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Abstract: Ranging from autonomous flying cars, fixed wing and rotorcraft UAVs, there
has been a tremendous interest in aerial robotics over the last decade. This thesis presents
contributions to the state-of-art in cooperative payload transport with force synthesis
and dynamic interaction using quadcopter UAVs. In this report, we consider multiple
quadcopter aerial robots and develop decentralized force controller for them to manip-
ulate a payload. We use quadcopters with a rigid link attached to it to collaborately ma-
nipulate the payload. We develop a dynamic model of the payload for both point mass
and rigid body cases. We model the contact force between the agents and the payload
as a mass spring model. This assumption is valid when the vehicles are connected to
the payload via elastic cables or when the payload is flexible or surrounded by elastic
bumper materials. We also extend our aerial manipulation system to a multi-link arm
attached to the quadcopter.

We develop an adaptive decentralized control law for transporting a payload of un-
known mass without explicit communication between the agents. Our controller en-
sures that all quadcopters and the payload asymptotically converges to a constant ref-
erence velocity. It also ensures that all of the forces applied to the payload converges to
desired set-points. Desired thrusts and attitude angles are computed from the control
algorithms and a low-level PD controller is implemented to track the desired commands
for each quadcopter. The sum of the estimates of the unknown mass from all the agents
converge to the true mass. We also employ a consensus algorithm based on connected
graphs to ensure that each agent gets an equal share of the payload mass. Furthermore,
we develop an orientation control algorithm that guarantees attitude stabilization of the
payload. In particular, we develop time varying force set-points to enforce attitude reg-
ulation without any moment inputs from the quadcopters.
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CHAPTER 1

INTRODUCTION

Aerial robotics has a tremendous potential to impact the world in a positive way. In

this report, we focus on cooperative aerial manipulation using multi-rotors. In particu-

lar, we focus on quadcopters because of their popularity and accessibility.

Quadcopters are a type of small unmanned rotorcraft with four rotors. It is an un-

deractuated mechanical system and has six degrees of freedom with only four control

inputs. Thus, quadcopters are dynamically unstable. This rich dynamics and mechani-

cal simplicity of quadcopters can be exploited for agile and dynamic maneuvers in con-

strained spaces.

Quadcopter aerial robots have become increasingly popular because of their supe-

rior mobility in three dimensional space and high thrust-to-weight ratio. Because of

their size and hovering properties, quadcopters can operate in constrained spaces such

as damaged buildings, adversarial and nuclear environments. They can be used to col-

lect information from the environment and can also dynamically interact with the envi-

ronment using grippers. Possible applications of such robots include disaster response,

transport, photography, search and rescue operations, construction and so on.

Multiple quadcopters can be employed together to increase the capability of a sin-

gle quadcopter, which enables better manipulation and control of heavier payloads for

various applications. Cooperative aerial manipulation of a payload requires motion co-

ordination, regulation of forces applied to the payload by the quadcopters, attitude reg-

ulation of the payload and multirotors and analysis of stability of the combined system.

This thesis presents a framework for force regulation, motion coordination and orienta-
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tion control of the payload during cooperative aerial manipulation.

1.1 Motivation

Ranging from autonomous flying cars, fixed wing and rotor-craft UAVs, there has

been tremendous interest in aerial robotics over the last decade. Application of aerial

robotic systems range from military and civilian sectors. The ability to manipulate in 3D

allows multiple dynamic tasks like aerial gripping, manipulation, photography and so

on. Using quadcopter aerial robots dynamic interactions, vertical take off and landing,

hovering in constraint spaces are possible. Recently, we have already seen the com-

mercial applications of such aerial robots in commercial sectors. If such commercial

applications like air package delivery [2] is to be realistic, it should be able to handle

both rigid and flexible payloads and the dynamic interaction between the quadcopter

and payload. It is clear that the aerial robotics community lacks a general method of

force and dynamic motion synthesis during cooperative payload transport.

Motivated by the current challenges and their potential applications, in this work, we

design decentralized adaptive force control algorithm for multiple quadcopters to ma-

nipulate a load of an unknown mass. We develop a complete motion control algorithm

for cooperative payload transport to address both the orientation control of the payload

and the force control during cooperative aerial manipulation [3–6]. The developed al-

gorithm achieves asymptotic tracking of a desired velocity, controls the applied forces

to the payload to predefined set-points and ensures that the individual estimate of the

mass from each agent converges to the total mass divided by the number of agents. We

develop an attitude control algorithm for the payload using time-varying force control

without no any moments input from the rotors.
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1.2 Related Work

Because of the complexity of the problem, cooperative aerial manipulation has re-

cently become a popular research area (see for example [7–11]). Two distinct types of

framework exist in the literature. Inspired by the traditional approach of helicopter-

based towing via cables for load transport, most of the work in cooperative aerial load

transport has been focused on suspended payload transport using cables [7, 8, 11–13].

Recently, quadcopters are quipped with robotic manipulators and control laws are de-

signed for dynamic interactions, perching and aerial gripping [14–17].

Load Transport via towed cables has been extensively studied by researchers world-

wide [7, 11, 12, 18]. Reference [11] develops a geometric controller to follow a reference

trajectory of a suspended payload with multiple quadcopters. The authors in [12] de-

velop quasi-static models for payload transport via cables at a desired pose. Refer-

ence [7] develops a complete dynamic model of cooperative aerial manipulation and

exploits the differential flatness property of the system to generate smooth trajectories

for path planning. Reference [8] develops a software architecture for planning, control,

collision avoidance and deployment of cable suspended payloads using multiple heli-

copters. Recently, [13] develops a passivity based formation control for multiple UAVs

cooperatively carrying a suspended payload.

Aerial load transport via towed cables is a hybrid system and there are problems with

swing load attenuation. So, different control laws have to be designed when the cable

is tout and flexible. One possible solution to this problem is attach a robotic manipula-

tor to a Unmanned Aerial Vehicle (UAV) and develop an aerial manipulator (AM). Since

each AM is a coupled system, the control problem now becomes more challenging but it

introduces more dynamic features to the system such as better gripping and control of

payload as opposed to aerial towing. In one the earlier works, the authors in [19] develop

gripping mechanisms and control laws for cooperative grasping and manipulation of a

group of quadcopters. In some recent work, references [16,17,20] explore the problem of
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cooperative aerial load transport by using multirotors attached with multi-DOF robotic

arms and develop robust control and motion planning algorithms.

There also exist control strategies based on port Hamiltonian framework [21, 22] to-

wards control of aerial manipulators. Acosta et al. propose an Interconnection and

Damping Assignment Passivity Based Control (IDA-PBC) based on energy shaping method-

ology by exploiting the passivity of aerial manipulator. Nonlinear matching types of con-

troller developed in [22] utilizes the cyclo-passivity property of AMs and combines the

robust controllers for the quadcopter and the manipulator by exploiting their stability

margins and optimizing different prescribed criteria in real time.

On the other hand, Wang and Schwager [23] develop a scalable, decentralized con-

trol strategy by which a large number of ground mobile robots can manipulate a com-

paratively large object through a desired trajectory without explicit communication net-

work among the robots. Reference [24] considers a decentralized velocity controller to

transport a common payload by using a team of robots in R2 rigidly attached to the pay-

load. The authors in [25] develop decentralized adaptive controller to transport a rigid

payload in R2 or R3 by controlling the spatial velocity of the payload.

Inspired by aerial towing and integration of robotic manipulator we suggested coop-

erative aerial manipulation with rigid extension. This approach allows better control of

the payload and there is no problem of swing load attenuation. We can also extend the

rigid link to a multi-link robot and develop similar manipulation system. In aerial ma-

nipulator there is a lot of redundancy in the system, this approach helps us reduce the

redundancy of the system and develop a unified framework for cooperative aerial ma-

nipulation. As a possible example of our suggestions, recently, reference [26] develops

a distributed wrench controller that enables a group of rigidly attached quadcopters to

manipulate heavy payloads along a predefined trajectory without communication be-

tween the robots.
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1.3 Contribution

Most of the aforementioned references have not considered dynamic interactions

and force control between the payload and the quadcopters. In this paper, we develop

an unified framework for cooperative aerial manipulation. Reference [27] considers a

ring shaped flexible structure with multiple attached flying vehicles and develops a LQR

controller for linearized dynamics to track the desired pose of the payload. It is as-

sumed that the vehicles can exert both forces and moments on the payload. However,

we assume that the inputs from the quadcopters to the payload are only contact forces

with no moments. In particular, we develop force, motion and orientation control algo-

rithm that grantees force regulation, attitude stabilization and translational motion of

the quadcopters and the payload. This thesis makes the following contributions:

• We develop adaptive decentralized controller for transport of unknown payload

without communication between agents. The sum of estimates of each payload

converges to the true mass.

• We develop force consensus along the vertical direction such that the agents share

the mass of the payload equally.

• We develop a force and orientation control algorithm that guarantees attitude sta-

bilization of the payload and the convergence of the contact force and the velocity

of each quadcopter to desired setpoints. We develop time varying force setpoints

to enforce the orientation regulation of the payload.

1.4 Thesis Organization

This thesis presents force, motion and orientation control algorithms during cooper-

ative aerial manipulation. The remainder of the paper is structured as follows. In Chap-

ter 2, we develop a complete dynamic model for payload transportation using point
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mass model. In Chapter 3, we present nominal design for force control law while trans-

porting a payload of known mass. In Chapter 4, we consider quadcopters with rigid

extension and develop adaptive decentralize control laws. We also employ a consensus

algorithm based on connected graphs to ensure that each agent gets an equal share of

the payload mass. Desired thrusts and attitude angles are computed from the control al-

gorithms and a low-level PD controller is implemented to track the desired commands

for each quadcopter. Furthermore, in Chapter 5 we also develop orientation control al-

gorithm that guarantees attitude stabilization of the payload. In particular, we develop

time varying force setpoints to enforce attitude regulation. In Chapter 6, we developed

complete dynamic model for payload transport using aerial manipulator. Using the in-

verse kinematics of the aerial manipulator, we implement the developed algorithm in

Chapter 4 at the kinematic level for the aerial manipulators and demonstrate its effec-

tiveness in simulations. We include the preliminary experimental results in Chapter 7.

We present conclusion and future work in Chapter 8.
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CHAPTER 2

PROBLEM FORMULATION

In this chapter we develop a dynamic model of the aerial manipulation system. We

consider a group of quadcopters with a rigid extension and develop force control law

without explicit communication between the agents.

2.1 Payload Transportation with Quadcopter with rigid extension

Consider N agents holding a common flexible load as shown in Fig. 2.1 (N = 3). Each

agent is a quadcopter with a rigid link extension. We model the payload as a point mass

and assume that it is initially undeformed. Agent i is attached to the load at the point ai .

Let xi ∈R3 be the position of the end-effector of agent i in the inertial frame and ri ∈R3

be a fixed vector in the body frame of the load. Initially, xi (0) = ai (0) = xc (0)+ ri , where

xc ∈R3 is the position of the center of mass of the load in the inertial frame. Fig. 2.1 also

shows the coordinate system defined to derive the kinematics of the system. ΣI is the

world fixed inertial frame and Oc,i is the body-fixed frame attached to each agent i .

2.2 Kinematics

The position of the attaching point by agent i is given by

ai (t ) := xc (t )+ ri . (2.1)

The kinematics of this point is given by

ȧi = ẋc . (2.2)
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Figure 2.1: Three quadcopters transport a common flexible load. Note that ai is the

initial position of agent i .

As the quadcopters interact with the load, the load may be deformed. Therefore, ai (t ) 6=
xi (t ) and the load experiences contact forces due to the deformation. As shown in

Fig. 2.1, we approximate the deformation as

zi = xi −ai , i = 1, . . . , N . (2.3)

We consider that the reaction force fi exerted by each quadcopters is obtained by the

gradient of some positive definite function Pi (zi ), i.e.,

fi =∇Pi (zi ). (2.4)

We also assume that Pi (zi ) satisfies

Pi (zi ) = 0 ⇐⇒ zi = 0, (2.5)

∇Pi (zi ) = 0 ⇐⇒ zi = 0. (2.6)

The contact force model in (2.4) includes the linear spring models used in [28, 29] if the

contact force is elastic.
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2.3 Dynamics

The translational dynamics of the load can be expressed as

Mc ẍc =
N∑

i=1
fi −Mc g e3, (2.7)

where g is the gravitational acceleration, Mc denotes the mass of the payload, and e3

is the unit vector

[
0 0 1

]T

. In (2.7), we approximate the payload dynamics as a rigid

body. This is valid when a load is surrounded by elastic or deformable materials and the

deformations are small.

