passing through the original point) and Z axis (the perpendicular 

line of XY plane passing through the original point). The original 3D coordinate system 

of an MRI series is established in 3D slicer automatically with a default setting (Figure 

3.6). Each angle between these two corresponding axes was measured respectively10 

times and the average taken.  
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Figure 3.6 The sketch of the new 3D coordinate system  

shown as red axes and the letter O indicates vertex of the fourth ventricle and the system 

generated by the 3D coordinate system in 3D Slicer (shown as white axes and letters). 

    3. All the measurement data was computed by Eq. (3.1).  
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Where (x, y, z) refer to the coordinates of a random point in the 3D Slicer coordinate 

system. (X, Y, Z) indicate the corresponding point in the new 3D coordinate system. α 

denotes the angle of non-uniplanar X and X‘ axes; β denotes the angle of non-uniplanar Z 

and Z‘ axes; and 
22 yxc  and

22 zyd  .  

3.7 Building a cerebrovascular template 

3.7.1 Data collection 

Twenty two sets of MRA data were collected from the Navy General Hospital in 

China, covering subjects of both healthy and diseased, which act as control data utilised 

to extract mean COW. A further six sets are also available at the disposal as working test 

sets. The volume of each dataset offers 16-bit resolution of 200 × 200 mm × 176 frames 

as exemplified in Figure 3.7 (b). All these data comply with patients consent forms 

stipulated by the hospital.  

3.7.2 Spatial normalisation 

Although each image dataset shares the same dimension, the size of the brain varies 

due to differences both in size between individuals‘ brain and in variation in head 

positions while subjects undergoing MRA scanning. To minimise these changes, spatial 

normalisations are needed. The software of Statistical Parametric Mapping (SPM) [113] 

is applied in this regard with the selection of the T1 template, i.e., the longitudinal 

relaxation time, the same as the amassed datasets. In order to align with the original 

image resolution and take into account the limitation of existing computer processing 

power (to be addressed in Section 6), the normalization takes place at a voxel size of 0.8 
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× 0.8 × 0.8 mm
3
, leading to the resulting normalised resolution of an image being 236 × 

196 × 169 mm
3
.  

3.7.3 Extraction of Circle of Willis (COW) artery 

As introduced above, MRA images are designed for viewing brain arteries through 

the administration of a contrast agent into a subject before scanning. Usually, vessels can 

be viewed together with many non-vessel components of the brain as depicted in Figure 

3.7(b & c). A certain level of enhancement has to be employed, for instance, threshold or 

maximum intensity projection (MIP), which requires substantial subjective intervention, 

leading to erroneous results. In order to simplify the level of segmenting controlling to a 

limited extent in a more objective and automatic way, the multi-scale vessel filter [114, 

115] that is based on a Hessian matrix, is employed in this study. The strength of the 

approach lies in its application in highlighting tubular shape-like objects while 

overlooking the rest by assigning near zero values to them.  
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(a) COW artery. Bottom: beck; 

Top: eye. 

(b) 3D MRA image. 

Top: eye position. Bottom: neck. 

(c) COW after a certain 

degree of thresholding of (b). 

Figure 3.7 The Circle of Willis artery 

The Circle of Willis artery illustrated in both drawing (a) and MRA images (b), and 

can be visible more clearly after a certain degree of thresholding (c). 

Conceived by Ludwig Hesse, a Hessian matrix is a square matrix of second-order 

partial derivatives of a function, as expressed in Eq. (3.1) [116]. It describes the local 

curvature of a function of many variables. 
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where f(x1, x2, …, xn) is a real-valued function. 

 

When it comes to the application to an image,  , a Hessian matrix can be applied after 

Taylor expansion. For instance, with a vessel diameter close to   ,   can be expressed at 

a local location    in Eq. (3.2). 

 

                       
         

          (3.2) 

 

where      and      refer to gradient vectors and Hessian matrix respectively which are 

computed at    with a scale of  . 

 

As illustrated in Figure 3.8, the intensity profile of a vessel presents a Gaussian 

distribution form. This serves to confirm the consideration to enhance the edges of 

vessels by way of calculating differentiations using a convolution with the derivative of 

Gaussians as formulated in Eq. (3.3).    
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(a) A slice of an image set with a 

segment squared with dashed line 

containing two arteries with 

bright spots. 

(b) Intensity profile of the segment in (a) 

showing two peak Gaussian-like 

shape corresponding to the two bright 

vessels in the segment. 

Figure 3.8 An example displaying the Gaussian distribution of the intensity profile of 

arteries 

 

 

  
              

 

  
          (3.3) 

 

where the 3-dimensional Gaussian is defined in Eq.(3.4): 
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       (3.4) 

 

On the other hand, the second-order derivative (Hessian) of a Gaussian kernel at a scale 

of   generates a probe kernel that measures the contrast between the regions inside and 

outside the range of        in the direction of derivative as given in Eq. (3.5), 

 

   
         

  

   
                                  (3.5) 

 

Let i(i=1, 2, 3) denote the eigenvalue corresponding to the i
th 

normalised eigenvector 

      of the Hessian matrix,  Ho,  , at the scale of  , then 

 

                      (3.6) 

 

which leads to 

 

     
                  (3.7) 
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Therefore, for an ideal tubular pattern in a 3D image, the following formulas exist: 

 

                             (3.8) 

 

The sign of 2 and 3 indicate their polarity, whereas the order of            is 

arranged. Graphically, 1, 2, and 3 relate to the length of a cylindrical shape and the 

two diameters of the ellipse of its cross-section respectively. As a result, a vessel-like 

structure can be formulated in Eq. (3.9). 

 

       
 

        
  

          
  

            
  

    
                      (3.9) 

             . In Eq. (3.9), 

   
    

       
;    

    

    
; and        

  
 .   (3.10) 

 

Moreover, the constants of , , and   serve to perform thresholding that controls the 

sensitivity of a line filter to the measures of Ra, Rb, and Rc that are referring to the volume, 

area, and length of a cylindrical shape respectively. Table 3.1 summaries the constants 

that are utilised in this investigation as inappropriate constants might result in images as 

well as vessels being out of visible range. 
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Table 3.1. Constants applied in the process of COW enhancement 

 

3.7.4 Calculation of mean COW using spherical Fisher-Rao metric 

By definition, the Fisher–Rao metric tends to be a choice of Riemannian metric 

calculating the informational difference between measurements [117], which is defined 

on a space ( ) of probability distribution of        and takes the form of Eq. (3.11). 

 

                   (3.11) 

 

where 

       
          

   
  

          

   
      (3.12) 

 

In Eq. (3.12),   refers to a specific value drawn from a collection of random variables,  , 

whereas            
 

, and                       , the Riemannian 

manifold. In Eq. (3.11),    measures the change in       when   is replaced by     . 

 

  c   Image intensity 

Before Filtering 

Image intensity level 

After Filtering 

0.5 0.5 500 0.5 : 0.3 : 3.0 0 -- 1093 0 -- 0.1207 
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If the probability distribution   is defined as a square-root density function as shown in 

Eq. (3.13): 

 

         (3.13) 

 

the Fisher-Rao metric can be calculated in Eq. (3.14) for any given two tangent vectors 

            (i.e., distance space), which can be perceived as the unit sphere in a 

Hilbert space. 

 

                     
 

 
    (3.14) 

 

where  

 

                 (3.15) 

 

and     (the density space) and                             
 

 
  . 

Furthermore,      refers to a distance transform and α the normalisation constant, with 

both of them to be addressed in more detail below.  
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The advantage of selecting   for analysis is that it constitutes a convex subset of a 

unit sphere in   norm with many of the geometric expressions being already well defined 

[90, 94]. In this investigation, the calculation of the mean COW is therefore assimilated 

in the following steps by way of explanation, which has been clearly described in [94].  

