28 research outputs found

    An Omnidirectional Aerial Platform for Multi-Robot Manipulation

    Get PDF
    The objectives of this work were the modeling, control and prototyping of a new fully-actuated aerial platform. Commonly, the multirotor aerial platforms are under-actuated vehicles, since the total propellers thrust can not be directed in every direction without inferring a vehicle body rotation. The most common fully-actuated aerial platforms have tilted or tilting rotors that amplify the aerodynamic perturbations between the propellers, reducing the efficiency and the provided thrust. In order to overcome this limitation a novel platform, the ODQuad (OmniDirectional Quadrotor), has been proposed, which is composed by three main parts, the platform, the mobile and rotor frames, that are linked by means of two rotational joints, namely the roll and pitch joints. The ODQuad is able to orient the total thrust by moving only the propellers frame by means of the roll and pitch joints. Kinematic and dynamic models of the proposed multirotor have been derived using the Euler- Lagrange approach and a model-based controller has been designed. The latter is based on two control loops: an outer loop for vehicle position control and an inner one for vehicle orientation and roll-pitch joint control. The effectiveness of the controller has been tested by means of numerical simulations in the MATLAB c SimMechanics environment. In particular, tests in free motion and in object transportation tasks have been carried out. In the transportation task simulation, a momentum based observer is used to estimate the wrenches exchanged between the vehicle and the transported object. The ODQuad concept has been tested also in cooperative manipulation tasks. To this aim, a simulation model was considered, in which multiple ODQuads perform the manipulation of a bulky object with unknown inertial parameters which are identified in the first phase of the simulation. In order to reduce the mechanical stresses due to the manipulation and enhance the system robustness to the environment interactions, two admittance filters have been implemented: an external filter on the object motion and an internal one local for each multirotor. Finally, the prototyping process has been illustrated step by step. In particular, three CAD models have been designed. The ODQuad.01 has been used in the simulations and in a preliminary static analysis that investigated the torque values for a rough sizing of the roll-pitch joint actuators. Since in the ODQuad.01 the components specifications and the related manufacturing techniques have not been taken into account, a successive model, the ODQuad.02, has been designed. The ODQuad.02 design can be developed with aluminum or carbon fiber profiles and 3D printed parts, but each component must be custom manufactured. Finally, in order to shorten the prototype development time, the ODQuad.03 has been created, which includes some components of the off-the-shelf quadrotor Holybro X500 into a novel custom-built mechanical frame

    Aerial Manipulation: A Literature Review

    Get PDF
    Aerial manipulation aims at combining the versatil- ity and the agility of some aerial platforms with the manipulation capabilities of robotic arms. This letter tries to collect the results reached by the research community so far within the field of aerial manipulation, especially from the technological and control point of view. A brief literature review of general aerial robotics and space manipulation is carried out as well

    Safe local aerial manipulation for the installation of devices on power lines: Aerial-core first year results and designs

    Get PDF
    Article number 6220The power grid is an essential infrastructure in any country, comprising thousands of kilometers of power lines that require periodic inspection and maintenance, carried out nowadays by human operators in risky conditions. To increase safety and reduce time and cost with respect to conventional solutions involving manned helicopters and heavy vehicles, the AERIAL-CORE project proposes the development of aerial robots capable of performing aerial manipulation operations to assist human operators in power lines inspection and maintenance, allowing the installation of devices, such as bird flight diverters or electrical spacers, and the fast delivery and retrieval of tools. This manuscript describes the goals and functionalities to be developed for safe local aerial manipulation, presenting the preliminary designs and experimental results obtained in the first year of the project.European Union (UE). H2020 871479Ministerio de Ciencia, Innovación y Universidades de España FPI 201