The translational dynamics for each agent i can be modeled as

mi ẍi = Fi − fi −mi g e3, i = 1, ..., N , (2.8)

where Fi denotes the force applied by agent i , mi denotes the mass of agent i , and fi is

the force exerted to agent i from the load. The applied force Fi is given by

Fi = Ti Ri (Φ)e3, (2.9)

where

Ti =
4∑

i=1
Frotors,i , (2.10)

Φ = (φ,θ,ψ), which are the roll, pitch and yaw (Z − Y − X ) angles, respectively, and

Ri (Φ) ∈ SO(3) is the rotation matrix that relates the body frame Oc,i and the inertial

frame Σi , which is given by

Ri =


cψi cθi cψi sφi sθi − cφi sψi sφi sψi + cφi cψi sθi

cθi sψi cφi cψi + sφi sψi sθi cφi sψi sθi − cψi sφi

−sθi cθi sφi cφi cθi

 , (2.11)

in which cθi = cosθi and sθi = sinθi .
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2.3.1 Singularities

A fundamental problem with Euler angles is their singularity. This is also well known

as gimbal lock [1]. This occurs when the rotational axis of the middle term in the se-

quence becomes parallel to the rotation axis of the first or third term. For Z Y X Euler

angles, singularity occurs at θi =±(2k +1)π2 , k = 0,1,2, · · · .

Figure 2.2: Z Y X Euler angle representation using tripleangle toolbox [1]

Figure 2.3: Z Y X Euler Angle Representation and Gimbal lock. Note θi = 90◦
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2.4 Control Objective

The control objective is to design the desired thrusts Ti and the desired attitude an-

gles Φi in a decentralized way such that all the agents and the payload converge to a

constant velocity vd and the contact force fi is regulated to a setpoint f d
i , i = 1, · · · , N .

Since the load converges to a constant velocity, the sum of f d
i ’s in x and y direction is

zero, respectively, and the sum of f d
i ’s in the z direction balances the weight of the load,

i.e.,
N∑

i=1
f d

i = Mc g e3. (2.12)

We assume that for a given f d
i there exists a locally unique deformation zd

i , such that

f d
i =∇Pi (zd

i ) and ∇2Pi (zd
i ) > 0. (2.13)

Assumption (2.13) is satisfied by linear spring-force model as well as certain classes of

nonlinear models, such as fi = bi |zi |2zi , with bi > 0.

2.5 Quadcopter Attitude Controller

We will use the following attitude control for rest of this report. We model the attitude

dynamics of each quadcopter as [30]:
φ̈i

θ̈i

ψ̈i

=


Iy−Iz

Ix
θ̇i ψ̇i + 1

Ix
τφi

Iz−Ix
Iy

φ̇i ψ̇i + 1
Iy
τθi

Ix−Iy

Iz
θ̇i ψ̇i + 1

Ix
τψi

 (2.14)

where φi , θi and ψi are the roll, pitch and yaw angles for the i -th quadcopter. τφi , τθi

and τψi are the moments in x, y and z directions respectively and Ix , Iy and Iz are the

moments of inertia of the quadcopter in its respective directions. The desired attitude

Φdes
i is given by,

Φdes
i =


φdes

i

θdes
i

ψdes
i

 . (2.15)

11



We set ψdes
i as constant and solve for θdes

i and φdes
i from (3.6) and (3.7) respectively for

both cases presented in Section VI.

To track the desired attitude angles computed from our force controllers in Sec-

tion 3.1 and 6.3, we follow a Proportional-derivative (PD) controller from [31] with some

minor changes. The controller is modeled as:

Ti

τφi

τθi

τψi


=



T des
i

Ix
L (−K i

1φ̇i − Iy−Iz

Ix
θ̇i ψ̇i +K i

p,1φ̃i +K i
d ,1

˙̃φi )

Iy

L (−K i
2θ̇i − Iz−Ix

Iy
φ̇i ψ̇i +K i

p,2θ̃i +K i
d ,2

˙̃θi )

Iz
L (−K i

3ψ̇i − Ix−Iy

Iz
φ̇i θ̇i +K i

p,3ψ̃i +K i
d ,3

˙̃ψi )


, (2.16)

where K i
p, j and K i

d , j , i = 1,2, .., N , j = 1,2,3 are the PD control gains, and φ̃i , θ̃i and ψ̃i

are the difference between the desired and actual roll, pitch and yaw angles, respectively,

defined as


φ̃i

θ̃i

ψ̃i

=


φdes

i −φi

θdes
i −θi

ψdes
i −ψi

 . (2.17)

2.6 Geometric Control

Although we mainly use the PD controller in our simulation results, we have also

implemented a geometric controller in the simulations.

2.6.1 Related Works

Geometric tracking control of a quadcopter UAV on SE(3) is developed in [32], which

uses the SE(3) instead of the Euler angles. It’s a nonlinear tracking controller which is

similar to PD controller used in the literature for small angle approximations (see [33])

with two new important features. First, the orientation error is not based on Euler an-

gles, which contain singularities. Second, the desired force is projected onto the actual z
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body axis. Results shown in [32,34] verifies that this type of controller can be successfully

applied for large attitude tracking error.

2.6.2 Geometric Control of Cooperative UAVs

Geometric control developed in [32] is extended to quadrotor with a cable suspended

payload in [35] and the system is proved to be differentially flat. Similar paradigm was

applied to multiple quadcopters transporting a cable-suspended regid body in [11, 18].

In a similar paper [7] developed a full dynamic model for cooperative manipulation of

payloads (both point mass and rigid model) suspended by cables from multiple quad-

copters for a hybrid model when the cables are tout and slack and utilized the differen-

tial flatness property to plan nominal trajectories in flat space. Recently [11] developed

a controller based on [18] such that the payload asymptotically follows a given desired

trajectory for its position and attitude in presence of uncertainties.

In [11] the force and moment acting on the payload are controlled by using a PID

controller. These forces and moments are used to balance the tension along and normal

to the cables. The force and moment controller for the payload is based on the error

dynamics between the desired and actual trajectory. Similarly, the forces and moments

for each quadrotor UAV is controlled using a PID controller.

Rewrite (2.12)
N∑

i=1
f d

i = Mc g e3. (2.18)

Also rewrite (3.1)

Fi =−Γi (ẋi − vd )+ f d
i +mi g e3, (2.19)

where Γi = ΓT
i > 0

F T
i Fi = (Ti Ri (Φi )e3)T Ti Ri (Φi )e3 =⇒ T d

i =
√

F T
i Fi . (2.20)

13



The third body axis is always parallel to the control force Fi .

bd
3,i =

Fi

||Fi ||
(2.21)

The second body fixed axis bd
1,i is chosen such that it can form an orthonormal frame

with bd
3,i Assuming bd

1,i is not parallel to bd
3,i , the desired rotation matrix can be com-

puted as

Rd
i =

[
bd

2,i ×bd
3,i bd

2,i , bd
3,i

]
(2.22)

The error vectors for attitude and angular velocity for i -th quadrotor is defined as:

eR,i = 1

2
(Rd

i
T

Ri −RT
i Rd

i )∨,

eΩ,i =Ωi −RT
i Rd

i Ω
d
i .

(2.23)

where vee map ∨ : so(3) →R3.

We assume that the desired trajectory is given by constant velocity for each agent as

ẋd = vd =
[

vd
x vd

y vd
z

]
, ẍd = ad = 0, ȧd = 0. (2.24)

The kinematic equation for each quadrotor can be written as

Ṙi = Ri Ω̂i , (2.25)

where Ri ∈ SO(3) is the rotation matrix between the body frame Oc,i and the inertial

frame Σi , Ωi ∈ R3 is the angular velocity of i -th quadrotor in body-fixed frame and the

operator̂converts a given vector ω=
[
ω1 ω2 ω3

]T

, into a skew symmetric matrix as:

ω̂=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.26)

The angular dynamics of the i -th quadrotor is given by

Ji Ω̇i = Mi −Ωi × JiΩi , (2.27)
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where Ji is the inertia matrix and Mi ∈R3 is the moment generated by the i -quadcopter.

Based on [11], Mi is designed as

Mi =−kR

ε2
eR,i − KΩ

ε
eΩ,i +Ωi × JiΩi − Ji (Ω̂i RT

i Rd
i Ω

d
i −RT

i Rd
i Ω̇

d
i ), (2.28)

where ε, kR , kΩ are positive constants. Ωdes
i ∈R3 is obtained from the attitude kinematics

equation

Ωd
i = (Rd

i
T

Ṙd
i )∨ (2.29)

2.6.3 Implementation

Rewrite the attitude kinematics as

Ṙd
i = Rd

i Ω̂
d
i ,

Ṙd
i = (Ω̂d

i )I Rd
i = (Ωd

i )I ×Rd
i

Ṙd
i = Rd

i Ω
d
i ×Rd

i

(2.30)

Time derivative of (2.30) yields,

R̈d
i = d

d t
(Rd

i Ω̂
d
i )

R̈d
i = Ṙd

i Ω̂
d
i +Rd

i
˙̂Ωd

i

R̈d
i = Rd

i (Ω̂d
i )2 +Rd

i
˙̂Ωd

i

=⇒ ˙̂Ωd
i = (Rd

i )T R̈d
i − (Ω̂d

i )2

=⇒ Ω̇d
i =

(
(Rd

i )T R̈d
i − (Ω̂d

i )2
)∨

(2.31)

2.6.4 Desired Rotation matrix Rd
i

Rd
i =

[
bd

2,i ×bd
3,i bd

2,i , bd
3,i .

]
(2.32)

Define

bd
1,i =

[
cosπt , sinπt , 0

]
(2.33)
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Rewrite (2.21)

bd
3,i =

Fi

‖Fi‖
= −Γi (ẋi − vd )+ f d

i +mi g e3

‖−Γi (ẋi − vd )+ f d
i +mi g e3‖

(2.34)

bd
2,i =

bd
3,i ×bd

1,i

||bd
3,i ×bd

1,i ||
(2.35)

Define

β= bd
3,i ×bd

1,i (2.36)

β̇= ḃd
3,i ×bd

1,i +bd
3,i × ḃd

1,i (2.37)

β̈= b̈d
3,i ×bd

1,i +2(ḃd
3,i × ḃd

1,i )+bd
3,i × b̈d

1,i (2.38)

Rewrite the rotation matrix as

Rd
i =

[
bd

2,i ×bd
3,i , β

‖β‖ , bd
3,i

]
(2.39)

2.6.5 Desired rate of Rotation Ṙd
i

Derivative of (2.32) yields

Ṙd
i =

[
ḃd

2,i ×bd
3,i +bd

2,i × ḃd
3,i , ḃd

2,i , ḃd
3,i

]
(2.40)

Derivative of (2.34) yields

ḃd
3,i =

d

d t

( Fi

‖Fi‖
)

ḃd
3,i =

Ḟi‖Fi‖−Fi
F T

i ·Ḟi

‖Fi ‖
‖Fi‖2

ḃd
3,i =

Ḟi

‖Fi‖
− Fi F T

i Ḟi

‖Fi‖3

(2.41)

ḃd
1,i =

[
−πsinπt , πcosπt , 0

]
(2.42)

Calculate ḃd
2,i
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ḃd
2,i =

d

d t

bd
3,i ×bd

1,i

||bd
3,i ×bd

1,i ||

=
d

d t (bd
3,i ×bd

1,i )‖bd
3,i ×bd

1,i‖− (bd
3,i ×bd

1,i ) d
d t (‖bd

3,i ×bd
1,i‖)

‖bd
3,i ×bd

1,i‖2

=
d

d t (bd
3,i ×bd

1,i )

‖bd
3,i ×bd

1,i‖
−

(bd
3,i ×bd

1,i )(bd
3,i ×bd

1,i )T d t
d t (bd

3,i ×bd
1,i )

‖bd
3,i ×bd

1,i‖3

(2.43)

where

d

d t
(bd

3,i ×bd
1,i ) = (ḃd

3,i ×bd
1,i )+ (bd

3,i × ḃd
1,i ) (2.44)

Rewrite (2.45) as

ḃd
2,i =

(ḃd
3,i ×bd

1,i )+ (bd
3,i × ḃd

1,i )

‖bd
3,i ×bd

1,i‖
−

(bd
3,i ×bd

1,i )(bd
3,i ×bd

1,i )T
(
(ḃd

3,i ×bd
1,i )+ (bd

3,i × ḃd
1,i )

)
‖bd

3,i ×bd
1,i‖3

ḃd
2,i =

β̇

‖β‖ −
ββT β̇

‖β‖3

(2.45)

Rewrite Ṙd
i as

Ṙd
i =

[
β̇, β̇

‖β‖ −
ββT β̇

‖β‖3 , Ḟi
‖Fi ‖ −

Fi F T
i Ḟi

‖Fi ‖3

]
(2.46)

2.6.6 R̈d
i

Derivative of (2.40) yields

R̈d
i =

[
b̈d

2,i ×bd
3,i +2(ḃd

2,i × ḃd
3,i )+bd

2,i × b̈d
3,i , b̈d

2,i , b̈d
3,i

]
(2.47)

Differentiate (2.41)

b̈d
3,i =

d

d t

{ Ḟi‖Fi‖2

‖Fi‖3
− Fi F T

i Ḟi

‖Fi‖3

}
= d

d t

{ Ḟi

‖Fi‖
− Fi F T

i Ḟi

‖Fi‖3

}
= F̈i‖Fi‖− Ḟi ˙‖Fi‖

‖Fi‖2
−

d t
d t (FI F T

i Ḟi )‖Fi‖3 − (Fi F T
i Ḟi ) d

d t (‖Fi‖3)

‖Fi‖6

= F̈i

‖Fi‖
− Ḟi F T

i Ḟi

‖Fi‖3
− (Ḟi F T

i Ḟi )+ (Fi Ḟ T
i Ḟi )+ (Fi F T

i F̈i )

