165 research outputs found

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Non-invasive venous oximetry through venous blood volume modulation

    Get PDF
    For decades, the monitoring of mixed venous oxygen saturation has been done invasively using fibre-optic catheters. This procedure is not without risk as complications may arise from catheterization. This thesis describes an alternative and novel means of monitoring venous oxygen saturation. The technique outlined involves inducing regular modulations of the venous blood volume and the associated measurement of those modulations using an optical sensor. Just as pulse oximetry utilizes the natural arterial pulse to perform spectral analysis of the peripheral blood in order to estimate the arterial blood oxygen saturation, the new venous oximetry technique uses the artificially generated pulse to perform the task of measuring peripheral venous oxygen saturation. This thesis explores and investigates the feasibility of this new venous oximetry technique. A heuristic model was first developed to predict the effects of introducing an artificially generated pulsatile signal in the venous system. The effect on the underlying natural arterial pulsation was also examined. Experiments were then conducted to justify and interpret the model developed. Other experiments were also conducted to optimize the design of the artificial pulse-based venous oximeter, to explore the effects of prolonged modulation of the venous system and to establish evidence that the measurements made were indeed related to venous oxygen saturation. It is concluded that the new venous oximetry technique is indeed feasible and with further research and development would one day replace the current invasive method

    Imaging photoplethysmography: towards effective physiological measurements

    Get PDF
    Since its conception decades ago, Photoplethysmography (PPG) the non-invasive opto-electronic technique that measures arterial pulsations in-vivo has proven its worth by achieving and maintaining its rank as a compulsory standard of patient monitoring. However successful, conventional contact monitoring mode is not suitable in certain clinical and biomedical situations, e.g., in the case of skin damage, or when unconstrained movement is required. With the advance of computer and photonics technologies, there has been a resurgence of interest in PPG and one potential route to overcome the abovementioned issues has been increasingly explored, i.e., imaging photoplethysmography (iPPG). The emerging field of iPPG offers some nascent opportunities in effective and comprehensive interpretation of the physiological phenomena, indicating a promising alternative to conventional PPG. Heart and respiration rate, perfusion mapping, and pulse rate variability have been accessed using iPPG. To effectively and remotely access physiological information through this emerging technique, a number of key issues are still to be addressed. The engineering issues of iPPG, particularly the influence of motion artefacts on signal quality, are addressed in this thesis, where an engineering model based on the revised Beer-Lambert law was developed and used to describe opto-physiological phenomena relevant to iPPG. An iPPG setup consisting of both hardware and software elements was developed to investigate its reliability and reproducibility in the context of effective remote physiological assessment. Specifically, a first study was conducted for the acquisition of vital physiological signs under various exercise conditions, i.e. resting, light and heavy cardiovascular exercise, in ten healthy subjects. The physiological parameters derived from the images captured by the iPPG system exhibited functional characteristics comparable to conventional contact PPG, i.e., maximum heart rate difference was <3 bpm and a significant (p < 0.05) correlation between both measurements were also revealed. Using a method for attenuation of motion artefacts, the heart rate and respiration rate information was successfully assessed from different anatomical locations even in high-intensity physical exercise situations. This study thereby leads to a new avenue for noncontact sensing of vital signs and remote physiological assessment, showing clear and promising applications in clinical triage and sports training. A second study was conducted to remotely assess pulse rate variability (PRV), which has been considered a valuable indicator of autonomic nervous system (ANS) status. The PRV information was obtained using the iPPG setup to appraise the ANS in ten normal subjects. The performance of the iPPG system in accessing PRV was evaluated via comparison with the readings from a contact PPG sensor. Strong correlation and good agreement between these two techniques verify the effectiveness of iPPG in the remote monitoring of PRV, thereby promoting iPPG as a potential alternative to the interpretation of physiological dynamics related to the ANS. The outcomes revealed in the thesis could present the trend of a robust non-contact technique for cardiovascular monitoring and evaluation

    Development and evaluation of venous oximetry

    Get PDF
    Photoplethysmography, a technique to measure by optical means volume changes, has been known and applied for many years. One of its most popular applications is pulse oximetry, a non-invasive method to measure oxygen content in arterial blood. It is based on the principle of arterial blood volume changes due to heart contractions, known as systoles. Systolic pulsations appear on the arterial vascular system, while blood flow in veins does not normally present pulsations, especially at remote parts of the peripheral vascular system, such as the fingers. Therefore, pulse oximetry is only applicable to arteries as their pulsations allow for separation of the pulsatile components from the rest of the absorbing components. A novel non-invasive technique permits the measurement of venous oxygen saturation by introducing a series of pulsations in the veins thus allowing the separation of venous signal components for calculation of venous oxygen saturation. This thesis presents a theoretical model describing the mechanical coupling of arteries and veins and its effects in the accuracy of oxygen saturation measurement. [Continues.

    Detecting low respiratory rates using myriad, low-cost sensors

    Get PDF
    The underlying problem for two of the three most common patterns of unexpected hospital deaths (PUHD) is hypoventilation1. Current methods of post-operative respiratory monitoring give delayed signals and have a high false positive rate leading nurses to ignore alarms. We hypothesize there exists a combination of low cost sensors which are capable of providing real time feedback and alarms regarding obstructive sleep apnea and ventilatory depression. Such a monitor would be useful during space travel when monitoring personnel are limited following an injury or if astronauts were to be sedated during extended travel. Methods: Twenty-six subjects were recruited to participate in a study of the effects of Propofol and Remifentanil. Throughout the day, these patients were exposed to varying levels of both drugs simultaneously via target controlled infusions. These patients were attached to breathing and oxygen monitors including chest bands, pulse oximeters, nasal pressure sensors, CO2 capnography, breathing microphones, and thermistors. The patients were then observed for types of apnea or ventilatory depression. Results: The study is currently ongoing however preliminary analyses of the data indicate multiple low cost sensors are capable of detecting respiratory rate as well as obstructive events and apnea. Conclusion: Using only a combination of low cost sensors, we can provide real time respiratory event data to nurses and practitioners
    • …
    corecore