137 research outputs found

    Controle coordenado em microrredes de baixa tensão baseado no algoritmo power-based control e conversor utility interface

    Get PDF
    Orientadores: José Antenor Pomilio, Fernando Pinhabel MarafãoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese apresenta uma possível arquitetura e sua respectiva estratégia de controle para microrredes de baixa tensão, considerando-se a existência de geradores distribuídos pela rede. A técnica explora totalmente a capacidade dos geradores distribuídos em ambos os modos de operação: conectado à rede e ilhado. Quando conectado à rede, sob o modo de otimização global, o controle busca a operação quase ótima da microrrede, reduzindo as perdas de distribuição e os desvios de tensão. Quando em modo ilhado, a técnica regula de forma eficaz os geradores distribuídos disponíveis, garantindo a operação autônoma, segura e suave da microrrede. A estratégia de controle é aplicada a uma estrutura de microrrede completamente despachável, baseada em uma arquitetura de controle mestre-escravo, em que as unidades distribuídas são coordenadas por meio do recém-desenvolvido algoritmo Power-Based Control. As principais vantagens da arquitetura proposta são a expansividade e a capacidade de operar sem sincronização ou sem conhecimento das impedâncias de linha. Além disso, a microrrede regula as interações com a rede por meio do conversor chamado de Utility Interface, o qual é um inversor trifásico com armazenador de energia. Esta estrutura de microrrede permite algumas vantagens como: compensação de desbalanço e reativo, rápida resposta aos transitórios de carga e de rede, e suave transição entre os modos de operação. Em contrapartida, para compartilhar a potência ativa e reativa proporcionalmente entre as unidades distribuídas, controlar a circulação de reativos, e maximizar a operação, a comunicação da microrrede requer em um canal de comunicação confiável, ainda que sem grandes exigências em termos de resolução ou velocidade de transmissão. Neste sentido, foi demonstrado que uma falha na comunicação não colapsa o sistema, apenas prejudica o modo de otimização global. Entretanto, o sistema continua a operar corretamente sob o modo de otimização local, que é baseado em um algoritmo de programação linear que visa otimizar a compensação de reativos, harmônicos e desbalanço de cargas por meio dos gerador distribuído, particularmente, quando sua capacidade de potência é limitada. Esta formulação consiste em atingir melhores índices de qualidade de energia, definidos pelo lado da rede e dentro de uma região factível em termos de capacidade do conversor. Baseado nas medições de tensão e corrente de carga e uma determinada função objetiva, o algoritmo rastreia as correntes da rede ótima, as quais são utilizadas para calcular os coeficientes escalares e finalmente estes são aplicados para encontrar as referências da corrente de compensação. Finalmente, ainda é proposta uma técnica eficiente para controlar os conversores monofásicos conectados arbitrariamente ao sistema de distribuição trifásico, sejam conectados entre fase e neutro ou entre fase e fase, com o objetivo de compensar o desbalanço de carga e controlar o fluxo de potência entre as diferentes fases da microrrede. Isto melhora a qualidade da energia elétrica no ponto de acoplamento comum, melhora o perfil de tensão nas linhas, e reduz as perdas de distribuição. A arquitetura da microrrede e a estratégia de controle foi analisada e validada através de simulações computacionais e resultados experimentais, sob condições de tensão senoidal/simétrica e não-senoidal/assimétrica, avaliando-se o comportamento em regime permanente e dinâmico do sistema. O algoritmo de programação linear que visa otimizar a compensação foi analisado por meio de resultados de simulaçãoAbstract: This thesis presents a flexible and robust architecture and corresponding control strategy for modern low voltage microgrids with distributed energy resources. The strategy fully exploits the potential of distributed energy resources, under grid-connected and islanded operating modes. In grid-connected mode, under global optimization mode, the control strategy pursues quasi-optimum operation of the microgrid, so as to reduce distribution loss and voltage deviations. In islanded mode, it effectively manages any available energy source to ensure a safe and smooth autonomous operation of the microgrid. Such strategy is applied to a fully-dispatchable microgrid structure, based on a master-slave control architecture, in which the distributed units are coordinated by means of the recently developed power-based control. The main advantages of the proposed architecture are the scalability (plug-and-play) and capability to run the distributed units without synchronization or knowledge of line impedances. Moreover, the proposed microgrid topology manages promptly the interaction with the mains by means of a utility interface, which is a grid-interactive inverter equipped with energy storage. This allows a number of advantages, including compensation of load unbalance, reduction of harmonic injection, fast reaction to load and line transients, and smooth transition between operating mode. On the other hand, in order to provide demand response, proportional power sharing, reactive power control, and full utilization of distributed energy resources, the microgrid employs a reliable communication link with limited bit rate that does not involve time-critical communications among distributed units. It has been shown that a communication failure does not jeopardize the system, and just impairs the global optimization mode. However, the system keeps properly operating under the local optimization mode, which is managed by a linear algorithm in order to optimize the compensation of reactive power, harmonic distortion and load unbalance by means of distributed electronic power processors, for example, active power filters and other grid-connected inverters, especially when their capability is limited. It consists in attain several power quality performance indexes, defined at the grid side and within a feasible power region in terms of the power converter capability. Based on measured load quantities and a certain objective function, the algorithm tracks the expected optimal source currents, which are thereupon used to calculate some scaling coefficients and, therefore, the optimal compensation current references. Finally, the thesis also proposes an efficient technique to control single-phase converters, arbitrarily connected to a three-phase distribution system (line-to-neutral or line-to-line), aiming for reduce unbalance load and control the power flow among different phases. It enhances the power quality at the point-of-common-coupling of the microgrid, improve voltage profile through the lines, and reduce the overall distribution loss. The master-slave microgrid architecture has been analyzed and validated by means of computer simulations and experimental results under sinusoidal/symmetrical and nonsinusoidal/asymmetrical voltage conditions, considering both the steady-state and dynamic performances. The local optimization mode, i.e., linear algorithm for optimized compensation, has been analyzed by simulation resultsDoutoradoEnergia EletricaDoutor em Engenharia Elétrica2012/24309-8, 2013/21922-3FAPES