‖Fi‖3
+ 3(Fi F T

i Ḟi )F T
i Ḟi

‖Fi‖5

= F̈i

‖Fi‖
− 2(Ḟi F T

i Ḟi )+ (Fi Ḟ T
i Ḟi )+ (Fi F T

i F̈i )

‖Fi‖3
+ 3(Fi F T

i Ḟi )F T
i Ḟi

‖Fi‖5

(2.48)
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Compute the second derivative of bd
2,i as

b̈d
2,i =

d

d t

{ (ḃd
3,i ×bd

1,i )+ (bd
3,i × ḃd

1,i )

‖bd
3,i ×bd

1,i‖
−

(bd
3,i ×bd

1,i )(bd
3,i ×bd

1,i )T
(
(ḃd

3,i ×bd
1,i )+ (bd

3,i × ḃd
1,i )

)
‖bd

3,i ×bd
1,i‖3

}
b̈d

2,i =
d

d t

{ β̇

‖β‖ −
ββT β̇

‖β‖3

}
= β̈‖β‖− β̇ ˙‖β‖

‖β‖2
−

d t
d t (ββT β̇)‖β‖3 − (ββT β̇) d

d t (‖β‖3)

‖β‖6

= β̈

‖β‖ −
β̇βT β̇

‖β‖3
− (β̇βT β̇)+ (ββ̇T β̇)+ (ββT β̈)

‖β‖3
+ 3(ββT β̇)βT β̇

‖β‖5

= β̈

‖β‖ −
2(β̇βT β̇)+ (ββ̇T β̇)+ (ββT β̈)

‖β‖3
+ 3(ββT β̇)βT β̇

‖β‖5

(2.49)

Rewrite R̈d
i as

R̈d
i =

[
β̈, β̈

‖β‖ −
2(β̇βT β̇)+(ββ̇T β̇)+(ββT β̈)

‖β‖3 + 3(ββT β̇)βT β̇

‖β‖5 , F̈i
‖Fi ‖ −

2(Ḟi F T
i Ḟi )+(Fi Ḟ T

i Ḟi )+(Fi F T
i F̈i )

‖Fi ‖3 + 3(Fi F T
i Ḟi )F T

i Ḟi

‖Fi ‖5

]
(2.50)
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CHAPTER 3

NOMINAL DESIGN

In this chapter, we review the main results in [36] and extend it to address coopera-

tive transportation of a payload in 3D.

3.1 Force Control with a Payload of Known Mass

We assume that the orientation of the load is controlled separately and consider only

the translational part of the motion in this chapter. We first choose Fi as

Fi =−Γi (ẋi − vd )+ f d
i +mi g e3, (3.1)

where Γi = ΓT
i > 0, which component wise becomes

F x
i

F y
i

F z
i

=−Γi


ẋi ,x − vd

x

ẋi ,y − vd
y

ẋi ,z − vd
z

+


f d

i ,x

f d
i ,y

1
N Mc g +mi g

 . (3.2)

Note that in (3.2) we have chosen f d
i ,z = 1

N Mc g and the x and y components of f d
i are

pre-designed to satisfy the following constraints

N∑
i=1

f d
i ,x = 0 and

N∑
i=1

f d
i ,y = 0. (3.3)
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3.1.1 Computation of T des
i andΦdes

i

For a coplanar quadcopter and away from singularities, we next establish the follow-

ing map (for any yaw ψi ) 
F x

i

F y
i

F z
i

→


φdes

i (ψi )

θdes
i (ψi )

T des
i

 . (3.4)

Starting from

T des
i Ri (Φdes

i )e3 = Fi , (3.5)

and premultiplying by RT
i (Φdes

i ), we get

T des
i e3 = RT

i (Φdes
i )


F x

i

F y
i

F z
i

 ,

which are three scalar equations. From the first we get

θdes
i = at an

(
F x

i cψdes
i +F y

i sψdes
i

F z
i

)
, (3.6)

and from the other two equations

φdes
i = asi n

F x
i sψdes

i −F y
i cψdes

i√
F T

i Fi

 , (3.7)

where in (3.7) we have used (3.5) to obtain the relationship

T des
i =

√
F T

i Fi . (3.8)

Remark 3.1 Define the velocity error vector in (3.1) as

ξi = ẋi − vd (3.9)

and recall from (3.2) that vd =
[

vd
x vd

y vd
z

]T

. Suppose that |ξi | ≤ ηm
i and | f d

i ,y | + | f d
i ,x |

≤ f m
c for some positive bounds ηm

i and f m
c , and fix Γi as a positive definite and diagonal
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matrix. Then, it is straightforward to see that T des
i can be upper bounded as follows

|T des
i | =

√
F T

i Fi

≤ ||Γi || |ξi |+ | f d
i ,x |+ | f d

i ,y |+
1

N
Mc g +mi g

≤ ||Γi ||ηm
i + f m

c + 1

N
Mc g +mi g .

(3.10)

3.1.2 Stability Analysis

The dynamics (2.8) with the proposed control law (3.1) takes the following form:

mi ẍi =−Γiξi + f d
i − fi . (3.11)

Theorem 3.1 The decentralized control law (3.1) ensures that the closed-loop equilib-

rium of (3.11), given by,

E = {(ẋi , ẋc , fi )|ẋi = vd
i , ẋc = vd

i , and fi = f d
i }, (3.12)

is asymptotically stable.

Proof. Consider the following energy-motivated positive definite candidate Lyapunov

function

V =
N∑

i=1

[
Pi (zi )−Pi (zd

i )− ( f d
i )

T
(zi − zd

i )
]

+1

2

( N∑
i=1

ξT
i miξi +ξT

c Mcξc

)
.

(3.13)

From (2.2) and (2.3), the kinematics of zi is given by

żi = ẋi − ȧi = ẋi − ẋc . (3.14)

Define ξc = ẋc − vd . The time derivative of V yields

V̇ =
N∑

i=1
( fi − f d

i )
T

żi +
N∑

i=1
ξT

i mi ẍi +ξT
c Mc ẍc . (3.15)
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We rewrite (3.15) from (2.7), (2.8), (2.12) and (3.14) as:

V̇ =
N∑

i=1
( fi − f d

i )
T

(ẋi − ẋc )+
N∑

i=1
ξT

i (Fi − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g3,

=
N∑

i=1
( fi − f d

i )
T

(ξi −ξc )+
N∑

i=1
ξT

i (−Γiξi + f d
i − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g e3,

=−
N∑

i=1
ξT

i Γiξi ≤ 0

(3.16)

which implies the stability of the equilibrium E .

To conclude the asymptotic stability of the system, we apply the LaSalle invariance

principle [37] to investigate the largest invariant set M . On M , ξi = 0 which implies from

(3.9) that ẋi = vd . Since ẋi is constant, ẍi = 0, which implies from (3.11) that f d
i = fi .

Since fi is constant and equal to f d
i , zi is constant, which leads to ẋc = ẋi = vd and

ẍc = 0.

Remark 3.2 Since ξi is bounded, the existence of a bounded thrust Ti is always guaran-

teed from the result of Remark 3.1.

Remark 3.3 The proof of proposition 3.1 is similar to [38, Chapter 8] except that the dy-

namics are extended to incorporate the gravity of the agents and the payload.

3.2 Simulation Results

3.2.1 Simulation Environment

In this section, we present simulation results for two quadcopters with a rigid exten-

sion transporting a load. The mass and inertia of each quadcopter are mi = 0.75 kg and

Ii = di ag {0.0820,0.0845,0.1377} kg m2 respectively. The mass of the payload is Mc = 1.5

kg with a radius of 15 cm. We use a linear spring-force model to compute the contact
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force fi in the simulation,

fi = kzi , (3.17)

where k is the spring constant of the payload. If the contact between agents and payload

is elastic at a constant pressure, the contact force model in (3.17) is equivalent to the

models presented in [28,29]. For all of the results presented in this section we setψdes
i =

0 and k = 2.5×104 N/m.

3.2.2 Known Payload with a Predesigned vd with a PD Controller

We choose

vd (t ) = (1−e−t )

[
5.0 0 0

]T

,

f d
1 (t ) = (1−e−t )

[
0 2.0 0.5Mc g

]T

,

f d
2 (t ) = (1−e−t )

[
0 −2.0 0.5Mc g

]T

,

Γi =


10 0 0

0 10 0

0 0 10

 .

Note that vd (t ), f d
1 (t ), f d

2 (t ) converge to constants exponentially. The parameters for

the gains for the attitude controller are given in Table 3.1.

K i
1, K i

2 K3 K i
p1, K i

p2 K i
p3 K i

d1, K i
d2 K i

d3

21.93 18 4.65 3.76 0.19 0.15

Table 3.1: Attitude controller gains.

Fig. 3.1 and 3.2 show that the attitude controller implemented in Section 3.2 is suc-

cessful in tracking the desired attitude angles, φdes
i and θdes

i generated from the force

controller (3.6) and (3.7). It can be observed that the actual pitch (θi ) and roll (φi ) angles

for each quadcopter converge to steady states within the first 6 seconds of the simula-

tion. Fig. 3.3 shows that the desired thrust force (Ti ) converges to a constant value within
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Figure 3.1: Desired and actual roll angles (φ) for both agents.

Figure 3.2: Desired and actual pitch angles (θ) for both agents.
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Figure 3.3: The thrusts for both agents are bounded and converge to 14.7 N.

Figure 3.4: Linear velocities for both agents. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.

25



Figure 3.5: Linear velocity for the payload. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.

Figure 3.6: Contact forces for both AMs in all 3 direction. The forces in the x direction

converge to zero. In the y-direction, they converge to 2.0 N and -2.0 N, respectively. In

the z direction, the sum of the force is equal to the weight of the payload.
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first 2 seconds and stays constant throughout the simulation. We observe from Fig. 3.4

and 3.5 that the velocities of the agents and the payload converge to vd . We see from

Fig. 3.6 that the contact forces are regulated to the setpoints f d
i .

3.2.3 Known Payload with a Predesigned vd with a Geometric Controller

Simulation Parameters:

bd
i =

[
1 0 0

]
vd =

[
2.0 0 0

]
f d

i =
[

0 ±2.0 0.5Mc g

]
Gains: kR = 1.5, ε= 1.0, kΩ = 1.0

Γi =


5 0 0

0 5 0

0 0 5


spring constant k = 2.5×104 N/m.
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Figure 3.7: Linear velocities for both agents. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.

Figure 3.8: Linear velocity for the payload. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.
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Figure 3.9: Desired thrust input to each quadrotor.

Figure 3.10: Control input M1
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Figure 3.11: Control input M2

Figure 3.12: Control input M3
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Figure 3.13: Attitude error of the quadrotors given byΨi = 1
2‖Ri −Rd

I ‖2

Figure 3.14: Euler Angles for each agent.
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Figure 3.15: Contact forces.
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CHAPTER 4

COOPERATIVE AERIAL MANIPULATION OF A PAYLOAD WITH UNKNOWN MASS

In Chapter 3, the mass of the payload is assumed available so that f d
i in (2.12) can be

specified. However, in practical scenarios, an exact knowledge of the mass of the pay-

load may not be available. To address such a scenario, we develop an adaptive controller

to estimate Mc .

In this chapter, we consider a group quadcopters with a single rigid link attached to

it and develop an adaptive decentralized control law for transporting a payload with an

unknown mass without explicit communication between the agents. The algorithm pro-

vides desired thrust and attitude angles required for each quadcopter to cooperatively

transport a payload. It also guarantees that all the agents converge to a desired velocity

and regulates the contact force. The sum of the estimates of the unknown mass from all

the agents converge to the true mass. We model the contact force between the agents

and the payload as a mass spring model. This assumption is valid when the vehicles are

connected to the payload via elastic cables or when the payload is flexible or surrounded

by elastic bumper materials.

This chapter also introduces a new force consensus algorithm to ensure that each

quadcopter gets an equal share of the payload mass. Such an algorithm is important

because without it, some of the quadcopters may provide more lift to the unknown pay-

load than others, and therefore consume more power, which can lead to a shorter life

span of the entire team. We provide extended stability analysis for the new algorithm

and additional simulation results. To test the performance of the controllers for differ-

ent conditions, we include simulation results for a time-varying reference velocity.
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4.1 Force Control with a Payload of Unknown Mass

In Section 3.1, the mass of the payload is assumed available so that f d
i in (2.12) can

be specified. However, in practical scenarios, an exact knowledge of the mass of the pay-

load may not be available. To address such a scenario, we develop an adaptive controller

to estimate Mc .

We define M̂c,i as an estimate of mass of payload for each agent i = 1, ..., N and pro-

pose the following update law for M̂c,i

˙̂Mc,i = γi (ẋi − vd )
T

e3, (4.1)

where γi > 0. Note that M̂c,i stops updating when each agent reaches the predesigned

velocity vd .

4.1.1 Computation of T des
i andΦdes

i

We modify the design in (3.1) as:

Fi =−Γi (ẋi − vd )+ f̂ d
i +mi g e3, (4.2)

and estimate the z-component of f d
i as:

f̂ d
i ,z = M̂c,i g . (4.3)

The x and y components of f̂ d
i are the steady state values of the contact forces that are

pre-designed to satisfy the following constraints

N∑
i=1

f̂ d
i ,x = 0 and

N∑
i=1

f̂ d
i ,y = 0. (4.4)

Given (4.2), the corresponding Ti andΦi are found based on (3.6)–(3.8).

