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Abstract  

 

As individuals the ideal learning scenario would be a learning environment tailored just for 

how we like to learn, personalised to our requirements.  This has previously been almost 

inconceivable given the complexities of learning, the constraints within the environments in 

which we teach, and the need for global repositories of knowledge to facilitate this process.  

Whilst it is still not necessarily achievable in its full sense this research project represents a 

path towards this ideal.    

 

 In this Thesis, findings from research into the development of a model (the Adaptive 

Intelligent Personalised Learning (AIPL)), the creation of a prototype implementation of a 

system designed around this model (the AIPL environment) and the construction of a suite 

of intelligent algorithms (Personalised Adaptive Filtering System (PAFS)) for personalised 

learning are presented and evaluated.  A mixed methods approach is used in the evaluation 

of the AIPL environment.  The AIPL model is built on the premise of an ideal system being 

one which does not just consider the individual but also considers groupings of likeminded 

individuals and their power to influence learner choice. The results show that: (1) There is 

a positive correlation for using group-learning-paradigms.  (2) Using personalisation as a 

learning aid can help to facilitate individual learning and encourage learning on-line. (3) 

Using learning styles as a way of identifying and categorising the individuals can improve 

their on-line learning experience.  (4) Using Adaptive Information Retrieval techniques 

linked to group-learning-paradigms can reduce and improve the problem of mis-matching.  

A number of approaches for further work to extend and expand upon the work presented 

are highlighted at the end of the Thesis.  
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Chapter 1: Introduction  

1.1 Background  

 

“Tell me and I'll forget; show me and I may remember; involve me and I'll understand”  

                                                                       Chinese Proverb  

 

The process of learning can be recognised as individualistic, complex and sometimes 

chaotic. This learning process begins within the womb and doesn’t stop until the day we 

die. Throughout our lives our learning approach continually evolves as our experiences in 

learning mould and shape our future experiences. In addition, the context of a particular 

learning experience may have an influence on the way we approach developing our 

understanding (Scribber 1999).  

 

Learners preferentially take in and process information in different ways to enable them to 

learn a given domain topic area; this can be achieved through application of the brain, 

senses and physical movement. The application of these items can be realised through 

seeing, hearing, reflecting, acting, reasoning, intuition, analysing and visualizing. An 

individual will apply these items in different ways dependent on circumstance and their 

own individual approach to learning. These approaches to learning can be determined to be 

different learning styles. According to Heord (2002), learning styles are referred to as an 

individual’s preference of processing material; in other words, each of us may have 

different styles, with different characteristics, of acquiring and using information when 

learning. Felder et al., (2005) suggests that learning styles are characteristics of cognitive, 

psychological, and affective behaviours that serve as indicators as to how learners perceive, 

interact, and respond to the learning environment. Whilst each individual may have a 

different learning style, it is possible, through generic learning styles, to group and 

categorise learner approaches (Gomes et al., 2007)
1
. 

Differences in the ways individuals learn create problems for the tutor. Learning is not a 

one size fits all approach. For example, given a student called Fred and a student called 

                                                   

1
 It is noted that there is criticism of this approach.  A critical response to learning styles is contained 

within Section 2.1.4. 
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Wilma and a lecture on website authoring. Wilma may learn more effectively through the 

lecturer verbally instructing her on how to create a website whilst Fred may be different 

and learn most effectively through working through a specified laboratory worksheet. As 

evidenced in research (Robotham, 1999; Zhenhui, 1996; Osborn et al., 2003) sometimes 

mismatches occur between the learning styles of the majority of students in a class and the 

teaching style of the professor; in these circumstances the students may become bored and 

inattentive in class, do poorly in tests, and get discouraged about the course or the lecturer, 

so it is important to aim to make learning materials as appropriate to the learner as 

possible.  

 

To overcome these problems, domain experts strive for a balance of instructional methods. 

If a balance is achieved, then students will be taught partly in a manner they prefer, which 

leads to an increased comfort level and willingness, to learn (Felder, 1995). However, 

Felder et al., (2005) indicates that sometimes a balance cannot be achieved and diversity is 

a key issue. This problem of providing diverse content for equally diverse learner groups is 

extremely difficult to achieve and unlikely to meet with success all of the time. However, 

advanced intelligent systems (Brusilovsky et al., 1996; Soller, 2001; Xu et al., 2006; 

Laurillard 2008 and Jeremić et al., 2009) supporting the learning process have been 

making in-roads towards overcoming this issue. The concept of a Personalised Learning 

Environment (PLE) is now starting to come to fruition. According to the United Kingdom’ 

s Department for Education, PLE’ s provide an adaptive educational approach that is 

individual, interesting and tailored to learners’  needs and requirements (DfES 

Publications, 2004). 

 

There are currently multiple examples of PLE that are being used within institutions. The 

literature review of this Thesis outlines a range of these examples. In general though, many 

of these examples suffer from all, or a number of the following issues. 

 

 Lack of use of Semantic Web meta-data as formal descriptors for learning objects 

(Nilsson et al., 2001; Guzman et al., 2005; Jeffery et al., 2007).  

 

 Multiple different standards for contextual representation (Huang et al., 2003; 

Dietze et al., 2007; Gašević et al., 2007).  

 

 Lack of integration into a Virtual Learning Environment (VLE) (Chen et al., 2001; 
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Sampson et al., 2002; Maguire et al., 2006).  

 

 Problems with techniques used to match learning objects to individual learning 

styles (Krichen, 2006; Milosevic et al., 2007; Sampson et al., 2002).  

 

 Flexibility in relation to the banks of learning objects that can be used i.e. do they 

provide access to large repositories of learning objects such as those found on the 

web or simply to Learning Objects associated with a module (Safran et al., 2006).  

 

The work presented in this Thesis focuses on presenting a solution to a number of the 

issues outlined above through the development of a framework and tool for personalised 

learning. 

 

1.2   Motivation  

 

The introduction section focused on one of the major problems of learning, the fact that 

generally the learning content is not personalised to the learner’ s needs. To do this in a 

physical environment we can introduce the concept of one-to-one teaching support for 

students with the teacher providing customised learning materials to match the student’ s 

needs. Obviously, this is not a realistic idea in the physical form due to limitations of cost, 

time and the requirement for the teacher to gain experience of the learner’ s mechanisms for 

learning in different contexts. 

 

In a virtual environment researchers have demonstrated that tailored approaches to learning 

are achievable. Whilst present VLE’s can be adapted they haven’t been specifically 

constructed to encompass personalised learning approaches. According to Treviranus et al., 

(2006), a personalised learning environment should provide adaptable and accessible 

features to users’ requirements. Safran et al., (2006) agrees with Treviranus et al., (2006) 

and suggests that PLE’ s can be developed (whether from an existing VLE or specific 

Personalised learning environment solution) to act like a bridge between the learner and 

learning object repositories. Safran, Treviranus and Dolog et al (2006) argue that PLE’s 

have the potential to be learner centric and be designed around the student’s academic 

needs. 
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The author’s literature review found approaches to matching learning content to learners 

still have significant limitations. Therefore the motivation behind this study is to address 

these problems through the theoretical modelling and practical development of a tailored 

approach to the personalisation of learning. 

 

1.3 Research Question, Aim and Objectives, Hypotheses  

 

From the introduction section (and explained in greater depth in Chapters 2 and 3) it shows 

that by using technology we can get closer to personalised learning experiences, where the 

needs of the user are individually considered in decisions made on content to deliver. 

However, there are still problems most ostensibly with the matching of users to learning 

materials. 