 

 Converting the enhanced image obtained in Section 3.7.3 into a binary image, BW.  

 

 Calculating the Geodesic distance using Eq. (3.16) to create a tangent space     . 

Define         for any two vectors, 

                          (3.16) 

 

and   in Eq. (3.14) for each distance image      (=        ) is derived in Eq. 

(3.17). 

   
 

          
     (3.17) 

The constant,  , serves as a threshold to allow the recovery of the distance 

transform function from the square-root density representation by computing the 

inverse map when using Eq. (3.14). 
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 Parameterizing the distance in terms of a direction  in       using an 

exponential map to square-root density  :  

     
                       

 

   
   (3.18) 

 

 Calculating Karcher mean in the space of density  : 

                     
 
       (3.19) 

 

 Computing the inverse exponential map converting back to distance space:  

for any        ,          to be the inverse exponential of    if 

     
      ,   can be obtained as below: 

                   (3.20) 

                             (3.21) 

 

A search of Karcher means     then takes the approach of gradient where an 

estimate is iteratively updated according to Eq. (3.22). 

           ,   
 

 
     

      
 
      (3.22) 
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where exp and exp
-1

 are expressed in Eqs.(3.18) and (3.21) respectively. The 

scalar of         is a step size for iteration. 

 

 Converting back to image space 

          

 

Figure 3.9 graphically demonstrates the above procedures by obtaining a mean 

shape from two images in 2D form. As it shows clearly on the last graph in row 3 and 

column 3 with red solid line, when shape data are converted into exponential map, they 

display Gaussian-like patterns from which it is easier to calculate the Karcher mean by 

working out the corresponding points along each coordinate in the x-axis. Then this 

exponential mean is converted back into distance space representation that is in turn 

transformed into binary image, the average of all the images. Each step can be either 

visualized in the form of an image or a plot, which is demonstrated in both ways. In the 

figure, it is displayed in image form for Image 1 and in data plot form for Image 2. 
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Figure 3.9 The procedure of calculating the mean of images 1 and 2 

 Row 1: binary images; Row 2: distance space displayed in the form of either image 

(image 1) or plot (image 2); Row 3: Square root density space presented in the form of 

either image (bottom left) or plot (bottom middle and bottom right). 

 

3.7.5 Skeletonization of the mean COW 

As illustrated in Figure 3.9, the resultant mean shape remains in black and white 

binary form which only reserves the mean location of every vessel of the COW. The 
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exact diameters of each vessel cannot be factored in this way, which leads to the next step 

of skeletonization of the mean COW to obtain the middle line of each vessel. In this 

study, after being cropped from the outliers of the BW brain image, i.e., skull, the 

skeletonisation of COW follows, by the application of the 3D Skeleton plugin tool [118] 

for the free software ImageJ [119]. 

 

3.7.6 Re-construction of mean COW 

 

After skeletonisation, the mean COW has to be recovered into its rightful diameters. 

According to the mean value of each vessel, restoration of its mean width is conducted by 

building on the skeleton that acts as the middle line of each vessel. As demonstrated in 

Figure 3.10, a cross-section of each vessel is reconstructed using a surface function 

calculated in Eq. (3.23). 

 

                     (3.23) 

 

where                        and I represents the skeleton image. The function 

         gives the numerical gradient of the matrix  . 
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On each cross section perpendicular to the vessel middle line, the area of the cross 

section can be filled in when the angle rotates from zero to 360
o
 with radius extending 

from zero to    , i.e., half of the average diameter of each type of vessels, which is 

formulated in Eq. (24) and illustrated in Figure 3.10. 

 

                                 
                                 
                  

     (3.24) 

 

Where      
 

 
                    . 

 

 

 

 

 

Figure 3.10 Schematic illustration of reconstruction of a vessel cross-section with 

diameter of d 

3.7.7 Designing a surgical path by finding the minimal distance 

At present, the surgical path takes a straight line, which therefore can be realised 

using the approach of minimum distance that is calculated from the target centre to the 
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skull by taking into consideration avoiding arteries of the COW. A number of known key 

functional regions, e.g., primary visual cortex at Brodman area 17, can also be kept away 

when incorporating with a brain anatomy template that has been well established already. 
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4 Detection of MR images distortion 

It has been described in the literature that image guidance of surgical interventions is 

one of the most complex applications of computer technology to practical neurosurgery. 

Lots of novel methods or technologies have been reported in recent years. In addition, as 

the technology of medical imaging has advanced, medical images are being employed in 

various clinical aspects such as diagnosis, therapy and evaluation. Nevertheless, the 

accuracy and precision of these images are basic prerequisites that should be ensured in 

those clinical aspects, which include image guidance. Therefore, correcting the distortion 

of medical images depending on available image data is as important as developing a 

novel path planning module. 

4.1 Methods 

The method outline of detection of MR images distortion is described in the 

methodology part. Because CT images show clearer head structures and approximate to 

the real head frame without distortion, we used it as standard tool to detect the MR 

distortion. 10 sets of MRI with Gamma knife head frame were collected from Navy 

General Hospital, and 5 of 10 sets of MRI were picked out randomly for control group, 

whereas the rest 5 sets of MRI were processed as test group. Figure 4.1 illustrates the 

Gamma head frame worn by subjects when undergoing both MR and CT image scanning, 

whilst Figure 4.2 depicts the CT and MR images with fiducial markers showing the same 

subject. 

4.1.1 Linear transformation with non-isotropic scale factors 

Preliminary results showed the MR images in the test group varying less in rotation 

than in scale with less than 1-degree variations along each of three axial directions. 

Meanwhile, scaling factors in 3 directions showed different patterns. The scaling 

transformation in y direction was 0.5960, whereas the value in x and y direction 

approximated to 1. Regarding this non-isotropic pattern, the scaling factors were 
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reanalyzed as follows. 

Let two sets of 3D coordinate data be represented by Yi=[y1i y2i y3i]T and Xi=[x1i x2i 

x3i]T, (i=1, 2, …, n) that are obtained from fiducial marks in both CT and MR images 

respectively along three axial directions, then the relationship between data Yi and Xi can 

be expressed using 33 matrixes M and translation  matrix T using Eq. (4.1). 

 Yi = M Xi+ T + ei     (4.1) 

Where ei = [e1i e2i e3i]
T
 is the error vector induced in the formula and i is the number 

of fiducial marker pairs in both modalities , and 

 

M=  

         

         

         

                    T =  

  
  
  

  

 

Therefore mij can be solved linearly by Eq. (4.2) (assuming the determinant of the 3 x 

3 matrix in Eq. (4.2) is not equal to zero).  
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Where i = 1, 2, 3. and  
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After M has been figured out using MRI data in the test group, M is employed to 

calculate the average distance between corresponding marks in each MR image and CT 
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image respectively (average error), and the biggest distance of these corresponding marks 

(biggest distance) in the control group. In Ep. (4.1), Xi are replaced by original coordinate 

data of MRI in the control group, thus Yi indicates the corrected coordinate data of 

corresponding fiducial marks in MRI. Therefore, Average error and biggest distance, 

indicating average distance and biggest distance between corresponding marks in 

corrected MR image and CT image respectively, are easy to be computed. All the results 

are shown in the Table 4.1. 

4.1.2 Linear transformation with a constant scale factor 

Singular value decomposition (SVD) has been applied in this application in order to 

compare with the non-isotropic scale factor method. Eq. (4.1) becomes Eq. (4.3). 

 Yi= s R Xi+ T + ei     (4.3) 

Therefore R, the rotation matrix can be decomposed as 

 R=VDU
T
      (4.4) 

where             D  =   
                                                        

                                             
  

Similar to above, S and R have been figured out to calculate the average distance 

between corresponding marks in each MR image and CT image respectively (average 

error), and the biggest distance of these corresponding marks (biggest distance) in the 

control group. All the results are shown in the Table 4.1. 