4.1.2 Stability Analysis

The dynamics (2.8) with the proposed control law (4.1)– (4.3) takes the following

form:

mi ẍi =−Γiξi + f̂ d
i − fi . (4.5)
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Theorem 4.1 The decentralized control law (4.2) ensures that the equilibrium of (2.7),

(4.1), and (4.5), given by

E ∗ = {(ẋi , fi , vd
i , M̂c,i )|ẋi = vd

i , ẋc = vd
i ,

N∑
i=1

M̂c,i = Mc , and f̂ d
i = fi },

(4.6)

is asymptotically stable.

Proof. Consider the following energy-motivated positive definite candidate Lyapunov

function

V1 =
N∑

i=1

[
Pi (zi )−Pi (zd

i )− ( f d
i )

T
(zi − zd

i )
]

+1

2

( N∑
i=1

ξT
i miξi +ξT

c Mcξc

)
.

(4.7)

The time derivative of V1 yields

V̇1 =
N∑

i=1
( fi − f d

i )
T

żi +
N∑

i=1
ξT

i mi ẍi +ξT
c Mc ẍc . (4.8)

We rewrite (4.8) from (2.7), (2.8), (2.12), (3.14) and (4.2) as:

V̇1 =
N∑

i=1
( fi − f d

i )
T

(ẋi − ẋc )+
N∑

i=1
ξT

i (Fi − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g3,

=
N∑

i=1
( fi − f d

i )
T

(ξi −ξc )+
N∑

i=1
ξT

i (−Γiξi + f̂ d
i − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g e3,

=
N∑

i=1
( fi − f d

i )
T
ξi −

N∑
i=1

( fi − f d
i )

T
ξc −

N∑
i=1

ξT
i Γiξi

+
N∑

i=1
ξT

i ( f̂ d
i − fi )+ξT

c

N∑
i=1

fi −ξT
c Mc g e3,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i f̃ d
i ,

(4.9)

35



where f̃ d
i = f̂ d

i − f d
i , i.e.,

f̃ d
i =


0

0

(M̂c,i −Mc,i )g

=


0

0

M̃c,i g

= M̃c,i g e3, (4.10)

where Mc,i , i = 1, · · · , N , are arbitrary constants that satisfy
∑N

i=1 Mc,i = Mc . From (4.9)

and (4.10),

V̇1 =−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3. (4.11)

Consider another positive definite candidate Lyapunov function:

V2 = 1

2

N∑
i=1
Λi

(
M̃c,i

)2. (4.12)

The time derivative of V2 yields

V̇2 =
N∑

i=1
Λi M̃c,i

˙̃Mc,i . (4.13)

Let W =V1 +V2. The time derivative of W is given by,

Ẇ = V̇1 + V̇2,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 +
N∑

i=1
M̃c,i

˙̃Mc,i ,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 −
N∑

i=1
M̃c,iΛi

(
γiξ

T
i e3

)
.

(4.14)

Now from (4.1) and (4.14) and choosingΛiγi = g , we obtain

Ẇ =−
N∑

i=1
ξT

i Γiξi ≤ 0, (4.15)

which implies the stability of the equilibrium E ∗.

To conclude the asymptotic stability of the system, we apply the LaSalle invariance

principle [37] to investigate the largest invariant set M . On M , ξi = 0 and (3.9) leads to

ẋi = vd . Since ẋi is constant, ẍi = 0, which implies from (4.25) that f̂ d
i = fi . Because

ẋi = vd , ˙̂Mc,i = 0, which means that M̂c,i is a constant. It follows from (4.3) that f̂ d
i is

constant and equal to fi . Since fi is constant, zi is constant, which leads to ẋc = ẋi = vd

and ẍc = 0. From (2.7), we get
∑N

i=1 fi = Mc g e3, which, together with fi = f̂ d
i , results in∑N

i=1 f̂ d
i = Mc g . Given (4.3), we conclude

∑N
i=1 M̂c,i = Mc .
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4.1.3 Simulation Results: Unknown Payload with a Predesigned vd

In this case, we assume that the mass of the payload is unknown. We keep the other

parameters to be the same as in the previous chapter and set M̂c,1(0) = 0.1 kg, M̂c,2(0) =
0.4 kg,

f̂ d
1 (t ) = (1−e−t )

[
0 2.0 M̂c,1g

]T

,

f̂ d
2 (t ) = (1−e−t )

[
0 −2.0 M̂c,2g

]T

.

Γi =


10 0 0

0 10 0

0 0 25

 .

Similar to the known mass case, Fig. 4.1 shows that actual roll angle (φi ) converges to

the steady state (φdes
i ) computed from the force controller (using (3.6) for Section. 6.3)

within the first 6 seconds of simulation. Likewise, Fig. 4.2 shows that the actual pitch

angle (θi ) converges to its steady state (θdes
i ) for each quadrotor within first 6 seconds

of the simulation. Fig. 4.3 shows that the desired thrust (Ti ) converges to some constant

value within first 4 seconds and stays constant throughout the simulation. We observe

from Fig. 4.4 and 4.5 that the velocities of the agents and the payload converge to desired

vd . The contact forces is also regulated at the setpoints f d
i as shown in Fig. 4.6. The

update law from (4.1) successfully recovers the actual mass of the payload as seen in Fig.

4.7.
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Figure 4.1: Desired and actual roll angles (φ) for both agents (unknown Mc case).

Figure 4.2: Desired and actual pitch angles (θ) for both agents (unknown Mc case).
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Figure 4.3: The thrusts for both agents converge to constant and remain bounded.

Figure 4.4: Linear velocities for both agents. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.
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Figure 4.5: Linear velocities for both agents. The x component of the velocity converges

to 5.0 m/s and the rest converge to zero.

Figure 4.6: Contact forces for both AMs in all 3 direction. The forces in the x direction

converge to zero. In the y-direction, they converge to 2.0 N and -2.0 N, respectively. In

the z direction, the sum of the force is equal to the weight of the payload.
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X: 9.643

Y: 0.9001

X: 9.62

Y: 0.6001

Figure 4.7: Estimation of the unknown mass. The sum of the individual estimates con-

verges to the actual mass of the load which is 1.5 kg.

4.2 Lift Consensus During Cooperative Aerial Load Transport

In Section 4.1, we have developed an adaptive control to estimate the payload when

the mass of the payload is not available to the controller. However, the estimates of the

mass from the adaptive controller may not converge to the same value. In this section,

we enhance the adaptive controller developed in Section 4.1 by incorporating a lift con-

sensus term to ensure that the mass estimate of each agent converges to the same value,

i.e., the total mass divided by the number of agents. In particular, we develop a lift con-

sensus algorithm in the z-direction such that convergence of the estimates is achieved.

4.2.1 Adaptation Law

We denote by M̂c,i the estimate of the payload mass for agent i , i = 1, ..., N . We pro-

pose to update M̂c,i based on the following equation

˙̂Mc,i =−λi (ẋi − vd )
T

e3︸ ︷︷ ︸
β̂i

+ ∑
j∈Ni

λi (M̂c, j − M̂c,i ), (4.16)
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where λi > 0 and Ni is the set of neighboring agents that can share their estimates of the

payload mass with agent i . Note that ˙̂Mc,i becomes zero if each agent attains vd in the

e3 direction and M̂c, j = M̂c,i , ∀ j ∈Ni .

Let 1N be the N ×1 vectors of ones. Define

M̂c =
[

M̂c,1, M̂c,2, M̂c,3, · · · M̂c.N

]T

, (4.17)

M̃c = M̂c − 1

N
Mc 1N , (4.18)

and

β̂=
[
β̂1, β̂2, β̂3, · · · , β̂N

]T

. (4.19)

We can rewrite (4.1) as

˙̂Mc = β̂−ΛLM̃c , (4.20)

whereΛ= di ag {λ1.λ2, · · · ,λn} and L ∈ RN×N is the Laplacian matrix defined as

`i j =



|Ni | if i = j

−1 if i ∈Ni

0 otherwise,

(4.21)

where |Ni | is the cardinality of the set Ni . We assume that the communication topology

is bidirectional and connected. Therefore, L is symmetric and positive semidefinite and

has the only nontrivial null space spanned by 1N [39].

4.2.2 Force Control Law

Rewrite (4.2)

Fi =−Γi (ẋi − vd )+ f̂ d
i +mi g e3, (4.22)

and construct the z-component of f̂ d
i as:

f̂ d
i ,z = M̂c,i g . (4.23)
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For the x and y components of f̂ d
i , we assume that they are predefined constant values

satisfying
N∑

i=1
f̂ d

i ,x = 0 and
N∑

i=1
f̂ d

i ,y = 0. (4.24)

4.2.3 Computation of T des
i andΦdes

i for a quadcopter

Given (4.22), the corresponding Ti andΦi are found based on (3.6)–(3.8).

4.2.4 Main Result

The closed-loop dynamics (2.8) with (4.16), (4.22) and (4.23) can be expressed as

mi ẍi =−Γiξi + f̂ d
i − fi . (4.25)

Theorem 4.2 The decentralized adaptive control law in (4.22), (4.23) and (4.16) asymp-

totically stabilizes the equilibrium of (2.7), (4.16), and (4.25), given by

E ∗ = {(ẋi , ẋc , fi , M̂c,i )|ẋi = vd , ẋc = vd ,

M̂c,i = 1

N
Mc , and fi = f̂ d

i }.
(4.26)

Proof. We first consider the following Lyapunov function

V1 =
N∑

i=1

[
Pi (zi )−Pi (zd

i )− ( f d
i )

T
(zi − zd

i )
]

+1

2

( N∑
i=1

ξT
i miξi +ξT

c Mcξc

)
.

(4.27)

From (2.2) and (2.3), the kinematics of zi is given by

żi = ẋi − ȧi = (ẋi − ẋc ) (4.28)

Define

ξi = ẋi − vd , ξc = ẋc − vd (4.29)

We compute the time derivative of V1 as

V̇1 =
N∑

i=1
( fi − f d

i )
T

żi +
N∑

i=1
ξT

i mi ẍi +ξT
c Mc ẍc . (4.30)
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Rewrite (4.30) from (2.7), (2.8), (2.12), (4.22) and (4.28) as:

V̇1 =
N∑

i=1
( fi − f d

i )
T

(ẋi − ẋc )+
N∑

i=1
ξT

i (Fi − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g3,

=
N∑

i=1
( fi − f d

i )
T

(ξi −ξc )+
N∑

i=1
ξT

i (−Γiξi + f̂ d
i − fi )

+ξT
c

N∑
i=1

fi −ξT
c Mc g e3,

=
N∑

i=1
( fi − f d

i )
T
ξi −

N∑
i=1

( fi − f d
i )

T
ξc −

N∑
i=1

ξT
i Γiξi

+
N∑

i=1
ξT

i ( f̂ d
i − fi )+ξT

c

N∑
i=1

fi −ξT
c Mc g e3,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i f̃ d
i ,

(4.31)

where f̃ d
i = f̂ d

i − f d
i , i.e.,

f̃ d
i =


0

0

(M̂c,i − 1
N Mc g

=


0

0

M̃c,i g

= M̃c,i g e3, (4.32)

where M̃c,i = M̂c,i − 1
N Mc . From (4.31) and (4.32),

V̇1 =−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3. (4.33)

We next take another Lyapunov function:

V2 = g

2
M̃ T

c Λ
−1M̃c . (4.34)
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Let W =V1 +V2. The time derivative of W is given by,

Ẇ = V̇1 + V̇2,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 + g M̃ T
c Λ

−1 ˙̃Mc ,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 + g M̃ T
c Λ

−1(β̂−ΛLM̃c ),

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 + g M̃ T
c Λ

−1β̂− g M̃ T
c Λ

−1ΛLM̃c ,

=−
N∑

i=1
ξT

i Γiξi +
N∑

i=1
ξT

i M̃c,i g e3 −Λ−1Λg
N∑

i=1
M̃c,iξ

T
i e3 − g M̃ T

c LM̃c .

(4.35)

Now from (4.16) and (4.35), we obtain

Ẇ =−
N∑

i=1
ξT

i Γiξi − g M̃ T
c LM̃c ≤ 0, (4.36)

Since Ẇ is negative semi-definite, we conclude that the equilibrium E ∗ is stable.

We employ the LaSalle invariance principle [37] to complete the analysis for the

asymptotic stability of E ∗. Let the largest invariant set where Ẇ = 0 be M . On M , ξi = 0

and LM̃c = 0. Since the only null space of L is spanned by 1N , LM̃c = 0 implies M̃c = 1Nα,

for some scalar α. Because M̃c = M̂c − 1
N Mc 1N = 1Nα, we conclude that M̂c,i = M̂c, j , ∀

i , j . We further note that ξi = 0 leads to ẋi = vd , which means that ẍi = 0 and f̂ d
i = fi

from (4.25). Because ẋi = vd , ˙̂Mc,i = 0, which indicates that M̂c,i is constant. Thus,

fi and zi are constant, which leads to ẋc = ẋi = vd and ẍc = 0. From (2.7), we obtain∑N
i=1 fi = Mc g e3, which, together with fi = f̂ d

i , yields
∑N

i=1 f̂ d
i = Mc g . Given (4.23), it

follows that
∑N

i=1 M̂c,i = Mc and M̂c,i = M̂c, j = 1
N Mc .

