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Abstract

This thesis presents a set of techniques for evaluating and exploiting the pro-

grammability of a reconfigurable computing fabric in embedded systems. It concen¬
trates specifically on the Field-Programmable Gate Array.

Reconfigurable logic promises a flexible computing fabric well suited to the low
cost, low power, high performance and fast time to market now demanded of today's
computing devices. Today, most reconfigurable systems are constructed using ad hoc

techniques, making little use of previous designs and intellectual property (IP).
This thesis proposes a systematic approach to reconfigurable real-time system de¬

sign. It exploits static and medium frequency reconfiguration by exploiting inter-task

mutually exclusive resource usage. It exploits high frequency reconfiguration through

data-folding specialisation techniques. A procedure for creating paramctcriscd designs
that approach minimal coverage of all possible system requirements is described. A
runtime framework based upon a regularly occurring system-wide pause of execution
is described.

A large case study of the design approach and runtime framework is presented
and compared with the static equivalent. The case study system is a commercial Uni¬
versal Mobile Telecommunications System (UMTS) physical layer processing engine.

Equations describing the logic gate and memory requirements of the commercial ASIC

design are extracted and used to estimate resource requirements of a low-medium fre¬

quency reconfigurable solution. A detailed investigation of very rapid reconfiguration
is carried out on a large circuit block. Good logic and memory resource requirement
reduction is shown to be possible.

A complementary FPGA reconfiguration architecture is presented. It provides the

ability to tradeoff time and space according to the reconfiguration speed requirements
of an application domain. A number of configuration compression schemes are in¬

vestigated. In addition to an excellent compression ratio they are shown to be highly
parallelisable and scalable, unlike previous approaches.
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Glossary
Chip

Finger

Handover

Node B

RAKE

Soft Handover

Softer Handover

A chip is a binary digit at the physical link layer.
The redundancy introduced by Forward Error Correction, spreading etc.

results in one application layer bit being represented by many chips.
A RAKE receiver exploits multiple versions of the same transmit stream

by descrambling and despreading several delay paths. The different paths
are then combined to maximise the received energy. A finger is one

correlator unit allocated to a particular delay path which is to be detected
and demodulated.

Handover or Hard Handover refers to the process of switching all
UMTS physical links from one NodeB to another NodeB.
UMTS cellular basestation.

RAKE is the name of a receiver architecture for spread spectrum

communication systems.

In Soft Handover, the transfer of radio links is performed

gradually ensuring the UE always has at least one active radio link at all
times.

Softer Handover is a special form of soft handover in which
radio links are transferred within the same NodeB, for example, between
two sectors on the same base station.
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Chapter 1

Introduction

1.1 Introduction

According to Semiconductor Industry Association (SIA) projections[144], the num¬

ber of transistors per die and the local clock frequencies for high-performance designs
will continue to grow exponentially over the next decade. By the year 2014, the SIA

predicts that 20 billion transistors will be available per die. As a consequence of such
massive transistor integration and the advent of Micro-Electro-Mechanical Systems
(MEMS), new application spaces are envisaged as well as the growth of existing ones.

For example it is predicted that smart devices woven into our environment will cre¬
ate a world of "ambient intelligence"[13]. An existing application space predicted to

benefit from strong growth is wireless communications and the software defined radio
(SDR) [140], The ideal SDR consists of a small analogue stage with all other pro¬

cessing performed in software, although, it may be more appropriate to think of the
implementation technology as soft-programmable, rather than a microprocessor. The
flexibility enables standards changes to be implemented via a download over the air
interface and the support of multiple standards by a single device.

Reconfigurable computing is a term which has emerged to describe a class of com¬

puting fabrics which may be reprogrammed electronically post-manufacture. As will
be described in Section 1.3 they offer an alternative computing fabric to the system

designer, combining the flexibility of the microprocessor and the spatial circuitry im-

1



Chapter 1. Introduction 2

plementation of the ASIC. The design of reconfigurable computing systems is the fo¬
cus of this thesis, with particular attention given to platform Field-Programmable Gate
Arrays (FPGAs). A large case study from the domain of wireless communications is
used to demonstrate the design techniques proposed.

The introduction and background on reconfigurable computing is presented in Chap¬
ter 2. Here we introduce related areas necessary for the understanding of the thesis.
The specific area of reconfigurable computing of interest is called Just-In-Time com¬

puting (JIT) and is introduced in Section 1.2. Section 1.3 describes the difference
between spatial and temporal computing and introduces the main computational fab¬
rics at a system architect's disposal. Section 1.4 provides a short introductory moti¬
vation for the choice of wireless communications as the major case study in the thesis.

Finally, an overview of each chapter in the thesis is presented in Section 1.5.

1.2 Just In Time Computing

Cost

Processor

FPGA

Flexibility

Power

Figure 1.1: Just In Time (JIT) Tradeoff Space

Just In Time Computing refers to the design tradeoff space of embedded systems as

described by Rabaey in [131], As illustrated in Figure 1.1, cost, power and flexibility
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are the three axes in the tradeoff space. Notably, performance is missing from the de¬

sign space. This is a key difference between Just-In-Time computing and traditional,
transformational general purpose computing. Rather than attempting to maximise per¬

formance, the functionality is known and simply becomes a design constraint. Embed¬
ded systems enjoy a well specified set of tasks at design time. This contrasts sharply
with general purpose computing where the set of tasks to be performed is not known
at design time. The term "Just-In-Time" captures an embedded system's requirement
to simply match the system's performance criteria, rather than attempt to perform it as
fast as possible.

The tradeoff between the cost, power and flexibility is obviously dependent on
the system being designed. For example, power consumption is critical for battery

powered devices, but is often only a concern from a heat dissipation perspective in
mains powered devices such as television set-top boxes.

The cost tradeoff axis is the complete cost of the solution. For example, an ASIC's
cost must include all Non-Recurring Engineering (NRE) charges, such as the mask set
used in fabrication, functional verification and physical verification. The micropro¬
cessor and FPGA have no NRE costs when bought as a complete, packaged device,
however they incur some NRE costs if they are incorporated into an ASIC System On

Chip. For example, masks sets must be manufactured to describe the ASIC logic and
the intellectual property of the FPGA fabric or processor on the same chip. Some of
the verification cost may be reduced, since the intellectual property will be used across

many designs, and hence may be partially amortised.

Flexibility is the third tradeoff axis in Figure 1.1. It refers to the level of pro-
grammability of the system post-manufacture. With time to market critical for many

systems, the ability to apply bug fixes and incorporate changes to evolving standards
late in the design process is desirable. The FPGA and the microprocessor are well
suited to such requirements. An ASIC designed and optimised to a specific task has

very poor flexibility since its functionality is fixed at manufacture. A two stage imple¬
mentation strategy is adopted for some standards driven products in which an initial
solution is rapidly produced using flexible fabrics to establish a market position, and
then once the standard has stabilised, cost is reduced by creating an ASIC. Another ex-
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ample is a system built for a family of products which may require a level of flexibility
for integration purposes. Flexibility is discussed further in Section 2.4.

1.3 Computing Fabrics

1.3.1 Introduction

Control
Intensive

ASIC

FPL

Microprocessor

Computationally
Intensive

Figure 1.2: Computational Space Occupied by Reconfigurable Logic

There are three broad types of computing fabric - the Application Specific Inte¬

grated Circuit (ASIC), Field-Programmable Logic (FPL) and Microprocessor. Note
that enhanced forms and hybrids of these basic fabrics also exist, like the digital sig¬
nal processor (DSP). These are discussed in later sections. Figure 1.2 illustrates the
relative suitability of the basic fabrics to control and compute intensive algorithms (ar¬
rows indicate increasing suitability). The ASIC is built using libraries of logic cells
which define primitives such as logic gates, memories and adders. By connecting the
cells circuitry can be described. When an ASIC design is complete, it is fabricated to

perform the task exactly as explicitly defined by the cells and wires interconnecting
them. FPL, for example the FPGA, is programmed electronically post manufacture by

configuring specially designed logic blocks and routing resources. It is described in
more detail in Section 2.2.

The Microprocessor and FPGA may be bought as standard devices (pre-manufactured)
and hence are programmed to perform their task post-manufacture. This means they
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may be used across many different systems, amortising much of the cost and risk as¬

sociated with an ASIC. The level of abstraction for the processor and the FPGA is

higher than that of the ASIC. Neither the FPGA nor ASIC fabric offers the same de¬

gree of control as the microprocessor, although the FPGA offers substantially more

than the ASIC. As illustrated in Figure 1.2, to be better at control intensive tasks, a
fabric trades off performance. This is due to the penalty paid for offering a high level
of post-manufacture programmability.

In this section we will define spatial and temporal computation and then base a

discussion of the three fabrics around Figure 1.2.

1.3.2 Spatial versus Temporal

a b
I I

c d
I I

e f
I I

g h
I !

+ + + +

SPATIAL

+ +

+

answer

instruction 1: temp = a+b
instruction 2: temp = temp+c

_ instruction 3: temp = temp+d
TEMPORAL instruction 4: temp = temp+e

instruction 5: temp = temp+f
instruction 6: temp = temp+g
instruction 7: answer = temp+h

Figure 1.3: Temporal versus Spatial Programming Space

The von Neumann computing paradigm led to the microprocessor architecture. It
consists of a fixed datapath and a dynamic set of instructions (program) which config¬
ure the datapath to perform a task by way of a number of steps. It provided a common

architecture that could be used to perform many different tasks.
Rather than time-multiplexing a fixed data-path, it is possible to implement algo¬

rithms in space by constructing circuitry to perform them directly. This may be viewed
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as the more natural candidate for implementation, since a microprocessor is effectively

emulating hardware. Figure 1.3 illustrates the difference between temporal program¬

ming, as is done with a microprocessor and spatial programming, as is done with an

ASIC or an FPGA. The temporal example performs the computation by time multi¬

plexing a single adder. The fully spatial implementation uses 7 adders to perform the
same computation.

It is possible to use a combination of spatial and temporal styles to tradeoff cost

against time. For the sum example in Figure 1.3, the number of adders used is the cost

and the time is the number of clock cycles required to perform the computation. An

example combination of spatial and temporal techniques would be to use only 3 adders
with some registers and control logic to perform the addition in a number of cycles. It
should be noted that the brief overview of temporal versus spatial design given here is

highly simplified. The ability of the FPGA or an ASIC to use a combination of both
design styles means they can implement a microprocessor. However, neither would
achieve as good a point in the JIT tradeoff space as a full custom implementation of
the microprocessor. In this work we use the term ASIC and FPGA to refer to their
classical use as fabrics for the construction of bespoke circuitry.

1.3.3 Computing Fabric Discussion

The ASIC, FPL and microprocessor bring different qualities to the JIT computing
tradeoff space. The ASIC may be designed to perform a specific task or set of tasks,
hence its silicon area efficiency, speed and power consumption are excellent. It ex¬
hibits very little flexibility post-manufacture so if a chip's application space is not well
defined at design time, a complete ASIC solution is not wise. FPL is programmed

post-manufacture and hence offers flexibility, but this is paid for by being slower and
less energy efficient than the ASIC. The FPL fabric design space is varied and the
exact tradeoff is dependent on the match between the fabric and the application. Typ¬

ically, the granularity of the computing elements making up an FPL fabric determines
its speed/flexibility/energy tradeoff. This is discussed in Section 2.2.2. The micro¬

processor offers greatest flexibility, which has in part led to its success. In embedded

systems, the high flexibility of the microprocessor is well suited to control flow tasks
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such as a user interface.

Flexibility is also leading to the microprocessor's downfall as the computational
fabric in the new era of computing dominated by just-in-time systems. Increasing clock
rates and the exploitation of instruction level parallelism have provided diminishing
returns on processor performance[90]. The once impressive scaling of the micropro¬
cessor's performance with Moore's law is no longer the case. Today, less than 10% of
a modern microprocessor's die actually implements the datapath, with the majority of
area taken by the cache to overcome the memory wa//[174], and circuitry to inject in¬
struction level parallelism. The modern high performance microprocessor's efficiency
as measured by the percentage of transistors actively involved with performing compu¬

tation is extremely low. It is well recognised in the literature that FPL provides a more

energy and silicon efficient solution over the microprocessor for computationally in¬
tensive tasks such as DSP. For example, in [153] the authors observe energy savings in
commercial devices of 89% when using FPL instead of an embedded microprocessor.

Changes have been made to the microprocessor's architecture to make it more suit¬
able to data intensive processing, producing the digital signal processor. These are best
characterised by the Harvard architecture, which effectively separates program bus and
data bus. Parallelism is enhanced by overlapping data fetch, data operations and ad¬
dress calculations. Instruction set enhancements help minimise loop overheads and

simplify the implementation of filters. A thorough summary of DSP architectures can

be found in [84], Despite the introduction of VLIW and multiple function units, the
DSP is still fundamentally sequential, being based upon a serial instruction stream. In
a move away from the serial instruction stream, the reconfigurable DSP has emerged,
which we describe in background section 2.3.3.

1.4 Wireless Communications

The rise of untethered computing devices is a major contributor to massive growth in
wireless communications. It has been observed in [131] that the number of worldwide
wireless subscribers each year grows as a Fibonacci series, and looks set to continue

doing so in the near term. In [20] the authors predict that as the number of wireless
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devices operated directly by humans saturates (e.g. cellphones), wirelessly connected
machines will continue the growth trend.

Partly as a consequence of this growth in wireless communications, the efficient
use of the electromagnetic spectrum enjoys very active research. The sophistication
of the algorithms being developed to harness efficiently a given bandwidth is increas¬

ing rapidly. In [131] it is pointed out that the computational demands of these algo¬
rithms are growing much more quickly than the processor performance as predicted by
Moore's law. Therefore, the software defined radio is, at least in the short term, likely
to be a reality only in terms of the flexibility to use multiple air-interfaces. High layers
in the communication protocol stack may be performed by software on a micropro¬
cessor, however lower level layers such as the MAC and Physical layer are too com¬

putationally intensive to be satisfied by a microprocessor. Instead, more specialised

computational fabrics are required to meet the JIT requirements. These reasons, com¬

bined with the evolving nature of new communication standards, suggest that wireless
communications is a good application area for reconfigurable computing. Therefore,
the 3rd generation cellular standard called the Universal Telecommunications System

(UMTS) is chosen for the case study in the thesis. Specifically, the physical layer pro¬

cessing engine of the base station is studied. Appendix A provides some fundamental
wireless communications background and references for the interested reader.

1.5 Thesis Overview

This thesis proposes an approach to the design of complex real-time embedded systems

on programmable platforms. It offers a realistic approach to harnessing reconfiguration

by acknowledging the increased design complexity of runtime reconfiguration. The
word "realistic" is used here to differentiate the work from previous work on harness¬

ing reconfiguration. The increased silicon area due to the configuration architecture,
the disruption to the traditional design flow and the lack of tool support are consid¬
ered in addition to the energy and resource savings achievable. It proposes a top-down

approach to design, enabling a global optimisation effort rather than the local optimi¬
sation effort of the many previously proposed bottom-up approaches.
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We use the physical layer processing engine of the Universal Mobile Telecommu¬
nication System (UMTS) as a case study throughout the thesis. It is a fully specified
design for cellular basestations supporting up to 64 users.

In Chapter 2 we provide the reader with the required background for the under¬

standing of the thesis including a detailed description of the Field Programmable Gate

Array, fundamentals of hardware/software co-design, runtime reconfiguration and plat¬
form based design.

Chapter 3 explores the configuration architecture of an FPGA and proposes a de¬

sign tradeoff space. Several techniques are investigated for speeding up reconfiguration
and the corresponding required changes to the Xilinx Virtex configuration architecture
are investigated.

Chapter 4 describes the proposed design methodology for targeting a reconfig-
urable fabric. The chapter begins by discussing the difference between transforma¬
tional and reactive computing systems, and develops this difference to justify the pro¬

posed design framework for reconfigurable reactive systems. We then discuss the

challenges of runtime reconfiguration and the opportunities of heterogeneous platform
based design. The checkpoint based design framework is then proposed, together with
its targeting approach.

In Chapter 5, the design of a commercial UMTS channel processing engine is
used to apply the methodology in Chapter 4. This is done for all subsystems at a

low-medium frequency of reconfiguration and for a single block of circuitry for high

frequency reconfiguration.



Chapter 2

Background

2.1 Introduction

This chapter presents essential background material for the understanding of the the¬
sis. Field-Programmable Logic (FPL) is described in Section 2.2 with reconfigurable
computing introduced in Section 2.3. Section 2.4 provides an overview of the emerg¬

ing paradigm of platform based design. Previous approaches to harnessing a runtime

reconfigurable Field Programmable Gate Array (FPGA) are outlined in Section 2.5.
In Section 2.6 we summarise work in the literature on harnessing run-time reconfigu¬
ration. Section 2.7 summarises previous techniques developed for speeding up recon¬

figuration. Finally, Section 2.8 provides a summary of the chapter. Some fundamental

principles of cellular wireless communications are provided in Appendix A.

2.2 FPL

2.2.1 Overview

Field-Programmable Logic, also known as reconfigurable logic, refers to a class of ar¬
chitectures in which the configuration bits are directly involved with controlling hard¬
ware and links; otherwise, the architecture is referred to as programmable. Most FPL
architectures are a mixture of programmable and reconfigurable.

An FPL fabric performs computation spatially. Most commonly, it is composed

10
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of a two-dimensional grid of computational elements which are connected together

using some form of reconfigurable interconnect mesh. We note that other architec¬
tural compositions have been proposed, such as the linear array as in RaPiD[61] and

PipeRench[l 38], These architectures are aimed at highly regular pipelined computation-
intensive tasks, and are therefore limited in application. In this section we will discuss
the term granularity, describe in detail one particular type of FPL - the Field Pro¬

grammable Gate Array (FPGA) and outline some previous work on hardware-software

co-design.

2.2.2 Granularity

The granularity of an FPL fabric refers to the width of the path between computation
elements and the computation performed by an individual element. In [82] the authors
look at mapping algorithms to a coarse grain fabric arranged as a two dimensional grid
of N-bit ALUs. Another example is the FPGA such as the Xilinx Virtex [177] which
uses lookup tables of 4-bit input, 1-bit output to perform computation at a much finer

granularity. In general, coarse grain FPL is better suited to word-oriented computation
such as multiplication and fine-grain FPL is better suited to bit oriented computation
such as the permutation operations typical of encryption algorithms.

2.2.3 FPGA

The Field Programmable Gate Array (FPGA) is a particular type of FPL architecture

dating back to around 1989[71 ]. It consists of a 2 dimensional grid of look up tables
and flip/flops connected by a hierarchical interconnect fabric. Through programming
the contents of the LUTs and setting multiplexers within the interconnect to connect the
LUTs together as required, circuitry is created. Most common is the 4-input, 1-output
LUT. It consists of a 16-bit memory and is therefore capable of implementing any

function of 4 inputs. Figure 2.1 is a diagram illustrating an FPGA's architecture. It is

programmed (post manufacture) by loading a configuration bitstream into the device's

highly distributed configuration RAM.

Figure 2.2 shows an example of a commercial architecture's logic block. It is the
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Figure 2.1: Generalised FPGA Architecture

Xilinx Virtex Configurable Logic Block (CLB), containing two identical slices, each
slice consisting of two LUT and flip/flop pairs. Rather than the simple single LUT and

flip/flop as drawn in the diagram of Figure 2.1, the slices also contain circuitry to help
with common arithmetic - for example the provision of a fast carry chain for adders.

2.3 Runtime Reconfigurable FPL

2.3.1 Introduction

Runtime reconfiguration of FPL refers to changing the content of the configuration

memory during computation. This enables the algorithm designer to allocate compu¬

tational resources to match algorithm and data. Such architectures typically couple the
FPL with a processor or sequencer to form a hybrid. The sequencer or processor's role
is to manage configurations and perform control intensive tasks.
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Figure 2.2: Xilinx Virtex CLB

Here we offer a brief overview of the runtime reconfigurable FPGA in section 2.3.2
and the runtime reconfigurable DSP in section 2.3.3. The concept of specialisation is
introduced in section 2.3.4 and hardware-software co-design in the context of runtime

reconfigurable FPL is described in section 2.3.5.

2.3.2 Runtime Reconfigurable FPGA

Most hybrid processor-FPGA based systems reported in the literature are not runtime

reconfigurable, but static. In these systems, the computationally intensive kernels
of the application are implemented on the FPGA and the rest on a microprocessor.
The FPGA's configuration is downloaded at the start of system execution and does
not change during execution. PRISM[11], Splash[10], and the Programmable Active

Memory (PAM) work at DEC-Paris labs[ 17] are frequently referenced examples of this
system model.

Examples of runtime reconfigurable FPGA based systems include a reconfigurable
compiler and FPGA architecture called WASMII[106], a self reconfiguration processor[64]
and work on incremental run-time reconfiguration by Lysaght and Dunlop[109j.
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2.3.3 DSP and Runtime Reconfigurable DSP

DSP processors are instruction-set programmable architectures specialised to digital

signal processing problems[155]. This makes them well suited for repetitive numerical

processing tasks such as arithmetic loop kernels, and less suitable for general purpose

computing tasks. They benefit from architectural features such as single cycle multiply
and accumulate (MAC) units, zero-overhead loop circuitry, address generation units
and a throughput oriented memory architecture. An example of a DSP processor is the
Texas Instruments TI6416 DSP[158].

The runtime reconfigurable DSP offers an alternative architecture to the traditional
DSP. Reconfigurable captures their spatial processing ability and runtime captures its
operation. A runtime reconfigurable DSP uses coarse grain processing elements and
interconnect path-widths greater than one bit. This is because DSP benefits from mod¬
ular arithmetic operators and it brings large area savings over the single bit CLB and
interconnect offered by the FPGA. However, it should be noted that coarse-grained
architectures are poor at bit-level manipulations found, for example, in many commu¬

nications algorithms.
An example of a runtime reconfigurable DSP is MATRIX[118], based upon a

MIMD grid of small 8 bit processors with near-neighbour and length-four connec¬

tivity. The REMARC[119] architecture was based upon a grid of 16-bit processors
with nearest neighbour and full-length bus based communication, globally controlled
with a SIMD-like instruction sequencer.

2.3.4 Specialisation

Specialisation refers to the ability of reconfigurable FPL to be tailored to more closely
match its requirements. This is in contrast to an ASIC design which is fixed at man¬

ufacture and hence is generalised, satisfying all possible requirements including the
"worst-case". Figure 2.3 illustrates this point by showing how a reconfigurable design

may exploit better specified design time knowledge such as "initialisation parameters"
together with "run-time parameters" to better match the exact requirements. This is
often referred to as data-folding, or constant-propagation. The closer an algorithm's
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Figure 2.3: Algorithm Implemented on a Reconfigurable FPL Fabric

implementation is to its actual use, the more data is available for specialisation and the
less general purpose it becomes. In contrast, the ASIC must implement a "one-size fits
all" design. FPL enjoys a continuum of specialisation from static through to very fre¬
quent dynamic reconfiguration. The frequency of reconfiguration is a subject of much
interest in the literature and is discussed in this thesis. There are numerous examples
of specialisation across a wide variety of application domains in the literature, from
folding the key into an encryption algorithm[129], to creating a constant coefficient
multiplier for a FIR filter[42].

2.3.5 Hardware Software Co-design

2.3.5.1 Overview

A large body of literature exists on the problem of hardware-software co-design. "Hard¬
ware" in this work primarily refers to the ASIC and "software" refers to computation
performed by the microprocessor. FPL, particularly reconfigurable FPL, blurs the tra¬

ditional boundary between hardware and software. The most common approach to

harnessing FPL in the reconfigurable computing literature has been software centric,
i.e. the FPL is treated as a slave to the microprocessor as discussed in Section 2.3.5.2.
The other more recent approach is to elevate the FPL's importance from slave to master

with logic centric design as discussed in Section 2.3.5.3.
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2.3.5.2 Software Centric

There are many projects in the literature which attempt to take a high-level description
of a design (e.g. written in C) and automatically map it to a microprocessor and FPL.
The architectural solutions differ primarily in the coupling between the microprocessor
and the FPL. The coupling varies between including FPL as a reconfigurable function
unit on the system bus, to placing it on the peripheral bus as a co-processor.

For example, the Proteus Architecture[48] is an ARM based implementation with a

reconfigurable ALU consisting of multiple reconfigurable function units. Applications
load custom instructions at run-time to speedup execution. The commercial Triscend
A7 device [161] has an ARM processor loosely coupled to a large reconfigurable fab¬
ric to provide co-processor functionality. This approach requires a more traditional
hardware-software co-design methodology.

The software centric approach usually involves profiling the application and ap¬

plying the 90:10 rule of thumb, which states that 90% of software execution time is

spent in 10% of the code. The kernels representing 10% of execution time are then
considered for implementation on the FPL.

2.3.5.3 Logic Centric

The dominance of the software centric approach to reconfigurable system design can

in part be explained by the legacy of the general purpose microprocessor. However, it
often fails to harness the massive parallelism possible with FPL since it centres around
the serial instruction stream. Instead, it would seem more sensible to capture the design
in a more logic-centric way, thus preserving its parallelism.

The logic-centric approach to system design elevates the FPL to be the primary ve¬

hicle of computation. In [27] Brebner describes a class of systems in which FPL is best
suited to performing the computation with the microprocessor relegated to processing

only exceptional cases. The illustrative example used is a gigabit IP router design in
which line rate processing is performed by the FPL and only exceptional cases are

handled by the microprocessor.
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2.3.5.4 Summary

It is likely that reconfigurable embedded systems will demand elements of both soft¬
ware and logic centric design approaches. It is important for the designer to appreciate
the strengths of each fabric so a good mapping within the JIT trade-off space can be
made.

2.4 Platform based design

2.4.1 Introduction

The much heralded System on a Chip (SOC) design paradigm as originally conceived
has largely failed due to problems with the integration of IP blocks[9] [16]. Platform
based design may provide an alternative route to SOC. Here we outline what a platform
is and review some of the opportunities and challenges it brings to the embedded sys¬

tem designer. We structure the review using the headings: Flexibility, Heterogeneity,

Scalability, Productivity and Abstraction.

2.4.2 What is a platform?

We define the platform here as a standardised programmable architecture and its asso¬

ciated abstraction model. The term standardised describes the ability to target many

applications, perhaps from a particular domain, at the architecture. The term pro¬

grammable emphasises that a level of flexibility exists such that function blocks and
the connections between them can be configured post-manufacture. Finally, the ab¬
straction model provides a programmer's view of the architecture without unnecessary
detail, but with enough visibility to allow fine-tuning. For example, the use of Matlab
and Simulink in the Xilinx System Generator for DSP presents an alternative pro¬

gramming model for FPGAs from Hardware Description Languages (HDLs) such as

Verilog. The platform we are interested in is the complete system platform - not simply
the architectural design, but a full device manufactured as a standard part, or family of

parts.



Chapter 2. Background 18

To further describe what is meant by the platform based approach to SOC design,
it is useful to look at the environment in which it has been born. Two powerful forces
are shaping the semiconductor industry today - the shrinking size of the time to market
window and spiralling non-recurring engineering (NRE) costs. The gap between the
level of chip integration possible and the productivity of a designer continues to grow.

This results in it becoming increasingly difficult to meet the spike characteristic of
market demand. For example in [151], Smith presents evidence that a 1 month lead in
time to market can result in a 70% difference in revenue over an ASIC's lifetime. The

second problem relates to the cost of manufacturing an ASIC. At each generation of
Moore's law, the cost of creating the masks used in the manufacture of a chip grows

exponentially. To justify this cost, the chip must be manufactured in large volumes.
The way in which platform based design meets this challenge is by removing a lot
of choice from the designer. Instead of starting with a blank piece of silicon, the

designer is presented with a pre-designed flexible computing fabric to which he maps

his system. The fabric is used across several different systems which both increases

design reuse and amortises the NRE cost.

Many different platforms exist. Some are highly domain specific such as the Texas
Instruments C64x DSP with its turbo decoder co-processor. Others, such as the Xil-
inx Virtex II FPGA family[180] are targeted more generally at networking and DSP

applications. Figure 2.4 illustrates the high level of integration: microprocessors, mul¬

tipliers, block RAM (BRAM) and giga-bit I/O transceivers within a 2-dimensional grid
of LUTs and a rich interconnect fabric.

2.4.3 Flexibility

As discussed in Section 1.1, flexibility is now viewed as a design attribute in computer

architecture. It forms one of the three axes in the JIT computing tradeoff space. If a

platform provides too much flexibility then it is cost and energy inefficient. If too little
flexibility is provided then it is not possible to map the required system functionality.

To explore what the implications of flexibility are, it is useful to view it from two

perspectives - design-time and run-time. It is of course true that design-time flexibility
must incorporate the required level of runtime flexibility, but examining the two sep-
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Figure 2.4: Xilinx Virtex II Pro Block Diagram

arately will help to shape this amorphous attribute. (It should be noted that a higher
level of flexibility exists - portability between platforms. This is discussed under the

heading of abstraction in Section 2.4.7.)
At design time, the prime focus is programming the platform to implement a sys¬

tem. The level of flexibility required is just enough to map the system to the platform,

although the availability of extra flexibility eases the mapping as discussed by DeHon
in [55]. At runtime, a level of flexibility must exist to satisfy the degree to which
the system's functionality is runtime dependent. For example, the requirement to im¬

plement arbitrary algorithms demands high flexibility. A (design-time) well-specified
data-independent system has a low demand for runtime flexibility.

2.4.4 Heterogeneity

Given some form of application domain, the platform architect's challenge is to create

a solution which satisfies the domain's performance requirement, trading off cost, flex¬

ibility and energy. This leads to a heterogeneous solution. At the architect's disposal
are three broad sets of computational fabric - processor, FPGA and ASIC. Within each
of these sets are many further choices. One which is particularly wide is the choice
of ASIC elements to include, beyond the mixture of computational fabrics, memory,
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interconnect and I/O demand further decisions.

The challenges faced by the system designer targeting a platform are different from
those of the SoC designer. The design freedom offered by the SOC created the possi¬

bility of a near optimal solution. In terms of value, this often led to a disproportionate
amount of effort spent on architecture design over system design. With platform based

design, the designer is restricted to the task of mapping rather than creation. One in¬
teresting concept this brings to the fore is that of algorithm fluidity, i.e. functionality

may be moved between computational fabrics. In [88] the authors coin the term "soft¬
ware decelerators" to refer to functionality implemented in an FPGA logic fabric being
shifted to a microprocessor. For example, given a mapping problem where FPGA logic
resources are in high demand and microprocessor resources are under utilised then ex¬

ploitation of such fluidity is useful.

2.4.5 Scalability

Scalability represents a highly prized but elusive goal of computing. The ability to

scale a system through the addition of extra silicon resources with little additional de¬

sign effort is very valuable. Its realisation is likely to run through the centre of a system
from design capture right through to the implementation fabric. To be truly scalable
(across fabrication process generations) the system description must be implementa¬
tion independent.

A less demanding form of scalability is to confine its scope to a single process

generation, for example, a system which ships in products of different configurations.
If the platform targeted is offered as a family of device sizes, then it could be exploited
with a scalable design, rather than a single large design which is capable of all product
configurations.

2.4.6 Productivity

Productivity is increased right across the design flow when targeting architectural plat¬
forms. The productivity gain of reduced designer freedom has already been mentioned.
Platform based design increases productivity by allowing the designer to concentrate
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on system design rather than the details of the implementation fabric. The use of a
common platform brings with it the opportunity for increased use of IP blocks. The
central promise of the SOC design failed to reach potential - improved productivity

through use of IP blocks. The problem was that design teams had to spend a great deal
of time integrating IP blocks together. With a common platform architecture, the po¬

tential for straightforward integration exists, bringing with it the true potential of "plug
and play" IP based design.

Perhaps the greatest productivity gain is reduced verification and test. With a stan¬

dard platform architecture, the significant cost of physical test and verification is inde¬

pendent of the design and can therefore be amortised over all designs.

2.4.7 Abstraction

As platform based design envelops more systems, domain specific platforms will be
created to better match the requirements of a particular group of systems. Apart
from the obvious benefits of increased competition, the availability of many platforms

presents the system designer with choice. Traditional design methodologies assume

knowledge of the target platform, so the decision must be made early in the design

process. Such a methodology ties the system to a particular implementation target,

bringing with it several undesirable consequences, two of which are a) the choice of

target platform may have been incorrect, leading to a solution with a sub-optimal point
in the cost-energy-flexibility tradeoff space and b) platform architectures will evolve
to exploit increased chip-level integration, making IP blocks tied to a particular archi¬
tecture obsolete.

These problems demand design abstraction from the implementation platform.
This is an active subject of research in the literature incorporating the large subject
area of hardware-software co-design. Platform based design brings its own challenges
which are only beginning to be investigated. The level of design abstraction required
is likely to be higher than that of hardware-software design due to the heterogeneity
of platforms. In [26][31] the authors propose and investigate the idea of Circlets: a

circuitry description independent of its implementation, allowing rapid mapping to a

concrete fabric. The level of abstraction is low, around the level of the 4-input LUT,
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and is therefore limited in scope to homogeneous FPGA fabrics. It is possible to raise
the level of abstraction, enabling the use of features such as hardwired multipliers,
however the original aim of fast real-time mapping from the description to implemen¬
tation may be lost. For example, in [74] the authors envisage the requirement for a

system's design to remain platform independent during its entire life-cycle. Java byte
code provides the processor abstraction and an RTL based byte-code[75] provides the

circuitry abstraction. An interpreter at the client maps the RTL description onto the
concrete FPGA fabric. The authors do not consider the (substantial) computation re¬

quired to perform the mapping operation, although they do point out that it would be
less than performing the full synthesis from a high-level VHDL description.

Others[79] propose the use of high-level software languages such as System C[123].
The design tools perform the task of mapping the system to an implementation plat¬
form. However, it is arguably counter-productive to describe algorithms serially in C
and then expect the tools to (re)insert the required level of parallelism.

2.5 Approaches to harnessing a runtime reconfigurabie

FPGA

2.5.1 Introduction

The ability to reconfigure an FPGA at runtime has stimulated a substantial amount of
research into harnessing this feature. In this section we provide a short introduction to

methods reported in the literature for harnessing run-time reconfiguration. It provides
the background for a major contribution of this thesis in Chapter 4,where we propose

a new method for harnessing run-time reconfiguration in highly-concurrent real-time

systems.