 

In relation to this problem area, the past five years has seen a significant growth in socially 

oriented web applications designed around embracing community annotation and 

recommendation e.g. social networking sites such as Facebook and social sharing sites such 

as YouTube. This growth is often associated with the term ‘Web 2.0’ (Di Nucci, 1999) 

popularised by Tim O’Reilly and Media Live in 2007 (O‘Reilly 2007), also known as the 

‘participatory web’ (Decrem, 2006). Aspects of this growth are already impacting on the 

field of e-learning (see Section 2.2.2 e-learning 2.0) and in the personalisation of learning 

materials.  However, systems designed to take advantage of this advancement are still at a 

relatively early stage (and certainly were at the outset of this PhD work). Therefore the 

focus of this PhD is on the following question: 

 

Can the underlying principle of web 2.0, that of the ‘participatory web’, be used as the  

basis for a model to provide more intelligent personalisation of learning content to users?    

 

In essence, this will explore whether an intelligent environment which incorporates the  

ideas of social and community grouping can be developed to aid in the personalisation  

of learning materials to the learner.  

 

This question can be broken down into the objectives listed below:  
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 Provide a critical overview of the current research trends within the areas of e- 

learning most closely linked to this Thesis, those of: adaptive learning,  

personalised learning and learner pathway organisation.  

 Utilise the knowledge of the identified current issues in order to develop a new  

approach to resolving the research problem.  

 Design a model based on the concepts of personalised adaptive filtering to  

facilitate the construction of individual PLE’s.  

 Implement a prototype of the proposed model cataloguing significant design and  

implementation challenges faced.  

 Evaluate the new approach using sets of learners across learning contexts.  

Critically evaluate project success/failure and approaches taken.  

 

Critically examining the literature there is an apparent lack of emphasis on treating 

individuals as members of groups of learners with the same learning approaches. The 

author believes that group categorisation can make a difference to the learning process, in 

particular, encouraging group annotation and rating of learning objects (in essence utilising 

the power of collective intelligence) could make a difference to learning object 

recommendation. Therefore the author presents the following two hypotheses to be 

evaluated within the Thesis which link directly to the research question. 

 

 Grouping individuals based on their learning approaches and enabling the 

development of collective intelligence and the rating of learning resources will 

lower the proportion of materials perceived to be mismatched by the individual.  

 

 Ensuring separation of collective intelligence on a group by group basis rather than 

on a community basis will impact positively on lower instances of mismatched 

materials e.g. Group A might rate an object as 1 (low) and Group B might rate an 

object as 10 (high). An amalgamated rating would not emphasise the objects 

importance or unimportance to members of either group.  

1.4 Methodology and Methods  

 

This research project will commence with a detailed literature review around the fields of 

e-learning with a particular focus on personalised learning approaches. This approach will 
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help to identify issues within the field of personalised learning from which further research 

paths can be pursued, such as: the investigation of pedagogical frameworks for 

personalised learning; an analysis of intelligent personalisation systems; and examination 

of approaches to matching between the learner and the learning materials. 

 

The challenges associated with designing a new novel solution to personalised learning will 

involve: overcoming the limitations of current systems; the development of a theoretical 

model that incorporates the principles of collaborative grouping and learning-based-

paradigms; the introduction of an Adaptive Information Retrieval filtering mechanism to 

aid in the reduction of mismatching; and an empirical study through the use of a test bed to 

support the hypothetical model.  

 

The author will adopt an empirical approach, involving the creation of an experimental test 

bed focused on evaluating the model through practice. The experimental solution will focus 

on providing small test groups with contextual learning scenarios, which will be used in a 

personalised learning environment. The author will adopt an approach that will involve the 

use of: interviewing, observations and questionnaires to retrieve results from the testing. 

These results will be then used to create an evaluation and summative conclusion. 

1.5 Research Contributions  

 

This Thesis, through the analysis, design, creation and evaluation of a model for 

personalised learning, provides contributions both theoretically and practically to the field 

of e-learning.  

In theoretical terms, the Thesis:  

 

 Provides an incremental enhancement to an existing framework for personalised 

learning through the addition of concepts of learner groups and a group rating 

system linked to learning styles.  

 A new personalised learning model that supports collaborative grouping and the 

concept of Collective Intelligence.  

 Details a three stage evolutionary algorithm approach to match learning objects to 

learners needs based on learning styles and group categorisation.  

 Presents a new pedagogical learning model, to support the amalgamation of 
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learning styles on-line.  

 Provides contributions to e-learning literature in the area of personalised learning 

environments (Costello and Mundy, 2009a) (Costello and Mundy, 2009b).  

 

In practical terms, the Thesis:  

 

 Provides a solution for personalised learning with the development of a 

personalised learning environment.  

 Details the evaluation of this environment linked into specific learning scenarios.  

 Provides a novel approach to categorising individuals into grouping through the use 

of a complex rule base.  

 Uses Adaptive Information Retrieval techniques as a way of filtering learning 

materials based upon collaborative grouping and learning-based-paradigms.  
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1.6 Thesis Outline  

 

Chapter 1: Has presented an introduction into the Thesis, the underlying research 

question, objectives, motivation, and methodology.  

 

Chapter 2: This chapter provides an evaluation of approaches to the personalisation of 

learning. The literature covered includes learning theories, traditional learning, e-learning 

and personalised learning.  

 

Chapter 3: The requirements for and approaches to personalising the learner experience 

are covered in this chapter. The focus is on the research problem and current research 

methods attempting to solve this issue.  

 

Chapter 4: A novel approach to learner personalisation: A pedagogical preference 

learning approach designed around the learner.  

 

Chapter 5: A Personalised Adaptive Filtering System – Describes the innovative way of 

applying Adaptive Information Retrieval techniques to personalised learning.  

 

Chapter 6: Experimentation - Providing statistical data to support the hypothesis within 

this Thesis.  

 

Chapter 7: Critical Evaluation of Success - Providing arguments to support the hypothesis 

and the final view on how effective the new learner-centric pedagogical learning 

environment was within the real-world. 
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Chapter 2 Learning a Personalised Approach   

 

This chapter provides a critical introduction to learning, e-learning, e-learning 2.0, User 

Modelling and most relevant to this Thesis the area of personalised learning. The chapter 

starts with an introduction to learning and how people learn. It follows this with a brief 

examination of e-learning, e-learning 2.0, User Modelling and the opportunities in e-

learning for facilitating learners’  needs. Finally, the chapter critically analyses the 

approaches to personalised learning developed by other researchers in the area. 

 

2.1 Learning  

 

A simple definition of learning as posed by Cambridge (2004) is “the process of getting 

knowledge or a new skill”. Learning refers to the orientation of problem solving, decision 

making, and using embedded real-life tasks and activities to enable the learner to think, 

communicate, and build upon prior knowledge and experience (Schmidt 2005). Learning 

takes place with respect to content and context; you learn something somewhere (Edelson, 

2001).  

 

Teaching, according to Bereiter et al., (1989), Laster (2004) and Grabinger et al., (1995), 

provides the learner with the opportunity to develop a firm conceptual base for the content 

of coherent knowledge structures. Building on this base the learner will develop effective 

ways of synthesizing, processing and transforming knowledge. 

 

As outlined in Section 1.1 (background), learners have individual approaches to how they 

learn. There are many different types of learning theories that can be used to describe these 

approaches. The following sections analyse the following four learning theories thought to 

be of most direct relevance to this Thesis: 

 Social Learning Theory  

 Experiential Learning  

 Cognitive Behavioural Theory  

 Learning Styles/Strategies  
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2.1.1 Social Learning Theory    

 

According to Bandura (1969) social learning theory reflects on how one person learns 

through the use of actions, feelings, and thoughts, after observing a learning experience. 

