1,068 research outputs found

    dynamic design and management of reconfigurable manufacturing systems

    Get PDF
    Abstract This research proposes an approach to design and to manage Cellular Reconfigurable Manufacturing Systems (CRMSs) from a multi-product and multi-period perspective. The production environment consists of multiple cells of machines equipped with Reconfigurable Machine Tools (RMTs) made of basic and auxiliary custom modules to perform specific tasks. The approach acts into two steps; the former is the machine cell design phase, assigning machines to cells, the latter is the cell loading phase, assigning modules to each machine and cell. The goal is to guarantee the economic sustainability of the manufacturing system by exploring how to best balance the part flow among machines already equipped with the required modules and the effort to install the necessary modules on the machine on which the part is located

    Modelling flexible manufacturing systems through discrete event simulation

    Get PDF
    As customisation and product diversification are becoming standard, industry is looking for strategies to become more adaptable in responding to customer’s needs. Flexible manufacturing systems (FMS) provide a unique capability where there is a need to provide efficiency through production flexibility. Full potential of FMS development is difficult to achieve due to the variability of components within this complex manufacturing system. It has been recognised that there is a requirement for decision support tools to address different aspects of FMS development. Discrete event simulation (DES) is the most common tool used in manufacturing sector for solving complex problems. Through systematic literature review, the need for a conceptual framework for decision support in FMS using DES has been identified. Within this thesis, the conceptual framework (CF) for decision support for FMS using DES has been proposed. The CF is designed based on decision-making areas identified for FMS development in literature and through industry stakeholder feedback: set-up, flexibility and schedule configuration. The CF has been validated through four industrial simulation case studies developed as a part of implementation of a new FMS plant in automotive sector. The research focuses on: (1) a method for primary data collection for simulation validated through a case study of material handling robot behaviour in FMS; (2) an approach for evaluation of optimal production set-up for industrial FMS with DES; (3) a DES based approach for testing FMS flexibility levels; (4) an approach for testing scheduling in FMS with the use of DES. The study has supported the development of systematic approach for decision making in FMS development using DES. The approach provided tools for evidence based decision making in FMS

    A low-power reconfigurable logic array based on double-gate transistors

    Get PDF
    A fine-grained reconfigurable architecture based on double gate technology is proposed and analyzed. The logic function operating on the first gate of a double-gate (DG) transistor is reconfigured by altering the charge on its second gate. Each cell in the array can act as logic or interconnect, or both, contrasting with current field-programmable gate array structures in which logic and interconnect are built and configured separately. Simulation results are presented for a fully depleted SOI DG-MOSFET implementation and contrasted with two other proposals from the literature based on directed self-assembly

    Design of Introspective Circuits for Analysis of Cell-Level Dis-orientation in Self-Assembled Cellular Systems

    Get PDF
    This paper discusses a novel approach to managing complexity in a large self-assembled system, by utilizing the self-assembling components themselves to address the complexity. A particular challenge is discussed – namely the question of how to deal with elements that are assembled in different orientations from each other – and a solution based on the idea ofintrospective circuitry is described. A methodology for using a set of cells to determine a nearby cell’s orientation is given, leading to a slow (O(n)) means of orienting a 2D region of cells. A modified algorithm is then describe to allow parallel analysis of/adaption to dis-oriented cells, thus allowing re-orientation of an entire 2D region of cells with better-than-linear time performance (O(sqrt(n))). The significance of this work is discussed not only in terms of managing arrays of dis-oriented cells but also more importantly as an example of the usefulness of local, distributed self-configuration to create and use introspective circuitry

    Cell Production System Design: A Literature Review

    Get PDF
    Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design. Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously. Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified. Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed

