37 research outputs found

    Algorithms of causal inference for the analysis of effective connectivity among brain regions

    Get PDF
    In recent years, powerful general algorithms of causal inference have been developed. In particular, in the framework of Pearl’s causality, algorithms of inductive causation (IC and IC*) provide a procedure to determine which causal connections among nodes in a network can be inferred from empirical observations even in the presence of latent variables, indicating the limits of what can be learned without active manipulation of the system. These algorithms can in principle become important complements to established techniques such as Granger causality and Dynamic Causal Modeling (DCM) to analyze causal influences (effective connectivity) among brain regions. However, their application to dynamic processes has not been yet examined. Here we study how to apply these algorithms to time-varying signals such as electrophysiological or neuroimaging signals. We propose a new algorithm which combines the basic principles of the previous algorithms with Granger causality to obtain a representation of the causal relations suited to dynamic processes. Furthermore, we use graphical criteria to predict dynamic statistical dependencies between the signals from the causal structure. We show how some problems for causal inference from neural signals (e.g., measurement noise, hemodynamic responses, and time aggregation) can be understood in a general graphical approach. Focusing on the effect of spatial aggregation, we show that when causal inference is performed at a coarser scale than the one at which the neural sources interact, results strongly depend on the degree of integration of the neural sources aggregated in the signals, and thus characterize more the intra-areal properties than the interactions among regions. We finally discuss how the explicit consideration of latent processes contributes to understand Granger causality and DCM as well as to distinguish functional and effective connectivity

    External Validity: From Do-Calculus to Transportability Across Populations

    Full text link
    The generalizability of empirical findings to new environments, settings or populations, often called "external validity," is essential in most scientific explorations. This paper treats a particular problem of generalizability, called "transportability," defined as a license to transfer causal effects learned in experimental studies to a new population, in which only observational studies can be conducted. We introduce a formal representation called "selection diagrams" for expressing knowledge about differences and commonalities between populations of interest and, using this representation, we reduce questions of transportability to symbolic derivations in the do-calculus. This reduction yields graph-based procedures for deciding, prior to observing any data, whether causal effects in the target population can be inferred from experimental findings in the study population. When the answer is affirmative, the procedures identify what experimental and observational findings need be obtained from the two populations, and how they can be combined to ensure bias-free transport.Comment: Published in at http://dx.doi.org/10.1214/14-STS486 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:1312.748

    Identifiability and transportability in dynamic causal networks

    Get PDF
    In this paper we propose a causal analog to the purely observational Dynamic Bayesian Networks, which we call Dynamic Causal Networks. We provide a sound and complete algorithm for identification of Dynamic Causal Networks, namely, for computing the effect of an intervention or experiment, based on passive observations only, whenever possible. We note the existence of two types of confounder variables that affect in substantially different ways the identification procedures, a distinction with no analog in either Dynamic Bayesian Networks or standard causal graphs. We further propose a procedure for the transportability of causal effects in Dynamic Causal Network settings, where the result of causal experiments in a source domain may be used for the identification of causal effects in a target domain.Preprin

    Granger Causality and Structural Causality in Cross-Section and Panel Data

    Get PDF
    Published in Econometric Theory, https://doi.org/10.1017/S0266466616000086</p

    Reasoning about causality in games

    Get PDF
    Causal reasoning and game-theoretic reasoning are fundamental topics in artificial intelligence, among many other disciplines: this paper is concerned with their intersection. Despite their importance, a formal framework that supports both these forms of reasoning has, until now, been lacking. We offer a solution in the form of (structural) causal games, which can be seen as extending Pearl's causal hierarchy to the game-theoretic domain, or as extending Koller and Milch's multi-agent influence diagrams to the causal domain. We then consider three key questions: i) How can the (causal) dependencies in games – either between variables, or between strategies – be modelled in a uniform, principled manner? ii) How may causal queries be computed in causal games, and what assumptions does this require? iii) How do causal games compare to existing formalisms? To address question i), we introduce mechanised games, which encode dependencies between agents' decision rules and the distributions governing the game. In response to question ii), we present definitions of predictions, interventions, and counterfactuals, and discuss the assumptions required for each. Regarding question iii), we describe correspondences between causal games and other formalisms, and explain how causal games can be used to answer queries that other causal or game-theoretic models do not support. Finally, we highlight possible applications of causal games, aided by an extensive open-source Python library

    Causal Discovery and Prediction: Methods and Algorithms

    Full text link
    We are not only observers but also actors of reality. Our capability to intervene and alter the course of some events in the space and time surrounding us is an essential component of how we build our model of the world. In this doctoral thesis we introduce a generic a-priori assessment of each possible intervention, in order to select the most cost-effective interventions only, and avoid unnecessary systematic experimentation on the real world. Based on this a-priori assessment, we propose an active learning algorithm that identifies the causal relations in any given causal model, using a least cost sequence of interventions. There are several novel aspects introduced by our algorithm. It is, in most case scenarios, able to discard many causal model candidates using relatively inexpensive interventions that only test one value of the intervened variables. Also, the number of interventions performed by the algorithm can be bounded by the number of causal model candidates. Hence, fewer initial candidates (or equivalently, more prior knowledge) lead to fewer interventions for causal discovery. Causality is intimately related to time, as causes appear to precede their effects. Cyclical causal processes are a very interesting case of causality in relation to time. In this doctoral thesis we introduce a formal analysis of time cyclical causal settings by defining a causal analog to the purely observational Dynamic Bayesian Networks, and provide a sound and complete algorithm for the identification of causal effects in the cyclic setting. We introduce the existence of two types of hidden confounder variables in this framework, which affect in substantially different ways the identification procedures, a distinction with no analog in either Dynamic Bayesian Networks or standard causal graphs.Comment: PhD Thesis, 101 pages. arXiv admin note: text overlap with arXiv:1610.0555

    Development of a probabilistic graphical structure from a model of mental health clinical expertise

    Get PDF
    This thesis explores the process of developing a principled approach for translating a model of mental-health risk expertise into a probabilistic graphical structure. Probabilistic graphical structures can be a combination of graph and probability theory that provide numerous advantages when it comes to the representation of domains involving uncertainty, domains such as the mental health domain. In this thesis the advantages that probabilistic graphical structures offer in representing such domains is built on. The Galatean Risk Screening Tool (GRiST) is a psychological model for mental health risk assessment based on fuzzy sets. In this thesis the knowledge encapsulated in the psychological model was used to develop the structure of the probability graph by exploiting the semantics of the clinical expertise. This thesis describes how a chain graph can be developed from the psychological model to provide a probabilistic evaluation of risk that complements the one generated by GRiST’s clinical expertise by the decomposing of the GRiST knowledge structure in component parts, which were in turned mapped into equivalent probabilistic graphical structures such as Bayesian Belief Nets and Markov Random Fields to produce a composite chain graph that provides a probabilistic classification of risk expertise to complement the expert clinical judgement
    corecore