Section 2.5.2 outlines the principle of using an operating system layer of abstrac¬
tion to enable multiple, perhaps independent, tasks to share a run-time reconfigurabie
FPGA. Section 2.5.3 describes the less flexible idea of temporally pipelining execu¬

tion of a single system. Finally, Section 2.5.4 provides an overview of work reported
in the literature on the simplification of circuitry at run-time through data-folding. All
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these methods of exploiting run-time reconfiguration are complementary to one an¬

other. Their employment is highly system dependent, and this is something we discuss
when motivating the framework proposed in Chapter 4.

2.5.2 Multitasking Operating System

Runtime reconfiguration is viewed by many as a technique to elevate the FPGA fab¬
ric to a first class computing resource. Work on the "virtualisation" of hardware hy¬

pothesises that it can be treated like a microprocessor - a time-multiplexed resource,

managed by an operating system. The operating system typically runs on a micro¬

processor, hence maintaining its traditionally central role in computation. The main

purpose of such an operating system is to provide an environment where tasks can

execute concurrently with support for inter-task communication. In addition, the oper¬

ating system is responsible for managing the reconfigurable resources in a consistent,
efficient and fair way. In [121], Nollet et al. describe an operating system called
OS4RS for reconfigurable resource management. The targeting methodology provides
an executable for each computing fabric it may be run on (delaying hardware/software

partitioning to runtime) and the operating system dynamically determines which fabric
is to be assigned to a task. Since task pre-emption is supported, for example to allow
the reassignment of resources, the operating system must instantiate/delete a task, sus¬

pend/resume a task, control inter-task communication and handle computing resource

exceptions.
Task preemption can be costly, particularly in the case where the entire state of an

FPGA circuit must be saved. Walder et al. avoid this cost by restricting their operating

system model to non-preemptive reconfiguration[167]. This restriction means the tasks
are assumed to have no precedence constraints and no real-time constraints to satisfy.
In common with the system model ofNollet et al., asynchronous task arrival times and

computation times are a-priori unknown, making them both general purpose operating

systems. Task switching in a multitasking operating system is discussed by Simmler
et al.[145]. They emphasise the importance of critical sections, i.e. time periods when
a task must not be preempted. Section 2.6 discusses the major challenges of resource
fragmentation management and task interface satisfaction, facing the use of runtime
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reconfigurable FPGAs.

2.5.3 Temporal Pipelining

2.5.3.1 Introduction

Traditional circuit design involves making a tradeoff between time and space at design
time. Runtime reconfiguration allows the tradeoff to be extended to runtime. Work in
the literature often claims that by time multiplexing an FPGA at runtime, systems can

be implemented using fewer resources[52J[65][86]. It is possible to extract the high¬
est capacity from an FPGA by fully pipelining every operation in the spatial domain.
However, the throughput provided by a heavily pipelined implementation is not always

required, for example when bottlenecks elsewhere in the system place a limit on the

supply of new data. Temporal pipelining is a mechanism which uses available capacity
to support more functionality at the expense of throughput.

2.5.3.2 Time Multiplexing

Time multiplexed FPGAs promise to improve logic density by time sharing logic [19]

[159] [40][52] [152][85], These devices allow the reuse of logic blocks and wire seg¬

ments by having multiple configuration bits controlling them. A change of configura¬
tion at runtime can take of the order of a single clock cycle.

A technology mapped netlist contains some number of virtual LUTS which is

larger than the number of real LUTs. The netlist is partitioned into sub-circuits, such
that the logic in different stages temporally shares the same physical resources. Each

stage is referred to as a micro-cycle and one run through all stages is called a user cycle.
The outputs produced by a user cycle should be identical to a non time-multiplexed im¬

plementation. To store intermediate flip/flop values between micro-cycles, time mul¬

tiplexed FPGA architectures often include some form of micro-register, for example

[ 160][53]. This is critically important. Although the combinatorial logic can be mul¬

tiplexed between functions, state cannot. Flip/flop state must be stored for subsequent

stages to access the result.
The task of the scheduler is to partition the netlist into micro-cycles ensuring virtual
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LUTs are evaluated in the correct order, and no stage has more virtual LUTs than there
are real LUTs. A number of algorithms have been proposed for performing this task.

Levelised scheduling[19] orders the LUTs by the number of logic stages from the

inputs. A fully levelised arrangement means the number of micro-cycles is equal to
the length of the critical path in the netlist. The As Soon as Possible (ASAP) algo¬
rithm schedules each LUT as soon as its inputs are ready. As late as possible (ALAP)
schedules each LUT in the micro cycle before its output signal is required. In [159],

Trimberger notes that although ASAP and ALAP scheduling produce the correct re¬

sults, they do not make efficient use of the time-multiplexed resources. Importantly,
whilst the critical path defines the number of micro-cycles required, most functions are

performed using many fewer micro-cycles.
The ideal scheduler would minimise the number of real LUTs required without in¬

creasing the number of micro-cycles. The product of such an algorithm would be a near

uniform distribution of virtual LUTs across micro-cycles. Many different algorithms
have been proposed to tackle this problem, including list-scheduling[159], network
flow based multi-way partitioning[107] and enhanced force directed scheduling[39].
Schedule compression is an important part of targeting a time multiplexed FPGA[159].
When the number of logic levels in the critical path is greater than the number ofmicro-

cycles in which it is to be implemented, the scheduler must compress the critical path.
This involves merging multiple consecutive stages on the critical path into one stage.

In [108] Liu and Wong describe an optimal algorithm for schedule compression.

2.5.3.3 Temporally Systolic Pipelines

Many applications involve applying a number of computational stages to a stream of
data. One example is the Moving Picture Experts Group (MPEG) standard for video

compression and decompression. The standard encoding sequence consists of mo¬
tion estimation, motion compensation, discrete cosine transform (DCT), quantisation,
inverse quantisation, inverse discrete cosine transform and inverse motion compen¬

sation. A conventional FPGA implementation would lay the pipeline out spatially,

streaming data through the pipeline. That would be the design of choice if the most

heavily pipelined throughput was required. If less throughput is required, the spa-
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tially pipelined implementation would require the same number of resources but under-
utilise them. A temporally pipelined solution could stack the pipeline stages in time.
In such a scheme, the lower throughput requirement is met using fewer resources! 139].

2.5.3.4 Combined Temporal Pipelining and Resource Sharing

The time-multiplexing techniques listed in Section 2.5.3.2 are based upon a tech¬

nology mapped netlist. Working on the design at such a low-level of abstraction
misses the opportunity to exploit certain design freedoms, such as, the tradeoff be¬
tween the number of reconfigurations and the resource sharing of higher level func¬
tion units[37] [162] [124]. At the architectural synthesis stage, resource sharing within

micro-cycles and the cost of communication between stages should be considered in
addition to the traditional space/time tradeoffs.

Cardoso observed[37] that the majority of approaches which use a high-level de¬

scription as their input, perform partitioning and high-level synthesis using two sep¬

arate algorithms, one after the other, for example [162] [124]. Performing synthesis
on partitions chosen without formal consideration of resource sharing potential may
lose optimum opportunities for sharing. In [37] Cardoso integrates partitioning and
resource sharing into one algorithm. It is demonstrated through a number of examples
to produce good results. However it is worth noting the principal comparison is made
with ASAP levelised scheduling in [66] and not best-in-class previous approaches such
as [108],

2.5.4 Data Folding

Circuit specialisation techniques such as constant propagation are commonly used
in digital circuit generation to reduce resource count and latency. In a run-time re-

configurable FPGA, these techniques can be extended to run-time[172]. One of the
most common methods reported in the literature is the propagation of constants or

data folding[63] within arithmetic operators. The circuit specialisation to the algo¬
rithm and data-set maximises performance from limited resources. Many digital sys¬
tems contain operators on which data folding can be applied. For example, digi¬
tal filters often have constant coefficients which may be folded into the arithmetic
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circuitry[87] [128] [68] [ 117] [70] [41 ]. A dedicated IIR filter was shown by Chou et

al. to require half the logic resources of the general purpose equivalent[44j. Other

reported examples of circuitry specialisation through data folding include string se¬

quence matching[96][63][73], content addressable memory (CAM)[33] and encryp¬

tion [129].

2.5.5 Summary

A substantial body of work exists in the literature on harnessing the run-time recon-

figurable ability of an FPGA. It is possible to divide the approaches to run-time recon-

figurable system design into two sets. One set is software centric (Section 2.3.5.2),
and the other set is logic centric (Section 2.3.5.3). The software centric approach has
evolved from research on compilers and parallel architectures, and the logic centric ap¬

proach has evolved from Hardware Description Languages (HDL) and logic synthesis.
In this section we have outlined the major strategies proposed in the literature for

harnessing runtime reconfiguration of FPGAs. They all may be exploited by both
hardware centric and software centric design approaches.

2.6 Resource Fragmentation and Interface Satisfaction

2.6.1 Introduction

The aim of this section is to survey approaches to tackling the two greatest challenges

facing runtime reconfigurable computing on an FPGA: fragmentation and interface
satisfaction.

2.6.2 Fragmentation

Early research on harnessing run-time reconfiguration proposed a paradigm analo¬

gous to paged virtual memory systems[25][23]. The idea was that circuitry could be

swapped on and off the fabric at run-time, creating the concept of a virtual hardware
resource. As circuitry tasks arrive and depart, the available resources become frag¬

mented, reducing the ability to place new tasks. However, it quickly became apparent
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that the problem of resource fragmentation was a major obstacle to the paradigm's real¬
isation. Here we discuss work in the literature on approaching the problem of resource

fragmentation. Consequently, the work surveyed is heavily FPGA based, although the
same principles can be applied to other reconfigurable fabrics.

Several researchers have investigated the problem of efficiently managing an FPGA
fabric as 2-dimensional circuits are swapped on and off. The proposed techniques usu¬

ally involve introducing constraints on the task. For example, its bounding box must be

rectangular as in [56] by Diessel et al. However, it is NP-complete to decide whether
or not a set of rectangular tasks can be placed on a grid without overlap[97]. The

techniques therefore seek efficient heuristics to manage fragmentation such as task
transformations (Compton et al. [47] and Burns et al. [34]) and local repacking (Dies¬
sel et al. [57]). In [14] Bazargan et al. investigate data structures and algorithms for
fast runtime placement of tasks. They report on simulation experiments using variants
of bottom-left, first-fit and best-fit bin-packing algorithms.

A more radical approach is to superimpose a one-dimensional view of the FPGA.
In such a model, tasks occupy a column which stretches the entire height of the FPGA
and have variable width. This technique has been applied by several devices, for exam¬

ple PipeWrench[138], GARP[79] and DISC[170], Brebner and Diessel [29] describe
how the one-dimensional view leads to simple allocation and de-fragmentation on an

FPGA. Inter-task communication can be provided either by abutting tasks or by rout¬

ing signals via an interconnecting bus. It should be noted though that there is little

supporting work on circuit synthesis when the area occupied must be an integral num¬
ber of columns. The importance of the solution to this issue becomes particularly

apparent when one considers the hierarchical chip-oriented interconnect of modern
FPGAs[180],

Another approach is to divide the FPGA fabric into a set of predefined rectangular

tiles[ 115]. An operating system schedules tasks to these tiles, based on a task allo¬
cation table that contains information on currently loaded tasks. In a trivial example

application [120] Nolett et al. divide the Xilinx Virtex II into 2 tiles. The most obvi¬
ous disadvantage of using a pre-partitioned FPGA is that it results in a fixed number
of fixed sized tiles. In the case of a size mismatch between the size of a task and the
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size of a tile, area is wasted. To solve the size mismatch problem at runtime is not ap¬

pealing. For the case where tasks are significantly smaller than tiles, Nolett et al.[ 120]
propose the use of a multiplexer block. The multiplexer adds an extra abstraction layer
that allows the placement of several smaller tasks into a single tile. Its job is to per¬

form port masquerading on the tile communications port. Other examples of tile based
architectures include aSoC [104], RAW [166], FPFA [82] and Pleiades [6],

2.6.3 Interface Satisfaction

Routing of configurable systems can take many hours, which is unacceptable given
runtime reconfiguration times of sub-second duration. There are however less gen¬

eralised forms of run-time reconfiguration which make sub-second duration feasible.
Here we review the concept of an interface in system design relating it to run-time

reconfiguration and outline work in the literature on its satisfaction in run-time recon-

figurable systems.

Most system design employs some form of hierarchical abstraction: the top level

system is composed of subsystems, which in turn are composed of further subsystems.
At each level an interface specifies a well defined method of communication. In a run¬

time reconfigurable system, interface satisfaction presents a challenge. At the highest
level, the system's external interface must always be satisfied despite the fact that it

may be undergoing reconfiguration. This means that systems external to those being

reconfigured can continue to operate, unaffected and without any knowledge of the

reconfiguration. This is simply achieved through the use of a memory buffer. As tasks
are moved and swapped on and off the fabric, their interface with other tasks must be
satisfied. At the lowest level, within a task, the interface between concrete resources

must be satisfied.

It is possible to perform run-time routing by operating on circuitry at a very low
level using tools such as Brebner's SPODE [24] and Xilinx's JBits [72], However, it

requires intimate knowledge of the architecture and involves more effort than the use

of higher-level descriptions. With the exception of such tools, it is generally deemed

impractical to attempt arbitrary routing within an FPGA fabric at runtime. For this
reason, the implementation of a task is usually design time fixed [25][120], While this
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has implications for task relocatability and transformability as described by Walder et
al. in [167], it removes the problem of run-time interface satisfaction within a task.
A number of different ideas have been proposed for satisfying the inter-task interface.
Here we briefly describe a representative collection of work from the literature.

Brebner and Donlin[30] present three models of inter task communication, with
the network on chip model outlined among others by Marescaux et al. [Ill] making
four in total:

• Fixed wiring

• Reconfigurable switch, e.g. crossbar or bus

• URISC data flow

• Network on chip

The fixed wiring model is suitable for a collection of tiles requiring a fixed, regu¬
lar interconnection pattern. The reconfigurable switch offers more runtime flexibility,

enabling communication either in parallel through a crossbar or in serial through a

bus. For example in [62], Eggers et al describe a design containing a 32x32 cross bar
which can be reconfigured in 700ns. The URISC data flow model refers to Donlin's
work [60] on the flexible Ultimate RISC processor which has a single instruction type
- move. The principle is that tiles are connected to the processor's system bus and
the processor's sequence of instructions directs inter-task communication. There is no
need for a physical realisation of the system bus since an interface such as the XC6200
FastMap interface gives random read/write access to the FPGA configuration memory.

The network on chip as proposed by Dally et al. [49] may be used to connect tiles

together, with established techniques from network routing used to enable interface
reconfiguration.

In summary, there exists a continuum of runtime circuitry interfacing techniques
from the fully parallel to serial approaches, trading off flexibility with performance.
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2.7 Techniques to Speedup reconfiguration

2.7.1 Introduction

The time taken to perform reconfiguration of an FPGA has a significant impact on
the performance of reconfigurable systems. Here we review techniques reported in
the literature for reducing the time spent waiting for reconfiguration to complete. This
serves as background to the configuration compression technique developed in Chapter
3.

Before we discuss specific architectures and techniques for reconfiguration, it is
worthwhile considering reconfiguration at a very high level. Viewed at the system

level, a feeling for the effects of specific improvements can be established.
The majority of commercial FPGAs hold their configuration in SRAM. This means

that all configuration must be stored off chip in non-volatile memory. The static use

of an FPGA involves loading the configuration data from off-chip memory into the
device once at system power-on. The run-time reconfigurable use of an FPGA must

load configuration data from off-chip storagemultiple times during system operation in
addition to the initial power-on load. This can significantly affect the system's perfor¬
mance, as time spent reconfiguring is time during which no computation is performed.
We acknowledge that it is possible to generate configuration data on-chip, and there¬
fore not require it to be loaded from off-chip memory, but this is a special case, and for
this discussion is not considered.

The speed of loading the configuration data depends on the off-chip interface and
the length of the bitstream. The interface performance varies according to the num¬

ber of I/O pins on the chip package dedicated to reconfiguration and the frequency at

which the pins may be clocked. The length of the bitstream depends on the size of
the chip. Section 3.7.3 discusses the bandwidth of the configuration interface of com¬
mercial FPGAs, and the effects of increasing on-chip integration. The time to transfer

configuration bits from off-chip to on-chip memory is expressed in equation 2.1. CO

is the reconfiguration interface bandwidth in bits/s, L is the number configuration data
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bits and K is a constant overhead associated with the architecture.

Tiood = j+K (2.1)
As can be seen from equation 2.1, reducing the amount of data that must be loaded

to perform reconfiguration will reduce reconfiguration time. This is an area which has
received much attention in the literature. The two major ideas for exploiting the rela¬

tionship are configuration compression, reviewed in Section 2.7.1.1, and configuration

hierarchy, reviewed in Section 2.7.1.2.
As proposed at the start of this section, we shall now look at reconfiguration at the

system level rather than the low-level detail of equation 2.1. Instead of demanding the

loading of configuration data from off-chip storage as quickly as possible, it is possi¬
ble to exploit static and dynamic scheduling methods to load configurations in parallel
to computation. With the additional on-chip RAM, configuration data can be loaded
into a staging area, ready to take advantage of the massive on-chip parallelism to the
active configuration memory when reconfiguration is triggered. The major ideas for

exploiting additional on-chip memory are the configuration cache, discussed in Sec¬
tion 2.7.1.3, configuration pre-fetch, discussed in Section 2.7.1.4, and configuration

cloning, discussed in Section 2.7.1.5.

2.7.1.1 Compression

Several researchers have investigated the compression of FPGA configuration bit-
streams [50] [98] [78], The idea is to compress the bitstream at design time, so that
at run-time it takes less time to load from off-chip RAM through the narrow config¬
uration interface. Once the compressed bitstream is on-chip, it is decompressed in

preparation for loading into the active configuration memory.

Compression algorithms can be divided into two categories - lossless compres¬

sion and lossy compression. In lossless compression, no original information is lost,
so a perfect replica of the original data can be produced. An example of loss-less

compression is the Lempel-Ziv (LZ) algorithm, used in the Unix gzip utility. Lossy

compression results in some original information being discarded. The result of lossy

compression is a representation which is similar but not identical to the original. A
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good example of lossy compression is the Moving Pictures Expert Group (MPEG)
movie compression standard.

In general, lossy compression produces better compression ratios than loss-less

compression. Dandalis uses an LZ based approach to compress Xilinx Virtex bit-
streams in [50] producing a results which is 59%-89% the size of the original. In

[102], Li and Hauck exploit features within the bitstream to propose a technique which
achieves a compression result which is on average 25% of the size of the original. In
the remainder of this section we will outline some of the techniques proposed in [102].

In [ 102] the authors review the regularity and suitable symbol length for the Xil¬
inx Virtex bitstream. The main source of regularity was among bitstream sections,
or frames[177], which configure similar resources. Regular systolic operations like
adders are particularly good for this sort of regularity. The authors best compression

technique uses each configuration frame as a fixed size dictionary for the LZ algorithm
across all other frames to discover inter-frame regularities. The frames are then opti¬

mally ordered for loading into the FPGA. To reduce the size of the dictionary required

by the LZ algorithm, the authors use read-back to read frames already present back
from the configuration memory.

Another compression technique proposed in [102] uses wild-carding[78]. Wild-

carding involves loading only the difference between a frame and an already loaded
frame, rather than loading the entire frame. Results for wild card, huffman coding,
arithmetic coding and a few variations of read back technique are presented. The read-
back algorithm gives the best compression factor of about 4 across a range of circuits.

2.7.1.2 Hierarchy

The concept of a configuration hierarchy has been investigated by a number of re¬
searchers [122][120], most notably Schaumont et al. in [137J. The basic idea is that
different levels of abstraction beyond the configuration bitstream form a hierarchy of

reconfiguration. The authors use the example of a software protocol stack implemented
on a processor which is in turn implemented on an FPGA fabric. They point out that
the protocol stack is clearly a program as it consists of soft instructions. Then at an¬

other level, the FPGA views the program as data to be processed by the reconfigurable
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fabric. Schaumont et al. describe how the configuration hierarchy allows control of

system complexity, while creating more opportunities for component reuse. In [122]

Ogrenci et al. demonstrate that it is possible to reduce the number of configuration bits

required for reconfiguration by providing pre-placed coarse grain computation blocks.
The configuration hierarchy is a similar concept to the terms "coarse grain" and

"fine grain"[76]. Fine and coarse grain are used to describe features at the architectural
level - e.g. 4-LUTs or 4-bit ALUs. To configure a device composed of 4-bit ALUs to

perform an 8 bit subtraction is likely to require much less configuration data than the

configuration of a 4-LUT based device.
In summary, the reconfiguration hierarchy can speedup reconfiguration through the

use of abstraction beyond the underlying architecture. Inserting additional flexibility
at the circuit level as described by the bitstream reduces the amount of data that must
be loaded to change functionality at run-time.

2.7.1.3 Caching

Configuration caching, is, as its name suggests, very similar to caching instructions on

a microprocessor. The idea is that configurations are retained on-chip to reduce the
amount of data that must be transferred over the configuration interface. In general,

caching takes advantage of two principles - spatial and temporal locality. Spatial lo¬

cality captures the phenomenon that circuits close together in sequence are typically

required close together in time. Temporal locality expresses the principle that circuits
accessed recently are likely to be accessed again in only a short while.

In [100] the authors examine the application of configuration caching to coupled

processor-FPGA systems. Such systems treat the FPGA fabric as a virtual resource

managed by an operating system. During execution, circuits are paged to and from
the active configuration memory like pages moved between disk and memory in a

microprocessor. These circuits are referred to as swappable logic units (SLU)[25],
The authors observe that circuits have a non-uniform size, unlike memory pages for
a processor, making the time to load a circuit variable. Another problem is that the

large size of configurations means that only a small number can reside on the chip

simultaneously.
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Another dimension to the FPGA caching problem is the FPGA's configuration ar¬

chitecture. The best cache solution is different for single context, partially reconfig-
urable and multiple context FPGAs. For example, to load an SLU onto a single context
device involves loading an entire configuration bitstream from external memory. This
has a significant latency penalty, during which no computation is performed anywhere
on the FPGA. The partially reconfigurable FPGA allows SLUs unaffected by a recon¬

figuration to continue to operate. Only the area being reconfigured performs no work,
and the latency is reduced since only the SLU's configuration is loaded, not the en¬

tire device bitstream. The multiple context device is more flexible again, enabling any

FPGA resource to be reconfigured in the background to active computation, ready to
be switched to the active configuration in the order of a clock cycle.

The authors present a set of configuration cache management algorithms, each
tuned to a specific architecture. For the single context device, off-line algorithms such
as simulated annealing attempt to extract maximum value from a context change. Max¬
imum value refers to the opportunity to make changes in addition to those requested,
since an entire bitstream must be loaded anyway. For example, the required changes

together with the predicted future changes can be combined into a single bitstream to

reduce the overall reconfiguration overhead.
The multi-context FPGA must also maximise SLU grouping, since its atomic unit

of configuration is also an entire context plane. Li et al.[99] recognise that the decision
as to which context plane to replace on a context load is very similar to general caching.

They use the Belady[15] algorithm from the operating system and architecture fields.

Belady operates on the principle that the most likely context to be replaced is that
which is least likely to be accessed in the near future. Combining Belady and SLU

grouping techniques, a complete, off-line, predictive caching approach is developed.
The partially reconfigurable FPGA presents the most difficult challenge for cache

algorithm design. It is directly affected by the different size of SLUs and the different
times required to load them. Li et al. present a number of algorithms. The off-line

simulated-annealing and Belady based algorithms allow difficult problems to be solved
in advance, but lack flexibility. Run-time algorithms must tackle the difficult problems
of relocation and de-fragmentation. Again, Li et al. find the operating systems field to
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have an algorithm fit for the task - Least Recently Used (LRU). However, they observe
that the non-uniform size of SLUs is not considered by the LRU algorithm. To solve
this problem, the authors propose a variable credit system, in which both an SLU's size
and frequency of invocation are used to determine the evictee.

In [154], Sudhir et al. apply algorithms developed for web caching[36]. The most

significant difference between their configuration caching work and that of Li et al. is
their eviction policy. Li et al.'s most sophisticated algorithm is based upon a penalty

system. It combines the distance of last occurrence, frequency of occurrence and SLU
size to determine whether it should be evicted or not. Sudhir et al. consider these

factors in addition to other execution history information, specifically, how far into
the future the SLU is likely to be used again. In short, the algorithm looks both at

an SLU's past and predicted future requirements to make its eviction decision. They
demonstrate through simulation that this further reduces configuration overhead across

a set of benchmarks.

2.7.1.4 Pre-fetching

Run-time reconfigurable systems execute multiple configurations to perform a task. If
the computation performed by a configuration runs to completion before a new con¬

figuration is loaded, then a stall occurs while the new configuration is loaded. Config¬
uration pre-fetching complements configuration caching by loading the next configu¬
ration before it is actually required. The ability to load a configuration into all or part
of the FPGA whilst the rest of the device continues to operate, overlaps reconfigura¬
tion latency and useful computation. It is therefore capable of virtually eliminating

reconfiguration latency in some systems.

The main challenge for configuration pre-fetching is to predict far enough in ad¬
vance which configuration will be required next. Many algorithms have complex con¬

trol flows and data dependencies, which make prediction, and hence pre-fetching, dif¬
ficult. Pre-fetching is used in many other computing fields. For example, microproces¬
sors pre-fetch data from memory into the processor cache, and virtual memory systems

pre-fetch data from disk into the main memory[35]. However, these systems often ben¬
efit from regular access patterns, which reconfigurable systems do not enjoy.
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In [77], Hauck considers pre-fetching in a tightly coupled FPGA co-processor sim¬
ilar to PRISC [133], Execution occurs on the microprocessor until an instruction to

be performed by an SLU is encountered. At this point, the processor checks whether
the SLU is loaded into the FPGA, and if so it executes it. Otherwise, the SLU config¬
uration must be loaded, during which time execution of the serial instruction stream

is on hold. To avoid this stall in execution, a program running in the reconfigurable
system can insert configuration pre-fetch instructions. These occupy a single slot in
the microprocessor pipeline.

Hauck's algorithm for determining where to insert pre-fetch instructions starts with
a control flow graph of the algorithm being considered. The graph contains information
on the potential of execution paths within the program and thus forms the basis for

predicting which SLU will be required next. The principle upon which the algorithm

operates is that the SLU required next is the one which can be reached in the least
number of cycles. This again exploits the principle of locality, placing high priority on

loop kernels.
In [103], Hauck considers the application of pre-fetching to another FPGA config¬

uration architecture. The architecture, proposed by Compton in [45], is the partially

reconfigurable FPGA with relocation and de-fragmentation facilities. It was designed
to improve hardware utilisation. Final placement of a configuration within the FPGA

may be determined at run-time and de-fragmentation provides a method to bring to¬

gether unused FPGA resources without unloading useful SLUs. Three principal algo¬
rithms are investigated: static, dynamic and hybrid form pre-fetching. Static occurs at

compile time, similar to the method described above. Dynamic pre-fetching makes the
decision as to which context to load at runtime, based upon certain runtime variables.
Hauck's algorithm uses a Markov process to determine which SLU to load. Finally,
the hybrid solution combines the recent access history provided at run-time with the

analysis performed statically. As is usually the case, the hybrid approach combines the
best of both worlds to achieve the best results.

2.7.1.5 Cloning and Sharing

In a similar vein to the use of existing configuration memory content as a dictionary for
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compression algorithms, configuration cloning and sharing use existing configuration
memory content to reduce data transfer over the configuration interface.

Configuration cloningf 127] exploits regularity in circuitry by copying configura¬
tion regions from one part of the device to another. The main motivation is to exploit

temporal and spatial locality of circuits and architectures already present in the FPGA.
The area of application proposed by the authors is regular circuit structures such as

FIR filters. The idea is that such circuits have dynamically bound iterative constructs
- loops in software and regular structures in circuitry. Cloning provides a simple way

to increase the length of a circuit, for example, window size, cryptographic key length
and pipeline depth. Cloning involves copying the configuration bitstream from one

region of the FPGA to one or many other locations.
Minor irregularities exist in what are otherwise highly regular circuit structures.

This is acknowledged by the authors, but a convincing solution is not provided. In
addition, it is not clear how widely applicable the technique is - particularly to auto¬

matically generated circuitry. Control circuitry is unlikely to be amenable to configu¬
ration cloning, leaving only highly regular (perhaps hand-placed) datapaths to exploit
the technique. Finally, the system-level impact of providing architectural support for

cloning is not considered. The silicon area increase required to address memory at

the fine level of granularity demanded by cloning may outweigh any resource savings
achieved.

Configuration sharing is very similar to cloning. Sezer et al.[ 141 ] combine signal
flow graphs (SFGs) and configuration data graphs (CFGs). This is designed to produce

groups of similar circuits, reducing the amount of configuration data that needs to be
loaded to perform reconfigurations.

2.7.2 Summary

Borrowing upon a few decades of research in the fields of computer architecture and

operating systems, the reconfigurable computing research community has developed
a number of techniques to reduce the overhead of changing configuration at run¬

time. Many of the techniques may be combined together with architectural changes
to speedup execution time.
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2.8 Summary

We have provided an overview of the research areas to which this thesis contributes.
The FPGA has been introduced in Section 2.2 and its ability to be run-time recon¬

figured is outlined in Section 2.3. The emerging system-on-chip design paradigm of
platform based architectures is outlined in Section 2.4. Section 2.5 introduces some

of the major areas of research in the literature into how a reconfigurable FPGA is best
harnessed. We then describe the two greatest challenges facing the run-time reconfigu¬
ration in Section 2.6, namely interface satisfaction and fragmentation. Finally, Section
2.7 outlines techniques proposed for reducing the overhead imposed on execution time

by reconfiguration.
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FPGA Reconfiguration Architecture

Design Space

3.1 Introduction to methods for FPGA fast reconfigura¬

tion

Modern FPGAs have configuration bit stream sizes in excess of several megabits.
When compared to the micro-processor which has a context of only a few registers,
the FPGA must move a very large volume of data to switch context. This time to

switch context has a direct impact on the level of performance achievable with run¬

time reconfiguration and is therefore an area of active research. Some demonstrations
of run-time reconfigurable logic waste from 25%[171]to70% [164], even as high as

94% [156] of their computing cycles stalled while the FPGA is reconfigured.
Traditional FPGA architectures have primarily been programmed with the bit-

stream loaded serially into a single context configuration memory. This architecture
allows only one configuration to be loaded at a time and requires a full reconfiguration
for each change. Designers of runtime reconfigurable systems have found the single
context device very limiting.

In some applications only part of the FPGA fabric is occupied, or a small part of
the fabric needs to be changed, therefore partial reconfiguration of the array is desired.
In partially reconfigurable FPGA fabrics, the configuration memory is accessed like a

40
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RAM device. Selective addressing of the memory allows changes to be made as re¬

quired without the need to load the entire bit stream. It is often possible to perform

reconfiguration of a section of the device and to allow another portion to continue op¬

erating undisturbed. The Xilinx 6200 [176] configuration memory access is extremely
flexible allowing changes to be made at a very fine level of granularity. Partial re¬

configuration is also possible in the Xilinx Virtex [177] but at the more coarse grain
column addressing level. In contrast to the single context device, the multi-context

configuration architecture has multiple memory bits for each configuration bit as in

[52] [160], The memory can be visualised as multiple planes of configuration informa¬
tion. One plane can be active at a time, with switching between active context planes

performed very quickly - of the order of a single clock cycle. The inclusion of multi¬

ple on-chip memory context planes has a significant area cost compared to the single
context device.

As discussed in Section 2.7.1.1, a number of other interesting techniques, some

adapted from microprocessor architecture design, have been applied in reconfigurable
FPGA systems. Configuration caching [99] takes advantage of both temporal and spa¬

tial locality like the microprocessor model, but is complicated by the non-uniform

latency of configurations and the limited number of configurations which can reside

on-chip simultaneously. Configuration pre-fetching [77] is a simple technique where
the configuration is done in parallel with useful computation in order to hide its la¬

tency. The difficulty with this technique is predicting soon enough in advance what
needs to be loaded, particularly in general purpose systems where control flow can be

very complex.
Whilst all of the above techniques can be combined to reduce the effect of the

off-chip configuration bandwidth problem, it still ultimately has a limiting effect on
the application of run-time reconfiguration. Even in the multi-context device with its

extremely small context switch time, the number of contexts imposes a limit on how
much benefit this brings. The cost of including extra configuration RAM on-chip must

also be considered when looking at the multi-context device. The distributed nature of
a context memory plane leads to an expensive RAM implementation which can take

up 30%[89] of the entire silicon area. More fundamentally, the question of how useful
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very rapid reconfiguration is as a system design technique has still to be satisfactorily
answered.

Configuration compression has been successfully applied to FPGAs [101][78][102].
This is similar to conventional compression algorithms, reducing the time taken to load
a configuration by taking advantage of regularity and repetitions within the data. It has
been demonstrated to reduce bitstream size by up to 85% [102] on the Xilinx Virtex
architecture.

The compression algorithm designed by Li and Hauck[102] exhibits the best re¬

ported performance on modern FPGA devices, but it is designed to operate on entire
bitstreams and so is not applicable to partial reconfiguration. In this chapter, new

techniques to overcome the off-chip configuration bandwidth bottleneckwill be inves¬

tigated. We start the chapter by providing an overview of the Xilinx Virtex architecture
in Section 3.2. In Section 3.3 we approach the problem of speeding up reconfiguration
by performing an analysis of what exactly occurs during reconfiguration of a modern
fine grain FPGA. This analysis provides the insight used to propose the overlay tech¬

nique in Section 3.4. We then perform some further analysis based upon these results
in Section 3.5 and use this to develop the compression algorithms presented in Section
3.6.

3.2 Xilinx Virtex Architecture

The Xilinx Virtex device family has been chosen for analysis in this chapter. It became
established as the leading commercial FPGA architecture and has now been succeeded

by the Virtex II family. This section will introduce the architecture in the detail required
to understand the analysis performed.

Figure 3.1 shows the designer's high-level view of the Virtex architecture. It should
be noted that it is not drawn to scale, nor should the relative locations of architectural

features be taken as an accurate representation. It is a fine grained programmable logic
architecture composed of 4 input lookup tables (LUTs) clustered into islands called

configurable logic blocks (CLBs). The CLBs offer a rich interconnect fabric to route

signals between the different architectural features. The connections are a mixture of
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Figure 3.1: Xilinx Virtex Architecture

short nearest neighbour, 16 cells away and chip length wires.
The embedded dual-port block rams (BRAM) each provide 4Kbit of storage. Delay-

locked loops (DLL), clock (CLK) and input-output blocks (IOBs) are also marked in
the diagram for completeness. More details can be found in [177],

3.3 Reconfiguration Analysis

3.3.1 Introduction

To develop a better understanding of reconfiguration this section sets out to analyse

exactly what occurs when an area of fabric is reconfigured. The principal idea driving
the analysis is that there is a large amount of redundancy present in modern FPGA
architectures to provide their high level of flexibility. This is believed to be an area of
potential for exploring new methods to speed up reconfiguration, two of which are bit-
stream compression and configuration overlaying. These are explored in later sections.
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This section describes the JBits API used to write software for all the analysis work
and the circuits used for experiments.

