7,129 research outputs found

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Adaptive intelligent personalised learning (AIPL) environment

    Get PDF
    As individuals the ideal learning scenario would be a learning environment tailored just for how we like to learn, personalised to our requirements. This has previously been almost inconceivable given the complexities of learning, the constraints within the environments in which we teach, and the need for global repositories of knowledge to facilitate this process. Whilst it is still not necessarily achievable in its full sense this research project represents a path towards this ideal.In this thesis, findings from research into the development of a model (the Adaptive Intelligent Personalised Learning (AIPL)), the creation of a prototype implementation of a system designed around this model (the AIPL environment) and the construction of a suite of intelligent algorithms (Personalised Adaptive Filtering System (PAFS)) for personalised learning are presented and evaluated. A mixed methods approach is used in the evaluation of the AIPL environment. The AIPL model is built on the premise of an ideal system being one which does not just consider the individual but also considers groupings of likeminded individuals and their power to influence learner choice. The results show that: (1) There is a positive correlation for using group-learning-paradigms. (2) Using personalisation as a learning aid can help to facilitate individual learning and encourage learning on-line. (3) Using learning styles as a way of identifying and categorising the individuals can improve their on-line learning experience. (4) Using Adaptive Information Retrieval techniques linked to group-learning-paradigms can reduce and improve the problem of mis-matching. A number of approaches for further work to extend and expand upon the work presented are highlighted at the end of the Thesis

    A Proposal to Harmonize BIM and IoT Data Silos using Blockchain Application

    Get PDF
    The integration of Building Information Modelling (BIM) and Internet of Things (IoT) provide significant end-to-end benefits for the architecture, engineering, construction, and operations (AECO) industry. Example applications include on-site assembly services, data localization for built environment, occupancy performance measures and many other analyses that can be used to improve the built environment. However, silos in the BIM and IoT data exchange have impacted the digital process adoption in AECO industry, which aims to change the dynamics and behaviors of the current working process. Penzes, (2018) in his report, acknowledges the AECO industry as one of the most fragmented sectors with a scattered and complex supply chain. Kelly & Dowd, (2015) reported that the prevalence of waste in AECO industry is due to old management practice and business culture, while Charlès, (2014) suggested this is a symptom of ineffective practices caused by the lack of data integration and disconnected documents between the industry players. Insufficient data for process simulation have resulted in poor productivity, high risk, and low profitability. This study sets out to critically analyse the Blockchain technology’s potential to connect, integrate and advance AECO industry information exchanges and digital processes by using BIM and IoT integration use case as a methodology to identify, clarify and organize the proposed system requirements. This paper presents a comprehensive literature review to uncover the current state of BIM and IoT data silos. Moreover, an online survey assessment and a simulated test were conducted to critically evaluate, investigate, and examine the opportunities and solutions in harmonizing BIM and IoT data silos by using the Blockchain application

    Manufacturing Data Analytics for Manufacturing Quality Assurance

    Get PDF
    The authors acknowledge the European Commission for the support and funding under the scope of Horizon2020 i4Q Innovation Project (Agreement Number 958205) and the remaining partners of the i4Q Project Consortium.Nowadays, manufacturing companies are eager to access insights from advanced analytics, without requiring them to have specialized IT workforce or data science advanced skills. Most of current solutions lack of easy-to-use advanced data preparation, production reporting and advanced analytics and prediction. Thanks to the increase in the use of sensors, actuators and instruments, European manufacturing lines collect a huge amount of data during the manufacturing process, which is very valuable for the improvement of quality in manufacturing, but analyzing huge amounts of data on a daily basis, requires heavy statistical and technology training and support, making them not accessible for SMEs. The European i4Q Project, aims at providing an IoT-based Reliable Industrial Data Services (RIDS), a complete suite consisting of 22 i4Q Solutions, able to manage the huge amount of industrial data coming from cheap cost-effective, smart, and small size interconnected factory devices for supporting manufacturing online monitoring and control. This paper will present a set of i4Q services, for data integration and fusion, data analytics and data distribution. Such services, will be responsible for the execution of AI workloads (including at the edge), enabling the dynamic deployment industrial scenarios based on a cloud/edge architecture. Monitoring at various levels is provided in i4Q through scalable tools and the collected data, is used for a variety of activities including resource monitoring and management, workload assignment, smart alerting, predictive failure and model (re)training.publishersversionpublishe
    corecore