Remark 4.1 Theorem 4.2 guarantees that the agents share the weight of the payload equally.

If the second term in (4.16) is removed, we still ensure that
∑N

i=1 M̂c,i → Mc , ẋi → vd ,

ẋc → vd and fi → f̂ d
i . However, the estimates M̂c,i ’s may not converge to the same value,

which in turn implies that the agents provide different vertical forces to balance the pay-

load mass.
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4.2.5 Simulation Results: Force control of a payload with an unknown mass for a

constant vd

We consider three quadcopters with rigid extensions transporting a payload. The

mass and inertia are kept identical to our previous chapter 2, [4]. We also employ the

same PD control as in Chapter 2, to track the desired orientation for each quadcopter.

Throughout this simulation, we assume that agent 1 communicates with agent 2 and

3 but agent 2 and 3 do not communicate with each other. We choose M̂c,1(0) = 0.1 kg,

Figure 4.8: Communication topology between each agent.

M̂c,2(0) = 0.5 kg and M̂c,3(0) = 1.2 kg,

vd = (1−e−t )

[
2.0 1.0 0

]T

m/s,

f̂ d
1 (t ) = (1−e−t )

[
0.0 −2.0 M̂c,1g

]T

,

f̂ d
2 (t ) = (1−e−t )

[
2.0 1.0 M̂c,2g

]T

,

f̂ d
3 (t ) = (1−e−t )

[
−2.0 1.0 M̂c,3g

]T

,

Γi =


10 0 0

0 10 0

0 0 25

 ,

L =


2 −1 −1

−1 1 0

−1 0 1

 .

Note that vd (t ), f d
1 (t ), and f d

2 (t ) exponentially converge to constants. The term (1−e−t )

is added to improve performance of the controller during the transition.
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Fig. 4.9 and 4.10 illustrate that the velocities of the three agents and the load asymp-

totically approach vd . The contact forces fi ’s also converge to the desired values f d
i ’s

as observed in Fig. 4.11. The adaptation law from (4.16) estimates the true mass of the

load as illustrated in Fig. 4.12 and the consensus algorithm guarantees that each agent

estimates converge to 1
3 Mc = 0.5 kg.

Figure 4.9: The magnitude of the velocity error (vi − vd ) goes to zero which concludes

that vi converges to predesigned vd
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Figure 4.10: Linear velocity plot for the payload. The x and y velocity converges to the

desired vd i.e., 2.0 m/s and 1.0 m/s respectively and the z component converges to zero.

Figure 4.11: The magnitude of fi − f d
i goes to zero. All the contact forces fi converge to

f d
i .
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X: 7.548
Y: 0.5003

Figure 4.12: Plot of the estimates of the mass of the payload. Each individual estimates

converge to 1
3 Mc = 0.5 kg and its sum adds up-to the true mass of the payload i.e., 1.5 kg.

Figure 4.13: Plot for contact forces in all 3 directions for agent 1. It converges to con-

verges 0.0 N, -2.0 N and 0.5 N for each direction respectively. Remaining agents have

similar graphs.
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Figure 4.14: Plot for desired and actual orientation angles (φ) for three agents in the

x-direction.

Figure 4.15: Plot for the desired and actual orientation angles (θ) for three agents in the

y-direction.
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4.2.6 Simulation Results: Force Control of a load with an unknown mass for a time-

varying vd (t )

To test the performance of the controllers for different conditions, we illustrate a sim-

ulation for a pre-designed time-varying desired velocity. We keep the other parameters

identical to the previous constant velocity case and change vd to the following:

vd (t ) =



[
2.0, 0, 0

]T

, t ≤ 1.57 s,[
2sin(t ), −2cos(t ), 0

]T

, 2 < t ≤ 9.42 s,[
0, 2.0, 0

]T

, t > 9.42 s.

Fig. 4.16 and 4.17 illustrate the 2D and 3D trajectories for all three agents and the

load respectively. Notice from Fig. 4.18, 4.19 and 4.20 that the velocity errors of the three

agents and the load are bounded. The contact force errors are also bounded and stay

close to zero as illustrated in Fig. 4.21 and 4.22. The update law in (4.16) recovers the

true mass of the load as illustrated in Fig. 4.23 and the consensus algorithm guarantees

that each agent estimates converge to 1
3 Mc = 0.5 k even with a time varying velocity in

x and y direction. Note that the convergence of the estimates to 1
3 Mc = 0.5 is because

the z-component of the desired velocity vd is still constant. Fig. 4.24 and 4.25 illustrate

that the low level PD controller closely tracks the attitude of the quadcopter during the

transient and as well as steady state.
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Figure 4.16: Snapshot of 3D position trajectories for all the agents and the payload at

different time instance for adaptive design with time varying velocity.

Figure 4.17: Position trajectories for aerial robots and the payload in x and y direction.
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Figure 4.18: The magnitude of the velocity error (vi − vd ) for the agents.

Figure 4.19: The magnitude of the velocity error (vc − vd ) for the payload.
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Figure 4.20: Linear velocity for the payload in all 3 directions.

Figure 4.21: The magnitude of fi − f d
i stays bounded and eventually converges to zero.
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Figure 4.22: Plot of squeeze forces in all 3 directions for agent 1. Note that other agents

have similar plot.

Figure 4.23: Plot of the estimates of the mass of the payload. Eachg individual estimates

converges 1
3 Mc = 0.5 kg. Notice that their sum adds up-to the true mass of the payload

used in this simulation. The convergence of the estimates to 1
3 Mc = 0.5 is because the

z-component of the desired velocity vd is still constant.
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Figure 4.24: Plot for desired and actual orientation angles (φ) for three agents in the

x-direction.

Figure 4.25: Plot for the desired and actual orientation angles (θ) for three agents in the

y-direction.
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CHAPTER 5

COOPERATIVE AERIAL MANIPULATION WITH ATTITUDE STABILIZATION

In our previous Chapters 3 and 4 we have developed force and motion control algo-

rithms that guarantee force regulation and translational motion of the quadcopters and

the payload. For complete motion coordination and path planning, orientation con-

trol is important. In this chapter, we extend our work in Chapters 3 and 4, to address

both the orientation control of the payload and the force control during cooperative

aerial manipulation. In particular, we develop time varying force setpoints to enforce

attitude regulation. The algorithm provides desired thrust and attitude angles required

for each quadcopter to cooperatively transport the payload. We analyze the stability of

the system using singular perturbation theory. We demonstrate the effectiveness of the

algorithms in numerical simulations.

5.1 Related Work

Reference [18] uses three or more quadcopters for payload transport to balance the

attitude of the payload. Reference [27] considers a ring shaped flexible structure with

multiple attached flying vehicles and develops a LQR controller for linearized dynam-

ics to track the desired pose of the payload. It is assumed that the vehicles can exert

both forces and moments on the payload. However, we assume that the inputs from the

quadcopters to the payload are only contact forces with no moments.
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5.2 Problem Formulation

5.2.1 Kinematics

Let the orientation of the load with respect to ΣI be Rc ∈ SO(3). Let q =

q0

qv

 be the

unit quaternion representation parameterizing Rc . Then Rc is related to q through the

Rodriguez formula [40]:

Rc = I3 +2(q̂v )2 +2q0q̂v , (5.1)

where the operator ̂ converts a given vector ω=
[
ω1 ω2 ω3

]T

into a skew symmetric

matrix as

ω̂=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (5.2)

Note that x̂ y = x × y for all x, y ∈R3. The kinematic equations of q are given by

d q0

d t
=−1

2
(Ωc )T qv , (5.3)

d qv

d t
= 1

2
q0Ωc + 1

2
Ω̂c qv , (5.4)

whereΩc is the angular velocity of the payload in the inertial frame.

Because the contact points ai satisfy

ai (t ) := xc (t )+Rc ri , (5.5)

the kinematics of the contact points are given by

ȧi = ẋc + ˙(Rc ri ) = ẋc + Ω̂c Rc ri . (5.6)

5.2.2 Dynamics

We model the contact force between the agents and the payload as a mass spring

model. This assumption is valid when the vehicles are connected to the payload via
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elastic cables or when the payload is flexible or surrounded by elastic bumper materials.

When the agents move, the payload experiences tension or compression. Therefore,

ai (t ) 6= xi (t ). We approximate the deformation as

zi = xi −ai , i = 1, · · · , N . (5.7)

In this paper, we consider a linear spring model for the contact force, i.e., fi = kzi , where

k is the spring constant (possibly unknown). If the contact between the agents and the

payload is elastic at a constant pressure, the linear spring model is a valid representation

of the contact force as shown in [29].

Rewrite the translational dynamics of the load as

Mc ẍc =
N∑

i=1
fi −Mc g e3, (5.8)

where Mc is the mass of the load, g is the gravitational constant, and e3 is the unit vector[
0 0 1

]T

. The rotational dynamics of the payload is given by

IcΩ̇c =
N∑

i=1

�Rc ri fi − Ω̂c IcΩc , (5.9)

where the
∑N

i=1
�Rc ri fi term represents the total moment exerted on the payload due to

the contact forces. We assume that the agents cannot directly exert moments on the

payload.

Rewrite the translational dynamics of the N agents as

mi ẍi = Fi − fi −mi g e3, i = 1, ..., N , (5.10)

where mi is the mass of the i -th agent, Fi is the force applied to agent i and fi is the

contact force to agent i . For a quadcopter, the applied force Fi is given by

Fi = Ti Ri (Φ)e3, (5.11)

where Ti is the total thrust from the four rotors, given by

Ti =
4∑

i=1
Frotors,i , (5.12)
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Φ =
[
φ θ ψ

]T

are the roll, pitch and yaw angles and Ri (Φ) ∈ SO(3) is the rotation

matrix between the body frame Oc,i and the inertial frame Σi given by

Ri =


cψi cθi cψi sφi sθi − cφi sψi sφi sψi + cφi cψi sθi

cθi sψi cφi cψi + sφi sψi sθi cφi sψi sθi − cψi sφi

−sθi cθi sφi cφi cθi

 , (5.13)

in which cθi = cosθi and sθi = sinθi . The rotational dynamics of the i -th quadcopter is

given by

Ii Ω̇i = Mi − Ω̂i IiΩi ,+τi , f , (5.14)

where Ii is the inertia matrix, Mi ∈ R3 is the moment generated by the i th-quadcopter

and τi , f is the torque generated due to the contact force fi .

When fi is measured, e.g., based on a force sensor or an accelerometer, we may can-

cel τi , f by choosing Mi = M̄i −τi , f . Then we can design M̄i to control the attitude dy-

namics of the i -th quadcopter.

5.2.3 Control objective

Our control objective is to design Fi such that all the agents and the payload trans-

late with a constant velocity vd while the orientation of the payload Rc is driven to a

desired setpoint Rd
c , i.e., ẋi → vd , ∀i , ẋc → vd ,Ωc → 0, and Rc → Rd

c . Meanwhile, we also

regulate the contact force fi to desired squeezing force f d
i , i.e., fi → f d

i , ∀i .

5.3 Control Design

Compared with Chapters 4 and 6, our control objective consists of an additional goal

of stabilizing Rc to Rd
c . To achieve this goal, we design time-varying force setpoints f d

i (t )

such that when substituted in (5.9), the f d
i (t )’s achieve the orientation control. Specifi-

cally, we choose f d
i (t ) dynamically to satisfy

N∑
i=1

f d
i = Mc g e3, (5.15)
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N∑
i=1

�Rc ri f d
i =−kΩcΩc −kqv qe

v , (5.16)

where kΩc and kqv are positive scalars, and qe
v is the vector part of the quaternion pa-

rameterizing (Rd
c )T Rc . Note that the right hand side of (5.16) is an exponentially stable

attitude control that ensures Ωc → 0 and qe
v → 0 [40, 41]. Therefore, if fi = f d

i , it follows

from (5.8) and (5.9) and the constraints (5.15) and (5.16) that the payload will move at a

constant velocity with a stabilized orientation.

Define

ui = f d
i (t )− fi (5.17)

and

ξi := ẋi − vd −Γi ui Γi = ΓT
i > 0. (5.18)

We next design Fi as

Fi =−Kiξi + f d
i (t )+miΓi u̇i +mi g e3, (5.19)

where Ki = K T
i > 0. As we shall see in Section 5.4, the u̇i term allows us to establish

stability of the combined orientation and force control system.

Remark 5.1 From (5.15) and (5.16), we obtain

 I I . . . I

�Rc r1 �Rc r2 . . . �Rc rN


︸ ︷︷ ︸

Λ



f d
1

f d
2

...

f d
N


︸ ︷︷ ︸

f d

=

 Mc g e3

−kΩcΩc −kqv qe
v


︸ ︷︷ ︸

h(Ωc ,qe
v )

.
(5.20)

Thus, f d can be solved as

f d =Λ+h(Ωc , qe
v )+ f d

N (Λ), (5.21)

where Λ+ =ΛT (ΛΛT )−1 is the Moore-Penrose generalized inverse of Λ and f d
N (Λ) belongs

to the null space ofΛ, i.e.,Λ f d
N (Λ) = 0.
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Note that f d consists of two components: the first one solving the constraints (5.15)

and (5.16) and the second one aligned with the squeezing direction (the null space of Λ).