4.2 Results 

     Some initial results have been obtained which are described below. The final results 

from these two methods will be compared using statistics software, and a method which 

is able to decrease distortion to the maximum extent will be employed to analyse all the 

MR and CT images data [120]. 
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The initial results for correction of distortion have been carried out on five sets of MR 

and CT images data. Each set of data are acquired with a head frame as shown in Figure 

4.1. Slices of CT and MR images in the same position are shown in Figure 4.2 [121].  

After registration of the markers from MR and CT images of each subject using the 

method described above, the transformative errors were calculated. The transformative 

errors are shown in Table 4.1. The initial results indicate that this algorithm can be better 

than the existing SVD algorithms, because the average distance and the biggest distance 

are more approaching to the reality. However, general conclusions cannot be drawn until 

it is confirmed by further tests.  

 

Figure 4.1 A head frame with contrast agent filled in the N shape tubes 

The N shape tubes can be displayed both in MR and CT images. 
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Figure 4.2 CT and MR slices at the same head position (same z direction) 

 

Table 4.1 The largest transformative errors worked out from two algorithms 

 

 Non-isotropic scaling algorithm SVD 

Subjec

t 

Average 

error (mm) 

Standard 

Deviation 

Biggest 

distance 

(mm) 

Average 

error (mm) 

Standard 

Deviation 

Biggest 

distance 

(mm) 

1 0.0537 0.3622 1.2507 0.3004 3.3037 3.8256 

2 0.1242 9.5389 9.6803 0.2782 13.5187 11.6049 

3 0.1130 1.3413 2.3578 0.1420 1.7342 2.8391 

4 0.0641 0.5388 1.6649 0.2448 3.1562 3.7903 

5 0.0533 0.3131 1.3277 0.1648 1.4449 2.2514 

Mean 0.08166 2.41886 3.25628 0.22604 4.63154 4.86226 
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4.3 Summary 

The linear transformation approach is suitable in finding non-isotropic scaling factors, 

constituting one of the approaches in registration of fiducial markers. Comparison with 

other approaches, such as chi-square, will form part of future work and is currently being 

investigated.  

According to these two methods, the overall errors are less than 0.1mm, suggesting 

that for clinical applications, these MR images are reliable and can be used directly [122, 

123]. 
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5 Images data analysis and classification 

5.1 Tumours location analysis 

As described in the methodology part, MRI data were processed on a Lenovo T61 

workstation using 3D slicer 4.0.1 software developed at the Brigham and Women‘s 

hospital, Harvard University [107, 108]. Modules Editor, Model Maker and Models were 

employed for tumours modelling sequentially [124]. In the module Editor, Level tracing 

is a useful tool to segment the tumour from each slice automatically according to their 

intensity difference between tumour content and brain tissues. The module Model Maker 

generates a 3D tumour model for each MR series permitting display in axial, sagittal and 

coronal plane. As a multi-functional module, Models provides functions including 

information presentation, changeable tumour model‘s properties as well as scalars [125]. 

After a 3D tumour model is built, details of the model such as volume, surface area and 

pixels are recorded as a tumour‘s characters. In addition, the coordinate data of each 

tumour‘s centre is measured with 3D Slicer manually [109] (Figure 5.1).  

 

Figure 5.1 The interface of 3D Slicer (Module Models) 
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Features of the tumour are shown on the left part. MR images on 3 planes and tumour 

model are shown on the right part. 

5.2 Targets and angles of existing surgical path lines analysis 

As mentioned above, coordinate data of the path line target and 3 angles of surgical path 

line were measured manually: 

1. Corresponding to the snapshot picture of operative interface, the same MRI slice is 

shown on the 3D slicer platform. The coordinates of the surgical target are precisely 

generated by 3D slicer, depending on the relative location of the surgical target in the 

snapshot picture. The target coordinates of each patient was measured 10 times and the 

average taken.  

2. Three angles with reference to 3 imaginary lines of a brain: 1) angle between the 

cerebral midline and projection line of the path on the axial plane; 2) angle made with the 

imaginary line passing through midpoint of two frontal poles to confluence sinus and 

projection line of the path on the sagittal plane; 3) angle between the cerebral midline and 

projection line of the path on the coronal plane are employed to depicted the orientation 

of the surgical path. The former lines of these relative angles are defined as the datum 

line. The latter lines revolving clockwise around intersection points are positive degree 

angles, and vice versa. All of the angles of every patient were measured 10 times and the 

average was taken as the final measurement.  

5.3 Coordinate data alignment 

To align all the coordinates data and angles data into the same standards, the data is 

processed in the following steps: 

1. The vertex of the fourth ventricle was considered as an original point to establish a 

coordinate system. With 3D slicer software, the coordinates of the vertex of the fourth 

ventricle were measured 10 times for each MRI series and the average taken.  
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2. The original point (vertex of the fourth ventricle), Y axis (the parallel of the 

imaginary line between midpoint of frontal poles and confluence sinus, passing through 

the original point), X axis (the horizontal line passing through the original point) and Z 

axis (the perpendicular line of XY plane passing through the original point) establish a 

new 3D coordinate system, which was regarded as the standard coordinate system. The 

original 3D coordinate system of the MRI series is established in 3D slicer automatically 

with a default setting (Figure 3.6). Each angle between these two corresponding axes was 

measured respectively by the same method as described above. 

3. All the measurement data was computed by Eq. (5.1).  

 

                                     


































180
coscos




c

x
acX

;

 




































180
cossin




c

x
acY

;                                (5.1) 

 



































180
cossin




d

y
adZ

. 

Where (x, y, z) refer to the coordinates of a random point in the 3D Slicer coordinate 

system. (X, Y, Z) indicate the corresponding point in the new 3D coordinate system. α 

denotes the angle of non-uniplanar X and X‘ axes; β denotes the angle of non-uniplanar Z 

and Z‘ axes; and 
22 yxc  and

22 zyd  .  

The aligned coordinate data will be employed to classified, which in turn to establish 

expert system. In practical neurosurgical operation, six of the parameters must be 

achieved before the operation, which are target coordinate data, namely x, y, z data in the 

orthogonal coordinate system, two angels of the surgical path in spherical polar system 

and depth of the insertion. All of these parameters were obtained from the aligned 

coordinate data, including target and insert angles, except the depth of the insertion. The 

data of 100 cases are shown in Appendix 1. 
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5.4 Data Classification 

     As described above, neurosurgeons plan optimal surgical path for individual patients 

depending on their experience. The factors considered by neurosurgeons to design a path 

are listed successively as follows (in an order based on importance): location, size, shape 

and the structure of the tumour. Based on the existing data, the tumours 

(craniopharyngiomas) located in a specific region of the brain, sellar region, where the 

tumours grow with regard to tumorigenicity. In terms of location, it seems likely that the 

centre of a tumour can be reasonably representative where the is tumour located. To find 

out the relationship between the tumours‘ location and the surgical path, the coordinates 

of tumours‘ centres and inserting angles of surgical path are therefore measured 

respectively.  

      Preliminarily, the classification of the path pattern is carried out within two categories, 

which are on the left and on the right hand side of the brain with reference to the median 

sagittal plane (Figure 5.2). The line angles of one hundred surgical paths at XY plane are 

demonstrated in Figure 5.4. The axial line where x=0 represents the sagittal midline 

projected onto the XY plane. Similarly, all the MR data are divided into 2 groups based 

on the coordinate data of tumour centres. The centre positions of these one hundred cases 

in the XY plane are shown in Figure 5.3. According to Figure 5.4, the surgical path lines 

have a concentrated distribution to a certain extent. Meanwhile, the centre positions of 

tumours located in the left side, shown in Figure 5.3, roughly coincide with the left 

category of the clustered data shown in Figure 5.4. Likewise, surgical lines in the right 

category almost match all the centre positions of tumours on the same side. With only 8 

exceptions, the locations of the centre points on the left of the midline in Figure 5.4 

correspond to the right group positioned in Figure 5.3.  
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Figure 5.2  Two examples of surgical paths that are indicated by red lines in the frameless 

stereotactic operative interface 

 

 

Figure 5.3 The locations of tumour centres of 100 in the XY plane 

in which the line x=0 represents the median sagittal plane. 