Ormrod (1999) suggests that social learning theory explains learning in terms of a 

continuous reciprocal interaction between cognitive, behavioural, and environmental 

influences. Ormrod (1999) indicates that social learning theory provides a model to 

describe how learners’ often learn most effectively from observing other people. 

 

Stahl et al., (2006) and Jones (2010) indicate that they have applied social learning theory 

in Computer-Supported Collaborative Learning (CSCL), to encourage students to learn 

together in small groups via the use of interactive software; allowing students to learn by 

expressing their questions; pursuing lines of inquiry together; teaching each other; and 

seeing how others are learning. Social learning theory in accordance with Stahl et al., 

(2006) and Jones (2010) could provide potential for providing learner personalisation 

within electronic collaborative environments. 

 

This theory was considered within this Thesis to support: group activities, classification of 

group’ s dependant on behaviour, challenges & interest (Stahl et al., 2006) and group 

problem solving (Ormrod 1999). The model presented in this Thesis encompasses elements 

of individuals learning through the learning experiences of others by enabling the capture 

of individual and group responses to learning content. However, this does not happen 

through observation, it happens through an individual reflective process, so individuals are 

essentially making decisions on learning content based on the experiences of others. 

 

2.1.2 Experiential Learning   

 

David Kolb in 1985 provided a cyclical model for experiential learning within the field of 

adult learning. There are four levels to the Kolb model, which characterize the learning 

process: concrete experience, reflective observation, abstract conceptualisation, and active 

experimentation. 

 

 Concrete experience: stresses that there needs to be an obvious relationship  

between the learner, knowledge gained and practical experience.   
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 Reflective observation: focuses on learners developing through watching others  

or developing observations about one’ s own experience that can be used to analyse 

the effect of what works and what does not, what was learned about the situation.  

 Abstract conceptualization: uses theories to explain observations, concepts,  

principles, and/or generalised learning concepts.  These concepts might include  

patterns, rules, methods, or the beliefs of the domain expert.  

 Active experimentation: refers to taking on the general learning concept from  

the abstract conceptualisation section, to demonstrate practically how that  

principle works within other areas. 

Kindley, (2002) and Beard et al., (2007) suggest that the application of experiential 

learning theory within the context of computer based learning can be supported through 

literature across multiple fields such as social and cognitive psychology and philosophy. 

Kindley (2002) and Goodyear (2005) suggest that applying experiential learning theory to 

computer based learning focuses the domain expert on building exercises and tasks to suit 

the four different levels of the learning process.  

 

Using the recommendations of (Kolb D., 1985; Kindley 2002; Goodyear 2005; and Beard 

et al., 2007) the pedagogical model developed within Chapter 4, will adhere to Kolb’s 

cyclical model for identifying individual learner preferences to enable course-content to be 

matched to the individual, thus, hopefully improving individual performance and learning 

experiences while studying online.  

 

McLoughlin et al., (2002), indicates that encompassing the ideas of experiential learning in 

approaches to content production and delivery can provide the individual with a multitude 

of learner choices that can be tailored to their personalised learning classification. Dabbagh 

(2005) suggests that individual learning emphasizes on the systematic interaction between 

pedagogical theories and learning technologies. Having a design based on pedagogical 

theory allows for the development of more personalised learning experiences. This is an 

important point which guides in Chapter 4, the development of a pedagogical model to 

support learner personalization. 

 

2.1.3 Cognitive Behaviorist theories  

 

There have been a variety of key researchers in the field of cognitive and behaviourist 
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theory, for example: John B. Watson; Edwin R. Guthrie; and F. B Skinner. According to 

Hearst (2006), John B. Watson, was the founder of behaviourism, in which his research led 

to techniques used in animal laboratory’ s to understand behaviour being mapped to and 

applied to the analysis of the behaviour of human beings. The goal of behaviourism within 

psychology was to predict and control behaviour, not to analyze consciousness into its 

elements or to study vague "functions" or processes like perception, imagery, and volition‖ 

(Hearst, 2006). 

 

Clark (2005) suggests that Edwin R. Guthrie Jr believed in the contiguity explanation of 

learning through the notion of the `principle of association`: if two events appear close 

together, in time or space, then they will become associated with each other. Hilgard 

(2006) indicates that Guthrie’s theory was associated with the three laws of association, 

which are: the laws of similarity, contrast, and contiguity. 

 

 “Many animals are four-footed, so the child easily learns to group a cat, a dog, and 

a cow as animals through their similarities” (Hilgard, 2006).  

 

According to Skinner (1985), behaviourism theories are directly associated with the 

positivist and operationalist views belonging to methodology and philosophical sciences 

within the field of human behaviour. “The Behaviourism theories were directly linked 

into: how a person remembers when tied into the learning experience (complex thinking 

and problem solving)” (Skinner, 1985). 

 

Skinner’s (1985) theory focuses on attempts to provide behavioural explanations for a 

range of cognitive phenomena (learning is a function of change in behaviour). 

 

There are a variety of other Cognitive and Behaviourist theories that can be applied to an 

educational setting, for example, Gestalt Cognitive learning theory. According to Cooper 

(2005), the Gestalt Cognitive learning theory originated from three main researchers: 

Werthiemer, Kohler, and Koffa who did their early work in Germany. Gestalt Cognitive 

learning theory proposes that learning consists of the grasping of a structural whole and not 

just a mechanistic response to a stimulus. According to Torrans et al., (1999), the Gestalt 

Cognitive learning theory is not so much concerned with what the learner learns; it is how 

the learner learns and the environment in which the learner learns within. 
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De Freitas et al. (2006) indicates that cognitive behaviourist theories can be used to 

represent how informal and formal learning can support and reinforce one’ s learning 

abilities in order to accelerate their learning process, by incorporating activities that 

stimulate cognitive and motivation skills. One of the theories associated with cognitive 

behaviourist theories is that of Riding-Cognitive Style Analysis, which can be used to 

identify and determine the individual’s preferred learning style/trait (Riding et al., 1997; 

Peterson et al., 2003; Karagiannidis et al., 2004). The Riding-Cognitive Style Analysis 

was considered within this Thesis because it has the potential to support not just the 

individual, but also provide a way for the domain expert to map learning context to a 

variety of different situations like collaborative learning approaches. De Freitas et al., 

(2006) suggest that applying the theory to a collaborative learning approach allows the 

individuals to engage either in a self-directed, visually or interactive way. 

 

“A recognition of the strengths and weaknesses of one’s own style naturally leads to 

the formation of strategies (coping behaviour)” (Riding et al., 1997 p.10) 

 

Taking the principles of Gestalt Cognitive learning theory it is thought that this could 

provide support for a model within this Thesis which considers an individual as a whole 

(with respect to learning styles, context and needs) and the online environment which they 

learn through equally as more than just individual learning objects (considering the wider 

experience of groups of learners in the environment). 

 

2.1.4 Learning Styles/strategies  

 

Learning Styles (LS) are characterised as individual approaches to learning, for example, 

an individual may learn through seeing visual objects, hearing an oration, reflecting on past 

experiences and through practical problem solving. Felder et al. suggest that individuals 

have preferred approaches to learning. According to Felder et al., (1998), using a learning-

style model can enable domain experts to classify individual students in relation to their 

learning approaches. 