3.3.2 JBits API

To perform a partial reconfiguration of the Virtex, a partial bitstream must be gener¬

ated. The partial bitstream contains the frames that are different from those already
in the configuration memory. Generation of the partial bitstream is not conceptually

supported by traditional hardware design environments and so instead is done using
other tools. The JBits API is a Java library that provides low level access to the Virtex
bitstream at the level of individual LUT contents and multiplexer configuration bits.
Relocatable cores, a net router and a net tracer combine to provide a set of high level
functions and utilities that make JBits a very powerful development tool. It can be
used to edit bitstreams generated by the traditional Xilinx tool flow or it can be used to
build designs independently. It was built with the specific aim of giving the hardware

designer the low level bitstream access required to perform partial reconfiguration. It

provides an easy to use mechanism to keep track of all frames that become "dirty", i.e.
modified, as changes are made to the bitstream. Once all the changes have been made
the frames marked as dirty can be written out as a partial reconfiguration bitstream.

3.3.3 Circuits Used

The circuits used for experiments were specifically selected to represent the typical

types of function for which the Virtex FPGA is used. It is important not to use artificial
circuits generated by research tools as is often done in the literature since this may

cause uncertainty to be cast over any results. The circuits vary in size from 528 slices to
2320 slices and were placed and routed automatically with their area minimised. They
were collected from Xilinx application notes and respected designs in either Verilog or

VHDL source form in addition to the Xilinx Core Generator. The Java software written

to perform the experimentation using the JBits API operates on the circuits after they
have completely passed through the traditional Xilinx tool flow.
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3.4 Overlay Technique

3.4.1 Overview

An active area of fabric may be loaded with some of the waiting configuration settings
while it is still operating, without interfering with its functionality, reducing the num¬

ber of changes that must be loaded, and hence reducing the time the area of fabric is
off-line, when a reconfiguration is necessary. This is possible because of the high level
of redundancy present in modern FPGA routing architectures - many configuration bits
in any single mapping will have no effect on the circuits' operation and can therefore
be set appropriately for the next circuit. The concept is illustrated in Figure 3.2, with
the white square representing the original circuit to be reconfigured. The shaded mid¬
dle square represents the original circuit still operating as it did but with the fabric
it occupies loaded with some of the next circuit's configuration data. The resulting
black square represents the second circuit with some of the white circuit's configura¬
tion bits still present - whichever do not interfere with the second circuit's operation.
The configuration sequence of overlaying those configuration bits which do not affect
the operation of the original circuit is called the advance configuration bitstream. The
second configuration sequence is referred to as the residual bitstream as it contains the

remaining changes required to switch the area of fabric to the second circuit. Since the

changes made in the advance stage do not affect the operation of the white circuit it can
continue to operate without interruption. The residual changes must be applied with
the fabric off-line to avoid unpredictable behaviour. Off-line may mean that either the
area of fabric is not clocked or its I/O is removed.

3.4.2 Algorithm and Implementation

Due to the organisation of a column of Virtex CLB's configuration data into frames, a

change to a CLB anywhere in the column results in most frames in that column having
to be written to the device. This is because a CLB's configuration data is split across
all frames in the column. So even if the hypothesis above proved to be correct, it
would result in very little change in the size of the residual bitstream when compared
to the complete bitstream because, even if only a very small fraction of the bits must be
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Circuit A Circuit A Circuit B

Figure 3.2: The overlay technique configuration sequence.

written, they are likely to dirty many frames. So with the existing frame organisation of
the Virtex configuration architecture, the technique will not provide much benefit. With
this in mind, a modified implementation of the algorithm was written which would
allow analysis to be performed independently of the present configuration architecture.

The modified implementation still makes use of the JBits API, however it is much
more involved since some of the more advanced functionality of JBits is tied to the

underlying configuration architecture and therefore hides a lot of detail. For this reason
JBits could not be used to produce the analysis and results required, so independent
methods of tracking the exact position in the bitstream where changes occur had to

be developed. This is all additional support software to the top level algorithm of

performing the actual overlay algorithm.
To facilitate test and debug, the normal generation of bitstreams by the JBits system

is performed with the additional detail captured in parallel. This was achieved through
the use of wrapper functions around the JBits API calls. The wrappers provided a

mechanism to intercept JBits calls within the java code and to manipulate various user

defined data structures before and after the JBits API method is called. Recording
the before and after settings of resources has to be translated into location of changes
within the bitstream for analysis.

A piece of software was written using the JBits API which takes two bitstreams and
the coordinates of the rectangular area of fabric to be reconfigured. The output is the
advance and residual bitstreams. The remainder of this algorithm and implementation
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section will first describe the platform developed for capturing bitstream changes made

by the JBits API and then the overlay algorithm.
The circuits supplied are read in and preprocessed before the overlay algorithm

begins. Every possible source in the chip - i.e. output pins in all CLBs and all IOBs
are traced using the tracer class. If a netlist is sourced by the pin traced, it is stored for
further processing. Each netlist has its source and sink pairs extracted and recorded
in addition to every wire segment being extracted for easy lookup during the overlay

algorithm stage. Care is taken to record wire names consistently, since a wire may be
referred to by two different names depending on the CLB in which it is being referred.
For example, a wire NORTH 12 will be referred to as SOUTH 12 in the CLB above yet

they are the same entity. As explained above, to record changes made by the JBits API,

wrapper methods record the resources setting before and after the API call. Subsequent

changes to the same resource only record the new setting, leaving the 'before' setting
as it was before any changes were made. This allows all changes made by the overlay

algorithm to be minimally found at the end of the bitstream manipulation by comparing
each resource's final setting to its original setting.

The position of a resource's bits in the configuration bitstream is not well docu¬
mented by Xilinx and the company was not willing to volunteer the mapping trans¬

lation when approached directly. Instead, using the acquired low level knowledge of
the architecture, a process of experimentation and intuition lead to the correct map¬

ping being established. The unusual relationship between configuration bits and their
location in the bitstream was very apparent during this investigative work. Eventually
two variables were found to combine to produce the bitstream location translation -

the tile in which the resource is located (an architecture level abstraction not normally

exposed to the FPGA designer) and an undocumented 3D array in the JBits resources
class combined with some relative addressing.

The generation of the overlay bitstreams consists of an action phase and a verifi¬
cation phase. The verification phase is necessary to ensure that the resulting circuit

operates as it should. The remainder of this section will first describe the generation
of the bitstream for the advance configuration stage and then the generation of the
residual bitstream.
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(ii~) after

Figure 3.3: A netlist being trimmed

In figure 3.2, wires used by circuit B that are not used by circuit A are configured
in the advance bitstream. The verification stage checks each netlist in the resulting bit-
stream to ensure that it has the same source/sink pairs that it did before modification.
If a new sink has been attached inadvertently in the modification phase, it is discon¬
nected and the necessary configuration held back for the residual bitstream. Another
necessary check is the timing of the circuit. After the overlay of as many wires as

possible, some wires will hang off existing netlists not affecting functionality but will
affect timing. The simple adjustment made in this work is to compare the size of each
netlist in the modified circuit to the size of the critical path in the original circuit and
trim extraneous wires as necessary. Figure 3.3(i) shows an example netlist before it
is trimmed and figure 3.3(ii) shows it after it has been trimmed. Again, wires that
must be left unconnected during the advance configuration are moved to the residual
configuration.

The residual configuration bitstream contains the new CLB configuration data and
the remaining routing configuration. A similar verification exercise is performed to

ensure the functional and timing accuracy of the resulting circuit - adjusting as appro¬

priate.

3.4.3 Results

The hypothesis proposed for the overlay technique is that the high level of redundancy
present in the FPGAs interconnect fabric will translate into a high level of redundancy
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Figure 3.4: The advance and residual changes expressed as a percentage of the total
number of changes required to configure the area of fabric occupied

in the configuration bitstream. To test this hypothesis, a straightforward count of the
number of frames in the residual and advance bitstreams will not suffice, as explained
above. Instead, to test the performance of the overlay algorithm, the number of indi¬
vidual bits that can be set in the advance bitstream is expressed as a percentage of the
total number of bits that need to be flipped - i.e. the sum of the advance and residual

changes. This was done using the library of routines described above - analysing the

changes made during the overlay algorithm through the use of wrapper functions. A
number of circuit pairs were overlaid on each other and the result found. Figure 3.4
shows a graph of the circuit pairs tested and the percentage number of bits which could
be overlaid.

Consistently around 10% of the configuration data could be written in the advance
bitstream without interfering with the operation of the existing circuit. Although it was

disappointing that this percentage wasn't larger, the experimentation revealed that the

original hypothesis does hold promise, just not so much for the overlay on the Virtex
architecture. The reason for the small percentage of bits which could be overlaid is
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that many of the routing resources are multiplexer type structures. Multiplexers cannot
have bits overlaid without changing the function they perform, but programmable in¬
terconnect points (PIPs) can and the 10% overlay figure comes from the PIPs. In fact
PIPs were the only resource considered for the overlay technique in the final algorithm
in order to reduce the complexity of the implementation. LUT contents and the many

input and output multiplexers are not suitable, which leaves only a few small internal
CLB multiplexers unconsidered. It is thought that there is some potential for improv¬
ing the 10% result by exploiting these other resources but the effect is likely to be
small. The circuits used for experimentation are very densely placed, so the technique
is likely to be more beneficial for less densely packed circuits.

It is interesting to note that the application of changes is easily reversible. This is
useful, for example, when only two circuits share the same area of fabric since only
one list of changes needs to be loaded.

3.4.4 Summary

The identification of the residual bits also serves as a possible way to generate the
inverse configuration change - i.e. invert the changes and return to the original circuit.
This is useful in applications where an area of fabric is being time-multiplexed by
two circuits. The next section will explore the extent of the redundancy present in the

configuration bitstream to find other ways of exploiting it.

3.5 Bit-Stream Redundancy Analysis

3.5.1 Overview

This section investigates the changes made to completely switch from one circuit to
another - i.e. not using the overlay technique.

3.5.2 Experiments

The first obvious question which is important to answer is the level of redundancy

present in any configuration. This is answered by performing the minimal one-shot re-
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configuration and expressing the number of bits that must change as a percentage of the
number of bits for the circuit. Again the arrangement of bits in the Virtex architecture
means the measure of configuration bits required to load a circuit has to be considered

carefully. The straightforward choice is the size of the partial bitstream necessary to

configure the fabric, but due to resource bits being scattered across a whole column of
frames, many more configuration bits have to be loaded than is necessary. Instead, the
actual number of bits necessary to configure the area of fabric occupied is used for the
total number of bits. It is calculated as the number of configuration bits for a CLB (864
bits) multiplied by the number of CLBs occupied by the circuit.

The second interesting question considered is the spread of change bits across the
different resources. A good understanding of this may help identify an organisation
of bits into frames to improve reconfiguration performance. Resources are split into

singles wires, F and G input multiplexers, slice internal configuration, look up table
contents, output multiplexers and hex and long wire configurations.

Both investigations used the software tools developed on top of JBits for the overlay

technique.

3.5.3 Results

3.5.3.1 Change Bits

The number of bits within an area of fabric which must be changed is consistently
below 10% as shown in Figure 3.5. This reveals that the original hypothesis of this

chapter is true - massive redundancy is present in the configuration bitstream. Observ¬

ing that only a small number of bits must be changed suggests that compression may

be used to express the changes efficiently and by so doing reduce the reconfiguration
time. This idea of compressing the configuration changes is developed later in this

chapter.

3.5.3.2 Breakdown by resource type

Figure 3.6 shows that the lookup table contents represent the largest proportion of bits
which must be changed during reconfiguration. The sum of the slice input multiplexer



Chapter 3. FPGA Reconfiguration Architecture Design Space 52

IIR-DES IIR-FFT CORDIC- CORDIC- CORDIC- DES-IIR DES- DES-FFT
MR DES FFT CORDIC

Circuit Pairs

Figure 3.5: The number of changed bits as a percentage of the actual number of bits

required to configure the area of fabric occupied

o

IIR-DES IIR-FFT CORDIC- CORDIC- CORDIC- DES-IIR DES- DES-FFT
MR DES FFT CORDIC

Circuit Pair

□ Singles SF&G Muxes El Slice Internals □LUTs BOUTMUXs B Hexs and Longs
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fabric occupied
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changes and the LUT contents represent over 60% of all changes that must be made.
When each of the resource type's percentage change is compared to the total number of

configuration bits configuring that resource type, the LUT represents a disproportion¬
ately large percentage of the change bits. For example, there are 16 bits configuring
each LUT in a CLB which is 4% of the total bits configuring a CLB, however the
LUT represents between 35% and 45% of all change bits. This suggests that the con¬

figuration bits could be arranged differently to take advantage of the disproportionate
percentage change.

3.5.4 Summary

The redundancy present in the bitstream has been demonstrated to be significant and

strengthens the argument that there must be effective methods to exploit it. The dispro¬
portionate representation of change bits across the resource types is also an interesting
result which may lead to another technique for configuration compression. The re¬

mainder of this chapter investigates configuration change compression as a means of

reducing configuration time.

3.6 Changes Compression

3.6.1 Overview

Compression technologies are used extensively across a wide range of application do¬
mains to reduce the amount of data required to express information. The high level
of redundancy confirmed in the analysis work is an obvious candidate for some form
of compression to reduce reconfiguration time. The basic challenge of configuration
changes compression is to concisely express a long stream of binary zeroes interrupted

occasionally by one or more binary ones (90% binary 0, 10% binary 1). A binary
one indicates that the corresponding bit in the configuration memory must be inverted.
This section looks at existing non-lossy compression algorithms and investigates their

suitability to bitstream changes compression. It then proposes some Virtex specific

algorithms and explores a configuration architecture space suitable for leveraging the
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compressed changes.

3.6.2 Targeted Compression Algorithms

Generic loss-less compression algorithms do not suit the domain of bitstream decom¬

pression on an FPGA. Parallel implementation is necessary to provide a configuration
architecture tailorable for the speed of reconfiguration required. Lempel-Ziv 77 per¬

forms well on long sequences, but as the sequence length increases, the compression

performance degrades. In addition, LZ77 performs well on sequences with repeating

sequences like text and other types of data with a small alphabet, but less so on data
such as images and the configuration bitstream. If the configuration bitstream were

to be decompressed on-chip in parallel, it would have to be split up and each piece

processed separately. This requires an independent decompression unit for each piece
and for Lempel-Ziv this could quickly become quite a sizable amount of silicon area.

3.6.2.1 Vanilla

The Vanilla algorithm is the most simple of those proposed and tested, hence its name.

Its development evolved through a number of guises so this description will describe
the various forms it took. First of all the changes bitstream - i.e. the sequence of

mainly zeroes with ones in the positions where a bit in the configuration memory is to
be flipped, is read in and absolute addressing used. This meant that a large data word
had to be used to address any configuration bit in a large device - 16 bits for the largest
Virtex part. This performed very badly - in fact using 16 bits to give the position of the
10% of bits produces an expansion rather than a compression! The straightforward al¬
ternative to expressing the change bits using absolute addressing is relative addressing.

Choosing the size of the data and address parts is key to minimising the expression
when using relative addressing. A program was written using JBits to cycle through a

range of address/data size pairs to find the optimum arrangement. This was tuned to

permit writing zero data points if it meant that the smaller address size used reduced
the overall changes expression.
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3.6.2.2 Banded

While implementing the Vanilla algorithm, it was observed that configuration bits tend
to form clusters in the frame if the circuitry being changed only takes up part of a
column. This is because every frame contains configuration bits of every CLB in the
column arranged with the bits of the top CLB at the top of the frame down to the
column's bottom CLB bits at the bottom of the frame. This was used in the banded

compression algorithm to express the configuration changes relative to where the first
CLB that is being reconfigured starts in the frame. The implementation uses an offset
number of bits to indicate the start point for relative addressing.

3.6.2.3 Partitioned

It was observed above, during the changes analysis work, that the LUT contents, al¬

though a very small fraction of the configuration bitstream, represent a very large frac¬
tion of the changes bitstream. With this in mind it seemed worth experimenting with

expressing the LUT contents explicitly rather than compressing them. The partitioned

algorithm expresses the LUT contents for each CLB in the area being reconfigured

explicitly and expresses the remaining change bits using the banded technique.

3.6.3 Results

All three compression algorithms were implemented in software using JBits to evaluate
their performance. The partitioned algorithm produced the best averaged compression

performance of 45% as shown in Figure 3.7. However since the difference between the
banded and partitioned technique results is small (5%) and the partitioned algorithm
is likely to require much more logic to implement the decompression unit, the banded

algorithm is chosen.
The Lempel-Ziv family of algorithms was experimented with to check their per¬

formance on the changes dataset and they were found to produce compression ratios
around 50%. This is close to the information theoretic limit for the compression of a
random binary sequence with 10% of bits equal to binary one. In [102] it was noted
that the choice of symbol size for the Lempel-Ziv family of compression algorithms
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Figure 3.7: The compressed changes dataset size expressed as a percentage of the
number of bits required to configure the area of fabric occupied

has a large influence on compression performance, since a poor choice may miss regu¬

larities. The LZ family was not experimented with any further because as noted above
it was determined that its decompression unit's silicon area cost was large and a paral¬
lel decompression architecture would lose many of the regularities exploited in the full
serial bitstream[102].

3.6.4 Summary

A reasonably consistent compression algorithm for configuration changes description
has been proposed and its performance evaluated. It is highly scalable, can be im¬
plemented cheaply in silicon and compares favourably with more complex standard

algorithms such as LZ77 used in the Unix gzip utility.
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Generation Device Slices Block RAM Process Configuration bits
Virtex XCV1000 12,288 131,072 0.22um 6,127,744

Virtex E XCV3200E 32,448 851,968 0.18um 16,283,712

Virtex II XC2V8000 46,592 3,095,576 0.15um 26,194,208

Virtex II Pro XC2VP100 44,096 8,183,808 0.13um 34,292,832

Table 3.1: Selected data for the largest device in each Virtex series generation

3.7 Virtex II and future platform FPGAs

3.7.1 Introduction

In this chapter so far, we have studied the first generation of Virtex FPGAs. This
section examines how the most recent generations in the Virtex series have evolved, in
an attempt to establish architectural trends. We will then hypothesise how these trends
will affect the feasibility of dynamic reconfiguration.

3.7.2 Architectural Features

Table 3.1 lists the largest device in 5 Virtex FPGA generations. Each generation
is fabricated at a different process geometry, providing greater transistor integration

per chip. The functionality of a logic slice has remained roughly constant across the

generations, which enables inter-generation logic capacity comparisons. In this work
we assume that the die area of the largest device is either equal to or larger than the

previous generation.
An obvious high-level trend is that the number of different architectural features

is changing with each generation (see below). Further, the mixture of architectural
features is also changing. This is in stark contrast with the naive belief that the regu¬

lar, array based architecture of an FPGA would simply scale with Moore's law. There
are many reasons why the naive belief is false, spanning from fundamental empiri¬
cal results such as the relationship between the number of gates in a block and the
number of I/Os required (Rent's rule [91]) to advances in the understanding of the
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programmable interconnect tradeoff space. Notable work on FPGA interconnect by
Betz and Rose[18] shows how a segmented and buffered routing architecture is much

superior to nearest neighbour interconnect.

Early FPGA architectures such as the Xilinx 4000 series were simply an array

of fine-grain logic blocks connected together by a programmable routing fabric. The
Virtex introduced embedded block RAM and logic block functionality to help with
arithmetic. The most recent architecture, the Virtex II Pro, includes embedded mul¬

tiplier units, power PC processors and multi giga-bit input-output transceivers. The
amount of embedded memory in the form of block RAM has grown close to 17 times
more quickly than the number of logic slices when the largest Virtex and Virtex II Pro
devices are compared. On-chip RAM is essential for unpredictable memory access

patterns as off-chip latency continues to grow in relation to logic speed. The trend
towards more on-chip RAM is also due to off-chip bandwidth not growing at the same

rate as transistor integration. Therefore, to satisfy the bandwidth requirements of some
applications, RAM must be provided on-chip.

The growth in the die area ratio between "hard" function blocks and the "soft"

logic-slice fabric is a significant trend. It is leading to fewer logic-slice configura¬
tion bits per transistor, potentially easing the burden on the configuration architecture.
Table 3.2 shows what percentage of the configuration bit stream is represented by
the logic-slice fabric in the largest member of each Virtex generation. The numbers
demonstrate the trend described here, although it should be noted that due to over¬

heads such as frame alignment and padding, the percentage figures may be slightly
inaccurate. It should also be noted that an absolute figure for the number of bits per

Virtex II CLB is not made available by Xilinx, and instead an estimate was used here

(1830 bits/CLB) based upon some experiments using JBits. An accurate value of 864
bits/CLB is known for the Virtex and Virtex E.

As the FPGA is used in more production systems, the established architectural
trend is to incorporate more fixed functionality at the expense of flexibility. This re¬

duces both the silicon area and energy gap with the ASIC alternative. The integration
of function blocks specialised for particular domains looks set to continue, producing
domain specific platform FPGAs[178]. It is clear that the percentage overhead of a
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Generation Device % Configuration bits for logic-slice fabric
Virtex XCV1000 86.6

Virtex E XCV3200E 86.1

Virtex II XC2V8000 81.4

Virtex II Pro XC2VP100 58.8

Table 3.2: Percentage of configuration bitstream for logic-slice fabric

given logic-slice reconfiguration architecture is constant. It is not clear if the resource

savings provided by reconfiguration of the logic-slice fabric will remain constant as it
is replaced by fixed functionality. Part of the reason for this uncertainty is the lack of
consensus in the literature over what role the logic-slice fabric is best suited to in a plat¬
form SoC. If, as some believe[5], its role will converge on the tightly coupled control

(e.g. high speed FSM) of a coarse grain datapath, then the runtime reconfigurability
of the logic-slice fabric may have a disproportionately large effect on the overall chip
resource usage efficiency.

3.7.3 Off-chip Memory Bandwidth

At present, the speed at which reconfiguration of the FPGA's logic-slice fabric can

occur is limited by the configuration interface. As discussed in this chapter, the config¬
uration interface and architecture can be changed to use the maximum off-chip band¬
width. The Virtex II device can implement a 64-bit 200MHz DDR RAM interface to

provide 25.6 Gbps. If all user I/O pins are used to connect to DDR RAM, with only
one set of control signals provided for all interfaces, an aggregate throughput for the

largest Virtex II device of 410 Gbps is possible. It would take 52gs to load all the
XC2V8000 logic-slice configuration bits. Of course, the cost to provide this band¬
width is very high - 16 DDR memory modules are used to produce the throughput, and

power consumption during reconfiguration will be considerable, if not unsupportable.

Compression techniques as discussed in this chapter would reduce the time required to
25 ps.
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Generation Device User I/O Pins Slices per pin
Virtex XCV1000 512 24

Virtex E XCV3200E 804 40

Virtex II XC2V8000 1,108 42

Virtex II Pro XC2VP100 1,164 39

Table 3.3: User I/O pins for the largest device in each Virtex generation

In the context of an application, 25gs may be considerable if latency is critical.
Network routers must minimise packet handling latency, as they are only part of the
cumulative end-to-end latency experienced by an application. For example, the aver¬

age number of hops made by Internet traffic today is 15[134]. When one considers
other delays such as buffering in host systems and application processing delays, it
becomes clear that latency introduced at routers must be minimised. An 8Gbps IPV6

forwarding implementation by Intel achieves a maximum latency of 60us for an Inter¬
net traffic distribution of packet sizes[114]. To compete with this implementation, the

computational delay of a runtime reconfigurable solution must be less than or equal to
the difference (35ps).

The network router serves as an example to show that systems with tight latency

requirements place restrictions on the application of runtime reconfiguration using off-

chip RAM. Table 3.3 shows that the number of I/O pins in each Virtex generation's

largest device is not growing at the same rate as the number of slices available. The
Virtex II Pro shows a drop in the slices/pin count, probably due to the displacement
of logic-slices by hard cores. So, despite the pedestrian improvement in the number
of user I/O pins and RAM interface standards compared to on-chip transistor integra¬

tion, maximum available off-chip memory bandwidth may manage to keep up with the

growth in logic-slices.
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3.7.4 Summary

The number of logic-slices is growing at a reduced rate compared to on-chip transistor

integration. The result is that as a percentage of overall cost, the silicon area required
to facilitate fast run-time reconfiguration using on-chip RAM is reducing. There exists
an open question as to whether run-time reconfiguration's requirements change as the
ratio of logic-slices to transistor integration reduces. We illustrate by example the
critical importance of reconfiguration latency to communication systems.

3.8 Summary

In this chapter we have pointed to the large design space for reconfiguration archi¬
tectures. In Section 3.2 we introduced a major commercial FPGA architecture - the
Xilinx Virtex. We then performed an analysis of what exactly occurs during reconfig¬
uration of the Virtex in Section 3.3. The overlay technique is the first result of the

analysis, as presented in Section 3.4. Further experimentation in Section 3.5 reveals
the extent and characteristic of the redundancy in the Virtex configuration bitstream.
This is taken advantage of in Section 3.6 to develop a highly scalable and low-cost
compression algorithm. Finally, Section 3.7 considers the demand that will be placed
on configuration architectures by new platform FPGAs.



Chapter 4

A Design Methodology for the

Reconfigurable Platform FPGA

4.1 Introduction

For reconfiguration to be widely accepted by embedded system designers, it must pro¬
vide significant resource savings in return for little additional design effort. This de¬
mands integration with established design flows, the use of familiar tools and languages
and the ability to make use of existing intellectual property. In short, reconfiguration
must be an evolution, not a revolution.

Section 4.2 characterises the application domain the methodology and its asso¬

ciated architecture should target. Section 4.3 gives an overview of our new design

methodology, describing the main principles upon which the approach is built. We

split the detailed description of the methodology over three different sections. Section
4.4 describes a simple runtime framework, referred to as the Checkpoint Framework,
onto which the implementation is mapped. Section 4.5 describes the procedure for ef¬

ficiently targeting the system at the framework. Finally, the algorithms and techniques
used in the targeting procedure for achieving the improved resource usage are given
in section 4.5.4. Section 4.6 lists the main contributions the methodology makes and

compares it to previous work. The chapter ends with a summary in section 4.7.

62
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4.2 Application Domain

4.2.1 Introduction

Over the past decade, the dominant form of computing has shifted from general pur¬

pose to embedded realtime[131]. Correspondingly, reconfigurable research activity
has shifted from general purpose, highly flexible architectures such as PRISC[133] and
Garp[79] to less flexible, domain specific architectures such as RaPiD[61], Pleiades[5]
and PipeRench[138].

Whilst the factors driving research and development have changed, the fundamen¬
tal promise offered by dynamic reconfiguration remains unchanged. Where an archi¬
tecture offers flexibility that may be exploited at run-time, there exists the potential for
resource savings, as shown in a theoretic result by Brebner in [32].

FPGA fabrics have also evolved, from the regular array of LUTs and RAM such as

the Xilinx Virtex[177] to the Xilinx Virtex-4[179] with its heterogeneous organisation
of LUTs, RAM, embedded multipliers and DSP blocks.

This section describes the application domain targeted by the methodology (section
4.2.2) and critiques existing implementation candidates (section 4.2.3).

4.2.2 Static Application Domain

4.2.2.1 Introduction

To help form a methodology for the reconfigurable platform FPGA, it is worth char¬
acterising the static FPGA's application space and features. We consider the recon¬

figurable FPGA to simply be an enhanced version of the static FPGA. All functional¬
ity remains the same, including the LUT fabric, ratio of RAM to logic and the DSP
core functionality; only the speed of reconfiguration changes. Restricting architec¬
tural change to this single variable lends confidence to the assertion that the domain of

application will stay the same.

4.2.2.2 Application Characteristics

When we compare the platform FPGA to other reconfigurable architectures we note
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the following:

1. High level of concurrency.

2. Saturated flexibility.

3. Real-time system focused.

4. Heterogeneous architecture.

These characteristics carve out the application space occupied by platform FPGAs.
The generous provision of LUT-fabric and programmable DSP blocks offers greater

application concurrency than a non-specialised CPU of equivalent silicon area. This is
in part due to the large fraction of silicon area in a CPU devoted to extracting the limits
of parallelism within a serial instruction stream. DSPs with specialised co-processors

are able to compete with the platform FPGA's concurrency in certain niche applica¬
tions. For example, Texas Instrument's C6416T DSP[158] includes Viterbi and Turbo

co-processors for Forward Error Correction in communication systems. However, ser¬

vicing processor interrupts can pose problems in a real-time system and esoteric archi¬
tectures demand specialist knowledge to program effectively. For example, network

processors are architecturally diverse and are often programmed by hand using assem¬

bly language[142][l 12].
The saturated flexibility characteristic is unique to an FPGA fabric. The 4-bit LUT

offers a very general-purpose computational element and the routing fabric offers high

redundancy for unrivalled control. The degree of flexibility is illustrated by the fact that
less than 10% of configuration bits are important to a typical circuit implemented on

the fabric. Other, less general purpose reconfigurable architectures, incrementally add

flexibility to meet a well specified requirement. For example, the Totem Project[46]

produces a coarse grain architecture with just enough flexibility to implement any one

of a set of netlists. The undesirable increase in area and the timing effects of extraneous

routing is minimised. Similarly, in[83] the authors automatically generate a reconfig¬
urable architecture, but with PLA/PAL arrays which are much better at implementing
random logic.
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Characteristic Augmented
Processor

Virtual

HAV(l)

Virtual

HAV (2)

Mult. Context

FPGA

High Concurrency X / / /

Saturated

Flexibility

/ / X /

Real-Time Focused X X / X

Heterogeneous
Architecture

X X / X

Example Proteus[48] SLU[25] Pleiades [6] DPGA[52]

Table 4.1: Suitability of selected reconfigurable FPGA models to the characteristics of
the static FPGA's application domains.

The real-time system focus of platform FPGAs is obvious when one considers the

primary application domains: telecommunications and DSP. Algorithm implementa¬
tion in circuitry explicitly deals with worst-case possibilities - well suited to real-time

systems. By claiming the spatial resources required for worst-case operation at the

global clock frequency, the designer guarantees meeting real-time requirements.

4.2.3 Model of computation

4.2.3.1 Introduction

The design process for static, synchronous RTL is well established and understood.

Reconfiguration extends the temporal dimension in the space-time tradeoff space from

design time into run-time. The challenge for the research community is how to ex¬

ploit the additional design freedom provided by reconfiguration. Selected previous

approaches to exploiting reconfiguration in an FPGA are characterised in table 4.1.
None fully match the characteristics of the application domain satisfied by the plat¬
form FPGA. In this section we explain and discuss this assertion.
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4.2.3.2 Processor

Several of the computation models listed in section 4.2.3.1 are microprocessor-centric,

identifying the most computationally intensive software routines and transferring them
to an FPGA fabric. These techniques assume the microprocessor should maintain its
central role in computation, an assumption which is criticised by other SoC researchers[28],
A continuation of the stored program model of computation is likened to shrinking the
motherboard and placing it on a chip. In such a model, the microprocessor coordinates

activity, with programmable logic implementing function units attached to the system

bus, or co-processors on a peripheral bus. The combination of a central controller (mi¬

croprocessor) and communication via buses leaves concurrency at the mercy of two
bottle necks: the serial instruction stream and shared buses. Further, the microproces¬
sor's central arbiter role can make real-time systems difficult to implement, such as

when processor cycles are consumed by unforeseen sequences of interrupt requests.
Commercial examples of processors augmented with an FPGA fabric do exist, such

as the Triscend A7[161], however they tend to be used as micro-controllers, with the
FPGA fabric implementing peripheral functions and interfaces. Conversely, in plat¬
form FPGA architectures, the microprocessor is included as a complement to the dom¬
inant programmable logic fabric. In this role of diminished responsibility, a proposed
function for the microprocessor is as a handler of exceptional control flows[27].

4.2.3.3 Virtual Hardware

The SLU model of computing, as described in sections 2.6.2 and 2.7.1.3, promises a

solution to the problems of the processor centric model. Constructing a system from
SLUs enables the concurrency of freely formed logic to be fully harnessed. Function¬

ality is no longer partitioned or constrained by the pre-divided regions of fabric in the
function unit model. Communication is no longer throttled by the use of shared buses;
instead the abundant FPGA routing resources provide dedicated, high-bandwidth com¬

munication links between SLUs.

The unconstrained shape and size of the SLU footprint is both a strength and a

weakness. Loading and unloading SLUs raises the complex tasks of fragmentation

management and interface satisfaction. Heuristic methods to tackle these NP-complete
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problems involve constraining the degrees of freedom, but they do not provide a sat¬

isfactory solution for real-time applications. Real-time solutions are deterministic and
involve a highly constrained version of the problem. These solutions come with little

supporting evidence of application, in effect producing an architecture with unknown

application. The same criticism does not apply to the pure, unconstrained problem,
because it can claim the existing wealth of static systems (which are valid in the virtual
hardware model), as evidence that dynamic reconfiguration can only provide increased

application potential.
The heterogeneity of platform FPGAs poses further problems for the virtual hard¬

ware model. Memory blocks and DSP functionality embedded in the programmable

logic fabric destroy the luxury of homogeneity enjoyed by most virtual hardware work
in the literature. Homogeneity allows an SLU to be placed anywhere on the grid of
LUTs providing its interface is satisfied. On a heterogeneous fabric, the interface with
fixed embedded functionality must also be satisfied; limiting the freedom of placement,
therefore reducing the flexibility of the model. This also affects placement in the static
model of an FPGA, but the fluidity of placement at the granularity of a LUT, rather
than the SLU, makes it less acute.

A common and simple virtual hardware approach to reconfiguration, is to tem¬

porally partition a design into several pages which are loaded into the FPGA in suc¬

cession. For example, in [165], a single-FPGA video coder, which is reconfigured

dynamically between Motion Estimation, DCT and Quantisation is described. The

suitability of such systems to implementation in an FPGA can be challenged in terms

of the characteristics in table 4.1. If it is possible to serialise the algorithm and still sat¬

isfy requirements, then perhaps the concurrency offered by an FPGA is not necessary,
and instead a high-end DSP would be suitable. The authors do not offer consideration
of this point or a technology comparison.