    미지 환경에서의 안전 비행 운송을 위한 협업제어 및 경로생성 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 기계항공공학부, 2017. 8. 김현진.Recently, aerial manipulators using unmanned aerial vehicles (UAVs) are receiving attention due to their superior mobility in three-dimensional space. It can be applied to a wide range of applications such as inspection of hard-to-reach structure or aerial transportation. This dissertation presents a viable approach to safe aerial transportation in unknown environments by using multiple aerial manipulators. Unlike existing approaches for cooperative manipulation based on force decomposition or impedance-based control that often requ- ire heavy or expensive force/torque sensors, this dissertation suggests a method without such sensors, by exploiting the decoupled dynamics to develop estimation and control alg- orithms. With the decoupled dynamics and the assumption of rigid grasp, an online estimator is designed initially to estimate the mass and inertial properties of an unknown payload using the states of the aerial manipulator only. Stable adaptive controller based on the online estimated parameter is then designed using Lyapunov methods. Through simulations, the performance of the proposed controller is compared with conventional passivity-based adaptive algorithms. This dissertation also proposes a motion generation algorithm for cooperative manipulators to transport a payload safely. If the payload is excessively heavy in comparison with the transportation ability of an aerial robot, an aerial robot may crash because of actuation limits on the motors. As a first step, the allowable flight envelope is analyzed with respect to the position of the end-effector. In order to keep the end-effector in the allowable fight region, kinematic coordination between a payload and cooperative aerial manipulators is first studied. A two-layer framework, in which the first layer computes the motion reference of the end-effectors and the second layer calculates the joint motion of the corresponding manipulator, is then developed in a task-prioritized fashion. When generating aerial manipulator trajectories, the desired trajectory is calculated to satisfy the unilateral constraints obtained by the allowable flight envelope. This work also considers the obstacle avoidance of cooperative aerial manipulators in unknown environments. Using the relative distance between an aerial robot and an obstacle as measured by an RGB-D camera and point cloud library (PCL), dynamic movement primitives (DMPs) modify the desired trajectory. By having the leader robot detect an obstacle and the follower robots maintain a given relative distance with the leader, improved efficiency of obstacle avoidance for cooperative robots can be achieved. Finally, the proposed synthesis of estimation, control, and planning algorithms are validated with experiments using custom-made aerial manipulators combined with a two-DOF (Degree Of Freedom) robotic arm. The proposed method is validated with trajectory tracking using two types of payloads. Cooperative aerial transportation in unknown environments is also performed with an unknown obstacle. Both experimental results suggest that the proposed approach can be utilized for safe cooperative aerial transportation.1 Introduction 1 1.1 Background and Motivations 1 1.2 Literature Survey 4 1.2.1 Cooperative Manipulation 4 1.2.2 Handling an Unknown Object 7 1.2.3 Obstacle Avoidance for Cooperative Robots 8 1.3 Research Objectives and Contributions 9 1.3.1 Estimation and Control Algorithm 10 1.3.2 Motion Planning within the Allowable Flight Envelope 11 1.3.3 Real-time Obstacle Avoidance using an RGB-D Camera 11 1.4 Thesis Organization 12 2 Background 14 2.1 Dynamics for Cooperative Aerial Manipulator 14 2.1.1 Rigid Body Statics 15 2.1.2 Dynamics for Single Aerial Manipulator 16 2.1.3 Decoupled Dynamics 19 2.2 Task Priority 22 2.3 DMPs 24 3 Estimator and Controller Design 26 3.1 Payload Mass and Inertia Parameter Estimation 28 3.1.1 System Parametrization 28 3.1.2 On-line Parameter Estimator 29 3.1.3 Robust Analysis for Measurement Noise 32 3.2 Controller Design 34 3.3 Simulation Results 40 4 Path Planning 45 4.1 Allowable Payload for Each Aerial Manipulator 45 4.2 Trajectory Generation with Unilateral Constraints 49 4.2.1 End-eector Trajectory Generation 49 4.2.2 Inverse Kinematics with Null Space Approach 49 4.2.3 Task Prioritization with Unilateral Constraints 56 5 Obstacle Avoidance in Unknown Environments 60 5.1 Obstacle Detection 60 5.2 Movement Primitives for Cooperative Aerial Manipulators 64 6 Experimental Validation and Results 71 6.1 Simulation Validation for Moving Obstacle 71 6.2 Experimental Setup 74 6.3 Experiment for Cooperative Aerial Transportation 77 6.3.1 Path Following with Two Types of Payloads 77 6.3.2 Aerial Transportations in Unknown Environments 78 7 Conclusions 93 Abstract (in Korean) 105Docto