Surgical path on the lift side Surgical path on the right side 
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Figure 5.4 The angles of the 100 path lines projected onto XY and YZ planes 

The line x=0 indicates the median sagittal plane. 

5.5 Summary 

According to the result shown in the Figure 5.3 and Figure 5.4, the centres of the 

tumours scattered around the middle line while the surgical path lines have a 

concentrated distribution in two regions, indicating a corresponding relationship between 

these two distributing patterns. It can be concluded that the tumours with proximal 

positions will result in a similar surgical path. 
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6 Results of building cerebral vascular template 

6.1 Experimental results 

Implementation took place on a Dell Precision T5500 workstation with 12-Gbyte 

memory, together with Intel
®
 Xeon

®
 CPU with duel 2.4 and 2.39 GHz processors. Under 

the Windows 64-bit operating system, Matlab R2013a software is employed for image 

processing. 

Since the final mean shape is represented using a binary matrix whereby 1 refers to a 

vessel position and 0 non-vessels, the image of 8-bit is stored.  Table 6.1 follows the 

changes in image volume sizes during each stage of the averaging process.  

Table 6.1 Image sizes during each processing stage 

Original 

image 

Spatial normalised 

using SPM 

(V=0.80.80.8mm) 

Hessian Filter MAT file Mean Shape Skeleton 

Reconstructed 

COW 

200  200 

mm 174 

frames 

196236169 196236169 

196236169  

23 dataset 

196236169 196236169 196236169 

16-bit, 

90 MB 

16-bit, 16 MB 16-bit, 16 MB 8-bit, 8 MB 16-bit, 16 MB 8-bit, 8MB 8-bit, 8MB 

 

Figure 6.1 depicts the length of diameters for each of the COW measured from the 

twenty-two datasets investigated, including the Internal Carotid Artery (ICA), the Middle 

Cerebral Artery (MCA), the Basilar Artery (BA), and the Anterior Cerebral Artery 

(ACA), as figuratively labelled at Figure 2(c). For each diameter (in millimetres) of 
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vessels on each COW, the measurement takes the average reading of three attempts on 

the same vessel to ensure the consistency of measurement. In the figure, 'Left' refers to 

the vessels on the left hand side of the body. Likewise, 'Right' indicates on the right. 

There are two (bilateral) of ICA, MCA and ACA arteries for each COW, and one BA 

artery. Understandably, on an MRA image, patient's left side is shown on the right part of 

the image to be made to face the users, and vice versa. All original measurement data is 

shown as Appendix 2.  

 

 

 

Figure 6.1 The measurement of arteries in COW for the twenty-two datasets (x-axis) 

investigated in this study 

‗L‘ refers to the left vessel and ‗R‘ the right one. The measurement in the y-axis is in the 

unit of mm. 
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The mean diameter values measured from the twenty-two datasets are presented in 

Table 6.2. 

Table 6.2 The mean diameters measured from the twenty-two datasets. 

 
ACA- 

L 

ACA- 

R 

MCA-L MCA-R 

ICA 

L 

ICA 

R 

BA Mean 

Mean diameter for each type of 

arteries 

2.40 2.37 3.10 3.06 5.04 4.87 3.34  

Mean of both left and right vessels 2.39 3.08 4.96 3.34  

Standard deviation (SD) 0.31 0.21 0.33 0.38 0.45 0.50 0.54 0.39 

 

In Table 6.2, it appears that for the same bilateral arteries, the left ones display 

slightly larger than the right counterparts, e.g., the averaged diameter of left ICA is 5.04 

mm in comparison with 4.87mm on the right. However, this tendency does not show in a 

significant way with variations ranging from 1.3% to 3.4% across all the vessels in the 

COW. 

Figuratively, Figure 6.2 illustrates the results of the extraction of COWs from twenty-

two datasets by using a Hessian matrix. The graph on row 4 column 5 shows the 

extraction of COW from the mean of sum images of all the twenty-two images, i.e, 

             
  

  
,  whereas the last image at bottom-right is the average shape 

calculated using the procedures addressed in Section 3.7.4. 
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Figure 6.2. The extraction of COW from 22 datasets  using a Hessian matrix 

Row 4 column 5 shows the mean sum image and the bottom right the mean COW 

generated using the approach given in Section 3.7.4. 

In addition, the comparative view in 3D form of the COWs obtained from both mean 

sum images and Karcher mean is demonstrated in Figure 6.3. Logically, the mean sum 

image tends to embrace all the COWs together and appears to contain most of the vessels. 

By contrast, the mean shape can be representative.  
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(a) Karcher Mean of COWs.  (b) Extraction of COW from the sum images. 

Figure 6.3 3D view of mean COWs 

(a): Karcher mean of COWs; (b) COW extracted using Hessian matrix from the mean 

sum images, the average of all the twenty-two images 

Extrapolating from Figure 6.3, the diameter of each vessel from the mean is far from 

accurate in comparison with each individual‘s COW displayed in Figure 6.2. Therefore 

reconstruction of COW to its rightful width is underway, which requires skelectionisation 

first. In this regard, due to the variations in diameters along the same vessel, the 

procedure of the skeletonisation can produce a number of untoward bifurcations. The 

reconstruction therefore only takes place for those key vessels, i.e., BA, ICA, ACA, and 

MCA, while retaining those smaller daughter vessels at the size of 1 pixel, equivalent to 

0.8mm.  Figure 6.4 portrays the skeletonisation (a), dilation with specified diameters (b), 

smooth of dilation (c), and a different viewpoint of the final reconstructed COW (d). 
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(a) Skeleton of COW. (b) Dilation of (a). 

  

(c)Smooth of (b) (d) Top view of (c) 

Figure 6.4 Reconstruction of the Circle of Willis (COW) 
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Significantly, Figure 6.4 presents a demonstrable missing of one ACA in comparison 

with that in Figure 3.7 (a) showing two anterior cerebral arteries. This can be ascribed to 

the very closeness and interlacing nature of the two ACAs in terms of their spatial 

positions. As a result, it is difficult to discern one from another precisely from the mean 

COW as presented in Figure 6.3 (a).  To assuage this cause, alternatively, Figure 6.5 

tailors the COW with two ACAs as a complementary template, in which the two ACAs 

are constructed to be in near parallel positions. The subsequent preliminary clinical study 

serves to show the two templates work the same way on course to assist surgical path 

planning. 

  

Figure 6.5 The reconstructed COW template with two ACAs 

Left: the reconstructed COW. Right: the smooth version of left. 
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6.2 The analysis of variation of the mean COW 

To evaluate the veracity of the mean COW, statistically, with reference to the analysis 

of shape variations, a volume based approach has been widely employed [24, 25, 16] 

which is fathomed with the following formulae, including volume index, similarity index 

and difference index. 

 

   
  

  
      (6.1) 

    
     

     
      (6.2) 

    
       

     
         (6.3) 

       Where, VI, SI, DI refer Volume Index, Similarity Index, and Difference Index 

respectively, Vi, Vm, Vs indicate Volume (Individual), Volume (Mean), and Volume 

(Subject) respectively.  