4.2.3.4 Synthesis

The logic-centric approach to exploiting dynamic reconfiguration extends high-level
synthesis through temporal partitioning. As described in section 2.5.3, models exist
for performing the combined problem of resource allocation, scheduling and temporal
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partitioning. However, we assert that the solutions based upon these models are not

feasible in an FPGA. We present three reasons to back-up this assertion:

1. The first reason is cost. The models employ control data flow graphs (CDFG),

working at the level of individual operations such as add and multiply. The
low-level of abstraction requires reconfiguration at speeds on the order of op¬
erator latency to be competitive with the static alternative. The word-oriented
interconnect and compute elements of a coarse grain fabric may be enhanced to

meet this reconfiguration requirement for a reasonable increase in silicon area.

By comparison, to extend the already saturated flexibility of an FPGA to perform

reconfiguration at the speed of an operator requires much more silicon area. This
stems from the fact that in a coarse grain fabric, the configuration bit area can be
amortised across several wires when the wires are data buses [43]. In an FPGA,

every wire is individually configurable. Also, implementations by DeHon and

Trimberger (see Appendix D) show the need for registers to re-time signals. In
the general-purpose architecture of an FPGA, all the re-timing registers are of

equal size, capable of catering for some "worst-case" requirement, maximising
their implementation cost.

2. The second reason is off-chip bandwidth. As described in Appendix D, the

provision of multiple configuration RAM bits per resource makes it possible
to both switch rapidly between configurations and to load new configurations
while performing computation. The parallel load is subject to the same off-chip
bandwidth bottle-neck as the single-context FPGA (chapter 3). With a limited
number of contexts, it would be necessary to load a new configuration from off-

chip RAM in the order of the time taken to perform an operation. This is not

feasible.

3. The third reason is power consumption. To switch all configuration bits on

the order of the time taken to perform a single operation would create thermal

problems [160],
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Table 4.2: Three strand approach to exploiting reconfiguration
Description Frequency Configuration Access
1. Static STATIC COMPLETE

2. Inter-subsystem DYNAMIC COMPLETE

3. Intra-subsystem DYNAMIC RESTRICTED

4.2.4 Summary

The platform FPGA meets the demands of applications which are predominantly real¬
time, have high-levels of concurrency for which there is no specialised architecture
available and are produced in low-medium volume. When considering enhancements
to the configuration architecture, it is important to note that they will effect its suit¬

ability for the established areas of application. Any significant changes to the power-

flexibility-cost tradeoff must produce either reasonable benefits across a wide range

of existing applications or large benefits to a small set of applications. Otherwise,
there exists a danger of creating a new architecture with no domain of application.
In essence, as mentioned in the introduction to this chapter, reconfiguration has the

potential to enhance the implementation of existing applications, not to define new

applications.
Our analysis of existing reconfigurable models concludes that none are suitable for

the existing application domain satisfied by the static FPGA.

4.3 Methodology Overview

Our methodology adopts a robust, pragmatic and conservative approach to harnessing

reconfiguration. It recognises the dominance of the established approaches to static

synchronous RTL design, and unlike previous work in the literature[72][92], it aims to
enhance, instead of replace, these proven design practices. The application area we use

to illustrate our approach is the real-time latency-sensitive System on Chip (RLSoCs).
Our methodology harnesses reconfiguration in a three strand approach, listed in

table 4.2. The strands differ in terms of their access to the configuration memory
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(complete or restricted), and when the access is performed (static or dynamic). Both
static and inter-subsystem strands have the freedom to change any part of the con¬

figuration. Intra-subsystem is restricted to those configuration changes that can be
performed in-situ, that is, it uses local hooks to the configuration memory as opposed
to the general-purpose configuration interface. The general-purpose configuration in¬
terface is a shared resource, so its use must be arbitrated. The local configuration

memory hook is not shared, so its use is autonomous. For example, in the Xilinx Vir-
tex architecture, the Select-MAP interface provides complete, general-purpose access

to the configuration memory, and the LUT 'D' pin on the SRL16 set of primitives is a

restricted, local configuration memory hook.
The three strand approach provides the conceptually simple and fabric independent

foundation upon which the methodology is built. The high-level problem tackled by
the methodology is how to cost-effectively harness reconfiguration in an RLSoC, with
cost measured as the bill of materials.

Low-medium frequency reconfiguration (inter-subsystem) is an under-explored area

in the the literature, hence its exploitation forms the main thrust of the methodology's

presentation. An RLSoC consists of subsystems cooperating to perform a shared task.
As the system's task changes with time, so does each subsystem's task; therefore it fol¬
lows that a subsystem's resource requirement also changes with time. Our key insight
is that these temporal resource requirement fluctuations are not necessarily correlated
across subsystems, producing the potential for inter-subsystem resource sharing.

To aid understanding of this insight, it is helpful to consider its effect pictorially.

Figure 4.1 depicts two possible implementations of the same hypothetical system. On
the left hand-side is an ASIC implementation, and on the right hand-side is a recon¬

figurable implementation. The five shaded boxes represent different subsystems, and
their area is proportional to their resource requirements. The figure clearly illustrates
how the system-level insight may be exploited. The ASIC flow produces a single,
combined worst-case instance. The reconfigurable flow produces multiple, isolated,
worst-case instances. The sub-systems vary in size between system instances because

they are tailored to the particular subset of functionality required. The functionality
varies due to temporal changes in the system environment. Only one system instance
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may be resident on the fabric. The loading of instances is presided over by a perma¬

nently resident control unit which is described in section 4.4. A number of points can

be made upon consideration of the reconfigurable solution. First, the largest instance

requires less resources than the ASIC instance. Second, subsystems are not always

required simultaneously. Third, the largest instance of each subsystem must still be

implemented by the reconfigurable solution. Fourth, each system instance satisfies an

entire subset of system-level requirements. The lines between the two design flows
link the five ASIC subsystems to the reconfigurable instance in which they are at their
maximum size.

These observations apply to the application of inter-subsystem reconfiguration in
table 4.2. It should be noted that static and intra-subsystem reconfiguration are com¬

plementary to the savings achievable with inter-subsystem reconfiguration. Static ex¬

ploits the fact a reconfigurable fabric may be offered in a range of sizes. This enables
a more efficient (and cost-effective) mapping between individual product requirements
and their implementation. The ASIC design flow misses this opportunity. The appli¬
cation of intra-subsystem reconfiguration will always require fewer resources than the
monolithic implementation. The third observation of inter-subsystem reconfiguration
above is improved upon by the application of intra-subsystem reconfiguration.

4.4 Checkpoint Framework

The Checkpoint Framework defines the reconfigurable behaviour of the device at run¬
time. Its purpose is to present a simple, synchronous and design-time fixed target for
the system at run-time.

The runtime framework consists of inserting a periodic sequence of special time-

points into system execution, called the checkpoint heartbeat. On the rising edge of
the heartbeat, a permanently resident control unit calculates whether a reconfigura¬
tion should occur. If the checkpoint enable signal is set to high, computation in a

sub-area of the fabric is suspended, configuration changes are carried out in the sus¬

pended area, and then computation is resumed. The checkpoint heartbeat is periodic,
of constant duration and provides an opportunity for a statically determined area of
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Figure 4.1: Traditional Implementation versus Reconfigurable Implementation Exploit¬

ing Inter-Subsystem Resource Sharing

fabric to be reconfigured. The ratio between the time spent reconfiguring and the time
spent performing computation is important. Together with the reconfiguration speed
of the target device, the ratio determines whether inter-subsystem reconfiguration is
worth performing. Figure 4.2 illustrates the relationship between checkpoints, inter-
subsystem reconfiguration and the time spent performing computation. On every rising
edge of the checkpoint heartbeat, computation always halts in the statically determined
reconfigurable area of fabric, providing an opportunity to make configuration changes.
As can be seen in the picture, not every opportunity to perform reconfiguration is taken.

The configuration remains fixed between two checkpoints, meaning it must be ca¬

pable of satisfying all possible requirements during that time. When a checkpoint
occurs, the area of fabric being reconfigured must present a consistent interface to the
rest of the system. That is, the interface must continue to consume and produce data.
This effect is achieved by using RAM to buffer the input and output. Although not ex¬

clusively the case, buffering is commonly performed at the chip I/O interface to make
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Figure 4.2: Illustration of timing relationships between checkpoints, computation and

reconfiguration.
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use of cheap off-chip RAM.

4.5 Targeting

4.5.1 Introduction

The process of selecting a suitable checkpoint frequency, optimally mapping a design
to the run-time framework and configuration organisation are discussed in this section.
These ideas are then combined in Section 4.5.5 to produce a step-by-step procedure
for targeting the checkpoint framework.

4.5.2 Reconfiguration Frequency

The checkpoint methodology's place in the continuum of reconfiguration frequencies
is much closer to static design (reconfiguration frequency of zero), than it is to chang¬

ing state on each and every FSM transition, as proposed in [54]. The choice of recon¬

figuration frequency is based upon the observations of others, and estimates of silicon
area required to facilitate different frequencies of reconfiguration.

The guiding principle of the checkpoint methodology is the maintenance of a hier¬
archical view of system construction. Traditional, worst case design splits the system

into blocks in a hierarchical manner. With the interfaces between blocks well de¬

fined, each block can be implemented with little consideration of the other blocks. In

performing the hierarchical division of the entire system into blocks, certain character¬
istics of the system as a whole are lost. For example, how the processing load across

blocks varies with time. Blocks are implemented to cope with their worst case process¬

ing load, producing a solution constructed out of worst-case blocks, which will never
be simultaneously required at full load.

By continuously evaluating the system requirements at runtime, a more suitable hi¬
erarchical breakdown is possible. Blocks can satisfy present case system requirements,
not overall worst-case requirements.
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4.5.3 Reconfiguration Organisation

The procedure for identifying the checkpoint configurations is based upon two steps.

The steps act as filters, reducing the set of all system configurations to the minimal
set of configurations required to implement the system. This section illustrates the

principle contribution made by the checkpoint approach to reconfiguration. It places
the key optimisation step of the targeting procedure in context.

Today's system development is progressing towards connecting together pre-designed
and tested cores to build a complete system. Our targeting procedure takes advantage
of this trend by recognising that selecting different core parameterisation values re¬

quires very little effort. A new system configuration is easily produced, since it simply
involves applying a new set parameters across all the cores, and instructing the tools
to produce another configuration bitstream. The additional design effort for a recon¬

figurable implementation is performed by the existing design tools, not the system

designer.
The process of selecting core parameters corresponding to minimal FPGA resource

usage is illustrated in Figure 4.3. The bubble at the top of the picture represents all
valid instances of the system. This spans from the instance where no work is being

performed to the instances where there is maximum resource usage. The first opera¬
tion, is the productisation or static filter stage. This filter's effect is a combination of
both business and engineering decisions. It uses knowledge of the products the system

is going to form a part of, to tailor their implementation to more closely match their

requirements. For example, consider the number of antenna, cell size and air interface

protocols supported in a wireless base station. With the static filter applied, several
versions of the same system, differing by their fixed parameterisation, proceed to the
second stage independently.

The dynamic filter takes the set of possible instances for the statically separated

system and produces the set of instances which minimally implement the system. As
illustrated in Figure 4.3, the implementation instances specify the parameters for each
core in the design. It is important to note that an implementation instance may not

have an exact dynamic instance counterpart. This is because, to produce the system

with minimal overall cost function, two or more dynamic instances may be combined
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Instance for Subsystem
implementation instance

Figure 4.3: Configuration instance specification process

to form an implementation instance. As discussed in the next section, the cost function
for the reconfigurable system is a combination of the FPGA size required and the
number of configurations.

4.5.4 Optimisation

The key insight noted on page 70 results in the definition of a combinatorial optimi¬
sation problem, relating the coverage of specific system instances to hardware config¬
urations and the cost of these configurations.
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Figure 4.4: Four examples of load distribution across the different service types.

Figure 4.4 shows four examples of how processing load may be distributed across

different service types offered by a system. We refer to these patterns as application
profiles. It is important to note, for example, that a hardware configuration, h, which
satisfies application profile Figure 4.4(i), can also satisfy the application profile in
Figure 4.4(ii).

• We define an application profile, a, to be a vector in Zl, where I is the number of
different services offered.

• We define an application profile set to be a set of application profiles.

• We define a hardware configuration to be a vector in ZN, where N is the number
of hardware blocks in the system.

• We define a hardware configuration set to be a set of hardware configurat ions.

• We define a hardware configuration cost function C :: (ZN)— > area.
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• We define an objective function, O :: (int,area)— > combinedcostunits. The
integer is the number of configurations, and the area is that of a hardware con¬

figuration.

• We define an application profile to block cost mapping function PB :: (vector £
Z' , int)— > cost, which takes an application profile vector and a block type, and
returns the block's cost, for that particular application profile.

Given an application profile set APS, a profile-to-block function PB, an objective
function O and a hardware configuration cost function C, the overall goal is to find a

hardware configuration set HCS, such that:

Ma £ APS 3 h £ HCS such that
(4.1)

Mj£{\...N}PB(aJ)<hj

and

0(k,max(C(h) \ h £ HCS)) is minimised
(4.2)

where k = \HCS\

For every application profile in the AP set, there is a configuration in the HC set

which at least satisfies its requirements for every type of block. The terms area and
cost are deliberately undefined, because they depend on the target technology. It is
likely that they will be the same, but we reserve the ability for the cost function to

consider composite global effects on the area required.

4.5.5 Procedure

In this section we combine the novel ideas presented here with the standard static

design flow to produce a reconfigurable design procedure. Together, the procedure and
framework produce the reconfigurable design methodology.

The targeting procedure is described in pseudo code as follows:
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1. Capture system requirements
2. Perform preliminary system design
3. Extract decision variables

4. Separate system into static products
5. Capture system constraints (inequalities)
6. Extract system cost function
7. Minimise system cost function
8. Direct intra-subsystem reconfiguration effort
9. Advance implementation
10. Generate checkpoint control unit

Step 1 is identical to traditional design flows: system requirements are established
and refined to produce a well defined set of tasks the system is to perform. Step 2
involves making traditional high-level design decisions, such as the partitioning of
the system into subsystems and algorithm selection. With the system's high-level de¬
sign established and well understood, step 3 uses this knowledge to list the variables

upon which its resource requirements depend. We use the nomenclature of Operations
Research to refer to these variables as decision variables. Along with the decision
variable's name, description and the set of values it can be assigned, we also record
the maximum frequency at which it changes. The extraction of decision variables is
best done at the subsystem level. With the local algorithmic detail available, decision
variables that would otherwise not be identified are made obvious. Those decision vari¬

ables with zero frequency of change are referred to as static. The product requirements
are examined in step 4 to determine how the static variables may be usefully folded
into the design. Folding here may involve reducing the range of values a variable may

take, so it cannot actually be folded at this stage. The result of folding is a set of system
instances, each of which satisfies a subset of the total system requirements. One of the
subsets may be the full set of requirements, meaning one system instance is capable of

performing the task of any other system instance.

Step 5 involves expressing all system constraints as inequalities in terms of the
decision variables. These inequalities require in depth system knowledge to establish,
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and may be the product of detailed algorithmic analysis and simulation, as is often

performed when designing complex systems.

The system instances are constructed from the same subsystems. They will im¬

plement similar (if not identical) algorithms, so subsystem implementation follows the
established parameterised IP block design principles. In the reconfigurable solution,
the parameters are decision variables. Steps six and seven determine the set of deci¬
sion variable instances necessary to minimally implement each system instance. The
minimisation function models the resource requirements on the target reconfigurable
device. We refer to this function as the objective function. Step 6 in the targeting

procedure is the derivation of the objective function for each system instance. It is a

composite function capturing the total requirement of all resource types in the target

implementation fabric. A resource requirement is expressed in terms of the decision
variables. Step 7 uses the objective function (step 6), system constraints (step 4) and
decision variable details (step 3) to find a more efficient implementation. The details
of step 7, the most significant step in the procedure, are given in section 4.5.4. Step 8
directs the application of intra sub-system reconfiguration. This is done by examining
the resource requirements of the largest system instance, and identifying where further

specialisation effort would produce most resource savings benefit.
A traditional iterative implementation strategy will pass over steps 4-9 many times.

Initially it will use low accuracy estimates for the objective function. With each it¬
eration, the implementation advance in step 9 will improve the estimate's accuracy,

culminating in it no longer being an estimate, but instead being extracted from the
actual implementation.

The separation of the system into system instances will be continuously evaluated.
As the objective function accuracy improves, it may no longer be possible to justify
the original choice of system instances. For example, the difference in resource re¬

quirements between two instances may not be enough to merit the required additional

subsystem design effort.
The checkpoint enable signal is produced by the permanently resident control unit.

It is an FSM, fed by the decision variables and produces the checkpoint enable signal,
and the system configuration to load. The creation of the control unit is the tenth and
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final step of the targeting procedure.

4.6 Discussion

4.6.1 Introduction

The combination of the design framework and targeting procedure produces a new

methodology with a number of distinguishing characteristics. In this section we list
the characteristics and discuss them in terms of their contribution.

4.6.2 Contributions

The primary strength of our methodology is its non-obtrusive system-level approach.

Reconfiguration is treated as an enhancement to existing design techniques, providing
a mechanism to create more silicon efficient FPGA based SoCs. It is non-obtrusive

because it simply directs the familiar development of parameterised subsystems; the
direction being the specification of parameter ranges for the different system instances.
The system-level view considers the cost-speed tradeoff of the configuration architec¬
ture, leading to the checkpoint run-time framework. It also directs intra-subsystem and

inter-subsystem design effort to where it is ofmost benefit.
Unlike any other approach, our methodology exploits knowledge of the system

in operation, and hence its effect on system resource requirements, at design-time.
Conventional reconfigurable wisdom says this operational knowledge can only be dis¬
covered at run-time. To take advantage of such knowledge, the system must allocate
resources fluidly at run-time, reacting to changes in the operational requirements; how¬
ever this is not feasible due to the complexity of place and route. Our methodology
avoids this conundrum by acquiring certain operational knowledge at design time. This
is done by constructing a set of equations (describing the objective function) from what
is normally implicit system knowledge, such as the algebraic relationship between two
decision variables. Such a relationship has little bearing on conventional design, where

systems are a compounded worst-case, having been constructed from the worst-case

design of all sub-systems; however a reconfigurable design can use algebraic relation-
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Figure 4.5: Implementation of a Reconfigurable Algorithm Enhanced by Knowledge of
the Global Objective Function

ships between decision variables to reduce the resources required to satisfy system
demands.

We capture this unique feature of our methodology in Figure 4.5. It differs from
the conventional reconfigurable diagram (Figure 2.3) through the additional source of
information feeding the custom algorithm design - the objective function.

Our methodology's distinguishing features are listed below. They may be grouped
as follows: 1-4 concern Restricted Design Freedom, because their existence arises
from design and architectural constraints, while 5-6 concern abstraction, because their
strength derives from implementation independence. We explore these distinguishing
features under their respective group names in the rest of this section.

1. Real-time system applicable.

2. Three fixed reconfiguration frequencies.

3. Automatic extraction of inter-subsystem reconfiguration potential.

4. Directs intra-subsystem reconfiguration with global objective.

5. Independent of tools and languages.
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6. Independent of FPGA fabric.

4.6.3 Restricted Design Freedom

As we approach the multi-billion transistor SoC, an emerging rule of thumb is that

designers need freedom from choice, giving impetus to platform based design. The

principle behind a platform architecture is to concentrate design effort where it offers
most value, and remove it from tasks common to all SoCs, such as physical layout
and verification. Removing these freedoms in effect gives more time to concentrate

on the remaining, more valuable, design freedoms. Our methodology adopts a similar

approach to reconfiguration with its use of the run-time framework. The restrictions
are as follows:

1. Full configuration memory accesses are specified at design-time.

2. Full configuration memory access occurs only at checkpoints.

3. The checkpoint sequence (number, duration and frequency) is determined at

design-time.

4. In-situ reconfiguration is limited to local configuration memory hooks provided

by the architecture.

The justification for the particular restrictions imposed by the methodology is now

given: A tradeoff exists between reconfiguration speed and silicon area. As reconfig¬
uration speed increases, the required silicon area increases, as discussed in chapter 3.
All resource savings made with reconfiguration come from data folding. If all decision
variables are assumed to have the same resource saving potential if folded, it follows
that the best resource-savings to reconfiguration-cost-ratio will come from variables
which change infrequently.

These constraints on design freedom reduce the reconfigurable tradeoff space. The

temporal dimension introduced into the design space by reconfiguration changes from

being continuous to being discrete, synchronous and design-time fixed. This injects
immediate structure into what is often an ad hoc situation. No longer is the designer
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free to consider the merits of ad hoc access to the global configuration interface and the

potential for generating circuitry at run-time is limited to what is possible with local in-
situ configuration memory hooks. The intention of these restrictions is to maximise the
resource savings to effort ratio, whilst maintaining enough flexibility to be applicable
across a range of RLSoCs.

There is a clear link between the constraints listed above and the restricted de¬

sign freedom characteristics listed in the contributions subsection. Restricting both

checkpoint sequence generation and full configuration memory access to design time,
ensures no complex design decisions or circuit generation is attempted at run-time.
This makes real-time systems feasible.

The objective function directs design effort from a system-level - avoiding ad-hoc
local optimisation as performed in other approaches[135][164]. A global view is es¬

sential when trying to reach near minimum system resource usage. Our methodology
considers the total cost of implementation, including the reconfiguration architecture
silicon area and off-chip I/O memory buffer.

4.6.4 Abstraction

4.6.4.1 Languages and Tools

Our methodology's independence from design language, tools and implementation
forms a high-level of abstraction. In an era of platform based design, abstraction is
at the heart of all systems, creating the need for a methodology capable of guiding

high-level design decisions.
We believe that achieving resource savings through reconfiguration is not tied to

the particular language used, but to the methodology applied. Other work emphasises
the importance of language expressiveness to reconfigurable system design, which may

improve productivity, but does not provide an insight on how to harness reconfigura¬
tion. For example, the Lava[22] language from Bjesse et al. allows circuitry to be
described using higher-order functions and polymorphism and allows layout to be cap¬

tured without the use of layout combinators[146]. Therefore, more elegant, readable

descriptions of circuitry are possible, analogous to the purported advantages of soft-
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ware functional programming languages such as Haskell when compared to C.
Most previous work on run-time reconfiguration, for example JBits, takes a bottom-

up approach to design by tailoring logic slices and constructing cores by progressive

composition. The most abstract realisation in JBits, the run-time parameterisable core

(RTPCore), does not provide any methodology for the designer other than composi¬
tion. Another approach to design of systems which require reconfiguration is to use a

top-down methodology, constructing systems from plug-compatible components, such
as programmable multi-function cores[110]. Our methodology combines both design

approaches: intra-subsystem reconfiguration is bottom-up design and inter-subsystem

reconfiguration is top-down design. It extends the MacBeth and Lysaght top-down con¬

cept of plug-compatible components, to plug-compatible systems. The UART compo¬

nent used as a demonstrator in their paper] 110| is trivially small when considered in
terms of today's multi-million gate SoC designs. The authors offer no methodology to

scale the approach beyond a single component to multiple inter-operating components.

4.6.4.2 Architecture

Today's platform FPGAs and SOCs are constructed from a heterogeneous mixture
of computational fabrics. The new methodology presented here recognises this, and

by reducing the conceptual complexity of reconfiguration, heterogeneous architectures
become as straightforward to target as the homogeneous fabrics focused on in previous

approaches (section 4.2.3).
The checkpoint run-time framework forms a layer of abstraction, separating the

reconfiguration details of a particular architecture from the design targeting and opti¬
misation procedures.

4.7 Summary

Reconfigurable RLSoC demands a different approach to those ideas in the literature

proposed for general purpose systems. In this chapter we have motivated, described
and discussed a run-time framework and design methodology for targeting RLSoCs
at reconfigurable computing fabrics. Our approach aims to limit design freedom and
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hence reduce the complexity of reconfigurable design, whilst simultaneously keeping
most gains through reconfiguration attainable.



Chapter 5

Case Study: UMTS Physical Layer

Processing

5.1 Introduction

The Checkpoint design methodology described in Chapter 4 is now applied in a large

case-study, the physical layer processing performed by a UMTS base station. For an
overview ofUMTS, please refer to appendix B. This chapter begins by introducing the
commercial ASIC design the case-study is based upon in Section 5.2. Then the par¬

ticular sub-blocks focused on in the case-study are described in Section 5.3. Section
5.4 describes how the checkpoint methodology is applied with Section 5.5 exploring
the changes required to the Xilinx Virtex architecture to implement the Checkpoint
Runtime Framework. Section 5.6 discusses the assumptions that had to be made to

perform the case-study. The resulting logic and memory resource savings are presented
in Section 5.7 and the outcome of the case-study is summarised in Section 5.8.

5.2 UMTSSOC Overview

The UMTSSOC processor is a sophisticated SOC ASIC design. It performs the phys¬
ical layer digital signal processing (DSP) for the 3GPP UMTS basestation in both the
direction of the User Equipment (UE), referred to as the downlink, and the direction of

87
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the basestation, referred to as the uplink. It is designed to fully comply with Release 4
of the 3GPP specification. This section outlines where UMTSSOC fits into the overall
basestation solution.

The UMTSSOC functionality covers the top part of what is classically referred to

as the physical layer in the OSI model, and the lower part of what is referred to as the
medium access controller. The rest of the physical layer is the ADC/DACs, analogue

stages and antenna. Above, the UMTSSOC interfaces with the rest of the medium
access controller, which in the case of the basestation, among other things, assigns
which calls are processed by the channel element.

The UMTSSOC is capable of supporting up to 64 calls simultaneously. A basesta¬
tion is configured for a particular cell site by adding the required number of UMTSSOC

equipped cards. Each card increases the maximum number of calls that can be pro¬

cessed by 64 for each chip on the card. The basestation may have up to six sectors,

each sector with 2 antennas and 3 carrier frequencies. This produces a total of 36 dif¬
ferent radio sources in a maximum capacity basestation. Of those 36 potential radio
sources, each UMTSSOC is capable of both transmission and receipt of calls on 12
of them - equivalent to 3 sectors and 2 carrier frequencies or any combination thereof.
The term 'call' is used here to refer to a dedicated connection between the basestation

and the UE. The nomenclature arises from the telecommunication industry's histori¬
cal focus on voice traffic, but here it refers to both voice dedicated channels and data

dedicated channels.

UMTSSOC has two uplink feeds, one on-time and the other delayed by 1.026
frames. The reason for having a delayed feed is explained in Section B.2.3. Each feed
has 36 radio sources, sampled at twice the chip rate, producing a "full" and "half-chip"

component for each radio source. A chip refers to the time taken to transmit a single bit
in the spread and scrambled transmit stream. The main clock frequency of UMTSSOC
was chosen to be 184.32MHz since many processing steps must be performed per chip
received. With the UMTS chip rate at 3.84Mcps, there are 48 clocks per chip. Such
a high ratio of clocks to chips is indicative of the heavy signal processing involved to

achieve satisfactory performance. The demand for a high clock rate can partially be
illustrated by the searcher's need to correlate 2 antenna sources, both full and half chip
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Partition Logic Gates Memory Bits % UMTSCE Silicon Area

Preamble Detector 117,000 526,080 12.1

Searcher 407,613 2,235,104 15.5

RAKE Receiver 961,973 4,056,750 28.5

Power Controller 117,000 1,660,224 7.9

Transmitter 301,480 543,776 6.9

Extended Soft Information Processor 525,078 5,560,848 29.1

Table 5.1: UMTSCE ASIC Resource Requirements

components (4 streams) for up to 64 users.

5.3 UMTSCE Outline

The ASIC implementation of UMTSSOC has 8 partitions which together perform all
the physical layer digital signal processing. The 6 partitions directly involved in chan¬
nel processing are considered here for parameterisation and will be referred to as the
UMTSCE. Table 5.1 lists the partitions and their ASIC resource requirements.

The rest of this section gives a high-level overview of how the UMTSCE partitions
interact. Section B.2 gives a short description of the function performed by each block,
with simplified block diagrams of the partitions used throughout the descriptions to aid

understanding.
A central challenge of spread spectrum CDMA is the receiver architecture for find¬

ing the strongest multi-path component signals from the UE. As stated in Section
A.6.2, a CDMA system is interference limited, so the aim of a good receiver archi¬
tecture is to extract a low power signal and so minimise the required transmit power.
Movement of both the UE and objects in its vicinity result in a rapidly changing radio

propagation channel between the UE and the basestation. The single transmitted sig¬
nal may be reflected off various objects, and hence follow many different paths to the
base station antennas. The different paths arrive at the antenna at different times, so
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the receiver must search continuously across a range of delay spreads for the strongest

multi-path signal component.
When the UE is first switched on, it initiates contact with the basestation by trans¬

mitting a RACH preamble. The basestation must listen continuously for this RACH

preamble, which is demanding since the UE may be anywhere within the cell. The
basestation must therefore correlate continuously the sampled antenna stream with

expected signatures in the lookout for UEs wishing to establish a connection. This
continuous scanning of the antenna sample stream for initial UE RACH preambles is

performed by the Preamble Detector (PD) partition.
On establishing contact with the basestation through the RACH preamble, the UE

may request a dedicated channel. A dedicated channel is used for voice or data at

different speeds depending on the spreading factor used. It is closely monitored in an

attempt to ensure that the strongest multi-path components are used for reception as

described above. It is not necessary to search the entire sample stream continuously
for communication from the UE on the dedicated channel since, relative to the bases¬

tation the time of arrival of the UE transmission is known, initially advised by the

preamble detector on channel setup. As radio channel changes occur, for example as

the UE moves from outside to inside a building, the strongest multi-paths will arrive
at different times. Due to the continuous and rapid reassessment of the channel at the

receiver, these changes may be tracked fairly smoothly. The search space is restricted
to a window of 192 chips in the UMTSCE implementation, equivalent to 7.5Km, and
is searched every 0.6ms. The reason why a 7.5Km space is searched every 0.6ms is
not that the UE may have travelled that distance, but instead that a small change in the
channel conditions may mean that a reflection off a distant object has become a strong

multi-path.
The searcher outputs the best set of delay offsets for each channel in terms of the

number of half-chips from "base-station time". These are passed to the RAKE receiver
which interpolates the half-chip sample resolution to further fine tune the multi-path

components. The RAKE outputs the UE data bits as estimates or "soft bits" after de-

spreading and de-scrambling. The estimates are fed into the Extended Soft Information
Processor (ESIP) for channel decoding to finally produce the transmitted "hard bits".
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One method of minimising transmit power as described in Section B. 1.2.2 is by way

of power control bits interleaved with the data providing a feedback path. The RAKE

provides this feedback mechanism to the power controller partition.
The Preamble Detector, Searcher and RAKE all form the uplink chain. The ESIP

and Power Controller are shared between the uplink and the downlink. The downlink
chain is simpler and has only one dedicated partition - the transmitter. The transmitter

spreads and scrambles data destined for the UE, and may output more than one transmit
stream per UE for soft handover - i.e. moving between sectors on the same basestation.

5.4 Methodology Application

5.4.1 Introduction

In this section we describe how the targeting procedure is applied to the signal pro¬
cessing performed in a UMTS base station (a so-called "Node B")[2]. To avoid the

large implementation effort, all results are derived from the commercial UMTSSOC

implementation. The UMTSSOC is an existing ASIC design and we work backwards
to determine the size of an equivalent reconfigurable implementation instead of design¬

ing a completely new reconfigurable solution. This has the advantage of both providing
an assurance that the system engineering is correct and makes a study of such a large

complex system feasible. It has the disadvantage that key system engineering deci¬
sions that are likely to be made differently for a reconfigurable system solution are

artificially imposed. The ASIC is designed for a single sector carrier so that it provides
a scalable solution. For example, economies of scale like designing a subsystem to

satisfy the requirements of several sector carriers are not realised.
It is still possible for the reconfigurable system solution to exploit different product

configurations and dynamic resource requirements. For example, the size of the CMF
in the searcher is dependent on the size of the search window. If, instead of targeting
an ASIC, the UMTSCE was to be targeted at a family of reconfigurable fabrics, then
the implementation could be tailored to perform exactly what is required and therefore
minimise the fabric size required. For instance, a basestation configuration for an

urban environment may have a much smaller search window than that of a basestation
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configuration for a rural environment.
The design of such a UMTS processing engine is driven, at the top level, by the

Node B configurations. This set of configurations, in turn, depends on the overall

system requirements, i.e. (a) static, product deployment parameters such as cell size
and environment (e.g. indoors, urban and rural) and (b) more dynamic parameters such
as the traffic mix at any given point in time (e.g. voice, high-speed and data).

The parameterisation of the different subsystems within the processing engine de¬

pends on different aspects of the various system configurations supported:

• For subsystems supporting transport channel encoding (channel encoding, rate-

matching, interleaving, etc.) for the downlink and decoding for the uplink, the

key factors are primarily the choice of channel coding technique (convolutional
or turbo) and the total aggregate engine data throughput.

• The number of channels processed controls the size of the rake receiver and
the transmitter (modulation and spreading functions). The rake receiver also
depends on the number of "fingers"1 per channel received.

• The size of the multi-path searcher for detecting new multi-path components

depends heavily on the number of channels to be searched and the search window
size. The latter depends upon the possible spread of multi-path delays which in
turn is dependent on the type of environment and cell size.

• The RACH preamble detector2 capabilities will be set by the level of expected

usage of the RACH in the cell's uplink.

Thus different subsystems will have their most demanding instance in different

product configurations. For example, the transmitter is most heavily loaded when
there are a large number of low data rate (e.g. voice) users, while the channel decoders

might be most heavily taxed with a low number of high data rate channels employing
the more intensive (in terms of decoding) turbo codes. These two situations, due to

'A finger is one correlator unit allocated to one multi-path component to be detected and demodu¬
lated.

2The preamble detector hunts for short signature sequences sent by the mobile terminals requesting
permission to send a short burst of data using the RACH (random access channel).
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air interface constraints, are mutually exclusive at any given point in time in a given
Node B. Hence, a channel processing engine designed to cover all requirements simul¬

taneously will have significant portions of its functionality unused at any given point
in time. Runtime reconfiguration can take advantage of these time varying demands,
by only requiring enough resources to satisfy the largest single instance of operational
demand.

5.4.2 Step 1: Capture system requirements

Like all engineering design, the procedure begins with some form of hand-off from the
customer. Its purpose is to unambiguously specify the high-level system requirements
to ensure the best implementation.