    Modelado y simulación de células de fabricación reconfigurables

    Get PDF
    El presente trabajo fin de grado se centra en el desarrollo de modelos de programación lineal para la agrupación de células y la carga de un sistema de fabricación reconfigurable. En la primera parte del mismo se plantearán y resolverán dos modelos matemáticos sobre un sistema teórico con la ayuda de la herramienta LINGO en su versión 9. El primer modelo dará solución al problema de formación de células, minimizando las máquinas ociosas, y el segundo modelo dará solución al problema de carga de las mismas, con el objetivo de minimizar costes, consumo de mano de obra y consumo de energía, y conseguir cierto equilibrio entre máquinas, células y periodos de planificación. Posteriormente se diseñará y ejecutará una simulación con el software ARENA 7.0, donde se evaluarán diferentes escenarios. El fin de dicha simulación será la de completar y validar los resultados obtenidos del problema matemático. Los datos se recopilan del artículo “Cell design and multi-period machine loading in cellular reconfigurable manufacturing systems with alternative routing” (Eguía et al. 2017)Universidad de Sevilla. Grado en Ingeniería de Organización Industria

    Reconfiguration of field programmable logic in embedded systems

    Get PDF

    A framework to offer high value manufacturing through self-reconfigurable manufacturing systems

    Get PDF
    The High Value Manufacturing (HVM) sector is vital for developed countries due to the creation of innovative products with advanced technology that cannot be reproduced at the same cost and time with traditional technology. The main challenge for HVM is to rapidly increase production volume from one-off products to low production volume. This requires highly flexible manufacturing systems that can produce new products at variable production volumes. Current manufacturing systems, classified as dedicated, flexible and reconfigurable systems, are limited to produce one type of product(s), within a production volume range and have fixed layouts of machines. Thus, there is a need for highly flexible systems that can rapidly adjust their production volume according to the production demand (i.e. main HVM challenge). Therefore, a novel manufacturing framework, called INTelligent REconfiguration for a raPID production change (INTREPID), is presented in this thesis. INTREPID consists of a user interface and communications platform, a job allocation system, a globally distributed network of Reconfigurable Manufacturing Centres (RMCs), consisting of interconnected factories, and Self-Reconfigurable Manufacturing Systems (S-RMSs). The highly flexible S-RMS consists of movable machines and Mobile Manufacturing Robots (MMRs). The novelty of the S-RMS is its capability of forming layouts bespoke to the current production needs. The vision of INTREPID is to offer global HVM services through the network of RMCs. The job allocation system determines the best possible RMCs or factories to perform a job by considering the complexity of the production requirements and the status of the available S-RMSs at each factory. The planning of the production with S-RMS is challenging due to its high flexibility. The main example of this flexibility is the possibility to create layouts bespoke to current production needs. Yet, this flexibility involves the challenges of determining allocations and schedules of tasks to robots and machines, positions to manufacture, and routes to reach those positions. In manufacturing systems with fixed layouts, production plans are determined by solving a sequence of problems. However, for the S-RMS, it is proposed to determine production plans with a single problem that covers the scheduling, machine layout and vehicle routing problems simultaneously. This novel problem is called the Scheduling, positions Assigning and Routing problem (SAR) problem. In order to determine the best possible production plan(s) for the S-RMS, it is necessary to use optimisation methods. Dozens of elements, characteristics and assumptions from the constituent problems might be included in the formulation of the SAR problem. Elements, characteristics and assumptions can be considered as decision variables on whether to include or not the elements and characteristics and under which assumptions in the formulation. There are two types of decision variables. Fundamental variables are natural to the SAR problem (e.g. manufacturing resources, factory design and operation), whilst auxiliary variables arise from the aim to simplify the formulation of the optimisation problem (i.e. time formulated as discrete or continuous). Due to the large number of decision variables, there might be millions of possible ways to formulate the SAR problem (i.e. the SAR problem space). Some of these variants are intractable to be solved with optimisation methods. Hence, before formulating the SAR problem, it is necessary to select a problem(s) that is realistic to industrial scenarios but solvable with optimisation methods. Existing selection methods work with pairwise comparisons of alternatives. However, for a space of millions of SAR problems, pairwise comparisons are intractable. Hence, in this thesis, a novel Decision Making Methodology (DMM) based on the controlled convergence method is presented. The DMM helps down-selecting one or a few SAR problems from millions of possible SAR problems. The DMM is demonstrated with a case study of the SAR problem and the results show a significant reduction of the reviewed SAR problems and the time to select them
    corecore