In these measures, the volume index (VI) denotes the entire volume change between 

each individual data with reference to the mean, whereas the similarity index (SI) 

indicates the overlapping region between each individual and the mean data. The 

difference between mean volume and each individual is measured using difference index 

(DI). Figure 6.6 displays the plots of these three measures of VI, SI, and DI for both 22 

sets of control data that have been employed to derive the mean and six sets of additional 

test data to be used to evaluate the obtained mean. 
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Figure 6.6 The plots of VI, SI and DI between control data (left) and test data (right) and 

the mean 

VI (top curve), SI (bottom on left graph and middle on right graph) and DI (middle on 

left and bottom on right). The mean data are numbered as the last, i.e., no 23 in the left 

and no 7 in the right graph. 

 

The standard deviations of the three measures (i.e., VI, SI, DI) for the test data are 

0.0367, 0.3510, 0.0383 respectively, whereas the volume of the Karcher mean entails 

pixels of around 11,100. From the volume point of view, the mean COW does represent a 

typical Circle of Willis with sub-pixel variations in all three measures, especially for the 

additional test data, which implies the accuracy of the mean COW and points to the 

appropriateness of the synergy of the above approaches for the calculation of the mean 

COW. However, since the number of test datasets remains a small sample, more data will 
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be collected in the future to further verify this assumption. In terms of the template of 

COW, the visual comparison with the test data is demonstrated in Figure 6.7 where the 

COW template is shown in red colour. To show a clearer picture, each graph only depicts 

two of the six sets of data (in blue and green respectively) in comparison with the COW 

template (in red). In particular, each vessel volume in the test data is evidently 

comparable with its counterpart in the COW template. 

   

Figure 6.7 Visual comparison between six test datasets and the COW template with two 

shown in each graph 

The COW template is in red colour whereas the test data are in blue and green. 

6.3 A clinical application 

A clinical study has been put forth to verify the applicability of the obtained COW 

template, abbreviated as T-COW, and is attested in Figure 6.8. The top row of the figure 

shows MR images whereas the bottom the superimposed images of MR on the MRA of 

the same patient. The arrows on Figure 6.8 (a) and 6.8(b) indicate the tumour location at 

two different view angles, i.e., axial and coronal views, while Figure 6.8(c) refers to the 
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real surgical path initially drafted based on the T-COW. On the bottom row, the planned 

path is superimposed with the patient‘s own COW network (f). Graphs (d) and (e) clearly 

indicate that the surgical path has well avoided the COW vessels while maintaining the 

optimal distance. 

   

(a) Axial view of the tumour 

pointed by an arrow. 

(b) Coronal view of MR image. 

(c) Operative path indicated by the 

vertical red line. 

 

 
 

(d) Axial view of path 

superimposed with patient‘s COW. 

(e) Coronal view of path 

superimposed with patient‘s COW. 

(f) Sagittal view of path 

superimposed with patient‘s COW. 

Figure 6.8 An example of surgical planning for tumour removal 
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6.4 Summary 

This thesis initiates the synergy of the current state of the art image processing 

techniques into rendering of the COW template, with an intention to enhance the cutting 

edge technology of image guided neurosurgery. As an immediate application, the COW 

template will benefit the planning process for designing operative paths. In the long term, 

it can also foster the service of diagnosis of cerebral vascular diseases as well as any 

other neuro-intervention of relevance. Both preliminary clinical studies and veracity 

analysis have confirmed the applicability of the COW template. 

The availability of a digital mean brain artery architecture has not been reported 

before. To cement this gap and benefit a wider community working on the field of neuro-

intervention, this work aims at providing a template of the Circle of Willis for the initial 

application of path planning in the procedure of image guided neurosurgery. The average 

diameters of COW vessels are also fathomed not only to be employed to reconstruct a 

COW template but also to act as a reference for the future similar work. As demonstrated 

in Figure 6.8, the planning of the optimal path has to take into consideration the 

distribution of COW comprehensively in order to achieve maximum resection of tumours 

while maintaining minimum mortality and complication morbidity rate, a task that can 

only be conducted by experienced surgeons at present. With the arrival of the COW 

template, it is anticipated that junior clinicians can learn from doing whilst senior doctors 

are able to make faster and more improved decisions.   

Due to the lack of correspondences between points among individual COW shapes 

extracted from each image dataset, the calculation of the mean dataset poses a 
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challenging task. With the application of differential geometry, including Riemannian 

metrics, geodesics, and exponential maps, statistics on these shapes can be defined and 

compounded. Since the Fisher-Rao metric remains the only one that is invariant of re-

parameterisation, it makes the appropriate choice of metric in this study.  

It is conspicuous that the width of a vessel varies along its length, whilst the creation 

of the template COW has the same width along each key artery between any two 

bifurcations. With mean standard deviation being 0.39 mm, tantamount to half of a pixel 

(i.e., 0.8mm), those variances appear to pale into insignificance when it comes to 

visualisation. Nevertheless, more data will be made available in the future to further 

fathom this assumption. 

On the other hand, in the process of calculating a mean shape, the limitation of 

computer power remains to be confronted, i.e., more datasets require more memory and 

computing power, especially when images are in high resolutions. In this investigation, 

the mean COW at the pixel sizes of 0.8×0.8×0.8mm, 0.9×0.9×0.9mm and 1×1×1mm are 

calculated, whereas any higher resolutions have to call for the availability of extra 

resources, such as parallel computing. In the light of a pixel size of 0.8×0.8×0.8mm, it 

might only take several minutes to complete the calculation of a mean shape. However, 

visualisation of all COWs in a 3D fashion of Figure 6.2 is quite a task if not impossible 

with the current existing computer hardware. Parallel implementation of such an 

algorithm will definitely help. In addition, in this study, the vessel length of each artery 

between bifurcations takes the averaged length dwelled on the mean COW and hence has 
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not been measured individually, future study will further this direction to verify if there is 

any significant untoward result. 
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7. Conclusion and Future works 

7.1 Conclusion 

As a minimally invasive operation, image guided stereotactic operation has been 

presented as one of the most important treatments in modern neurosurgery. Path planning 

for stereotactic operations normally depends on a neurosurgeon‘s clinical experience. A 

few medical software systems provide modules for path planning and training, but it is 

not good enough for practical use. Therefore, the research seeks to develop a novel 

module for surgical path planning of stereotactic neurosurgery by taking into 

consideration functional regions, the distributive pattern of blood vessels and an expert 

system. In this research, the distortion of MR images has been reduced to minimal level, 

ensuring MRI data used for path planning are reliable. Works on clinical data acquisition 

and analysis have been done, and the initial results show that the tumours with proximal 

positions result in similar surgical path. The relationship between tumours and the 

surgical paths is the fundamental discipline, which guides us to build the expert system. 

As an important part, a cerebral vascular template has been built, providing a reference to 

minimize the vessels‘ damage during the process of automatic surgical path planning. A 

novel approach can be developed finally, and it will be an evolution not only in 

computing technology but practical clinic works. The module will be able to create a 

stereotactic surgical path basing on the distributive pattern of functional regions and 

blood vessels automatically, which can be used by surgeons and medical students for 

training purposes. 

7.2 Future works 

The whole process of this study can be concluded as shown Figure 7.1. 
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Figure 7.1 A flowchart of automatic surgical path planning process in this study 
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7.2.1 Initial programming 

This phase involves the development of the algorithm for path planning associated 

with functional region classification and the distribution pattern of blood vessels. Namely, 

a safe surgical path must avoid blood vessels, functional cortex and nuclei, i.e., those 

crucial functional regions, and should incur the minimal distance toward the target. In 

reality, a surgeon considers the minimal distance as the first criterion to plan a surgical 

path to minimise the sacrifice of healthy tissues 

To calculate the minimal distance, the Matlab platform is employed in this study. A 

Canny edge detector is used to find out the brain edge from the sample image which is a 

2D MRI slice. The Euclidean distance between every point on the brain edge and the 

given point, namely centre point of a tumour, is calculated by classic distance formula. 