The requirements for the UMTS Node B are as follows:

1. Node B physical layer processing for UMTS release 4

2. Interfaces

(a) Antenna samples interface

(b) User data interface

(c) Control interface

3. Cell radius (Km)

(a) Pico: 0-0.2

(b) Micro: 0.2-1.0

(c) Macro: 1.0-30.0

4. Antenna: Minimum 2, Maximum 12

5. Sectors: Minimum 1, Maximum 6

These requirements will have been shaped by the initial (entire product) specifica¬
tion work. This will include considerations as diverse as the Node B's overall cost,
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physical footprint and reliability. For example, a cost assessment of the analog stages

may have shaped the upper limit on the number of antennae.
It is worth noting that the UMTSSOC solution is designed to meet the demands of

a single sector carrier. When a Node B is configured, UMTSSOC cards are inserted
to match the number of sector-carriers to be serviced. Additional opportunities for

reconfiguration, which may exist as the size of the problem scales, cannot be exploited
when basing the reconfigurable solution upon the UMTSSOC.

5.4.3 Step 2: Perform preliminary system design

With the interface to the rest of the system defined, and the functional requirements
stated, system design can begin. The specification documents created by 3GPP pro¬

vide a clear definition of what the system must perform. The second step in the target¬

ing procedure involves decomposing the system into its subsystems and defining their
interfaces.

We require the major subsystems described in section B.2, namely, searcher,

preamble detector, forward error correction, RAKE receiver, power controller and
transmitters. Where there is a choice of which algorithm to use for a particular subsys¬
tem, simulation work may be performed to help select one. For example, innovation
within the RAKE receiver is likely to have an effect on the overall Node B perfor¬
mance.

A block diagram and short summary of the function performed by each subsys¬
tem is given in section B.2. The classic systematic procedure of dividing the system

into subsystems is followed, allowing implementation to progress independently across

subsystems once the interfaces are defined.

System simulation and analysis work (along with fundamental results in informa¬
tion theory) will help to define many of the system parameters. An example result is
that the antenna outputs are sampled at twice the chip rate, and use 4 bits for both the
I and Q components. Another interesting high-level design decision is how to perform

despreading of radio frames. The control bits specifying the data spreading rate are dis¬
tributed across the UMTS radio frame, meaning that the entire frame must be received
before the spreading rate is known. There are several approaches to dealing with this
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issue, but the one chosen here is to have two antenna data buses, one delayed in time

by a radio frame using off-chip RAM and the other arriving on time. The control data
is extracted using the on-time data bus, just in time to enable informed despreading on

the delayed data bus.
In this case study, to obtain an accurate model of the computational requirements,

it is insufficient to consider in isolation the UMTS specification or the information
theoretic understanding of CDMA communications. Instead, it is necessary to model
how the disparate factors combine to engineer the solution. In essence, the best model
is the system.

The system may be viewed as a hierarchical collection of function blocks. At the

highest level, the input is antenna samples and the output is OSI layer 1 bits. This
level of abstraction offers little insight into the computation performed. At the next

level down in the system decomposition tree, we get closer to where the computation
is performed, but it is not until we drill down to the leaf function blocks, that the actual
function being performed becomes apparent.

Upon inspection of the block diagrams and the accompanying algorithm descrip¬
tions, it is possible to list the variables influencing the system's resource requirements.
The definition of what constitutes a variable needs to be clarified. We define it as a pa¬

rameter which is dependent on the implementation; so the number of chips in a control

symbol is not a variable, but the number of antenna on the base station is a variable.
We define a user to be a four tuple of connection parameters:

user = {type, rate, TTI, code} (5.1)

This tuple represents the high-level characteristics of the required receiver archi¬
tecture. Type indicates whether the connection is dedicated voice, dedicated data, or
if the connection is over the shared channel (SCH). Rate is the speed of the connec¬

tion (Kbps), TTI is the transmission time interval and code is the type of forward error

correction. We list the values these parameters can take in table 5.2, together with the
maximum frequency at which they change.

The maximum frequency of change is derived from the UMTS radio frame interval
of 10ms. On every radio frame there is the option to change an existing connection's
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Connection Parameter Name Possible Values Change Frequency
Rate (Data) 16,32,128,384,768 Kbps 100Hz

Rate (Voice) 4.75,5.15,5.9,6.7,7.4,7.95,10.2,12.2 Kbps 100Hz

Rate (SCH) 16,32,64 100Hz

TTI (data) 10,20,40,80ms 100Hz

TTI (voice) 20ms 100Hz

TTI (SCH) 20ms 100Hz

Code (data) Turbo 100Hz

Code (voice) Convolutional 100Hz

Code (SCH) Convolutional 100Hz

Table 5.2: Connection parameters value ranges

Variable Name Possible Values

Cell radius 0-16Km

Number of sectors 1-3

Antennas per sector 1-4

Searcher window size(chips) 50-400

Fingers per user (urban, suburban) 8

Fingers per user (rural) 16

Table 5.3: Static system variables

settings. It is also a suitable frequency to perform any waiting connection setups or

tear-downs. Therefore, the frequency of 100Hz forms the checkpoint rate in this case-

study.

5.4.4 Step 3: Extract decision variables

In the UMTSSOC there are 20 logic blocks and 13 memory blocks to be considered for

parameterisation. Together, these 33 blocks construct the 5 partitions of UMTSSOC,
therefore they form the hardware configuration vector. The parameterised cost equa¬

tions describing the hardware blocks are extracted in section 5.4.7. Details of the 33
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hardware blocks are given in Appendix C. 1.
The decision variables are:

• The integer c, which is the number of hardware configurations in the optimal set.

• For each of the c hardware configurations, a tuple of 33 values describing it.

Both the size of the set c, i.e. the number of configurations, and the values of
each vector in the set, i.e. the resource demands of the hardware configuration, are

important. The decision variable c may be defined implicitly by the size of the set of
hardware configurations. The goal of the targeting procedure's optimisation step is to
find the covering set of hardware configuration vectors which optimise the combined
cost of the FPGA and configuration storage cost, as we will see in 5.4.8.

5.4.5 Step 4: Separate system into static products

Business decisions drive step 4 in the targeting procedure. The location of a Node B
characterises its operation and specification. Step 4 takes advantage of the different

deployment scenarios by folding this knowledge into the design. The knowledge is in
the form of values for the static variables, rather than the generalised value ranges.

In cellular network planning, there exists a tradeoff between a cell's capacity and
its coverage. As the cell's coverage increases, its capacity decreases. It follows that
to satisfy the call densities in built up urban areas, cell sizes are smaller than those in
rural areas. Based upon marketing and system engineering knowledge within Lucent,
we split the system into three typical static products: rural, urban and suburban. The

particular instances chosen are listed in table 5.4. They do not cover all required prod¬
ucts, since cell characteristics vary according to the building materials, and terrain in
the environment served, but they provide a good example for the purposes of this case

study. The primary difference between the three products is the cell size. The larger a
cell is, the less capacity it has. The Rural basestation may have large geographical fea¬
tures such as hills providing radio wave reflections, so its search window is the largest.
The environment of an Urban or Suburban basestation is comprised of buildings, traffic
and general street furniture providing many radio reflections in close proximity to the
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Table 5.4: List of Basestation Product Configurations
Product Configuration S R U

Environment Suburban Rural Urban

Approx. max. cell radius [km] 4 16 2

Traffic levels High Low High
No. of sectors 3 3 1

Antennas per sector 2 4 2

Searcher window size [chips] 100 400 50

Max. no. of fingers per userf 8 16 8

fDedicated channels only: lower figures for RACH

transmitted signal. Correspondingly, the searcher window size is considerably smaller
than the Rural basestation product. Due to the size of the cell, the signal to noise ratio
at the basestation antenna will generally be worst in the rural basestation, so there is a

significant gain for investing more resources in RAKE receiver fingers.

5.4.6 Step 5: Capture system constraints (inequalities)

The ultimate objective of this methodology is to produce an optimal set of hardware

configurations to implement the system. This requires the input of application specific

knowledge to bound the required functionality. However, to avoid ad hoc implemen¬
tations it is important to ensure that reconfigurable design flow and expert knowledge
are kept orthogonal. Step 5 captures the expert problem specific knowledge, providing
a well defined interface between the rest of the reconfigurable targeting procedure and

specific details of the application. In this step we illustrate how expert UMTS system

engineering knowledge shapes the reconfigurable design space.

If we examine the combinations of the different connection types in table 5.2,
we see there are 31 different connections which a user may request. For example,

{data,32Kbps,20ms,8} is a valid 4-tuple in the set of 31 possible 4-tuples. This forms a

more elegant representation of the problem for the optimisation step. When modelling
the state of the system inside any radio frame (checkpoint) period, we will have 0-
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64 users, each using one of the 31 connection variants. This application profile can

be represented with a vector € Z31, giving the number of users for every connection
variant:

• We define an application profile set (APS) to be a set of application profiles.

• We define an application profile, a, to be a vector G Z31

The APS contains all valid instances the system is required to perform. It is not

arbitrary in Z31, but is limited by a couple of factors. The first factor is the available

capacity in the cell. In W-CDMA UMTS, all users share a 5MHz frequency bandwidth
on the uplink and downlink, placing a fundamental interference limit on the capacity
of the system. The transmit power of each user (similarly for downlink) is reduced
to limit interference, however, the power must keep the channel above the minimum

signal-to-noise ratio for satisfactory quality. A cell is at maximum capacity when every

user in the cell is at the minimum signal-to-noise ratio required to satisfy call quality.

Modelling capacity and coverage of a UMTS cell is a complex and important part of
network planning. Such a model maps between signal-to-noise levels within the cell
and whether a call can take place or not.

We draw an illustrative picture in Figure 5.1, with the number of users against
service type, to form a histogram. Only a small number of 384Kbps data transfers can

be in progress before the air interface is saturated, forming one application profile. A

radically different profile would be 60 low rate voice calls, spread across many slightly
different service types.

Unfortunately, the expertise to analyse UMTS capacity models and hence the con¬

straints they place on the optimisation problem is not available for this project. Such

expertise would consider inter-cell interference, cell shrinkage, capacity versus cover¬

age and the different quality of service demanded by different traffic types. However,
we believe that the definition of application profiles by a UMTS capacity expert is
feasible. Such knowledge must be available to define any UMTS system - it is imple¬
mentation independent. Instead of defining the entire application profile space, system

engineering expertise within the industrial partner on this project (Lucent Technology)
provided corner point traffic profiles which maximise a UMTS cell's capacity. It is
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reasonable to assume that these profiles will either match or at least come close to

the maximum processing demands placed upon the system. The Lucent knowledge is
based upon a commercial basestation solution.

The corner points for the UMTS cell capacity as defined by Lucent experts are as

follows:

1. Fully loaded by voice users using dedicated channels (DCH).

2. Fully loaded by medium-rate data users using DCH with a long TTI (transmis¬
sion time interval, i.e. packet duration).

3. Fully loaded by high-rate data users using DCH.

4. Fully loaded by a large number of low-rate data users using the FACH/RACH
mode of communication [3].

For the different product configurations, "fully loaded" corresponds to different
levels of peak traffic demand—as shown in Tables 5.5 and 5.6. It should be noted that
an actual implementation may require a few more intermediate dynamic instances—
however the above represent the corner-points for the purposes of estimating resource

requirements. Table 5.5 lists the dynamic instances for the suburban product. Table
5.6 lists the dynamic instances for the rural product.

The second constraint upon the APS is a result of this study being based upon

an ASIC design of UMTSSOC. An upper bound of 64 is placed upon the number of
users which may be supported. This figure is capable of satisfying most operating
demands, but it will unnecessarily constrain the system (from an air-interface capacity

perspective) in some operating scenarios, such as, exclusively very low rate voice calls.

31

£ a, < 64 Va eAPS (5.2)
i= 1

5.4.7 Step 6: Extract system cost function

With the high-level architecture defined, the teams responsible for each of the top-level
blocks begin preliminary design. In the beginning, before design entry has started,
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Table 5.5: List of Dynamic Instances for Suburban Product Configuration
Dynamic Instance 51 52 53 54

No. of users 60 12 3 8

Peak data rate per user [kb/s] 12.2 64 384 64

Uplink spreading factor 64 16 4 16

TTI length [ms] 20 80 10 20

Peak total throughput [kb/s] 732 768 1152 512

Uplink channels DCH DCH DCH RACH

Codingt C T T C

No. of fingers per user 8 8 8 4

Av. no. of links per DL channel 1.5 1.5 1.5 1

Total no. of common channels 7 7 7 14

No. of preamble detectors 1 1 1 3

t'T' implies turbo encoding and 'C', convolutional encoding.

Table 5.6: List of Dynamic Instances for Rural Product Configuration.
Dynamic Instance R\ R2 R3 R4

No. of users 20 4 1 8

Peak data rate per user [kb/s] 12.2 64 384 64

Uplink spreading factor 64 16 4 16

TTI length [ms] 20 80 10 20

Peak total throughput [kb/s] 244 256 384 512

Uplink channels DCH DCH DCH RACH

Codingt C T T C

No. of fingers per user 16 16 16 8

Av. no. of links per DL channel 1.5 1.5 1.5 1

Total no. of common channels 7 7 7 14

No. of preamble detectors 1 1 1 3

t'T' implies turbo encoding and 'C', convolutional encoding.
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Figure 5.1: Four examples of user distribution across the different service types.

only rough estimates of the resource requirements can be made. As the design pro¬

gresses, estimates turn into actual resource requirements, converging on the actual

requirements.
In this case study, the complete UMTSSOC solution already exists, and we are

working backwards towards a reconfigurable solution. Final equations expressing the
cost of each hardware block can be extracted, although there are several assumptions
that must be made, which are discussed in section 5.6.

To keep the case study clear and concise, we summarise the cost function here,

placing the details of extraction in appendix C. 1. Extraction involved studying algo¬
rithm design documents and hardware implementation details. During this process,

each block's dependency on the application profile was identified. The dependency
variables have a simple link to the application profile vector. For example, some hard¬
ware blocks depend on the total throughput, which can be easily calculated by multi¬

plying the total number of users of each service by the service rate and summing.
Table 5.7 lists all the parameters used in the cost functions, together with how

they may be calculated. "Static" indicates that the parameter doesn't change once the
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Parameter Calculation and Dependency
window static

sources static

max.rate static

users function(profile)
common function(profile)
rach function(profile)

fingers 4-tuple
rate 4-tuple
TTI 4-tuple

coding 4-tuple
s.f. function(4-tuple)

Table 5.7: Cost function parameters and their calculation dependencies.

product is deployed, "function(profile)" indicates that the parameter is dependent on
the complete profile, for example, the amount of RACH preamble detection that needs
to be performed is dependent on how loaded the air interface is. "4-tuple" refers to

the 4-tuple defined earlier, i.e. each service is a 4-tuple, and the parameters listed
as dependent on the 4-tuple are found by performing a simple (static) table lookup.

"function(4-tuple)" indicates the parameter is calculated from the 4-tuple. For exam¬

ple, the spreading factor is dependent on the rate of the particular service. We dis¬

tinguish the (static) service 4-tuple values from the static basestation setup parameters

listed in table 5.3. This is done because they are strongly linked to the dynamic service

profiles.
We present the summary of the cost functions in two tables: logic gates (table 5.8)

and memory bits (table 5.9). The ceiling function subscript denotes the granularity of
the ceiling function, i.e. the size of the resource requirement steps between different

implementations. Each hardware block (logic and memory) is assigned a unique name

and the appendix equation from which it is derived is given.
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Block Cost Function Eqn.
LI 26,666 • rach C.l

L2 11,733 • rach C.2

L3 14,000 • rach C.3

L4 5,333 • rach C.4

L5 4-users-window
12,288 j '

C.6

L6 'wind™+256) -29,562 C.6

L7 4-window-users 11

12,288 ,
C.7

L8 sources-2,732 C.8

L9 \LurS fingers-2,0l3]mm C.10

L10 r (users+common\ iai /ionl
I 192 ) Jul'toci|37 685

C.ll

LI 1 \users- 1,828] 14625 C.12

L12 users ■ 2,430] 19 445 C.l 3

L13 (ST rote)■(£&;) 3,175
C.14

L14 (ir^)-(S 1,712
C.15

L15 if 'c' + if't*
1,344 (ir^nllS) 4,031

C.16

L16 (XT" "*e) •(£&;) 2,525
C.17

L17 (ST^e)
1,718

C.18

L18 if 'c' + if't'
5,000 (ir^)-(S) 20,000

C.19

L19 &rSrate).(^) if TTI>10ms
1,440

C.20

L20 (rrSrate).(£^-e) if TTI>10ms
2,170

C.21

Table 5.8: Cost functions for logic blocks.
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Block Cost Function Eqn.
Ml (ZT"5 fingers) ■ 4000 C.23

M2 £users TTI. mte. 4 5 if TTI> 10ms C.26

M3 window ■ users ■ 76 C.25

M4 ((ir" 3 • rate ■ (TTI + 30ms)) + 714) • 5 for TT1> 10ms C.24

M5 windows ■ users ■ 88 C.27

M6 l^ers fingers-1,664 C.28

M7 users- 10,240 C.29

M8 sources ■ 40,960 C.30

M9 480,000 • (If'rs^r) C.31

M10 rack■98,304 C.32

Mil users • 4,096 C.33

M12 (1.5 users + common) -2,730 C.34

M13 rack•57,344 C.35

Table 5.9: Cost functions for memory blocks.

5.4.8 Step 7: Minimise system cost function

Before we review the minimisation problem, we list the key factors shaping the prob¬
lem of implementing the reconfigurable UMTSSOC:

1. 0-64 users.

2. A user may request 1 of 31 different services.

3. Each service has different resource and processing requirements.

4. Each service has different air interface requirements.

5. An upper limit on the air interface capacity exists.

6. The number of each type of service may change at 10ms intervals.

In step 6 we defined the cost function for 33 hardware blocks and in step 5 we

found the number of services to be 31. Using these numbers for N and I respectively,
the optimisation step may be written as follows:
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• We define an application profile set to be a set of application profiles.

- The application specific expert knowledge defines the combinations of ser¬
vices to be simultaneously supported by the system. For example, the num¬

ber of each type of voice call and data call.

• We define an application profile, a, to be a vector in Z31, where 31 is the number
of different services offered.

- The system must support up to 64 users spread across the 31 different ser¬
vice types. The valid service profiles are determined by the expert knowl¬

edge provided in step 4 of the methodology.

• We define a hardware configuration set to be a set of hardware configurations.

- A hardware configuration corresponds to the bitstream for specifying the

system implemented by the FPGA.

• We define a hardware configuration to be a vector in Z , where 33 is the number
of hardware blocks in the system.

- The architecture of UMTSSOC can be described in terms of the size of its

33 constituent building blocks. The hardware configuration vector contains
this information, for example the number of gates (logic) or bits (memory)

required to implement the block. Similarly, for a heterogeneous fabric,
such as a platform FPGA, we define a hardware configuration to be a vector

in (Z4)33. This allows each block to record the number of each resource

type (slice, multiplier, DSP block, processor) present in the target device.

• We define a hardware configuration cost function C :: (Z33)— > area.

- To optimise the total system cost (configuration storage and FPGA size),
there must be a common cost metric. The hardware configuration cost func¬
tion translates a hardware configuration into the cost metric. This function
is system specific, since factors such as volume pricing and the choice of
configuration storage will affect it.



Chapter 5. Case Study: UMTS Physical Layer Processing 107

• We define an objective function, O :: (int .area) — > combinedcostunits. The
integer is the number of configurations, and the area is that of a hardware con¬

figuration.

- The objective function finds the minimum combined cost of the configu¬
ration store and FPGA size. The int input to the objective function is the
number of hardware configurations of size area required to implement the

system. The area input is the size of the largest hardware configuration.
- To avoid a multi-objective optimisation problem, the objective function, O,
combines the cost of the FPGA and the cost of the configuration storage

cost. This combination function will be dependent on a number of factors,
such as the volume in which the system will be manufactured. For exam¬

ple, Urban cells are most densely packed in the Urban environment where
UMTS coverage is initially being provided, so the production volume of
Urban basestations is going to far exceed that of rural cells. Therefore, a

rural basestation product may not be able to get bulk purchase discounts
on flash memory as an Urban basestation. Another cost combination fac¬
tor is the configuration storage medium used (remote network, hard-disk
or flash). For example, extreme weather conditions might be outside the

operating range of a hard-disk drive, or if the back-haul bandwidth is at a

premium it may be costly to transfer configurations over the network.
The multiple configuration storage cost forms an upper limit on the number
of configurations permitted for a particular FPGA size. Beyond this limit it
is more cost effective to move to the next FPGA size.

- The optimisation function is supplied with the number of resources avail¬
able across all members of the FPGA family, such as the number of mem¬

ory blocks and LUT resources. With this knowledge, it is able to check if a
hardware configuration will fit a particular device. In addition, a hardware
block may be supplied with more than one profile-to-block function, pro¬

viding alternative implementations. These alternatives can be used in an

attempt to soak up any uncommitted resources before moving to a larger
device. For example, some of the ESIP partition's control functions are
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performed in software and they will have an equivalent logic fabric im¬
plementation. The logic fabric implementation may require many LUT
resources, but if the resources are unused and there are not enough proces¬

sor cycles available for the software implementation, it is important to be
flexible and use the logic to avoid moving to a larger FPGA. The extent

to which hardware blocks are supplied with alternative implementations
is at the discretion of the design team, and is guided by the output of the
optimisation step.

• We define an application profile to block cost mapping function PB :: (vector G
Z31 ,int)— > cost, which takes an application profile vector and a block type,
and returns the block's cost, for that particular application profile.

- The PB function can be used to determine the hardware configuration vec¬

tor required to satisfy an application profile. The hardware configuration
cost function, C, is used to translate between a hardware configuration vec¬

tor and the FPGA implementation cost.

The profile-to-block function, PB, translates between the entire service de¬
mand placed upon the system at any instant and the requirements of a par¬

ticular hardware block. For example, memory block M5 in table 5.9 is

dependent on two parameters: window (static) and users (dynamic). The
number of users is a function of the entire service profile, and is therefore
the sum of all user counts across all services. Equation 5.3 describes the
PB function for M5, with the function count taking the set of application

profiles and the profile number of interest as input and returns the number
of users of that particular profile in the APS: count:: (APS, int)— > int.

31

PBms = 52 count (APS, i) • windows • 88 (5.3)
i= 1

We will now describe the optimisation step formally. Given an application pro¬

file set APS, a profile-to-block function PB, an objective function O and a hardware
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configuration cost function C, find a hardware configuration set HCS, such that:

Va 6 APS 3 h € HCS such that
(5.4)

Vj € {1.. .33} PB(a,j) <hj

and

0(k,max(C(h) j h 6 HCS)) is minimised
(5.5)

where k = |//CS|

As described in section 4.5.3, the static parameters form the first filter in the op¬

timised implementation step. The second stage, or dynamic filter stage, is performed
on the APS constrained by the expert knowledge. As explained in step 4, the expert

input for step 4 was not made available to this project, so we were not able to perform
the optimisation step. Instead we use high-level expert system-engineering knowledge
within the project sponsor, Lucent Technology, to supply corner-points which saturate

the UMTS air interface. These corner points capture very different application service

profiles, and as will be demonstrated by the results, give a clear demonstration of the
resource savings possible with the checkpoint methodology. It is noted that some ser¬

vice profiles within the APS may fall between the corner-points, so a small number of
additional hardware configurations would be necessary to provide complete coverage.

5.4.9 Step 8: Direct intra-subsystem reconfiguration effort

5.4.9.1 Introduction

Rapid intra-subsystem reconfiguration applies to fabric elements configurable at fre¬
quencies of the order of megahertz. Examples include microprocessor instruction
streams, DSP blocks and the SRL16 functionality of LUTs.

The Complex Code Match Filter (CCMF) sub-block within the searcher partition
is selected here as an illustrative example of intra-subsystem reconfiguration. It rep¬
resents 67% of the logic in the searcher partition so any resource usage reductions

through increased SRL16 usage will have a significant impact at the system level.
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First, the UMTSCE ASIC implementation is described. Then the equivalent static

design implemented on the Xilinx Virtex FPGA family is outlined and its resource

usage is estimated for use as a benchmark with which to compare the runtime re-

configurable designs. The CCMF algorithm involves two variables - the code and data

samples. Both variables are considered as candidates for folding into the circuitry. This
involves creating dynamically reconfigurable designs and estimating their resource us¬

age. A detailed implementation study is performed for the data-folded design. The
results are presented and compared with the static equivalent design, comparing la¬

tency, frequency of operation and resource requirement. The section finishes with a

discussion of some alternative high-speed reconfigurable techniques not applied in the

study.

5.4.10 Algorithm Description

The CCMF performs the correlation (see A.6.10) between the expected code sequence

and the incoming data streams of two sources, one 256-chip symbol at a time. The ex¬

pected code sequence is locally generated and is the result of multiplying the spreading
code, scrambling code and known pilot bits used at the UE.

The CCMF top level view is illustrated in Figure 5.2. The code is stored in a code

register as shown in the diagram, which is simply two 256-bit registers. The data is
stored in the two registers at the top of the diagram, one for the real part (I) and one for
the imaginary part (Q). Each data register is a 448-word shift register, where each word
is a 4-bit sample of a chip. Only the rightmost 400 words of the data register are output
to the DPSBs as a 400 word-vector. The remaining 48 words will be shifted over until

they reach the output. Dot Product Sub-block zero (DPSB0) takes words 0-255 as

its inputs and computes the results for hypotheses 0-47, one per clock cycle. DPSB1
takes words 48-303 as its inputs and computes hypothesis 48-95. DPSB2 takes words
96-351 as its inputs and computes the results for hypotheses 96-143. DPSB3 takes
words 144-399 as its inputs and computes the results for hypotheses 144-191. Thus,
inside 48 clock cycles the 192 hypotheses for a source component are computed. Inside

(4 x 48) 192 clock cycles, all hypotheses for two sources both full-chip and half-chip

components are computed. The terms full-chip and half-chip are derived from the fact
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Figure 5.2: CCMF Top Level Structure

that the sampling frequency is twice the chip-rate.
The correlation computation carried out at each of the 256 positions in the DPSB

is shown in Figure 5.3 - a 10 bit input produces a 10 bit output. The computation

performed is to multiply the complex conjugate of the locally generated code by the
complex data sample. Code value 0 maps to -1 and code value 1 maps to 1, so the (I,Q)
code may take one of four values (1+j), (1-j), (-1+j) or (-1 -j). The result is that the four
multiply blocks in Figure 5.3 output either the input or the negative of the input. The
output of each cell is fed into a pair of adder trees and coherently summed across a

DPSB - one tree is for the real part and one tree is for the imaginary part.

5.4.11 Static Design

To benchmark the reconfigurable CCMF designs proposed later in this section, an

estimate of the resource requirements for the static implementation on an FPGA is
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a[255] b[255]

fr2551 e[2551

Figure 5.3: CCMF Dot Product Sub Block Cell

made here.

Equation 5.6 shows the cost of the CCMF. Each DPSB is constructed from 256
identical cells drawn in Figure 5.3. There are four 4 x 1 bit multipliers, a 4+4 bit
adder and a 4-4 bit subtracter. The multipliers output either the input or the negative
of the input. To compute the twos complement (negative) of the four bit I or Q part

requires 4 LUTs. With the negative of a and b available, the four multipliers simply
become multiplexers selecting between the respective input unchanged or the negative
of the respective input. Figure 5.4 illustrates the CCMF cell with the multipliers

replaced by 2's complement units and multiplexers. For each bit the multiplexer must
select between two values, so a LUT is required per bit - 4 LUTs per multiplexer.
The adder and subtracter units may be implemented with 5 LUTs. Therefore, the

qualitatively described DPSB cell requires a total of 32 LUTs, with the synthesised
VHDL description requiring 30 LUTs and 40 FFs (flip/flops).

Cs = Cdpsb x 4 (5.6)
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Figure 5.4: CCMF Cell with multipliers replaced with negation units and multiplexers

5.4.11.1 Dynamic Design: Code Fold

The CCMF is constructed from many identical cells, tiled with their interfaces con¬

nected together to form the complete filter. If it is possible to simplify the implemen¬
tation of the cell, such that it requires fewer resource requirements, then the saving is

multiplied across the complete design.
The VHDL interface for the tiled generator unit is shown in Figure 5.5. 8 data

bits and 2 code bits feed the generator every clock cycle, producing 10 result bits,

split equally between the I and Q parts. Figure 5.6 shows the top-level structural

description of the generator. As described in Section 5.4.10, the code remains constant
for 192 cycles. Therefore, the opportunity exists to replace the generator unit with a

cell specialised to a particular code. When the code changes, the cell must be changed
by populating the SRL16s with the correct value. A black box diagram of the code
"folded" unit is shown in Figure 5.7.

Cs = (256 x (30,40)) x 4 = (30720Lt/7",40960FF) (5.7)
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entity generator is

port (

Clock : in std_logic;
InDatal : in signed (3 downto 0);

InDataQ : in signed (3 downto 0);
InCodel : in std_logic;

InCodeQ : in std_logic;

OutResultl : out generatorcelloutput; — 5 bits

OutResultQ : out generatorcelloutput — 5 bits

) ;

end generator;

Figure 5.5: The VHDL interface description for the generator unit

10 bits - GENERATOR 10 bits

Figure 5.6: Generator Unit Black Box

8 bits ■ CODE FOLDED 10 bits

Figure 5.7: CF Unit Black Box

Code LUT2 LUT3 LUT4 Total

00 12 2 4 18

01 12 2 4 18

10 11 1 2 14

11 12 2 4 18

Table 5.10: LUT requirement breakdown for the CF cell
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The LUT requirement of the code folded (CF) unit is shown in Table 5.10. LUT2,
LUT3 and LUT4 refer to the number of inputs used on a LUT, so for example, if only
3 LUT inputs are connected to signals, the LUT is referred to as a LUT3. We observe
that three of the code values require the same mixture of 18 LUTs with one requiring
14. Before proposing a CF cell to replace the generator unit, we note the following:

1. Since a LUT2 uses 8-bits of the 16-bit LUT, only LUT2s may have new content

shifted in while they are in operation (input adjusted accordingly). LUT3s and
LUT4s would overflow.

2. The LUT3s and LUT4s must be replicated to allow reconfiguration to occur

in parallel to operation. Otherwise cycles would have to be allocated just for
reconfiguration. Replication requires an additional 6 LUTs.

3. Although no code folded unit requires more than 18 LUTs, the routing between
the LUTs may be different. Routing cannot be changed in-situ (see Section 4.3),
so the most flexible LUT arrangement to produce 10 outputs from 8 inputs may

be required.

4. Configuration selection logic and counters/adders to adjust the LUT input as a

new configuration is shifted in require additional resources.

If we ignore point 3 above, the code folded cell requires 18+6=24 LUTs. Equation
5.8 describes the total resource requirement for the CF design. The total LUT require¬
ment is 24,576 plus the resources required to implement the cold-folded control (CFC)

circuitry outlined in point 4 above.

CCF = (24 + Ccfc) -4-256 (5.8)

5.4.11.2 Dynamic Design: Data Fold

The other candidate for folding into the generator unit as described in Figure 5.5 is
the data. The black box diagram of the resulting cell is drawn in Figure 5.8. With
the 8 data inputs folded in at design-time, the functionality of the cell is substantially
reduced.
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2 bits 10 bits

Figure 5.8: DF Unit Black Box

We note the following before describing the data-folded (DF) design's resource

requirements:

1. With only 2-inputs per cell, the 10 outputs can be produced using 10 LUT2s.

2. A LUT2 may have its new configuration loaded in parallel to operation.

3. The LUT2 input must be adjusted as the new configuration is shifted in, but
unlike the CF design it is the same stimulus for every LUT in a cell.

4. Folding the 8-bit data input into the unit produces a maximum of 256 different
cell configurations. These configurations are best produced on demand by a full

generator unit shared by multiple cells.

5. The data input changes every 48 clock cycles, so reconfiguration must occur

inside 48 cycles.

The basic cell size for the DF design is only 10 LUTs. The new configuration data
must be generated, which requires some detailed design work to determine how many

generators are required. With 48 cycles to reconfigure and 4 cycles to compute the
result of the four code values on each data item, a generator unit can be shared by
12 data items. So to calculate the new configuration for all 447 data items requires a

minimum of 38 generator units.

Equation 5.9 describes the estimated cost of the DF design. 11,380 LUTs is the
basic cost, with the data-folded control (DFC) circuitry (point 3) in addition.

CDF = ( 10 + CDFC) ■ 4 • 256 + 38 ■ 30 (5.9)
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5.4.11.3 Data Fold Implementation and Result

We select the DF design for implementation since it better simplifies the basic cell.
In this section we present a detailed description of the DF design's implementation.

Timing diagrams for the cell, cell clustering around the generator unit to form larger

components, and implementation results are presented.
The data-folded cell primarily consists of the 10 SRL16 enabled LUTs and the

adder to adjust the code input. A little extra control circuitry produces the chip enable

(CE) signal for shifting-in the new configuration at the correct 4-cycle window. In a

cluster of cells which share the same generator unit, the CE signal can be produced

using a single SRL16 LUT acting as a 4 bit shift-register. When initialised correctly,
the output of the first shift register in the chain is binary ' 1' for the first four clock

cycles and binary '0' for the remaining 44 cycles. The second cell's CE shift register
outputs binary '1' for cycles 3-7 and '0' otherwise, and so on. Therefore, when the

generator is producing the configuration for a cell, the cell's CE signal is high to shift
in the new configuration.

Figure 5.9 shows the reconfiguration sequence for a data-folded cell. The contents

of the 10 SRL16 instantiated LUTs are shown at 5 consecutive clock cycles. At CLKi-i

only the bottom four locations of the SRL16s are occupied. This is a state unique to

power-on-reset. At all other-times, old configuration data that has been shifted out

of the bottom row occupies the upper locations. At CZX,-i, the cell's chip-enable

signal goes high. This results in the SRL16s loading whatever is on their shift-register

input pin into the first memory-bit and shifting the existing content further into the
LUT by 1-bit. The input pin of the 10 SRL16s is driven by the 10-bit output of the
associated generator unit. CLKi loads the configuration for code "11", CLKI+1 loads
the configuration for code "10" and so on. At CLKi+3, the CE signal goes low as

reconfiguration is complete. The 4-bit LUT input is adjusted to deal with the shifting

memory content. Since the code provides the input to all LUTs in the cell, the small
cost of the adjustment circuitry is amortised across the whole cell.

The DF design's high-level structure with the details of cell clustering around gen¬

erator units is drawn in Figure 5.10. The diagram indicates logical structure rather
than physical placement. The principal observations to make about the design are as
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Figure 5.10: Data-folded Implementation

follows:

• The DPSB length is extended from 256 to 303 cells to contain all data items

simultaneously.

• The DPSBs are aligned so that the same data items form a column.