 

Different researchers like White (2004) and Learnactivity (2002), suggest that learning 

styles can be identified by the following; perceptual modality (how learners take in and 

perceive information), information processing, and personality patterns. Researchers like 
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Kurt Lewin, Jean Piaget, David Kolb, Paul Sinclair, Benjamin Bloom, Phil Race, and Peter 

Honey & Alan Mumford, and many more all noted that identification of learning styles 

may lead to an influence on learner progression. Learning styles emphasise the fact that 

individuals perceive and process information in a variety of different ways this also implies 

that how much individuals learn can depend on whether the educational experience is 

geared towards their particular style of learning.  Learning styles can have beneficial 

influences within the educational system that can affect students’ curriculum, assessments, 

and how particular modules are taught (Funderstanding 2001).  It is these primary 

conceptual thoughts that could improve the students’ learning experience if the domain 

expert considers the range of learning styles presented to them within a group of students.  

According to Koper et al., (2004) and Marshall et al., (2005) the results from the 

categorisation process enable course content to be either more explanatory or more 

structured towards a majority of learner’ s needs.  According to Karagiannidis et al., 

(2004), Canavan (2004) and Kanninen (2009) learning styles are used within computer 

based learning to enhance teaching by accommodating the students’ learning preferences. 

Canavan (2004) suggests that the integration of learning styles, within computer based 

learning can enable course content, exercises, discussions, and tasks to be developed to 

facilitate a variety of learner’ s needs and abilities. This Thesis uses learning style 

categorisation as a mechanism to enable personalisation of learning content delivered to 

individual users and as a mechanism to group learners together. This grouping within the 

learning model presented within Chapter 4 facilitates more targeted feedback from users 

who share common learning approaches.  However, the concept of learning styles being 

used within education is a two-sided-dagger, in which some researchers indicate say it is a 

positive thing; while others say they do not assist the individual at all and can just lead to 

confusion. According to Julie Henry (an educational correspondent) in a 2007 Sunday 

Telegraph article, Baroness Greenfield (a prominent female neuroscientist) stated that 

“the method of classifying pupils on the basis of "learning styles" is a waste of 

valuable time and resources”  

and that of 

"The rationale for employing VAK (Visual, Auditory and Kinaesthetic) learning 

styles appears to be weak. After more than 30 years of educational research in 

to learning styles there is no independent evidence that VAK, or indeed any 

other learning style inventory, has any direct educational benefits” (Henry 

2007).  
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In 1990, Eisenstadt et al., had suggested the notion of `Neophytes’ in learning, which 

translates to novice/beginner. Eisenstadt et al., (1990) suggested within their research that 

for some people, learning was difficult to grasp, and it was too hard to adjust to a learning 

experience even though attempts may be made to simplify and support them. The research 

concluded several issues why this might be: 

 

“It could be because of the learning activity was tricky and required lots of 

practices: Alternatively, it might be the case that novices are never provided 

with (or at least never acquire) a clear model, which leads them astray” 

(Eisenstadt et al., 1990). 

 

The research conducted by Eisenstadt et al., (1990) indicates that no matter what features 

applied by the domain expert to assist some individuals, the learner might still find it 

difficult and even if the materials are personalised in some way to them they may still have 

difficulty learning.  

 

“Much study has been addressed to learning styles but still the field over the 

subject is not clear. Many controversies rise from the fact that there are so many 

different learning styles. Each style deals with a different aspect on learning but 

there isn’t a style which incorporates all” (Kanninen 2009).  

 

However, according to Sadler-Smith (1996) the use of learning styles within education 

provides a vital tool to assist the individual and improve their learning experience by 

enabling the course content to be designed in accordance to how they learn. Learning styles 

can be used to allow the student to facilitate their acquisition of knowledge, skills or 

attitudes through study or experience in accordance to their preference learning style. 

Karagiannidis et al., (2004), Canavan (2004) and Kanninen (2009) agree with Sadler-

Smith’s views that using learning styles can have beneficial influences within the 

educational system. From the author’s perspective; learning styles do provide a building 

block for which the domain expert has some knowledge on how that individual will 

function when processing new skills and concepts. However, caution will be adhered with 

respect to learning styles within this Thesis especially in light of the research findings from 

Eisenstadt et al., (1990). 
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2.2 E-learning  

 

As identified in Section 2.1.4, traditional non-computer based approaches to the 

personalisation of learning materials (based on learning styles) have involved domain 

experts in the production of multiple resources to enable a best fit to individual learners. In 

such a scenario either the learner, or the domain expert, needs to have knowledge of the 

learners approach to learning. The use of technology can assist in the profiling of the 

learner and the retrieval of resources which best fit their individual learning styles. 

Therefore this section focuses on e-learning, moving through to the new wave of learning 

technologies based on the power of the social web, e-learning 2.0.  

 

According to Stojanovic et al., (2001), Nichols (2003) and Alsultanny (2006), e-learning 

is an efficient, effective way of providing a just-in-time learning approach by offering a 

dynamically changing technological environment that aims to replace old-fashioned time-

place content learning.  

“E-learning is part of the biggest change in the way our species conducts 

training since the invention of the chalkboard or perhaps the alphabet. The 

development of computers and electronic communications has removed barriers 

of space and time. We can obtain and deliver knowledge anytime anywhere” 

(Welshe et al., 2003)  

E-learning is essentially comprised of three main features: web-based 

infrastructures/technologies; pedagogical learning theories; and standards, which include 

SCORM and LOM. 

 

2.2.1 E-learning environments and issues  

 

Many e-learning frameworks try to provide mechanisms that encourage the learning 

experience to be more pleasurable and are designed around the concept of the student as the 

focus. According to Treviranus et al., (2006), e-learning frameworks are technology 

applications that are adaptable and accessible to end user requirements. Many educational 

institutions across the United Kingdom have focused on bringing e-learning to the 

individual user, by the use of several different commercial on-line educational mediums, 

the most pertinent of which to this research are outlined below. 
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In 1997, the company Blackboard was formed as an educational consultancy, and merged 

with CourseInfo LLC in 1998, producing shortly after their first commercial Learning 

Management System (LMS). Over a short amount of time Blackboard acquired through 

merger new organisations and new technologies leading to a merger in 2005 with Web CT 

a leading MS used in Higher and Further Education at the time. Following this merger 

Blackboard emerged as the leading LMS in the market.  

 

Another prominent e-learning package that is used throughout the United Kingdom is 

called Modular Object-Oriented Dynamic Learning Environment (Moodle). According to 

Dougiamas et al., (2001) Moodle is open source software, offering course management for 

learning resources. It also integrates communication tools, supports timed quizzes, 

manages assignment submissions etc. 

 

More recent developments have seen the platform SAKAI gain footholds in the learning 

management sector. SAKAI is a rich functional tool, developed as an open source system, 

incorporating learning standards based materials using the SCORM standard (for more 

information concerning SCORM, please see Chapter 3) and offering similar functionality 

to Blackboard and Moodle (Falmer et al., 2005). 

 

Xu et al., (2003) and Dalsgaard (2006) indicate that not all LMS’s are the same; however, 

they do have similarities and attributes which belong only to them. LMS are used to 

organise and manage e-learning courses including the management of students’ details, 

discussion forums, file sharing, management of assignments, etc... LMS’s use a variety of 

different tools to run and manage e-learning courses (Xu et al., 2003). In addition to the 

LMS which are integrated into a large number of educational institutions, individuals have 

experimented with the use of more semantically oriented system designs. 

 

According to Siemens (2004) traditional LMS focus directly on features, facilities and 

tools as a centre point instead of a personalised approach that would allow more control to 

the end-users, instructors, and learners. As indicated by Siemens “while LMS are useful for 

certain learning functions, advanced thinking skills and activities (i.e. the more learning 

mimics real life) require a move away from one-tool-does-it-all, and move towards 

picking tools for the required task - based on learner (not designer/organization) 

needs” (Siemens 2004). 
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Dalsgaard (2006) and Hernández-Leo et al., (2006) do agree with Siemens (2004) about 

the current limitations associated with traditional LMS and expand further by saying that 

traditional LMS do not take into consideration the new direction of research trends by 

incorporating social and community approaches that “emphasizes on self-governed 

learning activities” (Dalsgaard 2006). 