Initially, the minimal distance between a given point and the edge of the brain in a 2D 

slice can be easily calculated by the programme developed on the Matlab platform 

(Figure 7.2) for this research. However, the surgical path which has minimal Euclidean 

distance does not necessarily represent the perfect path for the image-guide neurosurgical 

operation. Blood vessels and functional structures have to be taken into account in the 

surgical path planning. Therefore, a cost function should be introduced in this study in the 

future works.  

 

Figure 7.2 Three snapshot pictures captured at three time points during the process of 

minimal distance calculation on Matlab platform 
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Left figure: the original MRI slice after segmentation; Middle figure: the snapshot picture 

shows the process of minimal distance calculation; Right figure: the minimal distance has 

been calculated. 

7.2.2 Programming based on cost functions 

The cost function has been used to find the optimal surgical path in some studies 

[101,126, 127]. However, they are not completely suitable for practical clinical works as 

described above. In this study, a proper cost function will be used and realised on the 

Matlab platform following these steps: 

      1. Implant standard distribution pattern of blood vessels and functional regions to 

experimental MRI series and reconstruct them into a 3D version which is named as 

ModelBrain; 

      2. Depending on the fatalness of different intracranial structures, brain tissues in the 

ModelBrain are defined with an importance value respectively and divided into 8 degrees 

(Table 7.1). As an exception, vessels including arteries and veins are absolutely 

untouchable, therefore they have ∞ importance value.  

Table 7.1 Importance values of different introcranial structures 

Intracranial 

structures 

White 

matters 
Cortex 

Neurona

l tracts 
Nuclei 

Grey 

Matters 

Functional 

Regions 

Veins 

venous 

sinus 

Arteries 

important 

value 
1 2 3 4 5 6 ∞ ∞ 

 

     3. Costs of different intracranial structures will be added up, and a minimal linear cost 

accumulation line which has more than 10mm distance to the vessels‘ trunks will be 

qualified as path candidates. Some parameters are variable and generate inferior quality 

path candidates fitting the expert system which is described as follows. 

http://www.nciku.cn/search/en/venous+sinus
http://www.nciku.cn/search/en/venous+sinus
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7.2.3 Establishment of an expert system 

      The expert system for a safe insertion surgical path is the most distinguishing part of 

this research. The experience of neurosurgeons has been used to evaluate the automatic 

surgical path in some studies, however, it is not so efficient [128]. A one-hundred-case 

database has been analysed with reference to the positions of tumours and path angles. So 

far, it shows a certain degree of relativity between them, which is the tumours with 

proximity positions will result in similar surgical paths. A primary expert system will be 

built up based on this finding. Other features of tumours, such as size, shape and content 

are considered as important factors which will also be considered by the expert system to 

be developed. After that, the system will create a virtual surgical path under these criteria. 

The expert system then has the ability to choose the one path candidate which has less 

than 5mm distance to the virtual path as an optimal surgical path. If there is no surgical 

path conformity from the expert system, more path candidates will be calculated with 

inferior quality and analyzed by the expert system. After it repeats 10 times, an existing 

manual operative system for surgical path planning will be launched in case the expert 

system is unable to find the proper path. Although the database of MR images in this 

study has a limited coverage of brain tumours (only craniopharyngioma is included), this 

system can be promoted theoretically to choose optimal surgical paths in other clinical 

cases.  

7.2.4 Convert and implant the programme 

A new module originating from the Matlab codes for path planning for stereotactic 

operation will be converted to C++ and added as a member of modules in the 3D slicer as 

a plug-in. The interface of the module will be friendly and easily to operate, and will be 

compatible and associable with other modules in the 3D slicer.  

7.2.5 Evaluation 

      1. Testing the module in progress. 
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      2. Test the final software in practical neurosurgical operation at the Navy General 

Hospital in China. 
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Appendix 

Appendix 1: The aligned coordinate data for the path line target and 3 angles of the path 

line, which indicates the necessary parameters for neurosurgical path, described in part 

5.3, will be employed to establish expert system. 

patients(False name)  real-X real-Y real-Z path-angle 

Chou ShuKang -30.7949 32.1572 14.2991 46.7 -117.2 15 

Tao Rui 6.0907 46.4984 7.3147 -54.8 -112.9 -22.6 

Zhang HuiLin -4.5809 31.0496 19.5849 38.2 -131.6 18.1 

Zhang Jia Feng  14.0704 43.5245 -0.473 -34.9 -118.7 -13.4 

GuJianFang 5.3026 34.655 17.4248 -27 -120.4 -27.3 

Li Chang Sheng -16.9186 61.3345 28.9274 37.8 -109.6 28 

Liu Jun -4.6813 49.0782 14.9803 43.1 -114.5 36.9 

Liu Xie Mei  -5.2202 42.7611 21.7598 32.9 -122.3 35.1 

Wang Qi -9.2823 54.8898 14.6432 48 -119.5 23.9 

Yu LunJi -0.3477 48.5251 13.9744 -29.7 -116.3 -30.6 

Zhao Feng Zhi -3.5383 40.3048 10.9203 34.9 -123.2 29.7 

Zhou YingChun 1.0905 42.2883 13.7624 -25.8 -121.7 -29.1 

Chen AiMei 14.7097 40.5196 17.6488 -34.5 -126.5 -26.4 

JiXingYu 24.0461 20.5768 -1.9296 -145.6 -119.9 -13.6 

Wang PeiYu 2.9081 48.5311 10.7402 -26.6 -113.5 -26.5 

GuHeng -1.0091 46.6731 -2.0422 22.1 -114.3 25.4 

Sun YiMin 2.1525 42.0824 24.8 -37 -118.5 -34.7 

Wang Zhen -2.0671 59.2653 17.2258 45 -129.3 34.9 

Ye ShaoHong 0.1915 45.5501 2.9833 41.6 -124.9 28.4 

Du YeHeng 9.8779 39.7602 22.6396 -30.4 -126.9 -29.8 

Hou ShuLin -3.0525 28.5766 24.6271 45.4 -118.2 22.2 

Sun JingXiang -3.3323 34.7522 26.1706 53.5 -123.6 27.4 

Yan ChengHe -4.7299 47.0445 9.3411 37.5 -129.3 24.1 

Zhang Po -2.3338 48.1634 22.0622 42.2 -117.1 21 

Du HuiWei 0.8281 41.2015 14.4677 -28.6 -127.6 -18.3 

Gao JinNa 8.2186 46.2687 10.2703 -34.1 -123.1 -25.5 

Liu Chao 12.1068 55.036 -5.5952 -56.1 -107.4 -12.6 

ShuiYuHong -5.4134 47.8823 20.1235 54.5 -118.1 33.8 

Yang TianYu -0.1045 46.4306 5.7619 50.1 -111.3 24.9 

Zhang YanAn 4.1556 42.3762 10.1483 -45.2 -117.4 -24.4 

Dong ChengGang 0.4562 46.9982 12.6855 -34.4 -127.6 -21 

Gao RenCai 2.2467 44.5811 -4.177 -53.3 -128.9 -36.7 

GuoYongHua -1.4368 37.0788 10.4156 47.3 -122.2 24.1 

JinJiaJia 0.7847 46.7208 11.6629 -57.3 -123.6 -41 

Su XinYue -8.9246 38.5224 5.2644 61.1 -128.9 42.4 
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Tao XinYuan -14.0487 53.2497 10.9959 43.7 -128.6 26.7 