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source

    Modelling and control of aerial manipulators

    Get PDF
    Hace unos años, dentro de la robótica aérea, surgió la manipulación aérea como campo de investigación. Desde su nacimiento, su impacto ha ido incrementándose poco a poco debido, sobretodo, al gran número de aplicaciones que podrían llevarse a cabo con este tipo de sistemas. Un manipulador aéreo puede definirse como una plataforma aérea la cual ha sido equipada con uno o varios brazos robóticos. Este nuevo concepto ha abierto un mundo de posibilidades para este tipo de robots aéreos. Además, gracias a la posibilidad de este tipo de robots aéreos de interactuar con su entorno, podrían llevar a cabo inspecciones de estructuras civiles o incluso, tareas de ensamblaje de estructuras y todo ello, por supuesto, de forma autónoma. Esta tesis se centra en el estudio e implementación de sistemas de manipulación aérea y, en particular, en el diseño de estrategias de control para la plataforma aérea. Este estudio comienza con el cáculo de las ecuaciones que representan la dinámica del sistema, y que nos permite analizar su comportamiento y la influencia del movimiento de los brazos robóticos en la estabilidad de la plataforma.El análisis de estas ecuaciones nos permite diseñar de esquemas de control tales como los basados en Backstepping. Pero el objetivo de esta tesis no es solo el diseño sino también la implementación de estas técnicas de control en sistemas de manipulación aérea reales y con capacidad de llevar a cabo tareas de manipulación en escenarios al aire libre. La principales contribuciones de esta tesis son el cálculo de los modelos dinámicos para cada uno de los tipos de manipuladores aéreos estudiados he implementados durante el desarrollo de la tesis. Además del uso de estas modelos para la diseño de una estrategia de control adaptable a cada una de las plataformas. También se ha diseñado un mecanismo “compliant” que ha sido integrado en un manipulador parallevar a cabo tareas de inspección estructuras por contacto, además de un control de fuerza-posición. Cada manipulador aéreo implementado durante esta tesis, excepto el en caso del helicóptero, va unido a un estudio de las especificaciones hardware necesarias para la realización de una validación del sistema mediante experimentos de vuelo en escenarios al aire libre, y en el caso de los manipuladores aéreos para inspección de estructuras, en un puente real. Cada experimento realizado ha sido analizado en detalle para corregir errores, además de para adaptar o agregar cualquier modificación estructural o de hardware necesaria

    A Contribution to the Design of Highly Redundant Compliant Aerial Manipulation Systems

    Get PDF
    Es ist vorhersehbar, dass die Luftmanipulatoren in den nächsten Jahrzehnten für viele Aufgaben eingesetzt werden, die entweder zu gefährlich oder zu teuer sind, um sie mit herkömmlichen Methoden zu bewältigen. In dieser Arbeit wird eine neuartige Lösung für die Gesamtsteuerung von hochredundanten Luftmanipulationssystemen vorgestellt. Die Ergebnisse werden auf eine Referenzkonfiguration angewendet, die als universelle Plattform für die Durchführung verschiedener Luftmanipulationsaufgaben etabliert wird. Diese Plattform besteht aus einer omnidirektionalen Drohne und einem seriellen Manipulator. Um den modularen Regelungsentwurf zu gewährleisten, werden zwei rechnerisch effiziente Algorithmen untersucht, um den virtuellen Eingang den Aktuatorbefehlen zuzuordnen. Durch die Integration eines auf einem künstlichen neuronalen Netz basierenden Diagnosemoduls und der rekonfigurierbaren Steuerungszuordnung in den Regelkreis, wird die Fehlertoleranz für die Drohne erzielt. Außerdem wird die Motorsättigung durch Rekonfiguration der Geschwindigkeits- und Beschleunigungsprofile behandelt. Für die Beobachtung der externen Kräfte und Drehmomente werden zwei Filter vorgestellt. Dies ist notwendig, um ein nachgiebiges Verhalten des Endeffektors durch die achsenselektive Impedanzregelung zu erreichen. Unter Ausnutzung der Redundanz des vorgestellten Luftmanipulators wird ein Regler entworfen, der nicht nur die Referenz der Endeffektor-Bewegung verfolgt, sondern auch priorisierte sekundäre Aufgaben ausführt. Die Wirksamkeit der vorgestellten Lösungen wird durch umfangreiche Tests überprüft, und das vorgestellte Steuerungssystem wird als sehr vielseitig und effektiv bewertet.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 ConclusionIn the following decades, aerial manipulators are expected to be deployed in scenarios that are either too dangerous for human beings or too expensive to be accomplished by traditional methods. This thesis presents a novel solution for the overall control of highly redundant aerial manipulation systems. The results are applied to a reference configuration established as a universal platform for performing various aerial manipulation tasks. The platform consists of an omnidirectional multirotor UAV and a serial manipulator. To ensure modular control design, two computationally efficient algorithms are studied to allocate the virtual input to actuator commands. Fault tolerance of the aerial vehicle is achieved by integrating a diagnostic module based on an artificial neural network and the reconfigurable control allocation into the control loop. Besides, the risk of input saturation of individual rotors is minimized by predicting and reconfiguring the speed and acceleration responses. Two filter-based observers are presented to provide the knowledge of external forces and torques, which is necessary to achieve compliant behavior of the end-effector through an axis-selective impedance control in the outer loop. Exploiting the redundancy of the proposed aerial manipulator, the author has designed a control law to achieve the desired end-effector motion and execute secondary tasks in order of priority. The effectiveness of the proposed designs is verified with extensive tests generated by following Monte Carlo method, and the presented control scheme is proved to be versatile and effective.:1 Introduction 2 Fundamentals 3 System Design and Modeling 4 Reconfigurable Control Allocation 5 Fault Diagnostics For Free Flight 6 Force and Torque Observer 7 Trajectory Generation 8 Hybrid Task Priority Control 9 System Integration and Performance Evaluation 10 Conclusio