 

According to Sclater (2008) students are increasingly using Web 2.0 oriented platform 

features to assist within their learning experience, and only resorting back to LMS for 

details relating to their current educational tasks. Sclater (2008) suggests that  

 

“there are various questions at this time for faculty and university information technology 

staff who believe in the benefits of e-learning and need to decide whether their LMS 

remains an appropriate medium in which to facilitate it”.  

 

He then goes onto to ask the following questions: 

 

“Can we bring some of the social networking facilities that students find so 

appealing inside the institution?  

 

Should we use tools hosted elsewhere on the internet by others?  

 

Should we simply allow learners to select appropriate tools for themselves?” 

(Sclater 2008, P2) 

Sclater (2008) indicates that LMS are not effectively used by institutions because they are 

only being used as storage and a delivery medium. This is echoed by many other 

researchers’ e.g. (Godwin-Jones 2002; Govindasamy 2004; and Harman et al., 2007). 

 

According to Šimić et al., (2004) there are currently attempts being made to improve 

current LMS through the incorporation of improved methods of metadata collection for 

content or context, and search or retrieval of learning materials, based on meta tags. 

Incorporating semantic web technologies into current LMS designs will enable a 

relationship to be matched between existing materials found within the local repository of 

learning materials or externally sourced learning content. This attempt to overcome the 

common problem of ‘one-tool-does-it-all’ associated with LMS as indicated by Siemens 

(2004). 
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Semantic Web annotation according to Uren et al., (2006) and Pahl et al., (2009) provides 

a way of enhancing specific retrieval of materials related to an individual and also brings 

improved interoperability to the LMS. Uren et al., indicates that:  

“these benefits, however, come at the cost of increased authoring effort. We have, 

therefore, argued that integrated systems are needed which support users in 

dealing with the documents, the ontologies and the annotations that link 

documents to ontologies within familiar document authoring environments” 

(Uren et al., 2006). 

 

Denaux et al., (2005) and Dagger et al., (2007) indicate that another approach that 

researchers are taking to overcome some of the issues identified by (Siemens and Šimić 

2004; and Uren et al., 2006) is the use of another form of Semantic Web technology called 

Web Ontology Language (OWL). Koper (2006) indicates that the application of OWL to 

LMS, can aid in the development and identification of learning patterns and authoring. 

According to Pahl et al., (2009) these future trends of LMS should be able to achieve: 

adaptability and reasoning belonging to the individuals through the identification of user 

traits and behaviour patterns (i.e. User Modelling). 

 

2.2.2 E-Learning 2.0  

 

The concept of Web 2.0 was popularised by O’ Reilly and MediaLive International in 

2004, but had roots in literature prior to this point (Madden et al., 2006). O’ Reilly defines 

the term in a seminal piece ‘What is Web 2.0. Design Patterns and Business Models for the 

Next Generation of Software’ (O'Reilly, 2005; 2007) capturing seven key principles about 

what is encompassed by the term ‘Web 2.0’. What can be seen as the core principles across 

other individuals (Hagemann et al., 2008; Lee et al., 2008; Wijaya et al., 2008; Weber et 

al., 2007; and Multisilta 2008) attempting to define Web 2.0 are the principles of: ‘Web as 

platform’ and ‘harnessing collective intelligence’. 

 

The ‘Web as platform’ principle simply outlines the shift over the past five to seven years of 

previously desktop based application functionality to web based services. In addition, the 

growth of web based services which allow for the collection of shared resources e.g. Flickr 

and YouTube. This principle removes issues previously existing with the interoperability of 

applications across platform as now applications run via the web browser which is cross 
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platform compatible. 

 

According to O’ Reilly, “Hyper linking is the foundation of the web. As users add new 

content and new sites, it is bound in to the structure of the web by other users 

discovering the content and linking to it” (O’ Reilly 2007). Therefore capturing the 

essence of how users navigate the web and their impressions of web content through 

mechanisms such as tagging, page rating, and collaborative sharing, can aid users in 

identifying resources to meet their specific needs. 

 

According to Anderson (2008) Web 2.0 is more than just a web platform it is a service that 

offers more than just sharing content, tagging, wikis, blogs, and social networking. Web 2.0 

is an easy way for people to publish self-generated materials like music, videos and photos. 

 

Also coined alongside Web 2.0 is the term e-learning 2.0, which according to Ghali et al., 

(2009), Safran et al., (2007), and Ullrich et al.,(2008), refers to on-line learning 

environments that incorporate the idea of the Social Web making use of technologies such 

as collaborative authoring tools, rating tools, social identification (e.g. bookmarking) and 

annotation. According to Hamburg et al., (2008) e-learning 2.0 uses web-based tools to 

create new forms of learning materials (e.g. blogs, video sharing repositories, social 

networking spaces etc…) and to provide different ways of delivering learning materials. 

Hamburg et al., (2008) and Ullrich et al., (2008) suggest that incorporating social web 

concepts into on-line environments can assist with collaborative learning through the use of 

formal learning; the creation and construction of content; and the receiving and giving of 

feedback through discussion groups. 

 

According to Safran et al., (2007) and Ullrich et al., (2008), e-learning 2.0 can be 

categorised or identified within two particular themes, these are: Technology and Social 

Networking. These link in to the Web 2.0 themes of ‘web as platform’ and ‘harnessing 

collective intelligence’. 

 

 Technology: According to Safran et al., (2007) and Ullrich et al., (2008) the use of  

technology  within e-learning 2.0  can  provide  support  for  a  variety  of  key 

educational features: Wiki-blogs, pod-casts, RSS (Rich Site Summary or Really 

Simple Syndication), and e-portfolios.    
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 Social Networking: According to Safran et al., (2007), Chatti  et al., (2007) and  

Ghali et  al., (2009) social interaction plays an important part within e-learning  

2.0  because  it  allows  students  to  interact,  share  ideas,  communicate  (e-mail, 

chat, video conference), and use forum’s to discuss problems.    According to 

Hamburg et al., (2008) collaborative learning may provide a useful perspective on 

learning, knowledge creation and management from a social networking 

perspective.  There are a variety of e-learning 2.0 environments that can be found 

within literature; however, several will be discussed.   

 

The first example to look at is a European project financed under the European e- learning 

Initiative called the SMEs Improving E-Learning Practices (SIMPEL) project, which was 

introduced in 2008 by Hamburg et al., The SIMPEL project focused on analyzing, 

understanding and suggesting mechanisms –“to involve SMEs and e-learning experts in a 

community of practice to share knowledge and to develop participative training 

strategies based on elearning 2.0”.  One particular aspect of the project focused on the 

use of Moodle to provide a way of using blogs to distribute and share information on 

services or products.  According to Hamburg et al., (2008) the use of SIMPEL, provided a 

way of blending knowledge, communication and learning.  It also through identification of 

scenarios provided mechanisms through which educators could establish ways in which to 

best integrate e-learning 2.0 technologies into their educational practice.  Hamburg et al., 

(2008) suggests that by understanding the right mix of approaches and technologies then 

“e-competences” can be achieved.    

 

Like the Hamburg et al., (2008) approach Ghali et al., (2009) tries to blend a variety of 

approaches to achieve “e-competences” through the use of an e-learning 2.0 system called 

MOT 2.0 (My Online Teacher 2.0), which is an adaptive authoring and delivery system.  