With the DPSBs aligned by common data items, the generator units need only

perform the minimum number of evaluations. For example, the configuration for data
item 144 must be produced for all four DPSBs. A single generator connected to all
four cells can supply the configuration. The shaded areas in the picture indicate the
cell clustering around a single generator unit. G1 indicates the generator feeds one cell

per data item, so inside 48 cycles at 4 cycles per data item, a G1 unit configures 12
cells. A G4 unit configures 4 cells per data item, producing configuration for a total of
48 cells inside the 48 cycle reconfiguration period.

The shaded regions indicate that G4 units construct most of the data-folded CCMF

design. The generator cost is maximally amortised in a G4. Table 5.11 lists the
resource requirement of each generator cluster, Gn \ n £ {1.-4}. The SRL16 column
shows the number of LUTs instantiated as SRL16 registers. These results, and all other

implementation results presented, are produced by the Xilinx Synthesis Tool version
7.1.02L

Figure 5.11 shows a structural representation of the G4 unit. All 48 cells are fed

by a single generator. The cells are arranged into columns of four corresponding to
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Figure 5.12: G4 unit CE timing diagram

the same data item, with a row forming a section of one of the four DPSBs. There is
one SRL16 CE signal for each column of cells (not drawn). In 48 cycles the generator

produces a new configuration for all 12 columns. The code input to each cell is shifted
along the row, each shift corresponding to one hypothesis. As described in Section
5.4.10, every 192 clock cycles a new code is loaded. This must be done in a single
clock cycle, so each cell also has a parallel-code input (not drawn). The output of a

hypothesis is drawn feeding towards the top of the diagram in Figure 5.11.
The timing of the G4 unit is described pictorially in Figure 5.12. The column

SRF16 chip enable signal is focused on since it is the most interesting signal. The

top graph is the system clock, the rising edge of which is numbered. The other three

graphs show the CE signal for columns k, k+1 and k+11 in the G4 unit. Note that a
columns CE signal is high for four cycles and low for the remaining cycles in the 48-
cycle reconfiguration period. The CE signal ripples through the columns consecutively.
After 48 clocks, all 12 rows are reconfigured and the process repeats, as can be seen

on the right of the graph for column k.
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Gn Unit SRL16 LUT FF

G1 132 217 252

G2 264 397 457

G3 396 577 660

G4 528 757 864

Table 5.11: Generator Unit Costs: Gn is 1 Generator with 12n cells

Data Item Range Construction LUT FF

0-47 4G1 868 1008

48-95 4G2 1588 1828

96-143 4G3 2308 2640

144-302 13G4+3G1 9931 11352

303-350 4G3 2308 2640

351-398 4G2 1588 1828

399-446 4G1 868 1008

Table 5.12: Construction of CCMF from Gn units

Table 5.12 gives the details of the shaded regions in Figure 5.10. Note that data-
item range 144-302 cannot be served by an integer number of G4 units. The remainder
of 3 columns would be served by a special unit of one generator and 12 cells, which we

(very conservatively) approximate here as 3G1 units. It can be observed the greatest

number of resources go to the G4 constructed section of the design.
The total LUT and FF requirements for the static design and the DF dynamically

reconfigurable design are shown in Table 5.13. The last two columns show the imple¬
mentation speed of the slowest building blocks of the respective designs on the highest

speed grade Xilinx Virtex4 and Virtex2. The DF design represents a 37% and 56%
saving in LUTs and FFs respectively over the static equivalent.

It is worth noting that the DF implementation introduces an additional latency of 48

cycles when compared to the static design. This is necessary to populate the cells with
their first configuration after a power-on reset. We do not believe this poses a problem
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Design LUT FF XC4vlx25-12 XC2v250-6

Static 30720 40960 421MHz 323MHz

Data-Folded 19459 22304 421MHz 323MHz

Table 5.13: Results of reconfigurable CCMF implementation

as the next stage in the Searcher (post-detection integration) must wait 192 cycles for
all 4-source components anyway. The DF implementation therefore increases latency

by at most 25%. This could be reduced by introducing more generator units. For

example, doubling the number of generators at a cost of 1140 LUTs would half the
additional latency.

The FPGA implementations easily meet the 184.32MHz requirement of the UMTSSOC

system clock. In fact, it may be possible to operate the CCMF implementation at twice
the system clock frequency and use only half the resources.

5.4.11.4 Discussion

In this section we consider a couple of design possibilities not discussed above. First
we consider the CF design if the assumption that 18 LUTs can implement all cells does
not hold. Then we consider using a statistical reconfigurable design technique.

If we assume the four CF cell configurations require routing changes then the CF

design presented in Section 5.4.11.1 is invalid. Instead, to exploit holding the code
constant would involve replacing the CCMF cell illustrated in Figure 5.4 with a set

of cells, one of which is selected according to the code to be implemented at each lo¬
cation of the DPSB. As described in Section 5.4.11.1 and table 5.10, the code may

assume one of four values (1,1), (1,-1), (-1,1) or (-1,-1). The minimal implementation
of these functions has different LUT requirements. For example, since a code compo¬

nent value '-1' demands a two's complement unit whereas a code component value ' 1'

corresponds to no function (pass through).
There are two problems with the practical realisation of these logic resource gains.

First, the construction of a DPSB involves selecting the correct cell at each position and

hooking its interface up to neighbouring cells, so a limited amount of runtime place-
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ment and routing is required. This is non-trivial and requires much more silicon area

to perform than can be saved. The problem is compounded by the fact that the changes

require access to the fabric's configuration memory and the change is dependent on
the local circuit's state. Configuration caching techniques have limited applicability
due to the dependence on local state, so massive configuration memory bandwidth
is required to perform the reconfiguration fast enough. The second problem with a

cell's configuration being dependent on the code is that the footprint of the DPSB will

change according to the code it implements. This is a problem because the resource

requirements of the CCMF must be bounded in a system context to determine how

many resources must be reserved. If the code can assume any value then the worst-

case cell size must be considered possible at all 256-locations of a DPSB. To attempt to
match the varying resource requirements of the CCMF with another circuit in an "hour

glass" type sharing arrangement such that the sum of their resource requirements is a

constant would seem both very difficult and highly unlikely to succeed. Therefore, it
is the upper bound (or worst case) resource requirements of the CCMF that determine
the benefit of reconfiguration. If the code generation function were such that it could
be guaranteed to only assume a subset of all possible values then it may be possible to
attain greater resource savings with reconfiguration.

Statistical techniques could provide a solution to both the configuration memory

access problem and the circuit footprint bounding problem. Given a statistical per¬
formance specification for the CCMF, it would be possible to implement the DPSBs
with a fixed construction by splitting the cell type configuration evenly between the
four versions. A code which does not split evenly between the four cell types could
have its adder tree outputs adjusted (perhaps scaled) appropriately. Data values would
then be ordered so that they are presented to the correct code unit at each correlation

step. Consideration of a statistical implementation would involve careful analysis of
the consequences on performance at an algorithmic level. For the CCMF, dangerous

possibilities that must be considered are the performance penalty at the RAKE for
the occasional poor search. Poor searches could result from erroneous adjustments of
the adder tree outputs or a code that demands an implementation very unevenly split
between the four cell types.
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5.4.11.5 Summary

The reconfigurable CCMF design offers substantial resource savings over the static
equivalent. The in-situ reconfiguration means the design can slot in as a direct replace¬
ment, requiring no special treatment at the system-level.

5.4.12 Step 9: Advance implementation

With the primary instances defined, and candidates for intra-subsystem reconfiguration
identified, implementation can progress.

5.4.13 Step 10: Generate checkpoint control unit

The FSM controlling which configuration should be resident is straightforward. The
decision variables are its inputs and it produces the checkpoint enable signal and the
hardware configuration number to load. An example of its operation is a highly loaded
low-rate voice profile. Several voice calls complete simultaneously (handover of a

passing vehicle to another basestation). A medium data-rate call is requested, and
since there is enough air-interface capacity, the call can be supported. This is evaluated

by the FSM by checking which hardware configuration is able to support the desired
service profile, and if it is different to the resident configuration, the match is loaded at

the next checkpoint.

5.5 Xilinx Virtex Configuration architecture to support

UMTSCE implementation using Checkpoint Frame¬

work

5.5.1 Overview

This section presents a proposed new configuration architecture for the Xilinx Virtex
FPGA using the banded compression algorithm described in Chapter 3. The architec¬
ture is one example in a family of architectures trading off time and space. They are
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Decompression Circuitry

Figure 5.13: Configuration changes on-chip RAM arrangements

composed of on-chip RAM to store configuration changes and decompression control
unit(s) to read-back the existing configuration memory contents and decompress and

apply them. The specific architecture explored in this section is aimed at providing
the speed of reconfiguration necessary for the reconfigurable UMTSCE. The various

configuration memory arrangements are then discussed and a decompression unit de¬
sign given. The silicon area requirements of the configuration architecture are then
estimated.

5.5.2 Requirements

The UMTS channel element is chosen as a case study in this thesis and it is used
here to examine the implementation of a changes decompression based reconfiguration
architecture. It is established in section 5.4.3 that the radio frame time of 10ms in

UMTS is a good candidate period for reconfiguration to occur. It is thought to be

acceptable to spend 1% of time reconfiguring, so 100/rs is the required reconfiguration
time.
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5.5.3 Change Memory Arrangements

It is well understood that a large memory is more efficient than several smaller memo¬
ries that provide the same storage capacity. So, a system able to tolerate a long recon¬

figuration period can use a single large configuration changes memory, but a system

that demands a very short reconfiguration period requires the parallelism offered by

multiple small configuration memories. Various on-chip memory arrangements are

possible to provide the required reconfiguration speed with minimal area as illustrated
in Figure 5.13. Each of the sub-figures shows an on-chip changes RAM arrange¬

ment, the black circles represent the control and decompression circuitry and the tall

rectangles represent a column of CLBs. In Figure 5.13(i) the configuration changes

subsystem requires the smallest amount of silicon area but is capable only of perform¬

ing reconfiguration serially. Figure 5.13(ii) has doubled the reconfiguration bandwidth

by splitting the changes RAM into two separate RAMs each with an independent con¬

figuration controller. Depending on the application domain, it may be satisfactory to

split the columns into two groups of equal size and assign one memory/controller to
one group and the second memory/controller to the other group of columns. If it is re¬

quired to concentrate the available configuration bandwidth to any sub-set of columns
in the device, a cross-bar switch access interface would be necessary. Figure 5.13(iii)

presents the arrangement where there is a memory/controller combination for every
CLB column.

5.5.4 Selected Memory Arrangement

To provide the reconfiguration time of lOO/rs necessary for the UMTS channel process¬

ing engine, a parallel implementation is required. For the Xilinx Virtex 1000 device
with 64 CLB rows with 864 bits per CLB, around 87 changes must be made per CLB
which sums to 5568 changes in a column. If all changes must be applied within lOOus
then a cycle time of 17ns is required - or a clock of 58.8MHz. This clock rate should
be achievable, which suggests that a full-column parallel configuration changes RAM
architecture is able to provide the required speed.
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Figure 5.14: Block diagram of circuitry for decompression

5.5.5 Decompression unit design

The decompression unit must make a change to its column's configuration memory ev¬

ery clock cycle. The changes RAM must provide a change bit address and the control

circuitry must apply it every clock cycle. A block diagram depicting an example of
such a sub-system is shown in Figure 5.14. With an average of 86 changes per CLB
and 64 CLBs in a column, 5504 memory locations are required. Using the banded

compression algorithm, 5 bits was found to be the optimum word size. During decom¬

pression, when the 5-bit relative offset is read from the changes RAM, it is expanded
into a 32-bit literal containing 31 zeroes and a single binary 1 where the change is
to be made. The literal is then combined with the existing frame contents to flip the
appropriate bit, indicated by the lines marked with the word Flip. Control circuitry
keeps track of the 32-bit frame content currently being modified and performs a cir¬
cular shift as appropriate to ensure that the correct part of the frame is exposed to the
literal. When all changes have been applied - i.e. the next change bit is in the next

frame, the present frame data register is written back to the configuration memory and
the next frame read in.

5.5.6 Implementation

The 1.8V VirtexE manufactured in 180nm technology has a CLB area of 34,692gm2.
For example, the XCV1000 has 64 CLBs per column, which equates to 2.22mm2 per

column. An SRAM cell in 180nm is about 4pm2, so the additional configuration
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memory per column of 27,520 bits is about 0.11mm2. This equates to under 5% of
a column's area. The decompression circuitry is estimated to have negligible size in

comparison to the configuration changes memory size. As an alternative to having
fixed blocks, the CLB fabric itself could be programmed to perform the decompres¬
sion. Further, it may be feasible to reclaim this fabric area by loading uncompressed

configuration data.
With enough off-chip bandwidth it would be possible to store changes using com¬

modity RAM. Off-chip RAM normally forms part of an embedded system, so an in¬
crease in its size is all that is required. It is desirable to have only the decompression
unit on-chip as it minimises silicon area which may not be used by all applications.
This is particularly true for a product such as the Xilinx Virtex device since its domain
of application is very wide. As stated earlier, a feature included on-chip must either
be critical for an important application area or useful across a large number of applica¬
tions. The critical problem of placing the RAM off-chip is bandwidth. Additional I/O

purely for reconfiguration is not considered for the reasons just listed. Dedicating I/O
to the configuration RAM is undesirable because:

• The number of I/O pins has a strong correlation with the cost of chip-packaging
and packaging becomes the dominant cost component of small die size chips.

• I/O bandwidth is a limiting resource in some applications making them unlikely
to use reconfiguration if it ties up I/O pins.

The checkpoint framework's bandwidth usage is extremely bursty in nature and,
in addition, there is a drastic reduction in system I/O requirements (approaching zero)

during reconfiguration since most (if not all) subsystems go off-line. Therefore the

opportunity exists to share I/O pins between the system and the configuration architec¬
ture. This is the method we favour for implementation.

I/O multiplexing is an established technique that can be implemented with negligi¬
ble impact on performance or increase in silicon area. It has an impact on high-speed

printed-circuit board design since traces potentially have increased capacitance and in¬
ductance. Probably most troublesome of these parasitics is the increased capacitance
caused by a more dense routing in the PCB. Traces routed side by side can form the two
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plates of a capacitor and hence a signal from one trace can be coupled onto the other

causing interference. This is particularly dangerous in mixed signal (analogue and dig¬
ital) designs. Another problem is that the additional capacitance increases the time the

chip output buffer requires to drive the trace to the correct voltage - though transistor

sizing can help mitigate this effect. Adhering to design rules that avoid the capaci-
tive coupling problem becomes more difficult as the density of traces increases. The
increased wiring density also increases the opportunity for inductive coupling. Rules
for minimising EMI may be more difficult to satisfy with an increase in the number of
traces. One notable project looking at I/O multiplexing is the Virtual Wires project at
M1T[12],

5.6 Assumptions

Due to the complexity of the system being analysed and the limited resources available
to assist perform the case-study, certain assumptions had to be made. This is particu¬

larly the case when performing the translation between the ASIC and reconfigurable
implementation. In this section, we discuss the assumptions and their likely effect on
the results.

A small number of logic blocks in UMTSSOC implement algorithms iteratively.
We assume that reconfigurable implementations exist which can reduce the resource

requirement of these blocks. In most cases where this assumption applies it seems
reasonable, except, perhaps, for the ARM processor in the ESIR However, a reconfig¬
urable implementation may have a hard wired processor at its disposal, in which case

it is not necessary to seek soft-logic alternatives.
The other major assumption is the accuracy of the dynamic instance corner-points

selected. We believe they represent dynamic instances which saturate the air interface
bandwidth. Other combinations of services will also saturate the bandwidth, but we

have confidence in the system engineering knowledge within Lucent to provide the
most computationally intensive corner-points. As mentioned earlier, the corner-points
selection was based upon extensive system engineering knowledge within the indus¬
trial partner. This knowledge provided an alternative route to estimate the resource
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savings possible, since the method prescribed by the methodology in step 4 was not

possible in this project due to a lack of domain specific expertise. However, the ex¬

pert knowledge for constraining the application profile set exists within any UMTS

algorithms team.

5.7 Results

The cost functions expressed in step 6 describe over 85% of each subsystem in UMTSCE.

Using these and the dynamic configuration instances found in step 7, we are able to

calculate the cost of each instance for the three static products. Since we are working
from an ASIC design, the result will be expressed in terms of logic gates and memory
bits. A wholly FPGA based case-study would express the result in logic slices and
block RAM.

We give the results in two separate tables, expressing the number of logic gates

and memory bits as a percentage of the ASIC solution. Table 5.14 contains the mem¬

ory requirements and table 5.15 contains the logic requirements. Since the power

control memory requirements are very small they are omitted. In the instance col¬
umn, S, U and R stand for Suburban, Urban and Rural respectively. The number (1-4)
concatenated to the letter indicates the corner-point scenario as described in step 5.
The dynamic instance requiring the greatest number of resources from each static con¬

figuration represents the saving of the checkpoint methodology. Therefore, although
Suburban instance S4 achieves excellent resource savings over the ASIC solution, it is
instance SI which determines the size of device required to implement the Suburban
solution. It can be observed that corner-point 1 demands the most resources across all
basestation products.

Note that some of the ASIC design figures are greater than the maximum of the
column, such as the rake memory and encoder/decoder logic. The reason this occurs

is that the comer-point service profiles place a unique set of demands upon the par¬

titions. The reconfigurable implementation's hardware configurations are tailored for
the unique service profile they satisfy. Since there is only one hardware configuration
for the ASIC implementation, it must provide a superset of functionality and cover all
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the service corner-points. Therefore, despite the fact that all features of all hardware
blocks are never required simultaneously, the ASIC hardware configuration must still

implement them simultaneously. For example, in SI, the ESIP encoder/decoder must

provide maximum throughput convolutional coding, with no turbo coding. In S3, the
ESIP encoder/decoder must provide maximum throughput turbo coding, with no con¬

volutional coding. The reconfigurable implementation of these corner points produces
a hardware configuration only capable of performing the coding required. The ASIC
implementation must produce a single hardware configuration which can simultane¬

ously perform both convolutional coding and turbo coding at maximum throughput,

despite this never being required. Some sharing of resources does exist in the ASIC

implementation. For example, the interleavers feeding the coding stage provide data
to both the turbo and convolutional coder.

Primary instance R3 has very low resource requirements. However, as described
in the methodology, it is the instance with maximum resource requirements that deter¬
mines the implementation size. It may be possible to exploit the low resource require¬
ments of R3. For example, the unused reconfigurable fabric may be powered down to

reduce energy consumption or be exploited by more complex receiver algorithms with

higher performance.
We observe that the dynamic savings are due to the mutually exclusive maximum

resource usage within the ESIP unit and RACH preamble detector. Within the ESIP

unit, the encoding/decoding of a call is either convolutional or turbo, never both, pro¬
viding a relationship which can be exploited by the checkpoint methodology. For ex¬

ample, when the air interface is saturated with voice calls, convolutional coding is all
that is required - turbo coding logic and memory resources can be freed up. The oppo¬

site is true if the air interface is saturated with data traffic. The RACH preamble unit's
resource requirement varies with the air-interface load. As it approaches fully loaded,
it will be possible to support fewer RACH connections, relieving the requirement for
3 detectors.
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Memory Requirements (in Bits) Normalised with respect to the ASIC Design

Instance Searcher RAKE ESIP P.D. TX Total

SI 12.1 36.4 26.2 1.9 3.2 79.8

S2 2.4 9.7 26.0 1.9 0.8 40.8

S3 0.6 4.7 13.6 1.9 0.4 21.1

S4 1.6 5.2 9.8 5.7 0.7 23.1

171 6.0 34.4 26.0 1.9 2.2 70.5

U2 1.2 7.7 24.9 1.9 0.6 36.3

U3 0.3 2.7 13.6 1.9 0.3 18.8

UA 0.8 3.2 9.8 5.7 0.7 20.3

Rl 16.1 28.3 8.7 1.9 1.2 56.3

R2 3.2 10.5 8.7 1.9 0.4 24.7

R3 0.8 7.1 4.5 1.9 0.3 14.7

RA 6.4 10.5 9.8 5.7 0.7 33.2

ASIC 16.1 39.4 35.5 5.7 3.2 100.0

design

5.8 Outcome

Table 5.16 shows the percentage savings of a reconfigurable design over the ASIC

design. The total is broken down into the saving due to static reconfiguration and

dynamic reconfiguration. We list the logic and memory savings for all three basesta-
tion scenarios (Suburban, Urban and Rural). The saving is the difference between the

largest hardware configuration in each scenario and the ASIC solution.
These results can be considered in a number of contexts. For example, a single sec¬

tor carrier solution which covers both suburban and rural configurations would have an

estimated logic saving of 20.4% and a memory saving of 20.2%. Similarly, a sin¬

gle sector-carrier solution for just a rural configuration would have an estimated logic

saving of 41.3% and memory saving of 43.7%.
From tables 5.14 and 5.15 we see the other configuration instances only require

Chapter 5.

Table 5.14:

Total.
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Table 5.15: Logic Requirements (in Gates) Normalised with respect to the ASIC Design
Total.

Instance Searcher RAKE Enc./ P.D. TX Power Total

Dec. Cont.

51 9.0 43.1 11.8 2.9 7.9 4.9 79.6

52 5.5 10.8 11.3 2.9 3.2 1.2 34.9

53 5.5 5.4 12.4 2.9 1.6 0.6 28.3

54 5.5 5.4 4.2 8.8 1.6 0.6 26.0

U\ 4.8 43.1 11.8 2.9 4.7 4.9 72.2

U2 4.8 10.8 11.3 2.9 1.6 1.2 32.6

U3 4.8 5.4 12.4 2.9 1.6 0.7 27.6

U4 4.8 5.4 4.2 8.8 1.6 0.6 25.3

R\ 14.2 32.3 4.2 2.9 3.2 1.8 58.7

R2 7.2 10.8 4.1 2.9 1.6 0.6 27.2

R3 7.2 5.4 5.1 2.9 1.6 0.6 22.9

R4 10.7 10.8 4.2 8.8 1.6 0.6 36.7

ASIC 14.2 43.1 21.1 oo00 7.9 4.9 100.0

design

between 26% and 62% of their instance 1 implementation resource requirements. This
shows that the largest configuration instance dominates resource requirements. Poten¬
tial therefore exists for saving substantial amounts of static power by switching off
unused resources when hardware configurations 2-4 are resident. Alternatively, the

spare resources may be used to implement more advanced algorithms, for example,
enhanced power control algorithms to increase cell capacity.
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Table 5.16: Percentage Logic and W emory Savings Over the ASIC Design
Product Configuration Static Dynamic Total

S (Logic) 5.3 15.2 20.4

U (Logic) 12.6 15.2 27.8

R (Logic) 30.6 10.7 41.3

S (Memory) 7.0 13.1 20.2

U (Memory) 17.2 12.3 29.5

R (Memory) 35.7 8.0 43.7



Chapter 6

Conclusions

6.1 Summary

Chapter 2 argues for the need to approach reconfiguration in real-time systems in
a different way from reconfiguration in the acceleration of general purpose systems.

Embedded systems are recognised as the dominant application space of computing for
the foreseeable future. In this era of computer architecture, it is argued that the Just-In-
Time tradeoff space replaces the single goal ofmaximising general purpose computing

performance. We predict that domain specific platforms composed of heterogeneous

computing elements will win an increasing proportion of embedded system designs.
In Chapter 3 an FPGA configuration architecture design space is proposed which

spans the single shift-register to the multiple memory plane architecture. The archi¬
tecture is highly parallelisable and scalable. A compression scheme is developed for
the column parallel configuration architecture. The compression scheme compares

favourably with previous compression based configuration architectures which are not

parallelisable.
In Chapter 4 we propose a new framework and approach to real-time reconfig-

urable design. We motivate the framework's principles by examining previous work
in the literature on reconfiguration. Different reconfiguration speeds are compared
and contrasted, and equations used to develop an idea of how reconfiguration can be

applied most profitably within real-time SoCs. The result is the definition of a soft-

136
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architectural framework to simplify the targeting of heterogeneous platform FPGAs.
A system-level view of design is combined with bottom-up circuit creation to exploit
static, medium and high frequency reconfiguration. The approach allows the integra¬
tion of existing intellectual property by being language independent and making use of

existing design flows.
We demonstrate the the soft-architectural framework and targeting approach through

a UMTS case study. Equations describing parameterised subsystems are derived in

Appendix C and used to demonstrate the harnessing of static and medium frequency

reconfiguration in Chapter 5. The case study shows that the most easily attained re¬

source savings are at a low reconfiguration frequency. Further data-folding should be

applied only with a system-level view to guide the minimisation of resource usage.

6.2 Conclusions

Most ideas in the thesis relate to the design of reconfigurable systems. Whilst the

proposed simple conceptual design approach is important and arguably absent from the
literature, perhaps one of the greatest design problems to be faced in the era of platform
based design is abstraction from the underlying architectures to facilitate portability.
This problem is not investigated in the thesis, but is closely related to reconfiguration.
As well as helping with design reuse, to design a system which is independent of the

underlying architecture would provide the opportunity to leave the selection of device
used to implement the system until late in the design. This would allow a closer match
to be made between actual requirements and the device chosen.

Instead of an abstraction model, work focused on design for resource saving pur¬

poses. However, a saving of an order of magnitude, as may naively be expected given

reported applications in the literature, was found to be difficult to achieve, if not unre¬
alistic in typical systems. In an attempt to extract better savings, attention was given to

exploiting different versions of a product or system. This proves to be a promising ap¬

proach, but the need to capture system requirement bounds in terms of equations could

present problems. The bounding requirement equations that the subsystems must sat¬

isfy may be difficult to extract and their accuracy is important for the correct minimal
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implementation of the system. The number of primary instances required for the im¬

plementation of a system may in some cases be quite large, perhaps negating the cost

saving benefit of reconfiguration. Another possible problem with the checkpoint ap¬

proach concerns how applicable it is to latency sensitive applications, or systems with

latency sensitive subsystems. The 10-100 microsecond checkpoint duration may be
critical and insurmountable in some systems, while other systems may be able to ex¬

ploit the proposed techniques for hiding and dealing with it. These issues need further

investigation.
The decision to concentrate the thesis on the reconfigurable platform FPGA was

made due to the ready availability of experimental resources and expertise. It may
have been more systematic to have performed an initial evaluation of different recon¬

figurable fabrics and chosen one based upon some criteria. For example, intuitively,
coarse grain fabrics are likely to exploit high frequency reconfiguration more prof¬

itably. This may mean they offer wider research opportunities, although we believe the

principles of the checkpoint methodology are also applicable to coarse grain fabrics.
We offer an intuitive explanation for not pursing high frequency reconfiguration of an
FPGA but a theoretical explanation for why it is not feasible would be highly desirable
in the field of reconfigurable computing. Such an explanation would provide the link
between the frequency of reconfiguration and the benefit achievable.

6.3 Future Work

6.3.1 Overview

As with any research, the ideas and results presented here give rise to many more

questions. In this section, some fruitful areas for future research are described which
relate closely to the work presented. In Section 6.3.2 we suggest ways to improve
upon the configuration architecture in this thesis. In Section 6.3.4 we outline some

future work to exploit reconfiguration more fully.
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6.3.2 Architectural Features to aid Reconfiguration

The basic analysis of what occurs during reconfiguration of an FPGA provides a plat¬
form for investigating new configuration architectures. In the thesis we use it to de¬

velop a simple but highly parallelisable difference compression based configuration
architecture. Here we present a number of research directions for building upon the
basic analysis.

The checkpoint soft-architectural framework uses a small number of configurations
to implement a system. There is a well defined sequence of instance usage available at

design time. It is likely that information can be exploited higher in the synthesis tool
chain than at the bitstream generation level. Take for example two primary instances
which are known to follow one another during operation. The first instance is com¬

pletely routed, then the router is asked to route the second circuit with both timing and

changes minimisation as constraints. This would also involve more investigation of
circuit level effects such as the effects of antennae on routes.

A major result of the basic changes analysis is that over 70% of changes occur

in the LUT contents and MUXs feeding the LUT contents. Solutions to efficiently

providing high bandwidth connections to these resources and maximising the overlay

technique as described in the previous paragraph are likely to produce excellent results.

6.3.3 Off-chip Memory Feasibility Study

Modern platform FPGAs do not satisfy the large memory requirement of the UMTSCE

algorithms. Over 80% of die area is devoted to RAM in the UMTSCE. It is likely
that future domain specific [46][5] reconfigurable logic will offer a ratio of RAM to

logic more suited to that demanded by DS-CDMA baseband processing. Alternatively,
new technologies and hardware techniques to improve memory bandwidth are emerg¬

ing such as on-chip optical interconnect [181][116] and selective exposure fabrication
[178],

In this section, the mismatch between the UMTSCE RAM to logic ratio and the
ratio offered by platform FPGAs is explored. The largest RAM blocks have their ac¬
cess pattern and peak throughput demands profiled in order to determine whether they



Chapter 6. Conclusions 140

can be moved off-chip. If most of the large RAM blocks can be placed off-chip then
it would be reasonable to assume that an FPGA targeted design could be implemented

efficiently. The short study presented here is a preliminary feasibility assessment for
future work. Future work would involve using the checkpoint methodology to imple¬
ment the UMTSCE on an FPGA supplemented by off-chip RAM.

6.3.3.1 High Bandwidth Memory Interfaces

Today's commodity Dynamic RAM (DRAM) requirements are driven primarily by the
demands of microprocessor architectures. Improved capacity, throughput, latency and
cost are all important. The domain of network processing has a different set of require¬
ments and often uses Static RAM (SRAM) for its improved latency over DRAM. In
this section DRAM is considered for off-chip storage as it is significantly cheaper than
SRAM and offers high performance with careful design. Also, as will be discussed
later, latency hiding techniques can be employed for many algorithms, so latency is
not of prime importance.

Double Data Rate (DDR) SDRAM is currently the mainstream commodity mem¬

ory standard, with (evolutionary) DDR2 poised to take over in the near future. The
DDR standard was approved by the Joint Electron Device Engineering Council (JEDEC)
in 1998. It is an enhancement to the previous PC-100 standard RAM, supporting data
transfers on both edges of the clock, effectively doubling throughput.

Read and write accesses to DDR RAM are burst oriented with accesses starting at

a specified location and continuing for a programmed number of locations. The 'AC¬
TIVE" command begins an access, followed by a "READ" or "WRITE" command.
The address bits registered with the ACTIVE command are used to select the memory
bank and row to be used. The address bits registered with the "READ" or "WRITE"
command are used to select the bank and the starting column location for the burst
access. Burst lengths are 2, 4 or 8 locations. An "AUTO PRECHARGE" function may

be enabled to provide a self-timed row pre-charge that is initiated at the end of the burst
access. The pipelined, multi-banked architecture of DDR SDRAM enables concurrent

operation, therefore hiding row pre-charge and activation time.
The Dual In-line Memory Module (DIMM) packaging of DDR SDRAM is offered
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with clock speeds of 100MHz through to 200MHz with a 64-bit data bus enabling peak

throughputs of up to 23.8 Gbps. Achieving peak throughput is very much dependent
on how memory is partitioned across the banks and the design of the memory interface.

The resource requirements of a DDR interface are low. A Virtex 2 100MHz inter¬
face requires only 645 slices and 110 Input Output Blocks [67],

6.3.3.2 Preliminary Bandwidth and Access Pattern Investigation

It is only possible to pre-fetch successfully if the address to be read from is known
in advance, hence the importance of determining the memory access pattern of the

algorithm using the memory. For example, if an algorithm has a regular, perhaps
even statically defined access pattern, then pre-fetching data is straightforward. With a

less regular but still predictable access pattern, pre-fetching is possible but the address

generation complexity increases. It is not possible to perform pre-fetching if the access

pattern is run-time dependent and addresses are generated as they are required. The
final practical consideration is the match between the memory word-size and the data
word size. If many more bits are read than are required then bandwidth is wasted
unless the adjoining bits can be efficiently stored on-chip and used later. For on-chip

storage of additional bits to be efficient they must be processed quickly, otherwise the

advantage of using off-chip storage reduces. With DDR memory, the minimum burst
size of 2 words inherently affects the match between what must be read from memory

and what is required.
Table 6.1 lists the largest memory blocks in the UMTSCE with their total memory

throughput (read and write throughput summed). The blank entries are due to the data

being difficult to extract from the design documents made available. The memory

blocks listed in the table represent 70% of the total UMTSCE memory usage. The

throughput figures are the raw requirements calculated by studying how the memory

content is used by the logic. They do not consider inefficiencies introduced by the

memory interface word width. The column labelled sequential indicates whether the

memory access pattern is sequential or not.

About half the memory is sequentially accessed, meaning that very efficient, long
burst length accesses with the potential to reach peak DDR throughput are possible.
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Partition Memory Size BW (Mbit/s) Sequential On/Off Chip
RAKE Channel Est. Circ. Buff. 2,048,800 42 Y Off

ESIP 1 st De-Interleaver 1,966,080 57 N Off

Searcher Coherent PDI 1,081,344 32,440 Y On

ESIP 1 st Interleaver 1,048,576 23 N Off

Searcher Non-Coherent PDI 933,888 4,790 Y Off

RAKE Decimated FFT 851,968 130 Y Off

ESIP Config/Result 655,360 1,228 N Off

ESIP Instruction TCM 524,288 983 N Off

RAKE Sample Rate Buffer 491,520 1,843 Y Off

ESIP 2nd De-Interleaver 491,520 1,843 N Off

PD Shift Register 294,912 553 Y Off

ESIP Data TCM 262,144 NA NA NA

TX Input Buffer 262,144 NA NA NA

PD Deskew 172,032 11,800 N Off

Table 6.1: Largest UMTSCE memory block throughputs

The total throughput demands of the memories suitable for sequential access are rea¬

sonable, with the exception of the Searcher Coherent PDI memory. Due to its ex¬

tremely high throughput demand, the searcher memory must remain on-chip.
With the exception of the PD Deskew memory and possibly the ESIP instruction

TCM (tightly coupled memory), all non-sequentially accessed memories can also be

placed off-chip. All access, although not sequential, is pseudo random, so latency can

be hidden by pre-fetching data. With a memory word length of 64 bits and actual word

lengths as low as 16 bits, the available memory throughput is not used efficiently, but
since the raw throughput is low, the inefficiency can be accommodated.

The PD de-skew memory throughput cannot be accommodated with off-chip RAM
because, due to massive bandwidth inefficiencies, the required bandwidth exceeds that
of DDR at its peak. The read efficiency is very poor because random 8-bit data words
are required. The effective throughput to get the required 8 words per clock cycle with
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64-bit word-length DDR RAM is 8 • 64 ■ Clock Rate = 94,372Mbits/s. This, combined
with further inefficiencies such as the minimum burst length of 2 words, mean the
Preamble Detector Deskew memory must stay on-chip.