Wang HaiHe 0.9153 47.6938 13.2327 -54.6 -127.8 -32.8 

Wang RuiRui 0.2559 49.3627 9.6983 -44.3 -139.8 -20.6 

Zhang LianYing -0.4307 43.1174 12.335 59 -124.5 32.5 

Zhao JinZhong 1.3213 45.4994 3.0024 -56.1 -127.9 -29.9 

Cao Ou 5.4672 59.3576 -4.2222 -59.7 -114.7 -27.6 

Chao Yuan 0.3283 32.6985 17.6217 -53.3 -118.7 -30.4 

Cui Yan -1.5495 40.0732 7.4907 48.4 -124.8 40.1 

GuoJianMin 27.0682 14.9577 22.5068 -27.4 -132.9 -15.2 

Li ShuJu 9.4849 39.4194 4.4518 -50 -120.8 -22.2 

Fang ShuYing 2.6249 47.5285 -11.5561 67.1 -120 37.3 

Fang LiangBo 7.398 33.0483 22.2422 -57.2 -129.6 -39.7 

Han ChengFei 14.9729 37.8184 4.9579 -41.5 -123.8 -21.5 

Hu CuiLian 7.653 49.3413 12.3085 -50.1 -122.9 -36.1 

Huang BingLin 8.3377 54.2373 20.1992 -48.5 -123.6 -27.6 

JiBoFei 0.8661 53.2384 5.2794 -52.5 -129.8 -39.5 

Li FuSheng -5.5 46.9 2.6449 51.5 -112.7 23.8 

Li GuiChen 5.3523 45.5723 11.5989 -56.9 -124.9 -31 

Li Hui 3.7173 42.5365 12.8727 -42.6 -120.6 -20.3 

Li XuNa 6.6149 33.9217 4.917 -31.6 -130.7 -23.2 

Lu XingFu -26.7311 33.0142 11.8141 26.9 -136.3 19.4 

MengXiYang -4.9417 37.4009 2.5696 50.3 -132.6 36 

Qin HongChun 0.2016 57.5997 11.744 -57.5 -121.9 -35.5 

Song FangWen 0.2241 40.4999 16.5475 -53.3 -124.4 -30.5 

Tian MiYuan 4.308 48.0221 3.9266 -57.3 -119.9 -30.7 

Yu ShengFeng -0.2949 36.2994 11.4264 51.9 -133.5 31.2 

Yu XiaoTian 5.3586 45.6983 0.3894 -51.3 -117.8 -30.6 

Yue ZhiFeng 11.4604 36.1423 11.4619 -41.1 -128.4 -26.8 

Zhang JingYu 4.9865 31.1412 26.1939 -59.6 -123.3 -33.1 

Zhao DaShuang -6.5525 43.1077 10.4506 43.9 -128.4 17.7 

Zou XiaoHong 2.7253 42.8048 8.199 -60.6 -122.4 -35.9 

Cao JianChao 4.9859 39.7421 15.8329 -47.5 -131.9 -37.9 

Ding LeJiao -6.4748 31.3 19.4917 -61 -122.1 -32.2 

Dou YiEn 7.2269 44.2649 12.6293 -50 -126.1 -32.3 

GuoLiNa -5.1958 42.3618 11.4532 45.4 -135.5 37.5 

Hu XiaoBin 19.0007 36.6309 8.0954 -41.1 -121.5 -27.1 

Hu YongChun 2.0729 44.2706 9.6703 -48.3 -128.1 -41.3 

Huang GuoXian 4.9489 35.6596 16.6372 47.9 -133.4 33.3 

Huang ZhenFu 7.0096 39.0367 9.3486 -48.4 -136.9 -31.3 

Lai FeiSai -1.7742 36.8433 20.4353 56.2 -116.8 30.2 

Li Gang -5.2849 42.1986 10.5201 52.4 -123.4 27.9 

Li JiaLian 3.2233 37.6451 19.7529 -58.3 -110.4 -35.6 

Li Jie 1.7703 48.3065 12.6814 -69 -113.3 -45.1 

Li QingEn 5.0956 40.6876 17.2336 -47.1 -121.8 -27 
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Lin Cui -16.3196 34.2432 13.1616 50.8 -116 22.7 

Lin Tian 4.3789 54.8639 15.3703 -48.6 -118.9 -31.6 

Lu Jin -2.3703 44.5168 17.1929 52.5 -119.5 28.8 

Min YongQun 0.5304 36.5974 10.3447 -53.3 -117.4 -32.8 

Ren JinWei 6.0865 45.1184 17.544 -53.3 -115.5 -30.7 

Rong Liang 17.0767 58.3571 30.5853 -68.9 -120.8 -44.2 

Sun ZhiAi 3.794 43.1391 18.1127 57.2 -120.1 37.9 

Tang MengKe -1.626 39.9681 -1.1346 -50.6 -120.9 -34.7 

Wang Cheng 2.2268 39.6709 15.2194 -55 -124.8 -31.8 

Wang Fang 0.8404 38.3941 17.0953 46.9 -118.7 24 

Wang HaoFan 6.5889 37.3721 10.9184 -45.3 -119.9 -27.9 

Wu Lei 11.8116 61.4119 23.7815 -64.1 -110.1 -21.4 

Xia ZhenJuan 7.5988 41.1061 7.9657 -42 -124.7 -34.1 

Xiao JingYun 4.9397 45.7748 13.3766 -48.6 -129.1 -35.9 

Zhang GuoYi -13.4741 45.7329 14.1779 45.4 -125 34.1 

Zhang JinYe 2.1536 42.525 15.1657 -54 -133 -35.2 

Zhu HaiYan 5.3775 37.272 17.983 -47.7 -117.1 -29.1 

Chen GuiHua 14.829 60.2088 21.7505 -76 -107.7 -33 

Li Jia -27.021 36.6656 19.7948 73 -98.9 35.1 

Pang LiLi -8.9121 46.8694 -1.4114 47.2 -127.2 31.4 

Hu XiaoBin2 -6.0727 41.5129 14.8408 61 -119.7 40.1 
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Appendix 2: Measurement results of primary and processed data for diameter ACA, 

MCA, ICA and BA, respectively. 

 

Name ACA 

  L Mean R Mean 

bai-YS 2.55 2.2 2.15 2.3 2.97 2.69 2.27 2.643333 

Huang De Cheng 2.17 2.2 2 2.123333 2.2 2.04 2.13 2.123333 

Liu Yun Cong 2.4 2.26 2.37 2.343333 2.67 2.45 2.53 2.55 

Ma Gui Ling 2.75 2.93 3.22 2.966667 2.75 2.4 2.8 2.65 

Peng Gong Bing 2.07 2.08 2.08 2.076667 2.28 2.28 2.78 2.446667 

Qi Xia Wa 2.4 2.45 2.11 2.32 2.53 2.27 2.11 2.303333 

Ren Shu Ying 2.15 2.72 2.4 2.423333 2.15 2.4 2.13 2.226667 

Sun Shu Zheng 2.46 2.17 2.49 2.373333 2.21 2.39 2.52 2.373333 

Tong Tui Yuan 2.75 2.47 2.77 2.663333 2.3 2.64 2.2 2.38 

Wang Jun Feng 2.14 2.06 2.18 2.126667 2.3 2.4 2.2 2.3 

XueErQuan 3.07 3.04 3.54 3.216667 2.15 2.52 2.51 2.393333 

Yan Bi Rong 2.39 2.42 2.11 2.306667 2.79 2.75 2.3 2.613333 

Zhu Jin Hua 2.07 2.07 1.98 2.04 2.56 2.17 2.15 2.293333 

Chen Shao Xian 2.85 2.95 2.3 2.7 2 2 1.93 1.976667 

Li Chun You 2 1.89 2.22 2.036667 2.31 2.22 2.19 2.24 

Yang Kun 2.26 2.36 2.47 2.363333 2.13 2.33 2.4 2.286667 

Zhou Shu Lan 2.69 2.79 3 2.826667 3.02 2.94 2.86 2.94 

Jing Yu 2.52 2.39 2.48 2.463333 2.44 2.2 2.2 2.28 

Zhou Fu Ming 2.36 2.45 2.13 2.313333 2.45 2.36 2.27 2.36 

Dong Peng Nian 2.64 3.02 2.75 2.803333 2.45 2.11 2.09 2.216667 

Zhang Wen Xiu 2.37 2.02 2.3 2.23 2.48 2.29 2.36 2.376667 

Dong Shun Ying 2.46 2.56 2.19 2.403333 2.36 2.13 2.11 2.2 

Li Yong Qing 2.4 2.8 2.14 2.446667 2.27 2.27 2.27 2.27 

      Mean STDEV     Mean STDEV 

      2.42899 0.306278     2.367101 0.204693 

  ACA 

  Mean STDEV 

  2.398043478 0.259468189 
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Name MCA 