    A Voltage Unbalance Mitigation Technique for Low-voltage Applications with Large Single-phase Loads

    Get PDF
    In this paper a voltage unbalance mitigation technique for low-voltage microgrids or feeders in presence of large single-phase loads is introduced. In order to take maximum advantage of the existing hardware, the proposed solution consists of a sequence-based decentralized voltage control to be embedded in three-phase VSC connecting distributed generation to the considered system. Furthermore, a centralized controller is proposed to define optimal negative and zero sequence voltage reference. Control effectiveness is numerically verified considering a low-voltage feeder case study

    Guest Editorial Special Issue on Power Quality in Smart Grids

    Get PDF

    Control of Distributed Uninterruptible Power Supply Systems

    Get PDF
    In the last years, the use of distributed uninterruptible power supply (UPS) systems has been growing into the market, becoming an alternative to large conventional UPS systems. In addition, with the increasing interest in renewable energy integration and distributed generation, distributed UPS systems can be a suitable solution for storage energy in micro grids. This paper depicts the most important control schemes for the parallel operation of UPS systems. Active load-sharing techniques and droop control approaches are described. The recent improvements and variants of these control techniques are presented

    Droop-Based Power Controller for Electronic Power Converters in Three-Phase Microgrids

    Get PDF
    openIn questa tesi, viene proposto un sistema di controllo di potenza basato sulla tecnica di controllo droop. Il controllo viene studiato considerando una generica rete trifase più neutro e, successivamente, analizzato ed esteso al caso di assenza della connessione del neutro (cioè, sistemi trifase a tre fili). La tecnica presenta la possibilità di controllare completamente la potenza attiva e reattiva su ogni singola fase e permette transizioni graduali verso il funzionamento in isola. In particolare, in questo lavoro, la tecnica viene proposta e analizzata per l'uso in reti a tre fili tenendo conto delle limitazioni dovute a questa particolare connessione. I risultati di simulazione e sperimentali sono riportati e discussi.In this thesis, a droop-based per-phase power controller is proposed. The control is studied considering a generic three-phase plus neutral network and, subsequently, analyzed and extended to the case of absence of the neutral connection (i.e., three-phase three-wire systems). The technique features the possibility to fully control per-phase active and reactive power and allows smooth transitions to the islanded operation. Specifically, in this work, the technique is proposed and analyzed for use in three-wire networks taking into account the limitations due to this particular connection. Simulation and experimental results are reported and discussed

    Distributed Active and Reactive Power Control With Smart Microgrid Demonstration

    Get PDF
    Energy is one of the leading contributors to the economic development of any country. Energy plays a vital role for developing countries like India because it has to serve its large population [1]. Establishing a large power grid serving billions of people requires a significant investment. The world’s growing population has created a lot of problems that exist today. The most important issue of all is global warming caused by the abundance of greenhouse gases present in the atmosphere. Many of these greenhouse gases such as CO2 are produced from power plants all over the world burning fossil fuel. To reduce these emissions out into the atmosphere alternative sources of energy must be used. In the last two decades, both solar and wind energy have become an alternative to conventional energy resources [2]. These alternative energy resources are non-polluting, abundant, and renewable. In recent years, thanks to the advance in technology, better manufacturing processes have decreased their capital costs thus making them more attractive. This has led to the outburst of the distributed generators (DGs) and Smart Grid concepts [3]. The United States of America is among one of the leading countries in the world and as such, they invest lots of money and resources in the renewable energy sources [4]. Figure-1 shows Uzbekistan maps of the solar; (this illustration is provided by the Energy Sector Management Assistance Program (ESMAP))