6.3.3.3 Summary

Carefully planned use of off-chip RAM can achieve reasonable operational throughput.
This study estimates that all but 2 of the largest RAMs in the UMTSCE can be placed
off chip without saturating the bandwidth available with commodity DDR RAM. This
result suggests the on-chip memory requirement for the CE can be reduced to a level at
which the ratio of logic to memory is similar to that offered by present platform FPGA
architectures.

6.3.4 Design with Reconfiguration

The checkpoint framework provides a generic way to maximise a platform's pro-

grammability. In the larger picture of design automation, it would be useful to in¬

vestigate ways of integrating it into hardware-software co-design. The guiding idea of

primary instances of functionality may be extended to hardware-software partitioning.
As the functionality required of the system changes with time, it is probable that the

partitioning across heterogeneous fabrics will change - for example to minimise power

consumption.

Perhaps the most obvious area for future work is to look at other applications and

application domains in an attempt to characterise better those systems where the ap¬

proach is of most benefit. A method for automatic examination of static netlists and
determination of their potential to exploit reconfiguration would be extremely valu¬
able. The combination of read-back on every clock cycle to measure circuit activity

together with higher-level observations would be an interesting line of research. The
insertion of additional monitoring circuitry could help reduce the amount of read-back

necessary.

Another area not investigated here concerns the automated solving of the resource

requirements equations. There are likely to be techniques in the area of mathematical
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optimisation which could be applied here. It is noted that step functions may exist, so
the volume of optimisation may not be continuous.

Finally, rapid reconfiguration represents only a small proportion of the improve¬
ments reported here. This is likely to be due to the difficulty in identifying good
candidates. It would be extremely useful to develop techniques for the automatic iden¬
tification of candidates for high frequency reconfiguration (LUT contents only). A

quantitative approach would be to construct test circuitry to monitor state changes dur¬

ing a circuit's operation. Those areas where state change occurs slowly may provide

opportunity for datafolding.



Appendix A

Digital Communications

A.1 Introduction

This appendix presents some of the fundamentals of digital mobile communications.
As there are many textbooks which cover these topics in detail, a very condensed

presentation of the material will be made here - only going into detail on certain topics
that are vital to the understanding of work presented in the thesis.

A.2 Digital Modulation

Today's mobile radio systems solely use digital modulation techniques. In communi¬
cation engineering, passband signals are usually dealt with. The most basic definition
of a passband signal is that the Fourier transform S(f) of the signal s(t) satisfies the
condition:

5(0) = 0. (A.l)

which implies that the signal contains no DC component. Although this is sufficient
for equivalent baseband representation, in real systems - especially in mobile radio, the

signals dealt with are often centred around a 'carrier' frequency which is much higher
than the bandwidth of the signal itself.

145
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The passband signal may be represented as follows

s(t) = si (t) cos ((Hot) — SQ(t)sin((Oot). (A.2)

The form of A.2 is referred to as the quadrature component or I/Q representation,
where sj(t) and SQ(t) are the in-phase and quadrature phase component, respectively of
so (t) - the complex valued equivalent baseband signal. The complex valued equivalent
baseband signal si(t) can be derived from the real base-band signal s(t) by introducing
the analytic signal s+(t) which contains only the positive frequencies of s(t).

S+(f) = (l+sign(f))S(f). (A.3)

Shifting the spectrum S+(/) of the analytical signal s+(t) down to the baseband,
we find find the spectrum Si(f) of the equivalent baseband signal S[(t).

SL(f) — S+(f+ /o)- (A.4)

sL(t) = s+(t)e-jaot (A.5)

Signals and their mathematical representation have been extensively studied [157]
[38] [81] [130] [125] [69] [126],

A.3 Power Spectral Density

Random signals are often used in communications engineering to mitigate against in¬
terference so that the information gets transmitted. Therefore, it is necessary to model
the signals through their statistical properties. The usual signal description in the time
and frequency domains cannot be applied. Instead, the autocorrelation function Q.ss(t)
of the random signal s(t) is used,

(j)(t) = £{.s(?).s(r+ T)} (A.6)
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with £{.} denoting the expectation value. We find the representation in the fre¬
quency domain if we take the Fourier transform of the autocorrelation function.

/oo $(T)emdT. (A.7)
-oo

<£>(/) is the power spectral density or PSD representing the distribution of power
as a function of frequency for the stochastic signal s(t). The inverse Fourier transform
at x = 0 is,

CKO)=£{*2(0} (A.8)

which is the average power of the stochastic signal. A detailed treatment of random

signals and stochastic processes is given in [157] [38] [130] [69] [173] [113] [51].

A.4 Constellation Diagram

Figure A.1: Constellation for QPSK modulation.

In general, linear modulated communication signals can be expressed with:

oo

sUt) = £ d(n)g(t-nT). (A.9)
Yl——°°

The equivalent baseband signal S]_{t) is the sum of time-shifted impulse responses

g(t) of the transmit pulse shaping filter where each is weighted with the corresponding

complex data symbol d(n). While g{t) is a deterministic signal (since we know the
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impulse response of the transmit filter), the complex data symbols d[n) carry the infor¬
mation and are the outcome of a stochastic process. The constellation diagram is the

representation of the data symbols in the complex plane. Figure A.l shows a simple

example where the constellation diagram for quadrature phase shift keying (QPSK) is

depicted. All the four possible data symbols have the same amplitude (vector length),
but have their value determined by their phase. After demodulation and detection at

the receiver, a decision must be made as to which data symbol was transmitted. A dia¬

gram where the constellation of the actual signal is drawn, including distortions, gives
valuable information about the signal integrity in the various stages of the transmitter
and receiver. The constellation diagram thus serves as a qualitative measure of the
modulation accuracy of the signal.

Equation A.9 shows how a linear modulated signal may be represented, and a pass-

band signal can be represented by

oo oo

■y(0 = ( Yj d'(n)g(t - nT))cos((O0t) - ( £ dQ(n)g(t - nT))sin((O0t). (A.10)
n——oo YI-— oo

The equivalent base-band representation is the sum of the time-shifted impulse re¬

sponses g(f) of the transmit pulse shaping filter which are weighted with the complex
data symbols d{n) = di(n) +dQ(n)j. For linear modulation techniques, the ampli¬
tude of the transmitted signal varies linearly with the data symbols d(n) [132] and,
therefore, the superposition principle with regard to the mapping of the data symbols
onto the transmit signal is valid [130], In general, linear modulation techniques are

bandwidth efficient but they suffer from strong amplitude variations in the transmit¬
ted signal and hence require highly linear implementations in both the transmitter and
receiver.

While g(t) is deterministic (since the impulse response of the transmit filter is
known) the complex symbols d(n) which carry the information are the result of a

stochastic process. A widely used transmit filter in mobile communications is the
raised cosine type filter, which has the important properties that it satisfies Nyquist's
first criterion and it can be split between the transmitter and receiver to create a matched
filter. The resulting widely used filter is the root raised cosine filter.
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serial
bitstream

Figure A.2: Generic modulation architecture for digital signals

Depending on the actual modulation format, the serial stream of bits is converted
to a stream of m parallel bits. Each m -bit-wide data word is then mapped onto the
constellation diagram, giving the real (dj(n)) and imaginary (dg(n)) part of the data

symbol (d(n)). The pulse shaping filter sits in both the I and Q paths. The filter outputs
are combined with the carrier frequency (cos(($ot) in the I path and —sin(—(Oot) in the
Q path) to translate the baseband signal to the carrier frequency /o. Finally, the sum of
both paths gives the real-valued band-pass signal for transmission. This architecture
can be applied to any linear modulation technique and is illustrated in Figure A.2.

A.5 Bandwidth Efficiency

The various modulation techniques have different bandwidth efficiency. A common

way of expressing bandwidth efficiency (it) which gives the achievable bit rate per

Hz is

(transmission raterequired bandwidth
The units for Tj v are bits/s/Hz. The theoretical values for the bandwidth efficiency

of different modulation techniques are listed in Table A.5. These values do not include
the effect of transmit pulse shaping. The reader is referred to [130] [125] for further
treatment of this topic.

(A.ll)
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Modulation technique T|s (bit/s/Hz)
BPSK 1

QPSK 2

16QPSK 4

Table A.1: Theoretical Bandwidth Efficiency of Several Modulation Techniques

A.6 Cellular Radio Terminology

A.6.1 Duplex Techniques
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Figure A.3: TDD and FDD techniques for separating the signals of transmit and receive

A duplex technique is necessary if a terminal must both receive and transmit si¬

multaneously. To perform this, the transmit and receive signals must be separated.

Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are used and

depicted in Figure A.3. With FDD, transmit and receive are separated by frequency,
however this is paid for by the requirement of a costly duplexer that ensures the high

power transmit signal is radiated only to the antenna and not into the receive path.
In TDD, a simple switch is sufficient but accurate timing is required between the ter¬

minals and the base station. The second generation standard, Global System Mobile

(GSM) was FDD, the new 3G standard, UMTS, includes both TDD and FDD.
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Figure A.4: Hierarchical Cellular Plan

A.6.2 Hierarchical Cell Structure and Frequency Reuse

Cellular systems made the coverage of large geographical areas possible. The subdi¬
vision of an area into a sufficient number of cells helps to solve two problems. First,

limiting the cell size reduces the transmit power requirements of the terminal and hence
increases battery life. Secondly, the size of the cell determines the maximum number
of users per unit area. Cells that are too large can result in too low a signal to noise
ratio for satisfactory operation. Each cell has a basestation and is assigned a certain

frequency band. Usually the frequency band owned by an operator is divided into a

set of sub-bands and these sub-bands are assigned to cells. A sub-band used by one

cell can be used by another if it is far enough away to limit the interference to tolerable
levels. In TDMA based GSM, a frequency reuse factor of 3 or greater is used, but in
CDMA based UMTS a frequency reuse factor of just one may be used. Figure A.4
shows an example network with the commonly used hexagonal representation of a cell.

The size of cells in a CDMA based cellular network varies depending on their
load. This is because CDMA is interference limited, and as more users enter a cell,

the interference level increases, until it is not possible for users at the cell boundary
to communicate. This effect of the cell growing and contracting in coverage with the
level of interference is referred to as "cell breathing". It is imperative that the network

planners take this effect into account.
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A.6.3 Multiple Access Schemes

The radio spectrum is a limited resource, so much effort has been spent to find methods
to used it most effectively. This includes finding efficient ways of sharing a given
bandwidth amongst many different signals for different users - multiple access.

It is possible to separate a given bandwidth into the time domain, frequency do¬
main, code domain or spatial domain. It is also possible to combine two or more of
these mechanisms to create hybrid access schemes.

Figure A.5: Diagram illustrating Time Division Multiple Access (TDMA)

Figure A.6: Diagram illustrating Frequency Division Multiple Access (FDMA)
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Figure A.7: Diagram illustrating Code Division Multiple Access (CDMA)
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Figure A.8: Diagram illustrating Space Division Multiple Access (SDMA)

• Time Division Multiple Access (TDMA) enables several users to use a single
bandwidth by assigning a unique time slot to each user. During the time slot the
user has the complete bandwidth. (See Figure A.5)

• Frequency Division Multiple Access (FDMA) shares the available bandwidth

by splitting it into sub-bands and assigning those sub-bands to individual users.
(See Figure A.6)

• Code Division Multiple Access (CDMA) shares the available bandwidth by as¬

signing each user a code which is used to spread their signal over a wide band
carrier signal. (See Figure A.7)

• Space Division Multiple Access (SDMA) can be used if all users within a cell
are located at positions with different azimuth angles. The most straight forward

approach is to use sectorised antennae, which divide the cell into sectors where
different users can only be distinguished in the spatial domain if they are in
different sectors. More sophisticated forms of SDMA involve steered antenna
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beams. It is widely anticipated that SDMA will be combined with a more basic

multiple access system to enhance system capacity. Figure A.8 depicts the use

of sectorised antennas.

In theory it does not matter whether the spectrum is divided into frequencies or

time slots - the capacity provided from these multiple access schemes is the same.

However due to typical radio environment conditions, and the changing requirements
of the different traffic flows, CDMA has emerged as the scheme of choice for 3rd

generation cellular networks. Refer to [93] for an overview of Cellular CDMA and
[8] [105] [150] [175] for early 1970's information-theoretic investigations into the

multiple-access communication model.

A.6.4 The Mobile Radio Channel

The characteristics of the environment in which radio communication takes place be¬
tween the transmitter and the receiver greatly affect the performance of the system. A

thorough understanding of the mechanisms in the radio channel, their mathematical
model and the received signal characteristics is of major importance to mobile radio
communication design. This section outlines the topics important for understanding
the material presented in this thesis. For a more detailed description of this large topic

please refer to [132] [94] [59] [147] [148] [149],
There are four distinct features of the mobile radio channel which have signifi¬

cant impact on the signal reaching the receiver antenna. The first feature is multi-path
propagation . The electromagnetic wave originating from the transmitter usually fol¬
lows several different paths to the receiver antenna. This is due to scattering, reflection
and diffraction mechanisms, which create paths other than the direct line of sight path
(which in many cases does not exist). Multi-path propagation causes fading, i.e., spa¬
tial variation of the received signal power due to constructive and destructive summing
of the signal arriving via different paths. A second feature is time variance . The prop¬

agation channel can vary with time because the mobile terminal can move around or

the objects causing scattering, reflection and diffraction move around. The third fea¬
ture is Doppler spread . This captures the spreading of the transmitted signal in the
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frequency domain due to the Doppler effect. The fourth feature is the spatial disper¬
sion of signals. Since the signals arrive at the receiver from different directions, the
radio channel varies with the azimuth angle, i.e., if a directional antenna is used at the

receiver, the radio channel exhibits different characteristics as the antenna is pointed in
different directions.

A.6.5 Diversity Techniques

A common means to combat signal loss due to fading is through the use of diversity

techniques. Basically, if a signal arrives at the receiver via different paths, with each

path experiencing independent fading, then carefully combining the received signals
will produce a strong signal. This is due to the fact that for many independent paths
there is only a small probability that all paths will be in a deep fade at the same time.
In fact, if the probability, p, that the SNR of one path is below a certain threshold, then

pN is the probability that the SNR values on all N paths are below the threshold at

the same time. Some of the most important diversity techniques (all of which, except

frequency diversity, can be used in UMTS) follow:

• Space Diversity: Two antennae are used at the receiver to feed independent sig¬
nals to the receiver input.

• Frequency Diversity: Frequency diversity is obtained by using several chan¬
nels at different frequencies. A common type of frequency diversity is Orthog¬
onal Frequency Division Multiplexing (OFDM). Here, several data symbols are

transmitted in parallel on many closely spaced carriers. Therefore, the frequency
selective fading will degrade some of the carriers but not all of them. Combined
with powerful error correcting codes, lost data can be recovered to reduce the
bandwidth consumed by retransmissions.

• Time Diversity: Time diversity uses a similar principle to frequency diversity.
Data symbols are interleaved, i.e. data is distributed over several time slots. If
one slot is lost due to fading, error-coding can recover the data, because only a

small fraction of the data block is lost due to interleaving.
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• Multi-path Diversity: Different signal components can sometimes be resolved

through signal processing - this is called multi-path diversity. This is possible
with direct sequence spread spectrum systems, together with a RAKE receiver.

A.6.6 Maximum Ratio Combining

There are several techniques for combining the different signal branches from the di¬

versity techniques above. The most effective method is called Maximum Ratio Com¬

bining. Each branch is weighted with its complex conjugate path weight before sum¬

ming up. Thus it is necessary to know or estimate these path weights and this involves

highly complex computations.

A.6.7 Spread Spectrum Techniques

A spread spectrum system is that in which the bandwidth consumed by the signal
transmitted is much larger than the baseband signal. This is achieved through the use

of a signal independent of the information signal.
Shannon expressed the basis of the spread spectrum technique with the channel

capacity formula in [143]:

The channel capacity C is the maximum data rate which can in principle be trans¬

mitted over an Additive White Gaussian Noise (AWGN) channel without any error,

with bandwidth B and signal-to-noise ration S/N. The past 50 years of information
theory has managed to get today's technology within less than ldB of Shannon's the¬
oretical limit [163],

There exists a linear dependency between channel capacity C, and bandwidth B,
whereas the capacity only increases logarithmically with the SNR. Further, it is clear
that bandwidth can be traded off against SNR.

The most widely used spread spectrum technique, and the method used by UMTS,
and hence of importance to this work, is called Direct Sequence Spread Spectrum

(A. 12)
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Figure A.9: Direct Sequence Spread Spectrum System signals in time domain

(DSSS) . In DSSS, the signal to be transmitted is modulated with a digital code se¬

quence, which is independent of the data and has a much higher clock rate than the
data signal bandwidth.

A.6.8 Direct Sequence Spread Spectrum

In DSSS, the digital data signal is modulated with a code sequence c(t). Figure A.9
illustrates this. The individual bits of the code are referred to as chips to differentiate
them from the data signal. After transmission at the carrier frequency, reception and
down-conversion to baseband, the spreading must be reversed in the receiver to recover
the original baseband data signal. Multiplying the received signal by the same code

c(r) achieves this (must be done synchronously though).
Figure A. 10 shows the effect of spreading in the frequency domain. The multipli¬

cation with the high rate spreading code sequence c{t) broadens the transmit bandwidth
and at the same time lowers the power spectral density.



Appendix A. Digital Communications 158

Data

Data Bandwidth

1
Spreaded Signal Transmitted Signal

f

SS-Bandwidth t SS-Bandwidth

f

Carrier Frequency
Code Bandwidth

i Data

Downconverted Signal

SS-Bandwidth

f

Carrier Frequency

<X>-
t
A Code

f

Data Bandwidth

(Jode Bandwidth

Figure A.10: Direct Sequence Spread Spectrum System signals in frequency domain

A.6.9 DS-CDMA

Direct Sequence Spread Spectrum can be used to provide Code Division Multiple Ac¬
cess (CDMA). This is accomplished by assigning each user a different code for the

spectrum spreading process. Under ideal conditions and if these codes are chosen

properly, there will be negligible interference between the users despite them transmit¬

ting in the same frequency band at the same time. Under real conditions there is some

residual multiple access interference.

A.6.10 Correlation

All Spread Spectrum CDMA receivers rely on correlation. This section introduces the

concept of correlation.
For a discrete time signal, if cx(i) is the ith chip in a code x with length L, the

aperiodic discrete time autocorrelation function is defined in equation A. 13. This
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Figure A.11: Drawing of a code sequence generator

equation is correct if all users are synchronised and codes are mutually exclusive.

L-1

<M0 = L (cx{i)cx(i + l)) for 0 < 1 < L-l (A. 13)
i=0

The discrete aperiodic cross-correlation function is defined as

L-l

®xy(l) = £(cx(/)cy(/ + /)) for 0 < 1 < L-l (A. 14)
i=0

For a CDMA system, the codes should have a high autocorrelation peak at / = 0.
For all other values of /, <J>XX(/) should be as close to zero as possible. This aids in
signal acquisition and tracking and gives reliable symbol decisions. For a high user

capacity, the codes must be mutually orthogonal, resulting in the condition for the
cross-correlation function

<pxy(l = 0) = 0 (A.15)

A.6.11 Code generation

The spreading codes are generated using a shift register, with the appropriate XOR

logic for feedback to the input. An example is illustrated in Figure A. 11. A family
of codes that can be generated using the shift register described are M-Sequences.
These are generated by irreducible polynomials[58]. For different starting sequences

the resulting M-sequence generator is always the same - it just has a different time
offset, or code phase .

For cross-correlation purposes, it has been found [136] that only a small number of
M-sequences have mutually good cross-correlation properties. This prevents their use
for distinguishing between CDMA users.
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A.6.12 Gold Sequences

Gold sequences are generated by the modulo 2 addition of two "good" M-sequences
of equal length. This produces a large number of gold sequences because two M-

sequences can have 2N — 1 different relative offsets between them, with each offset

resulting in a different Gold Sequence. Gold sequences are used for scrambling in
UMTS-FDD, separating terminals on the uplink and basestations (or sectors) on the
downlink.

A.6.13 Walsh Sequences

Walsh sequences are orthogonal functions [168] and are used in UMTS as channeli¬
sation codes in both the uplink and downlink. On the uplink they separate data and
control data, on the downlink they separate terminal channels. They can be computed

by reading a row from the matrix produced by the following recursion rule

H2i =
Hi Hi

Hi -H
(A. 16)

This matrix is called the Hadamard matrix. As an example, the Hadamard matrix
for order 4 in shown in equation A.17. It can be observed that the rows are mutually

orthogonal.

/

H\ =

1 1 1 1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

\

(A. 17)

A.6.14 Receiver

The optimum receiver structure uses a matched filter. The receive signal is correlated
with all possible transmit signals and the one with the strongest correlation result is
chosen.

In a real system, there is interference caused by other users which are active in the
same frequency band and transmitting at the same time - Multiple Access Interference
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(MAI). In UMTS (FDD mode), the downlink signals are time aligned, however in the

uplink this is not the case. Power control is employed to try to ensure all signals are

received with the same power. In the ideal case, i.e. the signals have codes that are

perfectly orthogonal, the interference user signals are time aligned. All the interferers
vanish and the receiver has the same performance as in the single user case. However,
the codes are not perfectly orthogonal, the signals are not time aligned and the sig¬
nals do not have the same power. (In addition to the non-ideal characteristics of the
transmitter and receiver).

As well as MAI and AWGN the received signal is strongly affected by multi-path

fading. It is possible to design systems to take into account MAI by removing known
interferers, but this is not done in practice due to the high amount of processing re¬

quired. A less computationally intensive receiver which is used in UMTS implemen¬
tations is the RAKE Receiver. There are two variants, the single user RAKE and the

joint detection RAKE receiver. For practical reasons of cost, the single user RAKE is
used in a mobile terminal and the joint detection receiver in a base station.

A.6.15 Single User RAKE

CDMA receivers are actually able to exploit the multi-path effects to improve their

performance by using a good autocorrelation function (i.e. = 0) = L, <E,xc('c! =
0) = e), with 8 very small compared to L. Due to the multi-path, the receiver's antenna
has a superposition of the transmit signal, each with a different path delay. If the paths
differ by one or more chip periods, then a correlation receiver synchronised to one

of the paths can partially suppress all other paths. This helps reduce fading due to

the multi-path effect, but relies on near-perfect time synchronisation with the desired

signal.
The RAKE receiver makes use of several correlators operating in parallel, each

with a different time offset, hence synchronised to a different path. Only the strongest

paths are selected to be correlated and the output of each correlator is fed into a decision
unit to produce the final output of the RAKE. This design results in a better receiver
because it does not rely on just one path.

The name RAKE receiver come from its similarity to a garden rake. Figure A. 12
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Figure A.12: Maximum ratio combining RAKE receiver with 3 fingers

shows a block diagram of the RAKE. The correlators are referred to as fingers. Each
of the fingers is collecting the signal energy over the path to which it is synchronised.

Combining the outputs of each finger produces an SNR better than a single finger
could achieve. There are several methods of implementing the combination stage, but
maximum ratio combining gives the highest SNR for the decision variable [94]. It is

applied by weighting the outputs of the fingers with the complex conjugate coefficients
of the path as shown in Figure A. 12. Multiple antennae can also be used to further
exploit spatial diversity, although the fingers must only track the paths of the radio
channel associated with that antenna.

A.6.16 Multi User Detection

Combating the interference caused by other users in the system, rather than treating
it as AWGN is referred to as multi-user-detection. This is split into two techniques,

Interference Cancellation (IC) and Joint Detection. In this work we are concerned
only with Joint Detection.

A.6.17 Joint Detection: Maximum Likelihood Sequence

Several types of joint detection techniques exist, each consisting of a correlator bank
followed by some form of transformation. The Maximum Likelihood Sequence Es¬
timator gives the best performance, but suffers from the computational complexity
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growing at an exponential rate with the number of users. The technique used in the
receiver looked at in this work is called the Minimum Mean Square Error (MMSE)
Detector . Its complexity increases linearly with the number of users.
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UMTS

B.1 Overview of UMTS physical Layer

B.1.1 UMTS Introduction

In 1991, ETSI created a technical sub-committee (now part of 3GPP[4]), to develop
a third generation mobile system called Universal Mobile Telecommunication System
(UMTS). Two air-interfaces were selected : FDD W-CDMA and TDD TD-CDMA.
FDD W-CDMA which is better for large cell sizes and has had most operator interest
is the air interface described here.

FDD mode is based on a DS-CDMA air-interface providing single frequency reuse,
soft hand-off and the use of sectorised antennas. It is designed to be deployed in
a cellular network with cells of different sizes, ranging from macro-cells (0.5Km to

lOKm), micro-cells (50m to 500m) and pico-cells (5 to 50m). Handover between cells
is designed to be transparent to the user. Further, coexistence with GSM, including
handover between UMTS and GSM is emphasised.

One of the key advantages ofUMTS over GSM is its spectral efficiency - estimated
to be in the order of 2 or better[7], UMTS uses two 5 MHz bands to provide data

speeds of up to 2Mbps. With the introduction of High Speed Downlink Packet Access
(HSDPA), peak rates of 14Mbps will be available.

The physical layer and its relationship with the two layers above it is illustrated in

Figure B.l. A logical channel is characterised by the type of information transferred.

164
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Figure B.1: Physical Layer Relation to Upper Layers

A transport channel is characterised by how the information is transported over the
air-interface. A physical channel consists of radio frames and time slots. Once trans¬

port channels are channel coded and matched to the data rate offered by the physical
channels, they are mapped to the physical channels.

B.1.2 Air Interface Principles

The chip rate of the system is 3.84Mcps. The frame length is 10ms which is divided
into 15 slots. Spreading factors range from 4 to 256 in the uplink and 4 to 512 in
the downlink. Thus on the uplink, the symbol rates vary from 960 Ksymbols/s to 7.5

Ksymbols/s. To separate channels from the same source Orthogonal Variable Spread¬

ing Factor (OVSF) codes are used. To separate sectors on the downlink, long scram¬

bling codes constructed from Gold codes are used. Similar codes are used to separate

users on the uplink and downlink. The processing of multiplying a vector by its code
is often referred to as spreading and scrambling.
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B.1.2.1 Handover

To enable terminal mobility with a continuous connection, UMTS has extensive sup¬

port referred to as "Handover". There are several different types of handover:

• Inter-frequency handover

• Soft, softer and hard handover

• Handover between GSM and WCDMA

• Handover between TDD and FDD modes

The algorithm for making the decision to perform a handover can be based upon a

number of different types of information. Examples are a physical channel's Bit Error
Rate (BER), and transport channel's block error rate (BLER).

B.1.2.2 Power Control

In WCDMA all users share the same radio bandwidth, separated by codes. The result
is that other users appear as random noise, so capacity is limited by interference. This
makes good power control very important. FDD UMTS has fast closed loop and slower

open loop power control mechanisms.
Fast power control operates at 1.5KHz (per slot) with a step size of ldB, however

larger step sizes are also permitted. It operates on both the Uplink and Downlink at a

rate faster than any path loss change (< 300Km/hr).
Outer loop power control operates at much lower frequency range - 10 to 100 Hz.

Its purpose is to define the convergence point for which fast power control should be

aiming. This is determined by higher layers which are based upon the required quality
of service required by the data traffic. Measurements such as block error rate inform
the decision. The basic aim is to minimise the power margin needed, therefore saving

capacity.

B.1.3 Uplink Physical Channels

There are two dedicated uplink physical channels and two shared physical channels.
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Figure B.2: Radio Frame Structure UL DPDCF1 and UL DPCCFI

• The Uplink Dedicated Physical Data Channel (UL DPDCH) and the Uplink Ded¬
icated Physical Control Channel (UL DPCCH).

• The Physical Random Access Channel (PRACH) and Physical Common Packet
Channel (PCPCH)

The uplink DPDCH is used to carry data from the higher layers. The uplink
DPCCH is used to carry control information generated by physical layer. Control
information consists of known pilot bits to help with channel estimation, feed back
information (FBI), transmit power control (TPC) commands and an optional transport-
format combination indicator (TFCI). Figure B.2 shows the frame structure for the
UL DPDCH and DPCCH channels. The message data content is determined by the

spreading factor, though the chip rate stays constant. Many variable rate services can

be multiplexed within each DPDCH frame but the spreading factor used may only

vary between frames. Note that the complete radio frame must be received before the

spreading factor is known since the FBI bits are split up across the 15 slots. This has

major design consequences in the RAKE receiver discussed in Section B.2.3.
The PRACH is used to carry the RACH. The random-access transmission is based

upon a slotted ALOHA approach with fast acquisition indication. The mobile can start

a PRACH at certain well defined times called access slots. There are 15 access slots per

two frames, spaced 5120 chips apart. The RACH transmission consists of a preamble
of length 4096 chips, repeated with increasing transmit power until acknowledged by
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Figure B.3: Radio Frame Structure RACFI message

the basestation, then a message part. The preamble part consists of a 16-bit signature

repeated 256 times. In total there are 16 signatures based on a Hadamard code set of
length 16. The message part is either 10ms or 20ms in duration. Figure B.3 shows the
structure of the random-access message part radio frame. Each slot is split into two

parts, a data part that carries layer 2 data and a control part that carries layer 1 control
information.

The PCPCH is used to carry the Common Packet Channel (CPCH) transport chan¬
nel. The CPCH is a contention based, random access channel used for bursty data
traffic. It is very similar to the PRACH and is therefore not described further here.

B.1.4 Downlink Physical Channels

There is one Dedicated Physical Channel, one shared and five common control chan¬
nels on the downlink:

• Downlink Dedicated Physical Channel (DPCH)

• Physical Downlink Shared Channel (PDSCH)

• Primary and Secondary Common Control Physical Channels (CCPCH)

• Primary and Secondary Common Pilot Channels (CPICH)

• Synchronisation Channel (SCH)
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The Physical Downlink Shared Channel (PDSCH) is a variable-rate channel shared

through the use of code multiplexing.
The primary CCPCH is a fixed-rate physical downlink channel used to carry a

broadcast channel containing cell specific information. The secondary CCPCH is a

variable rate physical downlink channel used to carry the Forward Access Channel
(FACH) and Paging Channel (PCH). The PCH is used to support efficient sleep mode

operation of mobiles. The FACH is similar in purpose to the RACH - used for short
data bursts.

The Common Pilot Channel (CPICH) is a fixed-rate physical downlink channel
that carries a predefined bit sequence. It is the default phase reference for all downlink

physical channels.
The Synchronisation Channel (SCH) is used for cell search. It consists of two sub

channels. The primary channel is the same across all channels so the mobile terminal
can easily find it, the secondary channel (synchronised with the primary) then gives
the UE details such as the code used by the cell.

The details of the downlink frame structure are not important for the understanding
ofmaterial presented here. The reader is referred to the standard documents for details
[2].

B.2 UMTS Partition Overview

B.2.1 Preamble Detector

The primary purpose of the preamble detector is to sense attempts by a UE to access

the basestation. Three different preamble detectors are implemented using a 4-segment
cross-correlation architecture. Most of the following describes the algorithm of a single

preamble detector.
The UE transmits a known signature of 16 bits repeated 256 times which results

in a 4096 chip preamble. Since the scrambling code used by the UE can be generated
locally, cross-correlation is possible to detect the preamble. The results of the Code
Matched Filters are fed into the post-detection integration (PDI) block where they are

coherently accumulated. The PDI block also performs diversity combining on the two
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Figure B.4: UMTSSOC: Preamble Detector Partition
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Figure B.5: UMTSSOC: Preamble Detector CMF Block

different antenna sources after they are accumulated. The output of the PDI block feeds
the peak conditioning block which applies a threshold which acts like a filter. Finally
the peak sorter finds the best set of peaks for each of the 3 preamble detectors.

As shown in Figure B.4, the correlation is implemented by splitting the task into
four separate FIR filters. Inside each CMF block are four 64-chip wide matched filters,
so in total there are sixteen 64-chip matched filters for both full and half-chip sample
streams. Each segment works on 1024 of the 4096 chips in the preamble in a heavily
time-multiplexed design. The 1024 chips are fed to the four correlators 64 chips at a
time as shown in Figure B.5. With the 64-chip sample held constant, it is correlated
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Figure B.6: UMTSSOC: Searcher Partition

against the code (broken into 64 bit chunks) and this is done for the three preamble
detector codes. Therefore, the number of cycles required to correlate against a single

hypothesis is 16 x 3 = 48 cycles which corresponds to the number of cycles available

per chip period.
The Fast Hadamard Transform (FHT) function takes 16 dot-products produced by

CMF block corresponding to a signature hypothesis and attempts to uncover the or¬

thogonal Hadamard preamble code. Since the FHT demands the CMF sums in a dif¬
ferent order from that in which they are produced, a de-skew stage is inserted to present

them in the correct order. The output of the two Hadamard transform blocks (one for
full and half-chip streams) is a set of 16 complex likelihood values per chip, one for
each of the 16 possible preamble signatures.

The post-detection integration stage takes the likelihood values produced by the
FHT and performs coherent and non-coherent accumulations. After the accumulation

stage the diversity pair may be combined before the result is passed to the sorting
block. Finally the sorting block produces the best set of peaks, which are formatted
and stored in RAM.

B.2.2 Searcher

The searcher maintains a list of the strongest multi-path delay spreads for each of up
to 64 dedicated channels. Figure B.6 shows a block diagram of the searcher.

Data is received from the Up-Link Data bus and is converted into a suitable format
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by the Input Conversion Block, which also pre-selects the 12 sources to be available to

the Searcher. The data is then stored in the Sample Rate Buffer.
To search for 64 users and 2 sources, the Searcher uses 4 Dot Product Sub-blocks

(DPSB) in the Complex Code Matched Filter (CCMF). A delay spread of 7.5Km or

192 chip periods is determined to be a good search window. The length of each DPSB
is 256 chips (one symbol), and they are spaced at 48 chip intervals with respect to the
data. The CCMF Convolution Operation of the data source and the locally generated

scrambling code is completed in 48 clocks per source component. With a clock fre¬

quency of 184.32MHz, a filter length of 256, and 192 convolutions required per chip
(48 clocks), we see that we need 192/48 = 4 DPSB.

The correlated hypotheses generated by the CCMF pass through the Coherent and
Non-Coherent Post Detection Integration Blocks to calculate the ultimate overall en¬

ergy metric. Since the pilot values are known in advance, a coherent accumulation
over the pilot bits is performed. All energy calculated in a time slot is non-coherently
combined over multiple time slots.