    Experimental Evaluation of a Team of Multiple Unmanned Aerial Vehicles for Cooperative Construction

    Get PDF
    Nº Artículo 9314142This article presents a team of multiple Unmanned Aerial Vehicles (UAVs) to perform cooperative missions for autonomous construction. In particular, the UAVs have to build a wall made of bricks that need to be picked and transported from different locations. First, we propose a novel architecture for multi-robot systems operating in outdoor and unstructured environments, where robustness and reliability play a key role. Then, we describe the design of our aerial platforms and grasping mechanisms to pick, transport and place bricks. The system was particularly developed for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC), where Challenge 2 consisted of building a wall cooperatively with multiple UAVs. However, our approach is more general and extensible to other multi-UAV applications involving physical interaction, like package delivery. We present not only our results in the final stage of MBZIRC, but also our simulations and field experiments throughout the previous months to the competition, where we tuned our system and assessed its performance

    Cooperative aerial manipulation with force control and attitude stabilization

    Get PDF
    Ranging from autonomous flying cars, fixed wing and rotorcraft UAVs, there has been a tremendous interest in aerial robotics over the last decade. This thesis presents contributions to the state-of-art in cooperative payload transport with force synthesis and dynamic interaction using quadcopter UAVs. In this report, we consider multiple quadcopter aerial robots and develop decentralized force controller for them to manipulate a payload. We use quadcopters with a rigid link attached to it to collaboratively manipulate the payload. We develop a dynamic model of the payload for both point mass and rigid body cases. We model the contact force between the agents and the payload as a mass spring model. This assumption is valid when the vehicles are connected to the payload via elastic cables or when the payload is flexible or surrounded by elastic bumper materials. We also extend our aerial manipulation system to a multi-link arm attached to the quadcopter.We develop an adaptive decentralized control law for transporting a payload of unknown mass without explicit communication between the agents. Our controller ensures that all quadcopters and the payload asymptotically converges to a constant reference velocity. It also ensures that all of the forces applied to the payload converges to desired set-points. Desired thrusts and attitude angles are computed from the control algorithms and a low-level PD controller is implemented to track the desired commands for each quadcopter. The sum of the estimates of the unknown mass from all the agents converge to the true mass. We also employ a consensus algorithm based on connected graphs to ensure that each agent gets an equal share of the payload mass. Furthermore, we develop an orientation control algorithm that guarantees attitude stabilization of the payload. In particular, we develop time varying force set-points to enforce attitude regulation without any moment inputs from the quadcopters
    corecore