The f d is a function of (Ωc , qe
v ) since its two components depend only on (Ωc , qe

v ). At the

desired equilibrium where Ωc = 0 and qe
v = 0, the sum of f d

i ’s in the z direction balances

the weight of the load and the f d
i ’s contribute no moments to the payload.

The ḟ d
i used in u̇i can be computed in a similar fashion. The expression of ḟ d

i is given

in the Appendix.

5.3.1 Computation of T des
i andΦdes

i for a quadcopter

Given (5.11), the corresponding Ti andΦi are found based on (3.6)–(3.8). Once θdes
i ,

φdes
i and T des

i are computed, low-level attitude and thrust tracking controllers (e.g., a PD

controller) can be implemented to track these desire commands for the i -th quadcopter.

5.4 Stability Analysis

5.4.1 Closed-loop system and equilibria

In this section, we derive the closed-loop dynamics. We note that ui = k(zd
i − zi ),

where zd
i = f d

i /k. Define z̃i = zd
i − zi , ∀i . Then ui = 0 is equivalent to z̃i = 0. Therefore,

we derive the dynamics for z̃i . Differentiating (5.7) leads to

żi = ẋi − ȧi = ξi + vd +Γi ui − ẋc − Ω̂c Rc ri , (5.22)

which can be further written as

żi = ξi −ξc +Γi ui − Ω̂c Rc ri

= ξi −ξc +Kz z̃i − Ω̂c Rc ri ,
(5.23)

where ξc = ẋc − vd and Kz = Γi k. Thus, we obtain

˙̃zi =−ξi +ξc −Kz z̃i + Ω̂c Rc ri + żd
i . (5.24)

Note from (5.46) that żd
i is a function of (Ωc , qe

v , z̃i ).
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For the translational motion of the payload, we obtain from (5.8) and (5.15) that

Mc ξ̇c =
N∑

i=1
( fi − f d

i ) =−k
N∑

i=1
z̃i . (5.25)

The derivative of ξi defined in (5.18) is given by

mi ξ̇i = mi ẍi −miΓi u̇i = Fi − fi −mi g e3 −miΓi u̇i , (5.26)

which, together with the design of Fi in (5.19), leads to

mi ξ̇i =−Kiξi + f d
i +miΓi u̇i +mi g e3

− fi −mi g e3 −miΓi u̇i

mi ξ̇i =−Kiξi +kz̃i .

(5.27)

The rotational dynamics in (5.9) with f d
i in (5.16) takes the following form:

IcΩ̇c =−Ω̂c IcΩc −k
N∑

i=1

�Rc ri z̃i −kΩcΩc −kqv qe
v , (5.28)

where the dynamics of the unit quaternion (q0
v , qe

v ) is given by

q̇e
0 =−1

2

(
(Rd

c )TΩc
)T qe

v , (5.29)

q̇e
v = 1

2
qe

0

(
(Rd

c )TΩc
)+ 1

2
á(Rd

c )TΩc qe
v . (5.30)

The desired equilibrium of (5.24), (5.25), (5.27), (5.28), and (5.30) is given by the ori-

gin of {Ξ,ξc , z̃,Ωc , qe
v }, where Ξ= (ξT

1 , · · · ,ξT
N )T and z̃ = (z̃T

1 , · · · , z̃T
N ).

5.4.2 Main result

Theorem 5.1 Suppose that Kz = Γi k = λI > 0 and λ is sufficiently large. Define ζi = ˙̃zi .

The control law (5.19) ensures that the equilibria in (5.31) below are exponentially stable.

E = {(ξi ,ζi , z̃i ,Ωc , qe
v )|ξi = 0, ζi = 0,

z̃i = 0, Ωc = 0, and qe
v = 0, ∀i }.

(5.31)

In addition, convergence to E is equivalent to convergence to the origin of {Ξ,ξc , z̃,Ωc , qe
v }.
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Proof. From ζi = ˙̃zi and (5.24), we obtain

ζi = ˙̃zi =−ξi +ξc −Kz z̃i + Ω̂c Rc ri + żd
i ,∀i . (5.32)

We first divide both sides of (5.32) by Kz and obtain

ε ˙̃zi =−εξi +εξc − z̃i +εΩ̂c Rc ri +εżd
i , (5.33)

where ε= 1/λ and żd
i is given in (5.46).

We next derive the dynamics of ζi . We obtain from (5.32), (5.25), (5.27), and (5.28)

that

ζ̇i =−ξ̇i + ξ̇c −Kz ˙̃zi + ˙̂Ωc Rc ri + Ω̂cΩ̂c Rc ri + z̈d
i

ζ̇i = 1

mi
Kiξi − k

mi
z̃i − k

Mc

N∑
i=1

z̃i −Kzζi

−
(
I−1

c

( N∑
i=1

�Rc ri kz̃i + Ω̂c IcΩc +kΩcΩc +kqv qe
v

))
×Rc ri

+(Ω̂c )2Rc ri + z̈d
i .

(5.34)

Dividing both sides by Kz yields

εζ̇i = ε 1

mi
Kiξi − 1

mi
Γ−1

i z̃i − 1

Mc
Γ−1

i

N∑
i=1

z̃i

−ζi +ε(Ω̂c )2Rc ri +εz̈d
i +Γ−1

i
�Rc ri (I−1

c

N∑
i=1

�Rc ri z̃i )

+ε�Rc ri (I−1
c Ω̂c IcΩc )+ε�Rc ri (I−1

c kΩcΩc )

+ε�Rc ri (I−1
c kqv qe

v ).

(5.35)

Further computation from (5.46) shows that z̈d
i is a function of (Ωc , z̃i , qe

v ,ζi ) and does

not contain terms multiplied by Kz or k.

For a sufficiently small ε, there exists a time-scale separation between the fast dy-

namics (5.33) and (5.35) and the slow dynamics of ξi ,Ωc and qe
v in (5.27), (5.28) and (5.30),

respectively. To analyze such a singularly perturbed system, we first set ε= 0 and equate

the right hand side of (5.33) and (5.35) to zero to obtain

z̃i = 0 and ζi = 0, ∀i . (5.36)
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Substituting (5.36) into (5.27) and (5.28) yields the reduced order system, which con-

sists of

ξ̇i =− Ki

mi
ξi , (5.37)

Ω̇c =−I−1
c

(
kΩcΩc + Ω̂c IcΩc +kqv qe

v

)
, (5.38)

and (5.30). The origin of the reduced system is exponentially stable because the ξi dy-

namics are exponentially stable and the dynamics of Ωc and qe
v are also exponentially

stable according to [40, 41].

The boundary layer system of (5.33) and (5.35) is given by

d z̃i

dτ
=−z̃i , (5.39)

dζi

dτ
=−ζi−

Γ−1
i

(
1

mi
z̃i + 1

Mc

N∑
i=1

z̃i −�Rc ri
(
I−1

c

N∑
i=1

�Rc ri z̃i
))

. (5.40)

Note that (5.39) and (5.40) is a cascaded system, where the coupling term in (5.40) is

linear in z̃i with a bounded growth rate. Without the coupling term, (5.39) and (5.40)

are both exponentially stable linear systems. Therefore, it is straightforward to employ

a Lyapunov function V = 1
2

∑N
i=1 z̃T

i P z̃i +ζT
i ζi with a sufficiently large P to show that the

origin of (z̃,ζ) is exponentially stable, where ζ= (ζT
1 , · · · ,ζT

N ). We then conclude from [37,

Theorem 11.4], the origin of the combined system (5.27), (5.28), (5.30), (5.33), and (5.35)

given in (5.31) is exponentially stable for a sufficiently large Γi k.

We now show that convergence to E is equivalent to convergence to the origin of

{Ξ,ξc , z̃,Ωc , qe
v }. Specifically, we establish that convergence to E leads to ξc → 0. From (5.24),

˙̃zi = ζi → 0, ξi → 0,Ωc → 0, and z̃ → 0, we conclude that ξc+żd
i → 0. The expression of żd

in (5.46) indicates that żd − 1
k ḟ d

N (Λ) → 0. AsΩc → 0 and qe
v → 0, Rc approaches Rd

c , which

means that f d
N (Λ) can be chosen to converge to a constant vector and thus ḟ d

N (Λ) → 0.

Therefore, it follows that żd
i → 0 and ξc → 0.
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The proof for Theorem 5.1 illustrates that with a sufficiently large Γi k, the force error

dynamics evolves at the fast time-scale while the velocity dynamics of the agents and

the rotational dynamics of the payload evolve at the slow time-scale. If Ki in (5.27) is

also chosen sufficiently large, the velocity dynamics of the agents ξi becomes part of the

fast dynamics. We can follow a similar singular perturbation analysis to obtain the same

stability and convergence results.

The value of Γi k depends on both Γi and k. For a stiff spring, where k is large, a

moderate Γi will be sufficient. For a soft spring where k is small, a large Γi is needed.

Although our analysis assumes a uniform k for all the agents, the analysis can be easily

extended to non-uniform cases.

The current implementation of Fi requires fi , ḟi , f d
i and ḟ d

i . The ḟi may be estimated

using a derivative estimator, such as [42], based on the fi measurements. As shown in

the below, the expression of ḟ d
i is complicated and may be difficult to implement. We

are currently investigating the sensitivity and robustness of the proposed algorithm with

respect to ḟ d
i .

5.4.3 Computation of ḟ d
i and żd

i

The time derivative of (2.12) yields

N∑
i=1

ḟ d
i = 0. (5.41)
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The time derivative of (5.16) yields

N∑
i=1

�(Rc ri ) ḟ d
i =−kΩc I−1

c

(
− Ω̂c IcΩc −

N∑
i=1

�Rc ri ui

−kΩcΩc −kqv qe
v

)
−kqv q̇e

v −
N∑

i=1

á(̂ c Rc ri )Ω f d
i

= kΩc I−1
c Ω̂c IcΩc +kΩc

N∑
i=1

�Rc ri ui

−kΩc I−1
c kqv qe

v −kqv q̇e
v +k2

Ωc
I−1

c Ωc

+kqvΩ̂c qe
v +

N∑
i=1

�Rc ri Ω̂c f d
i .

(5.42)

From (5.41) and (5.42), we obtain

 I I . . . I

�Rc r1 �Rc r2 . . . �Rc rN




ḟ d
1

ḟ d
2

...

ḟ d
N



= kΩc k

 0 0 . . . 0

�Rc r1 �Rc r2 . . . �Rc rN




z̃1

z̃2

...

z̃N



+

 0 0 . . . 0

�Rc r1Ω̂c �Rc r2Ω̂c . . . �Rc rN Ω̂c




f d
1

f d
2

...

f d
3



+

 O

kΩc I−1
c Ω̂c IcΩc +k2

Ωc
I−1

c Ωc



+

 O

−kΩc I−1
c kqv qe

v −kqv q̇e
v +kqv Ω̂c qe

v

 ,

(5.43)
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which can be written as

Λ ˙f d = g (Ωc , f d , z̃, qe
v ) = ḡ (Ωc , z̃, qe

v ) (5.44)

since f d in (5.21) is only a function ofΩc and qe
v . Then ḟ d can be obtained as

ḟ d =Λ+ḡ (Ωc , z̃, qe
v )+ ḟ d

N (Λ) (5.45)

where Λ+ is the Moore-Penrose generalized inverse of Λ and ḟ d
N (Λ) belongs to the null

space ofΛ. Because ḟ d = kżd , we obtain

żd = 1

k
(Λ+ḡ (Ωc , z̃, qe

v )+ ḟ d
N (Λ)). (5.46)

5.4.4 Useful identities

ω̂T =−ω̂ (5.47)

ω̂ω= 0 (5.48)

v̂ω=−ω̂v =⇒ ~v ×~ω=−~ω×~v (5.49)

Ṙ = Rω̂ (5.50)

d

d t
||b|| = bT .ḃ

||b|| (5.51)

d(r1 × r2)

d t
= ṙ1 × r2 + r1 × ṙ2 (5.52)

Product Rule:
d

d t
( f · g ) = ḟ g + f ġ (5.53)

Quotient Rule:
d

d t

f

g
= ḟ g − f ġ

g 2
(5.54)

5.5 Simulation Results

5.5.1 Simulation Environment

In this section, we present a numerical example for three agents transporting a load.

The control objective is transport the payload such that it will rotate by 90 degrees and
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translate with the constant velocity vd . The mass and inertia of each quadcopter are

mi = 0.75 kg and Ii = di ag {0.0820,0.0845,0.1377} kg m2 respectively. The mass and in-

ertia of the payload are Mc = 1.5 and Ic = di ag {0.0135,0.0135,0.0135} kg m2 kg with

a radius of 15 cm. For all of the results presented in this section we set ψdes
i = 0 and

k = 1000 N/m. We set r1 = [0,0.15,0]T , r2 = [0.15sin(π/3),−0.15cos(π/3),0]T and r3 =
[−0.15sin(π/3),−0.15cos(π/3),0]T . The f d

i (t )’s are chosen online based on (5.21), where

f d
N (Λ) for each agent is given by Rc [0.0,−2.0,0]T N, Rc [2.0,1.0,0]T N, and Rc [−2.0,1.0,0]T

N, respectively. As Rc → Rd and Ωc → 0, f d
N (Λ) approaches a constant vector and ḟ d

N (Λ)

approaches zero.