According to Ghali et al., (2009) MOT 2.0 focuses on: content recommendation; 

adaptation of the authoring environment; and it allows students to contribute in the 

development process of course content.  This approach to learning means that learning 

content is created and distributed in a very different manner. Rather than being of a linear 

approach based around the lecturer and the desired syllabus, it can incorporate the learner 

through every possible step of introducing course work, exercises, and tasks.  
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Alevizou et al., (2010) has similar views to (Hamburg et al., 2008; Ghali et al., 2009) 

about the use of the new generation of e-learning 2.0 technologies to facilitate collaborative 

learning.  Alevizou et al., (2010) introduces a specialised web-site called CLOUD, which is 

used for sharing resources, and ideas on learning and teaching. Cloudmark was designed 

according to Alevizou et al., (2010) to facilitate and focus primarily on social networking 

within online learning by investigating practices of socialisation; sharing and editing 

content within, wikis and social media.  Cloudmark uses collective intelligence, as a way of 

analysing how humans can potentially share, collaborate, produce and reproduce 

knowledge.  Alevizou et al., (2010) indicate that Cloudmark attempts to solve issues 

concerning:  mobilization of resources; sharing resources between learners; and meditating 

social relations.   

 

It is clear to see that this new generation of e-learning 2.0 is focused on applying some form 

of collaborative community learning through the use of collective intelligence (Hamburg et 

al., 2008; Ghali et al., 2009; Alevizou et  al., 2010; Safran et al., 2007; Ullrich et al., 

2008).   

 

According to Safran et al., (2007) the use of e-learning 2.0 within on-line learning will 

become more frequent and also lead to the incorporation of collaboratively created content 

in traditional learning environments.  Hamburg et al., (2008) and Ghali et al., (2009) have 

similar thoughts to Safran et al., (2007) about the future trends which they suggest should 

focus on incorporating the social web into on-line learning environments to allow other 

students to assist each other, share ideas, and make on-line learning more community 

focused.  However, as Chatti et al., (2007) questions, within modern society will busy 

learners adopt this approach of having a collaborative community?  Hamburg et al., (2008) 

does indicate that future trends must try to overcome other issues like:   

 

 “Lack of immediate context of applying the learning for example by  

incorporating new learning in a personal knowledge schema or portfolio;    

 

 Lack of time and lack of access  to sufficient bandwidth to ensure high quality 

training, especially user-friendly tools and quality content;   

 

 The attitude of managers– they often have not enough knowledge or are not 

convinced of the effectiveness of e-learning.  Instead they put their trust in 

classroom-based training. Many of them prefer “learning from peers” Hamburg et 
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al., (2008)  

 

The work contained within  this Thesis sits within the scope of systems designed as E-

Learning 2.0 systems due to a focus on encompassing the principles of collaborative & 

community based learning, the integration of group-learning-paradigms; and the intelligent 

matching and tailoring of the system to meet the learner’s needs.  This new approach to e-

learning will replace the ttraditional Virtual Learning Environment (VLE), that is often 

cumbersome and expensive - and which tends to be structured around courses, timetables, 

testing, and often driven by the needs of the institution rather than those of the individual 

learner.  These new ideas and concepts have  the  potential  to  act as a way of offering a 

personalised tailored approach  to: exchange  and  reuse  of  learning objects; tailored 

learning activities; and matching content to individual preferences. Computer based 

research towards the personalisation of learning experiences has been undertaken since the 

1970’s.  The next few sections will introduce early forms of achieving this through User 

Modelling, and stereotyping, moving  on  in  the  final  section  of  this  chapter  to  outline 

research  in  personalized learning. 

2.3 User Modelling  

 

When users interact with a computer, they provide a great deal of information about 

themselves.  Even when they are not physically at a computer, users continuously radiate 

data, by walking, speaking, moving their eyes, and gesturing.  User Modelling enables 

architectures to be built to interpret this type of information and personalise learning 

experiences taking into account individual behaviours, habits, and knowledge.   

 

User Modelling is an approach embedded in Human Computer Interaction (HCI) design to 

enable designers to understand how people use their soft/web-ware.  A user model is a 

mechanism through which a user can be described and analysed in relation to their use of a 

particular piece of soft/web ware.  The approach enables designers to overcome problems 

linked to user perceptions reducing opportunities for error and improving the time taken by 

users to understand designed interfaces.    

 

The design of modern systems is increasingly user-centered, with users now often involved 

from the planning stages of web development.  Early user involvement can help prevent 
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serious mistakes in web systems.  Benefits of a user-centered approach like: User 

Modelling are mainly related to time and cost savings during development, completeness of 

system functionality, repair effort saving, as well as user satisfaction.  

 

User Modelling is usually traced back to the late 1970’ s (Razmerita et al., 2008; Kobsa et 

al., 1994), in which a lot of work was done in this area of research relating to how 

application systems were developed, and how different types of information was collected 

from different users.  According to Kobsa (2001) there were a number of developments in 

the 1980 s, which pushed the barriers of User Modelling with the introduction of the 

General User Modelling System (GUMS) that was designed by Tim Finin in 1986.  This 

allowed developers to use simple hierarchies and facts stated in the Prolog programming 

language, to describe scenarios and introduce rules and reasoning to shape understanding. 

Kobsa (2001) indicated that new approaches were developed in the mid nineties, which 

advanced the field further with the development of:  

 

 User Modelling Tools (UMT):  According to Tasso et al., (1999) UMT was 

introduced in 1994 to represent the user interests with regards to good traits and 

bad traits of the system and co-occurrence relationships among them. UMT was 

used to seek assumptions belonging to systems before various resolution strategies 

were applied.  

 

 The Belief, Goal and Plan Maintenance System (BGP-MS): According to Kobsa et 

al., (1995) the BGP-MS User Modelling system was used to adapt personalised 

traits of the users relating to: previous knowledge, beliefs, and goals.   

 

Applications which integrate User Modelling capabilities require software tools to enable 

the capture of assumptions about users based on their use of the application, mechanisms to 

store and represent these assumptions, intelligence to go beyond the assumptions and make 

suggestions in new contexts and provide methods of re-evaluating assumptions when the 

user makes inconsistent choices (Kobsa et al., 2005).  

A number of systems have been constructed to use User Modelling to personalise user 

experiences these are critiqued below.  

 

In 1994, Brusilovsky introduced an Intelligent Learning Environment (ILE) which adapted 
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to individual student behaviour.  The ILE was built around the design concepts of 

Intelligent Tutoring Systems (ITS), which capture personal features belonging to the 

individual and extract relevant details like: personal factors (e.g. interests/hobbies), 

cognitive styles, learning strategies and personal knowledge.  The ILE used 

recommendations belonging to the tutor to extract and suggest the best teaching approach 

(problem or example) for individual students.  Once the student had made a decision this 

was recorded in the environment to assist with the correct delivery method that the learner 

preferred.  The problems associated with this particular model, was the time it takes for the 

environment to learn and adjust to a variety of learning situations and actions belonging to 

the individual; a complexity in integrating different features of the learner into every 

module; and irregularities caused by enabling the individual to modify their own profile.  

However, according to Brusilovsky using an ILE to identify how an individual learns did 

assist with and improved the learning experience on-line for those students using the ILE.   

                                                 

According to Orwant (1995) the designer of the DOPPELGÄNGER User Modelling 

system is based on a two part approach.  The first part is used to enable data to be gathered 

about user’s traits.  The second part carries out analytical responses to enable the 

application to make changes related to assumptions made about user interests.  

DOPPELGÄNGER enables the retrieval of specific community traits (utilising aspects of 

collective intelligence) to fill in gaps belonging to the individual to enable a task to be 

carried out.  The DOPPELGÄNGER user model according to the designer was based upon 

a system design only incorporating some aspects of a pragmatic pedagogical approach.    