    Management of Distributed Energy Storage Systems for Provisioning of Power Network Services

    Full text link
    Because of environmentally friendly reasons and advanced technological development, a significant number of renewable energy sources (RESs) have been integrated into existing power networks. The increase in penetration and the uneven allocation of the RESs and load demands can lead to power quality issues and system instability in the power networks. Moreover, high penetration of the RESs can also cause low inertia due to a lack of rotational machines, leading to frequency instability. Consequently, the resilience, stability, and power quality of the power networks become exacerbated. This thesis proposes and develops new strategies for energy storage (ES) systems distributed in power networks for compensating for unbalanced active powers and supply-demand mismatches and improving power quality while taking the constraints of the ES into consideration. The thesis is mainly divided into two parts. In the first part, unbalanced active powers and supply-demand mismatch, caused by uneven allocation and distribution of rooftop PV units and load demands, are compensated by employing the distributed ES systems using novel frameworks based on distributed control systems and deep reinforcement learning approaches. There have been limited studies using distributed battery ES systems to mitigate the unbalanced active powers in three-phase four-wire and grounded power networks. Distributed control strategies are proposed to compensate for the unbalanced conditions. To group households in the same phase into the same cluster, algorithms based on feature states and labelled phase data are applied. Within each cluster, distributed dynamic active power balancing strategies are developed to control phase active powers to be close to the reference average phase power. Thus, phase active powers become balanced. To alleviate the supply-demand mismatch caused by high PV generation, a distributed active power control system is developed. The strategy consists of supply-demand mismatch and battery SoC balancing. Control parameters are designed by considering Hurwitz matrices and Lyapunov theory. The distributed ES systems can minimise the total mismatch of power generation and consumption so that reverse power flowing back to the main is decreased. Thus, voltage rise and voltage fluctuation are reduced. Furthermore, as a model-free approach, new frameworks based on Markov decision processes and Markov games are developed to compensate for unbalanced active powers. The frameworks require only proper design of states, action and reward functions, training, and testing with real data of PV generations and load demands. Dynamic models and control parameter designs are no longer required. The developed frameworks are then solved using the DDPG and MADDPG algorithms. In the second part, the distributed ES systems are employed to improve frequency, inertia, voltage, and active power allocation in both islanded AC and DC microgrids by novel decentralized control strategies. In an islanded DC datacentre microgrid, a novel decentralized control of heterogeneous ES systems is proposed. High- and low frequency components of datacentre loads are shared by ultracapacitors and batteries using virtual capacitive and virtual resistance droop controllers, respectively. A decentralized SoC balancing control is proposed to balance battery SoCs to a common value. The stability model ensures the ES devices operate within predefined limits. In an isolated AC microgrid, decentralized frequency control of distributed battery ES systems is proposed. The strategy includes adaptive frequency droop control based on current battery SoCs, virtual inertia control to improve frequency nadir and frequency restoration control to restore system frequency to its nominal value without being dependent on communication infrastructure. A small-signal model of the proposed strategy is developed for calculating control parameters. The proposed strategies in this thesis are verified using MATLAB/Simulink with Reinforcement Learning and Deep Learning Toolboxes and RTDS Technologies' real-time digital simulator with accurate power networks, switching levels of power electronic converters, and a nonlinear battery model

    Reactive Power Management of a DFIG Wind System in Microgrids Based on Economics of the System

    Get PDF
    Due to significant line resistances in microgrids, active power variations produced by wind turbine can lead to significant fluctuations in voltage magnitudes and as a result economic of the grid. This project proposes a voltage sensitivity analysis-based scheme to achieve voltage regulation at a target bus in such microgrids. The method is local and can be implemented in the absence of widespread communication system or remote measurement. The economic performance of the method is illustrated on the IEEE-13 bus distribution network. Dynamic simulations (in PSCAD/EMTDC) are presented to assess the voltage regulation characteristics

    Hardware simulation of diesel generator and microgrid stability

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis. Also includes: Reference manual for microgrid hardware simulation system / by Jared P. Monnin and Michael M. Zieve. (c2012. (71 p. : ill.). Includes bibliographical references (p. 71)).Includes bibliographical references (p. 27).Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, has the potential to offer a more flexible and customizable power generation system, while significantly improving its effect on the environment. In order to properly deploy and scale microgrids to meet diverse energy needs, there must be more study on their stability. This paper details the process and design of the modeling of a diesel generator. With the constructed diesel generator as a component of the microgrid project, the voltage and power stability of the modeled microgrid can be tested under various load conditions and faulted islanded conditions to help design the future of the electrical grid.by Michael M. Zieve.M.Eng
    corecore