5.5.2 Quadcopter Attitude Controller

The gains for the attitude controller are given in Table 5.1.

K i
1, K i

2 K3 K i
p1, K i

p2 K i
p3 K i

d1, K i
d2 K i

d3

21.93 18 4.65 3.76 0.19 0.15

Table 5.1: Attitude controller gains.

5.5.3 Numerical Examples

In this example we illustrate the time-scale separation between the fast dynamics (5.33)

and (5.35) and the slow dynamics of ξi ,Ωc and qe
v . We choose

vd =
[

2.0, 0.0, 0

]T

, qd
v =

[
0, 0, 1p

2

]T

,

Ki =


0.2 0 0

0 0.2 0

0 0 0.2

 , Γi =


0.01 0 0

0 0.01 0

0 0 0.01

 ,

kqv = 0.1, kΩc = 0.2.

(5.55)
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Note that qd
v corresponds to a desired vector quaternion for 90 degrees rotation on the

x − y plane. The product Γi k is large compared with other control gains.

As shown in Fig. 5.1, 5.2, 5.3 and 5.4, the convergence of z̃i , ξi ,Ωc and the attitude er-

ror qe
v verifies that there exists a time-scale separation between the fast dynamics (5.33)

and (5.35) and the slow dynamics of ξi ,Ωc and qe
v .

Figure 5.1: The magnitude of z̃i for the three agents.

Since singular perturbation and Lyapunov analysis can be conservative, we further

tune the gains of the controllers to achieve improved transient performance. We in-

crease Ki , kqv and kΩc to

Ki =


1 0 0

0 1 0

0 0 1

 , kqv = 2, kΩc = 1, (5.56)

while keeping other parameters the same as in the previous simulation.

Fig. 5.5 shows that the 3D trajectories of the agents and the payload. It can be ob-

served that the payload is able to make a 90 degree turn and maintain the desired ori-

entation throughout the simulation. Fig. 5.6 shows that the contact force is regulated to
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Figure 5.2: The magnitude of the velocity error ξi for the three agents and the payload.

Figure 5.3: The angular velocity of the loadΩc goes to zero.
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Figure 5.4: The magnitude of the orientation error ||qe
v || for the payload.

the time varying setpoints. Fig. 5.7 shows that the velocity errors of agents and the pay-

load converge to zero. Fig. 5.8 shows that the angular velocity of the payload converges

to zero and Fig. 5.9 shows that ‖qe
v‖→ 0, which means that Rc converges to Rd

c . Fig. 5.10

and Fig. 5.11 show that the attitude controller tracks the desired attitude anglesφdes
i and

θdes
i generated from the force controller (3.6) and (3.7). Note that the convergence speed

for all the variables are improved due to the increased gain parameters in (5.56).
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Figure 5.5: 3D position trajectory for three agents and the payload at different time steps

for the first 20 seconds. The changes of the position of the red and the light blue dots

confirm that the payload is able to achieve the desired rotation.

Figure 5.6: The magnitude of z̃i goes to zero for all three agents.
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Figure 5.7: The magnitude of the velocity error ξi for the three agents and the payload.

Figure 5.8: The angular velocity of the loadΩc goes to zero.
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Figure 5.9: The magnitude of the orientation error ‖qe
v‖ for the payload.

Figure 5.10: Desired and actual roll angles (φ) for three agents.
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Figure 5.11: Desired and actual pitch angles (θ) for three agents.

Because of the complexity in computation of ḟ d
i , we have also experimented with ḟ d

i

set to 0 in (5.19). Our simulation results show that ξi → 0, ξc → 0, Ωc → 0, qe
v → 0 and

z̃i → 0 are still achieved. The simulation results are not included in this report and we

plan to investigate more in our future work.
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CHAPTER 6

FORCE CONTROL OF PAYLOAD WITH UNKNOWN MASS USING QUADCOPTERS

WITH MULTI-LINK ROBOT

In this chapter, we tested our force control algorithms from Chapter 4 for a group

of aerial manipulators (AM) transporting a flexible load. Each AM is a combination of

an Unmanned Aerial Vehicle (UAV) with a two-degree-of-freedom robotic manipulator

(RM) attached to it. This work is similar to the past work in [36] and we extend it to ad-

dress cooperative transportation of a payload with an unknown mass. Specifically, we

develop decentralized control and estimation algorithms that guarantees force regula-

tion, velocity convergence and convergence of the estimate of the mass of the payload

without explicit communication between the AMs. The algorithms are implemented at

the kinematic level using the inverse kinematics of the AMs.

6.1 Payload Transportation with an Aerial Manipulator

6.1.1 Kinematics

Each aerial manipulator is a 2-DOF robotic arm mounted at the bottom of a quadro-

tor. Similar derivations for single aerial manipulator can be found in [43, 44]. Posi-

tion of the center of mass of the quadrotor in the inertial frame ΣI is given by, p I
c,i =[

xc,i yc,i zc,i

]T

, orientation of the quadrotor is described by the triple of ZYX (yaw-

pitch-roll) Euler angles, Φi =
[
ψi θi φi

]T

and joint angles of the two-DOF manipu-

lator are given by, ηi j =
[
ηi 1 ηi 2

]T

(see Fig 2.1). Both of the joint angles are defined

about positive xc,i axis. The origin of frame for the load and each link of the manipula-
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Figure 6.1: Two aerial manipulators transport a common flexible load. Note that body

frame Oc,i coincides with O1, j (not shown in the figure) and ai is the initial position of

agent i .

tor is placed at its center of mass making the axis coincident with the inertial axes. The

vector containing all the generalized coordinates for agent i is given by

qi =
[

(p I
c,i )T ΦT

i ηT
i

]T

. (6.1)

LetωI
c,i andωb

i ,c be the angular velocity of the quadrotor in the inertial frame and the

body-fixed frame respectively. We can map the time derivative of Euler angles Φ̇i to ωI
c,i

by a transformation matrix Ti . The following equalities hold:

ωI
c,i = R I

c,iω
b
c,i , (6.2)

ωI
c,i = Ti Φ̇i , (6.3)

ωb
c,i = (R I

c,i )T Ti Φ̇i =Qi Φ̇i , (6.4)

where R I
c,i ∈ SO(3) is the rotation matrix between the body frame Oc,i and the inertial

frame ΣI .

Let pb
i , j be the position of center of mass of link j = 1,2 of the i-th aerial manipulator

78



in the body-fixed frame Oc,i . The position p I
i j of center of mass of link j is given by

p I
i , j = p I

c,i +R I
c,i pb

i , j . (6.5)

The linear and angular velocity of each link of manipulator are related to the time deriva-

tives of joint angles ηi , j by

ṗb
i , j = Jv,i j η̇i , j , (6.6)

ωb
i , j = Jω,i j η̇i , j , (6.7)

where Jv,i j ∈R3×2 and Jω,i j ∈R3×2 are the linear and angular Jacobian of the manipulator

in the body-fixed frame [45]. We can compute the linear and angular velocity of each link

in the inertial frame from the following equations,

ṗ I
i , j = ṗ I

c,i + Ṙ I
c,i pb

i , j +R I
c,i ṗb

i , j , (6.8)

ṗ I
i , j = ṗ I

c,i + ω̂I
c,i R I

c,i pb
i , j +R I

c,i Jv,i j η̇i , j , (6.9)

ωI
i , j =ωI

c,i +R I
c,i Jω,i j η̇i , j , (6.10)

where the operator̂converts a given vector ω =
[
ω1 ω2 ω3

]T

, into a skew sym-

metric matrix as:

ω̂=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (6.11)

Let xb
i be the position of the end-effector in the body-fixed frame Oc,i , which is given

by

xb
i = PC

c1RC
c1P12 +RC

c2P2T , (6.12)

where PC
c1 is the vector representing the initial distance between the body frame of UAV

and the body frame of the 1st link of the manipulator expressed in frame C . RC
c1, and

RC
c2 are the rotation matrices between the frames of the manipulator and its base frame.

P12 is the initial distance between the first and the second link, P2T is the initial distance

between the second link and the end-effector both expressed in its body-frame.
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The position of the end effector x I
i in the inertial frame for the i-th aerial manipulator

is given by,

x I
i = p I

c,i +R I
c,i xb

i . (6.13)

The linear and angular velocities of the end effector can be computed as:

ẋ I
i = ṗ I

c,i + Ṙ I
c,i xb

i +R I
c,i ẋb

i , (6.14)

ẋ I
i = ṗ I

c,i + ω̂I
c,i R I

c,i xb
i +R I

c,i Jv,i j η̇i , j , (6.15)

ωI
i =ωI

c,i +R I
c,i Jω,i j η̇i , j . (6.16)

Equations (6.13), (6.15) and (6.16) can be simplified as:

ṗ I
c,i =

[
I3×3 03×3 03×2

]
q̇i =: Jt ,b q̇i , (6.17)

ωI
c,i =

[
03×3 Ti 03×2

]
q̇i =: Jr,b q̇i , (6.18)

ẋ I
i =

[
I3×3 −á(R I

c,i xb
i )T R I

c,i Jv,i j

]
q̇i =: Jt ,i q̇i , (6.19)

ωI
i =

[
03×3 Ti R I

c,i Jw,i j

]
q̇i =: Jr,i q̇i . (6.20)

Define vi =
[

(ṗ I
c,i )T (ωI

c,i )T (ẋ I
i )T (ωI

i )T

]T

, which contains the linear and angu-

lar velocities of the UAV and the end-effector of the i-th aerial manipulator. The time

derivative of generalized joints vector qi can be mapped to vi by the following equation,

vi = Ji q̇i , (6.21)

where Ji ∈R12×qi is the geometric Jacobian of the system ( [45]) whose elements is com-

puted as:

Ji =
[

Jt ,b Jr,b Jt ,i Jr,i

]T

. (6.22)

We can represent the position/orientation of the end-effector as the minimal repre-

sentation ( [45]) and express the forward kinematics as:

xi = k(qi ), (6.23)
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where k(·) is an m × 1 vector function based on the system configuration and xi is an

m×1 state vector representing the system in minimal configuration. The time derivative

of xi and qi can be related by,

ẋi = Ja,i q̇i , (6.24)

where Ja,i ∈ Rm×nqi is the analytical Jacobian of the system which can be derived via

differentiation of k(·) ( [45]). In this paper, we use the Cartesian position of the end-

effector as a minimal representation, which gives us Ja,i = Jt ,i .

6.1.2 Dynamics

We derive the dynamic model based on Euler-Lagrange formulation.

d

d t

∂L

∂q̇i
− ∂L

∂q
= τ+τext (6.25)

L =K −U (6.26)

where L is the Lagrangian of the system. K and U are the total kinetic and poten-

tial energy of the i-th aerial manipulator, τ represents generalized forces and τext refers

to any external disturbance applied to the system.

The total kinetic energy for the i-th aerial manipulator is given by the sum of indi-

vidual contributions of the aerial vehicle and two links of the manipulator.

Ki =Kb,i +
2∑
i

Ki j (6.27)

where Kb,i is the kinetic energy of the quadrotor and Ki j is the kinetic energy of the link

j of the i-th aerial manipulator.

The kinetic energy for the quadrotor Kb,i is given by

Kb,i =
1

2
ṗT

b,i mb,i ṗb,i +
1

2
Φ̇T

i T T Rb,i Ib,i RT
b,i T Φ̇i (6.28)

where mb,i and Ib,i is the mass and inertia matrix of the quadrotor respectively of the

i-th aerial manipulator. Kinetic energy of each link can be expressed as follows

Ki j = 1

2
ṗT

i j mi j ṗi j + 1

2
w T

i j (Rb,i Rb
i j )Ii j (Rb,i Rb

i j )
T

wi j (6.29)
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where Rb
i j is the rotation matrix between bodyframe of center of mass of j-th link and

Obi , while mi j and Ii j is the mass and constant inertia matrix of link j respectively.

By considering (6.4), (6.8), (6.9), (6.10), (6.28) and (6.29) total kinetic energy of i-th

aerial manipulator (6.27) can be expressed into following form

Ki = 1

2
q̇T

i Mi (qi )q̇i (6.30)

where Mi ∈R8×8 is a symmetric and positive definite inertia matrix of aerial manipulator

i, which can be defined as a 3×3 block matrix with individual elements as follows:

Mi11 =
(
mb,i +

2∑
i

mi j

)
I3×3 (6.31)

Mi22 =QT
i Ib,i Qi +

2∑
i

(
T T

i ( àRb,i pb
i j )T mi j ( àRb,i pb

i j )Ti +QT
i Rb

i j Ii j (Rb
i j )T Qi

)
(6.32)

Mi33 =
2∑
i

(
J T

v,i mi j Jv,i + J T
w,i Rb

i j Ii j (Rb
i j )T Jw,i

)
(6.33)

Mi12 = M T
i21

=−
2∑
i

(
mi j (áRb,i pb

i , j )Ti

)
(6.34)

Mi13 = M T
i13

=
2∑
i

(
mi j Rb,i Jv,i

)
(6.35)

Mi23 = M T
i23

=
2∑
i

(
QT

i Rb
i j Ii j (Rb

i j )T Jw,i −mi j T T
i ( àRb,i pb

i j )T Rb,i Jv,i

)
(6.36)

The total potential energy for the i-th aerial manipulator is given by the sum of indi-

vidual contributions of the aerial vehicle and two links of the manipulator.