These aspects pivoted upon knowing particular interests of the individual user.  The system 

design did not take into consideration the reduction of learning materials delivered to the 

user through advanced searching functionality.  However, a collaborative community 

approach was used based on an examination of the time taken by other users in 

reviewing/using learning materials.  This information was used to filter out inappropriate 

or irrelevant materials. This approach did not always provide or predict an accurate picture 

of how long each individual user may spend on particular tasks or activities.   

 

Berendt in 2007 uses User Modelling through the use of data mining to interpret and 

extract interests, behaviours and patterns, belonging to individual users to assist with the 

delivery of learning content.  In addition, the system designed by Berendt used this 

information to group users (e.g. users with low IT literacy or users with limited language 
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comprehension) and collect and share rating and tagging information from these user 

groups about particular learning resources.  According to Berendt (2007) there is evidence 

to support this approach; however, further research is needed in the field of: semantics, data 

mining, pedagogy, system design, and finally privacy.  The application of further research 

into these areas will enable further improvements to be made, through the identification 

and use of elements of a user model to match the needs of individual users in specific 

learning scenarios.    

 

Bringing the research up to date from 1990’s to 2010, User Modelling has been applied to 

a variety of areas belonging to e-learning, and in particular one area of interest to this 

Thesis is Adaptive Hypermedia Educational Systems (AHES).  According to Martin et al., 

(2008) and Neji (2009), AHES are systems which utilise user models to adapt particular 

learning environments to the specific needs of individuals.  According to Martins et al., 

(2008) User Modelling within adaptive hypermedia involves using perturbation.  This 

method considers that the knowledge and the student aptitudes are a perturbation of the 

specialist knowledge and not a subset of his/her knowledge before adapting the system 

needs.   

 

There are a number of modern computer based systems that include aspects of User 

Modelling to adapt or try to understand user’s behaviour, learning abilities, and even 

psychological profiles these are:  

 

 Adaptive Hypermedia Educational Systems Martin et al., (2008) and Neji (2009)  

 EU4ALL, Douce et al., (2009)  

 User Profile Evolution (UPE), Neji (2009)    

 Adaptive  Dynamic  online  Educational  system  based  on  User  Modelling  

(aDeNu)  

 

Neji (2009) suggests that using User Modelling within on-line educational contexts will 

enable e-learning to provide more accurate information retrieval based on the profiling of 

behavioural, psychological and emotional states of individual users.    According to Douce 

et  al., (2009) using User Modelling within VLE’s can provide a way of incorporating 

pedagogical profiles to design more personalised approaches.   Santos et al., (2009) has the 

same ideas as Douce et al., (2009) but also indicates that using User Modelling within e-
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learning can help bring personalisation through the use of social sharing including the 

development and integration of communities.    

 

Boticario et al., (2007) and Martins et al., (2008) suggest educational systems that use 

User Modelling as a way of identifying and extracting user traits have been successful in a 

variety of institutions.  However, there is a need for a generic model that can offer the same 

success from trials belonging to small scale institutions which can be imported more readily 

into mainstream environments.  According to Martins  et  al.,  (2008)  other areas of User 

Modelling must be researched further to deal with: interoperability issues caused  by  

systems  using  different  standards e.g. a mixture  of eXtensible  Markup Language 

(XML), Resource  Description  Framework (RDF), Sharable  Content  Object Reference 

Model (SCORM), Learning Object Metadata (LOM), Web  Ontology Language (OWL), 

WiseOwl; appropriate use of pedagogical theories and learning styles in  personalisation 

systems;  presentation  and navigation of learning materials within e-learning environments 

(Sosnovsky  et  al.,  2008); and the development of adaptable courseware to support a 

variety of individual learning needs (Boticario et al., 2007).   

 

The analysis of existing work in relation to User Modelling plays a fundamental role in 

supporting the development of the ideas presented in this Thesis in developing the Adaptive 

Intelligent Personalied Learning (AIPL) environment.  According to Schiaffino et al., 

(2008) these new approaches to personalisation will enable the future development of VLE, 

which  support and provide provision for more accessible and personalised learning content 

and structures.  It is these recommendations from Schiaffino et al., (2008) that present ideas 

towards the development of a new novel approach based on User Modelling to provide an 

environment tailored around the ‘Learner’.  

 

Schiaffino et al., (2008) suggests that these particular approaches can be categorised into 

personalised learning.  According to Miliband personalised learning refers to a system in, 

which “careful attention is paid to their individual learning styles, motivations and 

needs; there is rigorous use of pupil target setting linked to high  quality formative 

assessment and marking” (Miliband  2004).  The next section will expand on the notion 

of personalised learning, and how it directly relates to this Thesis.   
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2.4 Personalised Learning   

 

Personalised learning enables individual preferences to be applied to the learning 

environment according to end user needs.  Each end user may require a different approach 

to learning in particular contexts.  According to DO-IT (2003) and Alkhasawneh et al., 

(2007), learning preferences refer to how students and end users respond to the learning 

environment.  This flexibility in modification of the learning approach to the individual 

learner can be achieved through the use of web-based technologies (Sakagami et al., 1997).   

 

According to De Meo et al., (2007), in addition to the learning preferences of the student, it 

is also important that the domain expert be aware of their own learning techniques to assist 

and support the individual learners.  At the moment e-learning is an important field of 

research where different methodologies and pedagogical approaches often co-exist.  

According to Harun (2001), there is a wide range of factors that can either motivate or 

discourage the individual learner.  These factors centre primarily on the learning materials 

themselves (quantity, quality, diversity etc…) and the e-learning environment (tools, 

accessibility etc…).  

 

Personalised learning environments are allowing learning to be tailored to an individual’s 

need.  Skills and knowledge can be developed faster and when needed through ‘just-in-

time’ learning.  According to Harun (2001), Laurillard (1993) and Kabassi et al., (2004) 

the advancement of PLE’s have provided the opportunity for learner’s to have on-line and 

motivational support from professional domain experts.  People learn best when they can 

learn what they need at the moment they need it.  This can allow them to immediately 

apply their newly gained knowledge, which can improve performance.  More importantly, 

immediate application cements the knowledge gained and makes it far more likely that the 

knowledge will be retained.  According to Laurillard (1993), to assist the individual learner 

on-line within a personalised learning environment the system can model their process of 

learning to create an environment where learners engage in learning conversations and 

activities.  Liber et al., (2004) indicates that to achieve a personalised learning experience 

on-line, domain experts must manage the complexity of the learning activities, by using 

different methods. 

 

Personalised learning will be used within this Thesis to enable the learning environment to 
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support the individual through matching the needs of the individual and filtering out any 

redundant learning materials. As mentioned by Laurillard (1993) and Liber et al.,(2004) 

adopting a Personalised Learning Approach will enable the individual to achieve a 

personalised learning experience on-line through managing the complexity of the learning 

activities, by using a variety of learning methods. 

 

2.4.1 Research in Personalised Learning – An Overview  

 

PLE’s are developed to incorporate a variety of approaches that take into account different 

ways of learning. These different approaches comprise a variety of techniques:  knowledge 

representation; cognitive learning styles; adaptation to the learner needs; search; and 

retrieval techniques.  

 

Personalised learning encapsulates pedagogical approaches that adjust to individual 

learning preferences.  Frameworks for personalised learning provide learners with the 

opportunity to support different goals and learning needs.  Bruen (2002) suggests that 

PLE’s are versatile in supporting educational components, which are closely associated 

with course contexts.    