The final results are sorted by the Sorter Block, which provides a table of the high¬
est correlation peaks (per user) to the Post-Processing Block. Post-Processing is imple¬
mented by comparing the results to a pre-defined threshold. This block also contains
an energy conversion function that scales the magnitude of the results.

B.2.3 RAKE Receiver

The RAKE partition demodulates and de-spreads the uplink channels. It may be
viewed in terms of three separate functions - the Front End, Control Section and Back
End. The RAKE-Front End operates at chip rate and delivers measurements of delay
and magnitude of "fingers"1 of a particular user. The RAKE Back End operates at

symbol rate and interfaces to the Power Controller block and the ESIP. The RAKE in¬
ternal Control coordinates the sub-blocks of the RAKE and performs communication
with the UMTSCE Controller. Figure B.7 shows the control and data flow between
the RAKE sub-blocks and other partitions.

1A finger is one correlator unit allocated to one multi-path component to be detected and demodu¬
lated.
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Figure B.7: UMTSSOC: RAKE Partition

The RAKE front-end receives sample data streams from the uplink for control part

processing. The samples are also buffered off-chip to provide a second data stream

that it is delayed in time by 1.026 frames relative to the control processing path. This
is necessary because the control bits are spread across the entire radio frame and they
must be retrieved first to find the data spreading factor used. For both control and data
branches, 12 out of 36 input sample streams are selected by the Antenna Select block
(not drawn in diagram). The input data streams are stored separately within a Sample
Rate Buffer that is required to adjust receive timing in multiples of sub-chips for every
RAKE finger of every user. These functions are common to all RAKE channels. The
subsequent re-sample block extracts the exact source of samples and provides time

synchronisation of input samples in fractional units of a chip for each RAKE finger of
all users. The scrambling code and channelisation code are generated for de-spreading

separately the control channel (DPCCH) and the data channel (DPDCH). The resulting
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de-spread symbols of DPCCH early and late samples are fed into the tracker, which
monitors the delay of each finger.

Power estimation produces commands for the fast uplink power control. Channel
estimation occurs on the on-time (i.e. not buffered) DPCCH symbols to aid processing
of the (delayed by one frame) DPDCH symbols. The processing of the DPCCH stream

extracts the fields shown in Figure B.2, and uses the pilot bits to estimate uplink quality
etc. The DPDCH processing uses the channel estimates to calculate log-likelihood
ratios (LLR) for the DPDCH symbols. These are used for FEC decoding in the ESIP.

The granularity in time is one DPCCH-symbol, or 12288 clock cycles. Within
this time period the operational blocks of the RAKE Receiver Partition process all 64
RAKE channels in a fixed time slice scheme. For easier representation, the time slice
to handle one RAKE channel is called a user slice and is separated into 8 slices to

perform 8 fingers, each slice is called a finger slice.

B.2.4 Power Controller

Good power control is essential for maximising the air interface as described in Section
B. 1.2.2. The RAKE performs demodulation and de-spreading of uplink channels and
the transmitter modulates and spreads downlink channels. On the downlink, the RAKE

supplies the PC with control information received in the uplink channel and the PC
converts this into power multipliers used by the transmitter block. On the uplink, the
RAKE generates power control information based on the uplink channels which are

passed to the PC. In addition, when transmit power control bits are required, the power
controller generates these commands for the transmitter.

B.2.5 Transmitter

The transmitter is the final partition in the downlink data path. It receives data from
the Extended Soft Information Processor and power control weights from the PC and

outputs transmit streams for digital to analog conversion. The transmitter performs the

following functions:

• Channelisation with OVSF code
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• Channel Construction

• Scrambling

• Multiplication of data with linear power values

• Pilot field generation, and TPC bit repetition

• Transmit diversity on all channels

• Creation of gaps in transmission due to compressed mode

• Multi-code transmission

• Softer handover

Transmit diversity and soft handover result in the transmission of downlink phys¬
ical channels on a number of antennae. Transmit streams carrying the same data but
destined for different antennae have different power control applied. Transmitter ca¬

pability is described in terms of transmit resources, of which there are 192 in total.
For the 64 user channels there are 128 transmit resources, 129-160 are for down-link

shared channels and control channels. The remaining 161-192 transmit resources are

for pilot channels etc.

B.2.6 Extended Soft Information Processor (ESIP)

The ESIP partition performs the majority of channel coding and multiplexing functions
described in [1]. It operates on both uplink data and downlink data. As shown in

Figure B.2.6, on the uplink it takes data from the RAKE receiver and performs the

processing from 2nd de-interleaver to CRC computation. On the downlink, the ESIP
takes logical transport channels, performs CRC attachment through to 2nd interleaving
before passing the data on to the transmitter partition.

In normal operation, the downlink is capable of processing the 64 user channels
in addition to the 32 shared channels. In the downlink there are two stages to the

processing. First a complete TTI worth of data is stored in the 1st interleaver before it
can be interleaved and supplied to the second stage which outputs the fully interleaved
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Figure B.8: UMTSSOC: ESIP Partition

and encoded data to the transmitter partition. In normal operation the uplink is capable
of processing 64 user channels. Like the downlink, the uplink is also split into two

stages. Physical channel processing from the RAKE receiver to the lst-de-interleaver

operates on radio frames and the lst-de-interleaver operates on complete TTIs of data.
Each of the main function blocks is briefly described here:

• Interleaves: 1st interleaver operates on complete TTIs of data and the 2nd in-
terleaver operates on radio frames of data. Interleaving involves reordering the
data pseudo-randomly to improve frame error rates over the air interface.

• Channel Coding: The channel decoding architecture employs a unified approach,

sharing functionality between Convolutional and Turbo codes as described in

[21]. Channel encoding is much simpler than decoding, requiring significantly
less hardware resources.
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• Rate Matching: Applies puncturing and repetition to the data output by the en¬

coder.

• CRC: A CRC is attached to each transport block within a user channel.



Appendix C

UMTSCE Parameterisation

C.1 Parameterisation

C.1.1 Introduction

The checkpoint framework for the design of reconfigurable computing systems, de¬
scribed in Chapter 4, involves expressing how each subsystem's resource demands

vary with system parameters. These equations are then used to calculate what system

configurations (primary instances) are needed to minimally span the entire set of sys¬
tem requirements. The parameterised development of subsystems may then proceed

accordingly.
This section will examine both the logic and memory within the UMTSCE parti¬

tions to determine how their size depends on the parameters listed in Table C.l. The
first three listed parameters are static, configured at installation of the base station. The

parameters in the lower part of the table are dynamic, changing value at runtime de¬

pending on the usage pattern. The result will be a set of equations describing how logic
and memory requirements of each partition vary with the parameters in Table C.l.

In Chapter 5 the equations are used to investigate the difference in resource require¬
ments of a number of basestation configurations.

178
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Parameter Name Value

Number of radio sources 1-12

Searcher window size [chips] 50-400

Max. Number of fingers per user]: 4-16

No. of users 0-64

Peak data rate per user [kb/s] 0-384

Uplink spreading factor 4-256

TTI length [ms] 10-80

Peak total throughput [kb/s] 0-1152

Uplink channels DCH/RACH

Codingt C/T

Av. no. of links per DL channel]: 0-2

Total no. of common channels 0-32

No. of preamble detectors 0-3

t'T' implies turbo encoding and 'C', convolutional encoding.
^Dedicated channels only: lower figures for RACH.

Table C.1: List of Parameters for UMTSCE Parameterised Design.

C.1.2 Logic

Detailed specification documents including the design of individual pieces of circuitry
were available for determining the logic gate requirements of each partition. This in¬
volved a systematic procedure of becoming familiar with the functionality of the par¬

tition, then identifying its main subsystems. This led to a decision on how it should
be parametrically described. As per the checkpoint framework, the subset of variables
in Table C.l which had an effect on the partition's logic gate requirements was iden¬
tified. Then, the largest subsystem designs were carefully studied in detail to extract

how their gate requirements varied with the parameter set, and then equations were

written to capture the relationship.
As briefly mentioned in the introduction to this section, the UMTSCE was designed

to perform the baseband processing of a single sector/carrier so that it could be treated
as a discrete building block for constructing basestations of different sizes. Therefore,
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a tradeoff was made between complexity, flexibility and performance. For example,
the number of radio sources which the searcher partition can choose from is restricted
to 12 out of a possible total of 36, and only 2 of the 12 available may be used during
a search. In a large basestation with 36 radio sources available, it may be desirable to

have a few more than 12 available to the searcher. Conversely, in a small basestation
with only 6 radio sources, having the flexibility to provide 12 is wasteful. In this
work, the tradeoffs made for the UMTSCE ASIC implementation are preserved from
an algorithmic perspective, but the exact UMTSCE requirements are used to minimise

unnecessary functionality.
Some of the partitions exhibit a high level of datapath time-multiplexing which

makes it difficult to extract the way in which the implementation would scale if pa-
rameterised. Time-multiplexing is a technique which an ASIC implementation can

employ to offer more flexibility, but comes at the cost of extra complexity due to addi¬
tional state storage and control. The conservative approach taken here is to assume the

gate count of a lean parameterised implementation is approximately equal to the gate

count of a linearly scaled time-multiplexed implementation. It may be necessary to in¬
troduce ceiling functions to recognise that, rather than being continuous, there may be
discrete steps in the parameterised implementation size. This is considered in Chapter
5 where the equations are put to use. Here we are concerned only with deriving the

equations.
Table C.2 lists the percentage of each subsystem in the UMTSCE. Those partitions

listed as 100% exhibited such heavy time-multiplexing that it was deemed reasonable
to simply scale the entire partition. The partitions for which it was feasible to scale
sub-blocks individually will have their equations normalised to 100% when they are

used.

C.1.2.1 Preamble Detector

Although the preamble detector's operation is dependent on both the cell size and the
number of preambles to be searched for, the cell size has little impact on the datapath

complexity. This is because the radio sources will be continually screened by the

datapath for evidence of a preamble request and it is only the accumulation algorithms
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Partition Name Percentage
Preamble Detector 82

Searcher 86

RAKE 100

Transmitter 100

Power Controller 100

ESIP 95

Table C.2: Percentage of UMTSCE logic described parametrically

which depend on the cell size. So cell size is more of a control factor rather than a

complexity dimension. Up to three preamble detectors are available for searching any

combination of the 3 possible preambles in order to provide flexibility.
The preamble detector's heart is the Code Matched Filter (CMF). As explained in

the overview of the preamble detector, the CMF outputs correlation results to the FHT,
which in turn outputs to the post-detection integration stage. Finally, the peaks sorter

block produces the results.
These are the four largest logic blocks and their gate requirement simply depends

on the number of preamble detectors. Complexity is not affected by which code is
being detected nor, as previously discussed, the cell size. The logic gate requirement
of each block is listed here:

CMF = 26,666-rack (C.l)

FHT = 11,733 ■ rach (C.2)

PD1 — 14,000 • rack (C.3)

Peaks = 5,333■rach (C.4)
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C.1.2.2 Searcher

In common with the Preamble Detector, the Searcher's logic gate count is dominated

by a CMF engine. The Sorter and SRB are the next two largest blocks and together
all three represent over 80% of the Searcher's gate count. The Searcher's CMF im¬

plementation is much more demanding than the Preamble Detector CMF since it must
find the strongest multi-path components for up to 64 users inside every access slot.
The search is conducted within a window, the size of which also has a direct impact
on the Searcher CMF gate requirement. Since the Searcher algorithm operates on 256-

chip DPSBs, it is the number of DPSBs required to satisfy the search requirements that
determines the CCMF size. Equation C.5 describes the number of DPSBs required
for a given Window Size and Number of Users. The ceiling function is used to avoid
fractional numbers of DPSB.

Number DPSB
Window Size • Number Users

(C.5)
3,072

The size of a DPSB is easily calculated by dividing the DPSB block in the UMTSCE

by four. The registers feeding the CMF (one for I and Q parts) hold the data neces¬

sary to feed the DPSBs during a single user/source component search. Its gate count

is therefore directly proportional to the Symbol Size +Window Size. Equation C.6
describes the total CMF size.

Searcher CMF =(Number DPSB • DPSB Size) + Feed Registers
( 232,768 \ (Window Size+ 256 \—Number DPSB ) +29,562 ( 192 + 256 )

(C.6)

The Searcher datapath flow from the CMF block through to the Sorter block is split
into four streams originating from the four DPSB blocks. Since the streams emerging
from the non-coherent PDI block must be sorted in parallel it is appropriate to param-

eterise the Sorter implementation by the number of DPSBs as described in equation
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C.7.

„ „ „ Sorter Size
Searcher Sorter = Number DPSB

4 (C.7)
= Number DPSB - 13,395

The Searcher's SRB gate count is proportional to the number of sources that are to
be made available to the CMF block. A maximum of 12 sources is made available in

the UMTSCE design. Equation C.8 describes the SRB gate requirement.

( CE SRB Size \Searcher SRB = —— Number of Sources
V Maximum UMTSCE Sources J

X (C.8)
32,784 \

Number of Sources
12

The total logic gate count for the Searcher adjusted for the percentage of the total

parameterised is given in equation C.9.

Searcher Gates =1.169 (CMF + SRB + Sorter)
_ , . < Window Size • Number Users

Searcher Gates =1.169

C.1.2.3 RAKE

3,072

+ (Window Size + 256)66 + (Sources)2,732)

71,587 (C.9)

Most of the RAKE partition is highly time-multiplexed. For example, it uses a single

finger to perform up to 64 • 8 = 512 fingers per slot and has a pipelined control path run¬

ning alongside the datapath. It is appropriate to estimate that its resource usage scales

linearly with the product of the (average) number of fingers per user and the number
of users. Equation C.10 describes the gate requirements of the RAKE partition.

fNumber Users ■ Number Fingers \
64-8 J

RAKE Gates = f — ) • 1,030,989
(C.10)

/ Number Users • Number Fingers \
1,030,989

V 512 )
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C.1.2.4 Transmitter

The transmitter partition again uses heavy time multiplexing to provide the flexibility
to facilitate transmission of 192 separate streams. As explained earlier in this chapter, a

separate transmit path is required to prepare the same data on different sectors. Shared
channels, soft handover and pilot channels all contribute to the total transmit resources

being significantly greater than the maximum dedicated downlink channels (64). It is

appropriate to estimate that the gate count of the transmitter partition scales linearly
with the number of transmit resources required, as described in equation C. 11.

(Number Downlinks + Shared Channels\————— -301,480
128 + 32 + 32

(C. 11)/Number Downlinks + Shared Channels \
^=

V 192 J '

C.1.2.5 Power Controller

The power controller also exhibits a high level of time-multiplexing so its gate require¬
ment must be estimated globally. Power control is only applied to the uplink dedicated
channels so the power controller is estimated to scale linearly with the number of users
as described in equation C.12.

(Number Users \ „
— J 117,000 (C.12)

C.1.2.6 ESIP

The ESIP partition provides the interface for the UMTSCE datapath with the MAC

layer. It has an ARM processor controlling operation of two sub-controllers, one for
the uplink datapath and another for the downlink datapath. The demand placed upon

all the controller units can be estimated to grow linearly with the number of users. The
two direct datapath control blocks also scale with the aggregate user throughput. For
the purposes of this investigation, the ARM gate count will be used as a measure of
the demand placed upon it and it will be assumed that an alternative implementation
exists which scales linearly with the number of users as described in equation C.13.
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It is also estimated that the uplink and downlink controller implementations could be
scaled according to the demand placed upon them as shown in equations C.14 and
C.15.

. Number Users
ARM = — 155,560 (C.13)

64

^ „ „ Number Users-Av. DL Throughput
Downlink Controller = —— ■ 25,400 (C.14)

Maximum DL Throughput

. „ ,, Number Users • Av. UL Throughput „ „ „ „ _

Uplink Controller = ; -13,700 (C.15)
Maximum UL Throughput

Within the downlink datapath, the encoder and interleavers dominate gate count.

The computational demand placed upon the encoder depends on two things: the ag¬

gregate throughput and whether it is turbo encoding or convolutional encoding. It is
estimated that turbo encoding is three times more computationally expensive relative
to convolutional, due to the second recursive convolutional encoder and its associated
interleaver. Equation C.16 describes the encoder.

user—6^ ql Convolutional Throughput(user)
DL Encoder = ( > — rNT :

. Max. DL Throughput-4user=l
(C.16)

user-M pp Turbo Throughput(user) • 3.
^ Max FIT Thrniitrhnut • 4 'Max. DL Throughput • 4

user— 1 ° r

The first interleaver stores a TTI worth of transport blocks for each user and then

interleaves them. However, dedicated channels with TTI = 10ms are not interleaved.

The demand placed upon the 1st Interleaver is therefore dependent on the TTI length of
the dedicated channel. The demand is also dependent on the throughput as described

inequation C.17.

v-, DL Throughput(user)
1 st Interleaver = V" 20,200

Max. DL Throughput ^
for all user where TTI(user) > 10ms
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The second interleaver is applied to all downlink data and is described in equation
C.18.

^ DL Throughput(user) „

2nd Interleaver — Y 13,750 (C.18)
usj?=l Max. DL Throughput

Uplink FEC is much more computationally demanding than FEC on the downlink
since it is on the UL that the more demanding iterative algorithms are used to recover

the data from the noisy air interface channel and reduce the BER. The uplink process¬

ing chain is basically the reverse of the DL chain. Equations C.19, C.20 and C.21
describe the decoder, 1st de-interleaver and 2nd de-interleaver respectively.

user-6 Convolutional Throughput(user)
UL Decoder = ( ) — ttt

us7?= l Max' UL Throughput • 5
user=64 Turbo Throughput(user) • 4.

+ T —7^ — -200,000
usjf=l Max. UL Throughput-5 '

(C.19)

LUL Throughput(user)—

, ,—- -11,520
user Max- UL Throughput (C 20)

for all user where TTl(user) > 10ms

UL Throughput(user)
2nd De-Interleaver = Y —

ttt ° F \—^-17,352 (C.21)
user= i Max- CL Throughput

The total ESIP gate requirement is given in Equation C.22.

ESIP Gates =1.05 • (ARM + DL Controller

+ UL Controller+DL Encoder + 1 st Interleaver (C.22)

+ 2nd Interleaver+ UL Decoder)

C.1.3 Memory

The UMTSCE memory was parameterised differently from the logic. Instead of
parameterisation by partition, the largest memory blocks across all CE partitions were
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Partition Name Size (Mbits) Percentage of UMTSCE total
RAKE Circular Buffer 2,048,000 15

ESIP 1 st De-Interleaver 1,081,344 8

Searcher Non-Coherent PDI 1,081,344 8

ESIP 1 st Interleaver 921,600 7

Searcher Coherent PDI 1,081,344 8

RAKE Decimated FFT 851,968 6

ESIP Config. Result 655,360 5

RAKE Sample Rate Buffer 491,520 4

ESIP 2nd De-Interleaver 480,000 4

Preamble Detector Shift Register 294,912 2

ESIP Data TCM 262,144 2

Transmitter Input Buffer 262,144 2

Preamble Detector Deskew 172,032 1

TOTAL 9,683,712 72

Table C.3: CE Memories Parameterised

selected to be described parametrically. They total 72% of the memory requirement
and are listed in Table C.3 along with the percentage of the total UMTSCE memory

they represent.
The rest of this subsection will give a brief outline of each of the memories and an

equation describing their size.
C.1.3.1 RAKE Circular Buffer

The RAKE circular buffer holds 20 slots of data for feeding FIR channel estimation
filters. These produce channel estimates using the DPCCH pilot channels for use when

processing the DPCCH non-pilot symbols and the DPDCH data. Equation C.23 de-
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scribes the parameterised RAKE Circular Buffer (CB).

RAKE CB = slots ■ half-slots • symbols/half-slot - bits/symbol ■ users ■ fingers

C.1.3.2 ESIP First De-lnterleaver

For every transport channel, the first De-lnterleaver memory must be able to store a

complete TTIs worth of data plus an additional 30ms of data to allow previous stage

(rate de-matcher) to continue streaming as the TTI of data is processed. The symbols
are represented by 5-bit log-likelihood ratios (LLR) and the transport channels are

typically coded at 1/3 rate.

It has been calculated that the worst case memory requirement of the De-lnterleaver
is equivalent to 16 64Kbps (TTI=80ms) DCH channels and their associated signalling
channels of 3.4Kbps (TTI=40ms). Equation C.24a describes the ESIP de-interleaver
worst-case size and C.24 parameterises the de-interleaver. The actual requirement
(1,848,960 bits) is a little greater than that given in equation C.24a since the equation
is an approximation which does not include such things as tail bits and CRCs.

= 20 • 2 • 5 • 20 • users • fingers
= 4,000 • users - fingers

(C.23)

(C.24a)

= 349,344symbols • 5 bits
= l,746,720bits



Appendix C. UMTSCE Parameterisation 189

ESIP De-lnterleaver = £ / Throughput(user) ■ (TTI(use,)-H).03) + 3,400 ■ (0.04 + 0.03) ^ ;
user—I \ 1/3 1/3

for all user where TTl(user) > 10ms
64 f Throughput(user) • (TTI(user)+0.03)£ tser= 1 >• 1/3

+ 714 -5
user-

for all user where TTl(user) > 10ms

(C.24b)

C.1.3.3 Searcher Non-Coherent PDI

The Non-Coherent Post-Detection Integration (PDI) block takes the I/Q component

results calculated by the Coherent PDI block and combines them into a magnitude,

accumulating them over an entire frame. The magnitude (energy metric) may require
19 bits to store. Equation C.25 describes the Non-Coherent PDI memory.

Searcher Non-Coherent PDI = Users • Window Length • Samples/Chip • Sources ■ Energy Metric
= 64- 192-2-2 -19

= 933,888 bits

(C.25a)

Searcher Non-Coherent PDI = Users ■ Window Length • 76bits (C.25b)

C.1.3.4 ESIP 1st Interleaver

The ESIP Interleaver memory has a different worst case requirement from the 1st de-
interleaver. In common with the De-lnterleaver, only TTIs greater than 10ms are in¬
terleaved. The worst case service combination for the 1st Interleaver is 96 users at
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40Kbps and a TTI of 80ms. Equation C.26 describes the 1st Interleaver memory size.

64

ESIP 1st Interleaver = ^ Throughput(user) • 1/Coding Rate • TTI(user)
user= 1

(C.26a)
for all user where TTI(user) > 10ms

64

= ^ Throughput(user) • 4.5 • TTI(user)
user— 1

for all user where TTI(user) > 10ms

64

ESIP 1st Interleaver = Y\ Throughput(user) • 4.5 ■ TTI(user)
»=l (C.26b)

for all user where TTI(user) > 10ms

C.1.3.5 Searcher Coherent PDI

The Coherent Post-Detection Integration block accumulates correlation results from
the CMF block across multiple symbols. Most searches involve coherently accumu¬

lating symbol-level results from the Pilot field and the TPC field. It is described in

equation C.27.

Searcher Coherent PDI = Window Length • Samples per Chip • I/Q ■ Users • sources/user ■ result

=192-2-2-64-2-11

= 1,081,344 bits

(C.27a)

Searcher Coherent PDI = Window Length • Users • 88 bits (C.27b)

C.1.3.6 RAKE Decimated FFT

The decimated FFT is used in frequency offset estimation. It performs 8 FFT64 (one

per finger) and accumulates the power spectral values. It therefore scales with the num¬
ber of users and the number of fingers per user. It stores up to 64 symbols per symbol,
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with 26 bits per symbol. The size of the Decimated FFT buffer in the UMTSCE is
described in equation C.28a, with the parameterised size given in C.28b.

RAKE Decimated FFT = Users • Fingers per User • Symbols per Finger • Symbol Size
= 64 - 8 • 64 • 26

= 851,968 bits

(C.28a)

RAKE Decimated FFT = Users • Fingers per User • Symbols per Finger • Symbol Size
= Users • Fingers per User • 1,664 bits

(C.28b)

C.1.3.7 ESIP Configuration Result

The ESIP configuration and result RAM is used by the ARM processor in the ESIP.
It has two purposes: a) to store the boot code for the processor and b) to hold the

transport channel configuration information. When being used for b) the information in
a) is overwritten. The memory's size is determined by its use as a store for the transport
channel configuration information. It therefore scales according to the number of users
as shown in equation C.29.

ESIP Configuration and Result RAM = Users • 10,240 bits (C.29)

C.1.3.8 RAKE Sample Rate Buffer

The RAKE sample rate buffer (SRB) is a ring-buffer organised to hold 4 symbols for
12 antenna sources. The SRB is split into two parts, one part for DPCCH and one for
DPDCH. The purpose of the SRB is to adjust receive timing in multiples of samples
for the RAKE fingers. The size of the UMTSCE SRB RAM is given in equation C.30a
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and is described parametrically in equation C.30b.

SRB RAM = Sources • Symbols • Sample Rate • Chips/Symbol • Sample Size ■ DPDCH/DPCCH
= 12-4-2-256-10-2

= 491,520 bits

(C.30a)

SRB RAM = Sources ■ Symbols • Sample Rate • Chips/Symbol • Sample Size • DPDCH/DPCCH
= Sources • 40,960

(C.30b)

C.1.3.9 ESIP 2nd De-lnterleaver

The 2nd De-interleaver operates on data on the uplink coming from the RAKE. It must
buffer 2 data frames of LLR data for up to 64 users. It acts as a double buffer, one
frame for processing by ESIP and one frame for receiving data from the RAKE unit.

The worst case memory required is 64 users with a spreading factor of 64, resulting
in 600 LLRs per user frame, and 38,400 LLRs total per radio frame. Considering
compressed mode operation results in an increase to 48,000. Double buffering and 5
bits per LLR make the total memory 480,000 bits as described in equation C.31a and

parametrically described in C.31b.

2nd De-interleaver = 2 Radio Frames - Time per Radio Frame • Compressed Mode Factor
64

■ LLR Size • ^ Throughput(user)
user= 1

= 2- 10ms- 1.25-5-3,840,000
= 480,000 bits

(C.31a)

64 j
2nd De-interleaver = 480,000 • y —— (C.31b)

i s-f-
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C.1.3.10 Preamble Detector Shift Register

The purpose of the Preamble Detector Shift Registers is to provide the data samples
to the code matched filters as required. There are three shift registers, one for each
preamble detector. They can contain any two radio sources, both full and half-chip
samples. Each shift register is required to store 4,096 chips, outputting 4 ■ 64 = 256
chips at a time to the code matched filter. The total memory is shown in equation
C.32a and parametrically described in C.32b.

Preamble Detector Shift Registers = Preamble Detectors • Source per Detector • Preamble Length
• I/Q • Sample Size • Full and Half Chip
= 3-2-4,096-2-3-2

= 294,912 bits

(C.32a)

Preamble Detector Shift Registers = Preamble Detectors • Source per Detector • Preamble Length
• I/Q • Sample Size • Full and Half Chip

= Preamble Detectors - 98,304 bits

(C.32b)

C.1.3.11 ESIP Data TCM

The ESIP Data Tightly Coupled Memory (TCM) is used by the ESIP ARM control
channel and transport channel processing. It is estimated to scale with the number of
control and transport channels, however as a first approximation this is proportional to
the number of users. Equation C.33 shows this parameterised description.

ESIP Data TCM = Users • 4,096 bits (C.33)

C.1.3.12 Transmitter Input Buffer

The Transmitter Input Buffer must be able to buffer the data destined for the 160 trans¬

mit resources. At first approximation this is proportional to the number of downlink
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and common channels as shown in equation C.34.

m „„ (Dedicated Channels + Common Channels \ .....

Transmitter Input Buffer = I — J • 262,144 bits
(C.34)

C.1.3.13 Preamble Detector Deskew

The output from the CMF block is not in the order required by the FHT block. It is the
job of the de-skew block to reorder (de-skew) the data appropriately. The size of the
memory is proportional to the number of Preamble Detectors as described in equation
C.35.

Preamble Detector Deskew = Preamble Detectors • 57,344 bits (C.35)
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Review of the multiple-context FPGA

D.1 Introduction

In this review we focus on themultiple context FPGA work of Andre DeHon [52] [5 3] [54],
one of the most referenced pieces of work in the area. In [52], DeHon argues the case

for dynamically programmable FPGAs to be part of general purpose computing ar¬

chitectures. We discuss this and consider its suitability for the SoCs implemented by

today's statically programmed FPGAs.

D.2 Modes of operations

A dynamically programmable gate array (DPGA) is an FPGA with multiple config¬
uration memory cells per configuration bit. The configuration bits are arranged into

planes, corresponding to an entire configuration for the FPGA. One configuration plane
is active at any one time, i.e. the contents of its memory cell control the device's con¬

figuration. The DPGA was envisioned to operate in several modes: logic engine mode,
time share mode, static mode and mixed mode[160]. Logic engine mode refers to

switching context at the maximum frequency possible, where the reconfiguration fre¬
quency is less than the task frequency. Time share mode refers to switching context
more slowly than the task frequency, perhaps in response to an interrupt or a data de¬

pendency. In static mode, an area of the device does not appear to be reconfiguring.

195
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This is achieved by having the same configuration data in all contexts (or planes).
Mixed mode refers to a single application making use of all modes in different areas
of the device.

D.3 Critique

A concept used to reason about run-time reconfiguration is functional capacity [52] [172]
In [52], DeHon reasons that an FPGA is operating at top functional capacity when all
combinatorial logic elements are operating at maximum frequency. To achieve this

operational capacity, every LUT output is registered and there is at most one stage of

logic between flip/flops. DeHon notes that if a design has deeper logic paths, or goes
unused for periods time, the FPGA logic capacity is under utilised. The goal of max¬
imising operational capacity is set by DeHon in his Multiple Context FPGA work. This

goal presents a number of practical obstacles which are not acknowledged in DeHon's
work. We review these problems in this section.

D.3.1 Latency

The first problem concerns latency. If heavy pipelining is employed to achieve max¬

imum capacity utilisation, circuit latency is also maximised. Many communication
and DSP systems are latency sensitive so cannot exploit temporal pipelining to reduce
resource requirements. These application domains together represent a very large frac¬
tion of those in which today's platform FPGAs are used.

D.3.2 Re-timing

The second problem is the additional area required to facilitate re-timing. If a circuit's

logic depth is restricted to a single level, as is the case in a DPGA, then functions which
cannot be performed by one LUT will take multiple clock cycles to compute. Signals
therefore arrive at LUT inputs at different clock cycles and must be re-timed. A major
caveat[160] of DeHon's original DPGA architecture[52] is the lack of architectural
features to aid signal re-timing.
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To perform signal re-timing[95][169] , either special purpose registers must be
added to the FPGA architecture, or existing resources (flip/flops or RAM) used to
construct the registers. DeHon recognises the re-timing problem in a followup publi¬
cation [53], and selects the solution of special purpose registers, noting that the use of

flip/flops for re-timing would dramatically reduce capacity. The cost of the re-timing

registers on each of the LUT inputs increases the area required by DeHon's 8 con¬

text DPGA architecture by 46%[53], This increase in area is in addition to the 24%
increase for the configuration context RAM.

D.3.3 Parasitic Effects of Multiple Contexts

The third problem is closely related to the second problem. DeHon does not factor
in all the effects of the run-time reconfiguration overhead. The equation derived for
the area of the time-multiplexed FPGA LUT with separate input latches, is shown in

equation D.l.

The lambda symbol represents half the minimum feature size and 'c' is the number
of contexts. The single context FPGA LUT area is given in equation D.2.

DeHon states the minimum period of the FPGA LUT as 7ns and the latched DPGA
LUT as 9.5ns. The latched DPGA LUT period is treated as a constant - independent of
the number of contexts. This cannot be the case, since the increased area of the LUT

due to contexts affects the distance signals must propagate. This effect can be mitigated
by transistor sizing, but it would increase the LUT area and this is not included in the

equations. For example, according to equation D.l, the 32 context DPGA has 6x the
area of the 2 context FPGA. A LUT area increase of 6x would increase wire length by

sqrt(6). This translates directly into an increased delay of 2.5x or 17.5ns which is not

discussed in the paper.

Area Latched DPGA LUT = 500KA2 + c ■ 130KA2 (D.l)

Area FPGA LUT = 580KL2 (D.2)
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To illustrate the concept of an FPGA's maximum capacity, DeHon uses the through¬

put ratio, R, shown in equation D.3. This ratio provides a measure of how quickly the
task (or circuit) operates compared with the maximum frequency the device can be
clocked at. In essence, it captures the minimum LUT period (which is constant) to
critical path period ratio.

LUT period ^ _R = (D.3)
Task period

The graph in Figure D. 1 shows the efficiency of running a task of throughput ratio
R on a device with c contexts. The efficiency measure does not take into account the

speed decrease introduced by the circuitry for multiple contexts. Figure D.2 draws the
same graph with the efficiency values adjusted to reflect the reduced speed at which
the multiple context device LUTs operate at. In the second graph, an efficiency value
of one corresponds to all LUTs operating at the speed of the single context FPGA. The
efficiency metric adjustment reflects the speed x area product without any transistor

resizing to optimally adjust for the increase in area. At this design point for the DPGA,
we note that the 4 context device is more efficient at a throughput ratio between two

and three. The 8 context device is only more efficient than the single context FPGA
above a throughput ratio of 4.

D.3.4 Finite State Machine

DeHon[53][54] proposes finite state machines (FSMs) as good candidate circuitry for

implementation on a multi-context device. It is noted in particular that one never needs
the full FSM logic at any point in time. During any cycle, the logic from only one state

is active. It is proposed that in a multiple context FPGA, each context contains only a

portion of the state graph. This technique is used by the multi-context programmable
array (PLD) from National Semiconductor, MAPL[80]. If such a technique were used
to implement FSMs on a multiple context FPGA, it would be extremely wasteful of
resources. Each FSM in the system will potentially change state at different times,
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Figure D.1: DPGA utilisation efficiency versus throughput ratio for various context

counts

therefore every partition of every FSM graph requires its own configuration memory

plane. Assignment of an entire configuration memory plane to only a small area of the

chip is extremely wasteful.

D.3.5 Power Consumption

Switching context at high frequency, as is done in logic emulation mode and perhaps
time share mode, is reported by Trimberger et al.[ 160] to consume excessive levels of

power. They note that although each configuration bit line has a small capacitance,
there are 100,000 bit-lines in a 20x20 array. The time-multiplexed XC4000E architec¬
ture is reported to consume tens of watts when operating at 40MHz. This suggests that
with current fabrication technology, reconfiguration on the order of a single cycle is
not feasible due to thermal energy dissipation problems.
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Figure D.2: DPGA utilisation efficiency versus throughput ratio for various context

counts. Efficiency is adjusted for the worst case speed penalty caused by the addi¬
tion of multiple context functionality.
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