  L Mean R Mean 

bai-YS 3.13 3.33 3.16 3.206667 2.83 3.26 3.06 3.05 

Huang De Cheng 3.29 3.1 3.11 3.166667 3 3.12 3.15 3.09 

Liu Yun Cong 3.33 3.48 3.47 3.426667 3.21 3.2 3.47 3.293333 

Ma Gui Ling 3.33 3.28 3.22 3.276667 3.49 3.21 3.49 3.396667 

Peng Gong Bing 3.33 3.21 3.3 3.28 3.64 3.82 4.1 3.853333 

Qi Xia Wa 3.2 3.33 3.47 3.333333 3.64 3.1 3.17 3.303333 

Ren Shu Ying 3.36 3.36 3.07 3.263333 2.83 3.26 3.06 3.05 

Sun Shu Zheng 3.04 2.92 3.06 3.006667 2.8 2.81 2.86 2.823333 

Tong Tui Yuan 2.97 2.69 3.02 2.893333 2.97 3.32 3.2 3.163333 

Wang Jun Feng 2.58 2.48 2.5 2.52 2.56 2.66 2.4 2.54 

XueErQuan 3.49 3.67 3.02 3.393333 3.04 3.05 3.58 3.223333 

Yan Bi Rong 3.46 3.14 3.5 3.366667 3.43 3.6 3.2 3.41 

Zhu Jin Hua 2.64 2.97 3.1 2.903333 3.2 3.37 3.4 3.323333 

Chen Shao Xian 3.37 3.31 3.38 3.353333 3.52 3.34 3.02 3.293333 

Li Chun You 2.55 2.36 2.46 2.456667 2.5 2.36 2.36 2.406667 

Yang Kun 2.96 2.47 2.54 2.656667 2.5 2.54 2.33 2.456667 

Zhou Shu Lan 3.67 3.5 3.6 3.59 3.14 3.19 2.87 3.066667 

Jing Yu 3.14 3.11 3.14 3.13 3.28 3.22 3.48 3.326667 

Zhou Fu Ming 3.79 3.31 3.4 3.5 3.16 3.18 3.7 3.346667 

Dong Peng Nian 2.65 2.92 3.02 2.863333 2.74 2.83 2.56 2.71 

Zhang Wen Xiu 2.94 2.88 2.98 2.933333 2.48 2.27 2.36 2.37 

Dong Shun Ying 2.53 2.56 2.81 2.633333 3.07 3 2.74 2.936667 

Li Yong Qing 2.53 2.85 2.44 2.606667 2.4 2.4 2.54 2.446667 

      Mean STDEV     Mean STDEV 

      3.076522 0.33431     3.038261 0.392593 

  MCA 

  Mean STDEV 

  3.057391304 0.361062159 
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Name ICA 

  L Mean R Mean 

bai-YS 4.49 4.95 4.32 4.586667 4.33 4.53 4.67 4.51 

Huang De Cheng 4.03 4.44 4.53 4.333333 4.3 4.37 4.5 4.39 

Liu Yun Cong 4.29 4.42 4.28 4.33 4.47 4.26 4.39 4.373333 

Ma Gui Ling 5.57 5.7 5.02 5.43 4.54 4.84 4.78 4.72 

Peng Gong Bing 4.89 5.15 5.07 5.036667 5.62 5.57 5.73 5.64 

Qi Xia Wa 4.73 4.61 4.7 4.68 5.13 4.95 4.66 4.913333 

Ren Shu Ying 4.99 4.96 5.15 5.033333 5.04 5.12 5.02 5.06 

Sun Shu Zheng 5.57 5.33 5.67 5.523333 5.9 5.73 5.55 5.726667 

Tong Tui Yuan 4.96 4.99 5.12 5.023333 4.33 4.12 4.11 4.186667 

Wang Jun Feng 4.96 5.12 4.97 5.016667 5.15 4.85 5.02 5.006667 

XueErQuan 4.85 4.88 4.97 4.9 4.52 4.56 4.56 4.546667 

Yan Bi Rong 5.71 5.94 5.62 5.756667 4.85 4.77 4.95 4.856667 

Zhu Jin Hua 4.88 4.83 4.98 4.896667 5.12 5.16 5.04 5.106667 

Chen Shao Xian 5.31 5.02 5.07 5.133333 4.83 5.1 4.7 4.876667 

Li Chun You 5.49 5.62 5.48 5.53 5.11 5.1 5.2 5.136667 

Yang Kun 5.03 5.49 5.63 5.383333 5.01 5.19 5.08 5.093333 

Zhou Shu Lan 5 4.85 4.91 4.92 5 4.96 4.99 4.983333 

Jing Yu 5.92 5.47 5.34 5.576667 5.71 5.12 5.14 5.323333 

Zhou Fu Ming 4.7 4.72 4.62 4.68 4.3 4.26 3.65 4.07 

Dong Peng Nian 4.67 4.75 4.46 4.626667 5.19 5 5 5.063333 

Zhang Wen Xiu 3.84 4.18 3.98 4 4.64 4.56 4.09 4.43 

Dong Shun Ying 5.54 5.66 5.77 5.656667 4.66 4.96 4.85 4.823333 

Li Yong Qing 6.15 6.22 6.56 6.31 5.74 5.25 5.73 5.573333 

      Mean STDEV     Mean STDEV 

      5.05928 0.535754     4.88739 0.444182 

  ICA 

  Mean STDEV 

  4.973333333 0.494301353 
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Name BA 

    Mean 

bai-YS 3.83 4.1 3.69 3.873333 

Huang De Cheng 4.15 3.21 3.6 3.653333 

Liu Yun Cong 3.07 3.4 3.02 3.163333 

Ma Gui Ling 3.6 4.5 3.87 3.99 

Peng Gong Bing 4.34 3.69 3.78 3.936667 

Qi Xia Wa 4.33 4.15 4.42 4.3 

Ren Shu Ying 4.7 4.73 4.8 4.743333 

Sun Shu Zheng 4.24 3.98 4.01 4.076667 

Tong Tui Yuan 3.4 3.34 3.2 3.313333 

Wang Jun Feng 4.42 4.46 4.2 4.36 

XueErQuan 3.58 4.1 3.4 3.693333 

Yan Bi Rong 3.78 3.75 3.65 3.726667 

Zhu Jin Hua 2.97 3.26 3.1 3.11 

Chen Shao Xian 3.87 3.83 4.2 3.966667 

Li Chun You 3.77 3.88 3.73 3.793333 

Yang Kun 3.31 3.48 3.2 3.33 

Zhou Shu Lan 3.75 3.71 3.97 3.81 

Jing Yu 4.22 4.39 4.1 4.236667 

Zhou Fu Ming 3.34 3.36 3.94 3.546667 

Dong Peng Nian 3.49 3.07 3.96 3.506667 

Zhang Wen Xiu 3.31 3.59 3.01 3.303333 

Dong Shun Ying 3.6 3.07 3.8 3.49 

Li Yong Qing 3.5 3.21 3.33 3.346667 

      Mean STDEV 

      3.75087 0.4172 

  BA 

  Mean STDEV 

  3.339333333 0.539671332 
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