Ui =Ub,i +
2∑
i

Ui j (6.37)

The potential energy for the quadrotor Ub,i is given by

Ub,i = mb,i g eT
3 pb,i (6.38)

where g is acceleration due to gravity and e3 is the unit vector

[
0 0 1

]T

. Potential

energy of each links is given by

Ui j = mi j g eT
3 (pb,i +Rb,i pb

i j ) (6.39)
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The total potential energy for i-th aerial manipulator can be computed as

Ui = mb,i g eT
3 pb,i +

2∑
i

[mi j g eT
3 (pb,i +Rb,i pb

i j )] (6.40)

By substituting equations (6.26), (6.30), (6.40), into (6.25), the full dynamics of i-th aerial

manipulator can be computed as

Mi (qi )q̈i +Ci (qi , q̇i )q̇i +Gi (qi ) = τi +τext ,i (6.41)

where Ci (qi , q̇i ) is the Coriolis matrix and Gi (qi ) is the vector containing gravity effects.

The generic element of the Coriolis matrix Ci (qi , q̇i ) is given by [45, 46],

ci j =
8∑
1

ci j k q̇k (6.42)

where the coefficients ci j k is given by

ci j k = 1

2

(∂mi j

∂qk
+ ∂mi k

∂q j
− ∂m j k

∂qi

)
(6.43)

which are also termed as Christoffel symbols of the first type. Gi (qi ) is computed as

Gi (qi ) = ∂Ui

∂qi
(6.44)

If we neglect the aerodynamic effects and consider low speed displacements [47] for

the quadrotor model, the input τ mapped to actuation command as:

τi = R f ,i Ni fi =Ξi fi (6.45)

where fi =
[

f T
q,i τT

i

]T

includes fq,i =
[

fq,1 fq,2 fq,3 fq,4

]T

as input forces actuated

by the quadrotor motors and τi =
[
τi ,1 τi ,2

]T

for manipulator joint torques. R f ,i =
diag(Rb,i ,QT , Ini×ni ) ∈R6+ni×6+ni and Ni = diag(Ωi , Ini×ni ) ∈R8×4+ni , in which

Ω=



0 0 0 0

0 0 0 0

1 1 1 1

0 d 0 −d

−d 0 d 0

c −c c −c


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where d is the distance from a motor to the center of the vehicle and c = km/k f > 0,

km the drag coefficient and k f the motor thrust coefficient which are obtained from the

motor test data using a 6-axis force-torque sensor [17].

6.2 Control Objective

The control objective is to design Fi in a decentralized way such that all the agents

and the payload converge to a constant velocity vd and the contact force fi is regulated

to a setpoint f d
i , i = 1, · · · , N .

6.3 Payload Transport with an Unknown Mass

Rewrite the update law from Section 4.1

˙̂Mc,i = γi (ẋi − vd )
T

e3, (6.46)

We modify the design in (2.9) as:

Fi =−Γi (ẋi − vd )+ f̂ d
i , (6.47)

and estimate the z-component of f d
i as:

f̂ d
i ,z = M̂c,i g . (6.48)

The x and y components of f̂ d
i are the steady state values of the squeeze forces that are

pre-designed to satisfy the following constraints

N∑
i=1

f̂ d
i ,x = 0 and

N∑
i=1

f̂ d
i ,y = 0. (6.49)

The dynamics (2.8) with the proposed control law (6.46), (6.47), takes the following form:

mi ẍi =−Γi (ẋi − vd )+ f̂ d
i − fi . (6.50)

Theorem 6.1 Consider the decentralized control law in (6.47) together with (6.46) and

84



(6.48). The equilibrium of (2.7), (6.46), and (3.11) given by

E = {(ẋi , fi , vd , M̂c,i )|ẋi = vd , ẋc = vd ,

N∑
i=1

M̂c,i = Mc , and fi = f d
i },

(6.51)

is asymptotically stable.

Proof. The proof of the closed loop system is exactly same as in the one presented in

Section 4.1.

6.4 Simulation Results

6.4.1 Simulation Environment

In this section, we present simulation results for two AMs transporting a load. Each

quadrotor has a mass of 5 kg. Each link of the robotic manipulator has a length of 20 cm

and a mass of 0.5 kg. The mass of the payload is 0.5 kg with a radius of 15 cm. All the

joints of the manipulator are assumed to be spherical. The first joint rotates about the x

axis and the second joint rotates about the y axis as shown in Fig. 2.1. We select xc,i , yc,i

and φi as state variables to be controlled for all the results presented in this section. We

use a linear spring-force model to compute the contact force fi in this simulation.

As a preliminary investigation, we implement the control in Chapter 4 at the kine-

matic level. This is equivalent to assuming that there exists a sufficiently-fast velocity

tracking controller for each AM. To do so, we set right-hand side of (3.11) to 0 and solve

for ẋi :

ẋi = Ki ( f̂ d
i − fi )+ vd , i = 1, ..., N , (6.52)

where, Ki > 0 and xi is the position of the end-effector of i -th the aerial manipulator.

The end-effector velocity ẋi is computed from (6.52) and transformed to the gen-

eralized velocities using (6.19). Because of the redundancy in the system, we use the

partial-inverse of the Jacobian matrix to calculate the joint velocities for 3 desired states.
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An example to calculate the joint velocities for 3 states, xc,i , yc,i and φi from the partial-

inverse of the Jacobian is shown below. Let

J(t ,i )s =
[

Jt ,i (:,1), Jt ,i (:,2), Jt ,i (:,6)

]
(6.53)

be the partial Jacobian matrix for the xc,i , yc,i and φi states. Then the corresponding

joint velocities are computed as

q̇(i )pr tl =
(

J(t ,i )s
)−1ẋi ,

q̇i =
[

q̇(i )pr tl (1), q̇(i )pr tl (2), 0, 0, 0, q̇(i )pr tl (3), 0, 0

]T

.
(6.54)

Note that k is not used in the controller (6.52).

6.4.2 Unknown Payload with a Predesigned vd

We set vd =
[

0.2 0 0

]T

, M̂c,i = 0.1 kg, Ki = 0.1, k = 100 N/m, f d
1 =

[
0 2.0 0.5M̂c g

]T

and f d
2 =

[
0 −2.0 0.5M̂c g

]T

. The initial conditions of the two AMs are set as:

q1 =
[

0.1 −0.35 0.7 0 0 −0.1 0 −π/2

]T

,

q2 =
[

0 0.35 0.68 0 0 0.1 0 π/2

]T

.

We observe from Fig. 6.2 and 6.3 that the velocities of the agents and the payload

converge to vd . The update law from (6.46) successfully recovers the actual mass of the

payload as seen in Fig. 6.4. We observe from Fig. 6.5 that the squeeze force is regulated

to the setpoint f d
i .
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Figure 6.2: Linear velocities for both agents. The x component of the velocity converges

to 0.2 m/s and the rest converge to zero.

Figure 6.3: Linear velocity for the payload. The x component of the velocity converges

to 0.2 m/s and the rest converge to zero.
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Figure 6.4: Estimation of the unknown mass. The sum of the individual estimates con-

verges to the actual mass of the load.

Figure 6.5: Contact forces for both AMs in all 3 direction. The forces in the x direction

converge to zero. In the y-direction, they converge to 2.0 N and -2.0 N, respectively. In

the z direction, the sum of the force is equal to the weight of the payload.
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6.4.3 Unknown Payload with a Time Varying vd

In this case study, we test the robustness of our controllers to time varying velocities.

We keep the other parameters to be the same as in the previous case and change the

desired velocity of the agents to

vd (t ) =



[
2.0, 0, 0

]T

, t ≤ 2 s,[
2−2sin(t −2), 2sin(t −2), 0

]T

, 2 < t ≤ 4 s,[
0, 2.0, 0

]T

, t > 4.0 s.

Fig. 6.6 and 6.7 show the trajectories of the agents and the payload in 2D and 3D,

respectively. We also observe from Fig. 6.8 and 6.9 that the velocities of the agents and

the payload in both x and y directions closely track vd . The contact force is also regulated

close to the setpoint f d
i as shown in Fig. 6.11.

Figure 6.6: X and Y position trajectories for both agents (time varying vd ). Both agents

travel in the x-direction until 2 seconds and make a smooth turn towards the y-direction

after 2 seconds.
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Figure 6.7: 3D position trajectory for both agents and the payload at different time in-

terval. Note that all 3 agents stay at an equal distance and will never collide. They ap-

proach the y-axis by being aligned in a straight line as shown in Fig. 6.6. Notice that if

the quadrotors are at the same height, they must keep a gap and the manipulator must

be large enough to avoid their blades clashing.
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Figure 6.8: Velocities of the 2 agents in all 3 directions. The x and y velocities are smooth

during transition and the z velocity is zero.
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Figure 6.9: Desired and actual velocities of the load in all 3 directions.
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Figure 6.10: Estimation of the unknown mass. The sum of individual estimate converges

to the actual mass of the load, which is 0.5 kg.

Figure 6.11: Contact forces of both agents in all 3 direction. The forces in the x direction

converge to zero. In the y-direction, they converge to 2.0 N and -2.0 N, respectively. In

the z direction, the sum of the force is equal to the weight of the payload.
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CHAPTER 7

EXPERIMENTAL RESULTS

In this chapter we present our preliminary experimental results.

7.1 Mechanical Design of the Test Bed

There are plenty of quadcopters and robotic arm available. However due to expen-

sive SDK and propriety controllers, we develop our own test bed from custom made

quadcopter and 3D printed light weight robotic arm.

7.1.1 Quadcopter

Figure 7.1: Custom made quadcopter in the lab.

7.1.2 Robotic Manipulator Design

We decided to use [48] file and significanty modified it to fit our needs for the quad-

copter. This design is simple and can be printed using 3D printers. The motors and
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other parts are also inexpensive. The robotic arm is composed a two links which can

Figure 7.2: CAD model of the tow link robotic arm.

be actuated using high torque servo motors that can be mounted on the bottom of the

arm. Another light weight servo motor is mounted close the gripper to enable dynamic

gripping.

7.2 Computation Hardware

7.2.1 Microprocessor

We use an Arduino Nano for the processing. The Arduino platform excels at basic

input/output operations, such as inputting sensor information and outputting servo

commands. It is also has enough computational power to enable the implementation

of low-level algorithms. The Arduino is only used as a low-level controller. It inputs user

command via serial input, processes it with various sensory information, and outputs

the desired angular position of each servo.

7.2.2 Communications

The microprocessor communicates with high-level controllers via serial input. Upon

detecting a new character in the serial buffer, the program enters a while() loop to con-
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tinuously add incoming characters to char input[]. Once the end of the stream is de-

tected, or a newline character is read, the program proceeds to process input[]. Each

character is checked against a menu of options in a switch-case statement. If the char-

acter is found, the statement either the remaining characters of input[] are parsed to

integers and return for further processing.

7.2.3 Motors

We used two Hitec HS-77BB servo motor in the linkage. The Hitec HS-77BB is a

3-pole brushed servo. At only 35.0 grams and dimensions of 44.0 mm x 23.0 mm x

25.0 mm, the HS-77BB operates at 4.8−6.0 V DC and has a maximum torque range of

4.4âĂŞ5.5 kg/cm [49]. When compared with servos of similar volume and mass (such as

the SPMSA6050), the HS-77BB has above average torque.

7.3 Initial Integration and test

Figure 7.3: Custom made aerial manipulator.

We also tested the viability of our system by manfully flying the aerial manipulator in
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the lab. Currently we are exploring the aerial gripping with a single AM and eventually

plan to extend this to multiple AMs.

(a) (b)

(c)

Figure 7.4: Different instances of initial aerial manipulation test.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we considered multiple quadcopters transporting a payload. We devel-

oped a force and orientation control algorithm to transport the payload. We developed

adaptive decentralized control law for transporting the payload of unknown mass with-

out explicit communication between the agents. Our controller ensures that all quad-

copters asymptotically converge to a constant reference velocity. It also ensures that all

of the forces applied to the payload converges to desired set-points. Desired thrusts and

attitude angles are computed from the control algorithms and a low-level PD controller

is implemented to track the desired commands for each quadcopter. The sum of the

estimates of the unknown mass from all the agents converges to the true mass.

We also developed a consensus algorithm based on connected graphs to ensure that

each agent gets an equal share of the payload mass. Furthermore, we developed orien-

tation control algorithm that guarantees attitude stabilization of the payload. In partic-

ular, we developed time varying force setpoints to enforce attitude regulation.

Future work will involve relaxation of the required information in the algorithm and

experimental validation of the proposed design. We plan to design and implement ro-

bust controllers for disturbance rejection in the presence of wind gusts. Furthermore,

we plan to develop a complete aerial manipulation system in the lab.
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