 

Conlan et al., (2002) introduced a pedagogical learning environment (OPAL) that uses 

Kolb/McCarthy’ s learning style models to categories learners into continuums (e.g. 

abstract/concrete and active/reflective).  The pedagogical learning cycle is categorised as 

the following:   

 

 Innovative learning - concrete/reflective in which the learner prefers to be shown  

the practical application of new material.   

 

 Analytic learners abstract/reflective in which the learner is being presented with a 

well-documented sequential ordered approach to the materials.  

 

 Commonsense learner - abstract/active in which the learner uses guided  

activities to keep them up to date with the learning materials and contents.   

 

The OPAL model according to Moura (2006) would enable the delivery of content that 

was personalised to the learner’s cognitive preferences. However, the OPAL model has not 
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been transformed into a practical framework for learning delivery.  According to Koper et 

al., (2004), the development of learning design models can support strategies to consider 

specific existing learning processes based upon different pedagogical models. Rosmalen et 

al., (2006) suggests that a PLE can provide extensive mechanisms to improve learner 

performance.  

 

There are a number of different approaches for achieving personalised learning 

experiences, the most pertinent of which to this Thesis research are outlined below. In 

1999, Dietinger et al., proposed the Dynamic Background Library (DBL) which uses an 

intelligent algorithm built around the concepts of keyword relevance and user profiles to 

filter large knowledge bases for data relevant to what the user wishes to learn about.  

According to García-Barrios et al., (2004) the EHELP (EnHanced ELearning Repository) 

environment that uses the DBL has provided the learner with the flexibility  

of reducing large amounts of unwanted materials and improving the learner’s performance.  

However, literature surrounding the EHELP environment has demonstrated a few 

limitations with the model, these are: the environment only retrieves partial search results 

from a knowledge base; manual intervention in the search function is required; complexity 

in use and lack of usability design (García-Barrios et al., 2004; and Mödritscher et al., 

2005). 

 

Hauren (2001) described a Personalised Continuing Medical Education Solution (PCMES) 

which focused on providing individually relevant learning materials based on expertise, 

interest and need. The algorithm at the heart of this solution needed to match personal 

attributes to the knowledge base to retrieve just in time materials.  PCMES provided a 

learning environment that could handle real time response to a medical database, which 

would bring back learning materials that were appropriately associated with the academic 

level of the learner.  The PCMES environment had several benefits, according to Hauren 

(2001), these were: delivery of low cost learning; up to date repositories and the provision 

of on-line support for students.  Hauren (2001) indicated that the major limitation of the 

PCMES model was the complexity of the environment and the amount of staff training and 

staff time required in its usage.   

 

 In 2002, Conlan et al and Bruen created two similar online environments that were called 

OPen Adaptive Learning (OPAL) and Adaptive Hypermedia System (AHS), which were 
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specifically designed to make learning content more tailored to the individual.  Bruen 

(2002) indicated that the AHS e-learning environment did not provide the flexibility to 

reach large audiences with a single body of content, and did not cater for the majority of 

individuals while studying on-line.  The AHS tried to match the student’s prior knowledge 

to existing preferences to facilitate personalised learning.   

 

The Web Intelligent Trainer (Web-IT) according to Kabassi et al., (2004) provided a 

protected environment for novice users who can work on modules, as they would normally 

do, while the system silently reasons about their actions and offers adaptive tutoring to their 

situation.  The Web-IT environment used an intelligent trainer algorithm to reason with the 

learner by suggesting or prompting appropriate learning paths to enable the novice to have 

a more personalised learning experience.  The Web-IT environment was based on the 

‘relevance principle’ theory by Sperber and Wilson (1986), which refers to how individuals 

only remember knowledge that is relevant to them.  Kabassi et al., (2004) indicates that the 

Web-IT environment needs more empirical research with regards to the intelligent trainer.  

The empirical search needs to focus on analysis of the domain and technical experts to 

understand how tutors react to different age groups and learning experiences.   

 

With the advancement of on-line technologies in 2006, Rosmalen et al introduced the 

aLFanet framework, which was used to match a multitude of pedagogical templates, to the 

learner in terms of providing a variety of different learning tasks. The environment analyses 

the learner progress throughout the learning process and suggests the appropriate learning 

path to take.  The intelligent tutor/agents interpret the individual preferences, and take 

courses of action to support their needs.  The design of the aLFanet environment presents 

some issues, according to Rosmalen et al., (2006) these were: the incapability of 

interoperability between different standards and pedagogical learning approaches and 

questions over the complexity with regards to taking more advantage of modern internet 

technologies.    

 

Most recently De Meo et al., (2007) proposed the X-Learn system, which is a multi-agent 

system for adapting e-learning based on user preferences, history, expertise and 

requirements.  According to Liu et al., (2007), there are a variety of problems associated 

with the X-Learn system:  compatibility issues with software; media functionality (sounds, 

videos etc…); and how students needed special training in how to use the e-learning 
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environment.  However, in addition to the limitations of the X-Learn environment, the 

research demonstrated that when it did work the environment provided real time streaming, 

on-line tutor support, and resource management.   

 

Thyagharajan et al., (2007) introduces a new two-tier e-learning environment called 

eLearner that  supports the learner by using adaptive algorithms to improve the 

performance of the learner this is measured through reduced browsing time of learning 

objects.  The eLearner environment focuses on the adaptive course content that matches 

learning characteristics and interoperability across platforms.  The e-learning environment 

that Thyagharajen et al.,  (2007) suggest covers different aspects, from learning materials 

standards; interoperability issues; and making use of on-line technologies; however, very 

little qualitative and quantitative research was found to support the framework within the 

academic world.   

 

Zia et al., (1999) indicate that most Intelligent Tutoring Systems (ITS) works by focuses 

directly on the domain topic that the student wishes to learn.  ITS according to Zia et al., 

(1999), uses questioning techniques to extract how the session is going and by doing this 

can update its teaching strategies.    

 

 “An intelligent tutor takes Computer Based Training (CBT) and customizes it to 

the needs of each individual student, just like a real human tutor would do” (Zia 

et al., 1999)  

 

Intelligent Tutoring Systems are used to facilitate problem solving skills, learning habits, 

abstract reasoning, and verbal skills within on-line learning. Rau et al., (2009) agrees with 

Zia et al., (1999) about Intelligent Tutoring Systems providing a way of facilitating 

learning; however, Rau et al., (2009) version does not ask or prompt the user for questions 

instead it used correct and incorrect solution paths to adjust the context.  If an error does 

reoccur the system will  

 

“produce feedback messages to enable the student reconsider their answer by 

either reminding them of a previously-introduced principle or by providing them 

with an explanation of their error” (Rau et al., 2009).  

 

Ghali et al., (2010) introduces an adaptive Web 2.0 e-learning tool called My Online 
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Teacher (MOT), which was developed to support a variety of features and facilities like: 

collaborative authoring; group-learning-paradigm; social annotation (group rating, 

feedback, etc...); adaptive hypermedia recommendation facility (which provides learning 

context based on other people previous reading materials).    

 

“The aim behind including collaborative authoring and social annotation within 

MOT 2.0 is to define improved adaptive materials based on communities of 

practice” (Ghali et al., 2010)  

 

Ghali et al., (2010) indicated that some of the features provided by MOT 2.0 such as 

grouping, subscriptions, communications, recommendations, accessing other people’s 

material were useful and assisted with their learning experience.   

 

According to De Bra et al., in 2003 an Adaptive Hypermedia Architecture (AHA) was 

developed to support on-line course development via the use of user guidance; ‘conditional 

(extra) explanations; and conditional link hiding` (De Bra et al., 2003). Adaptive 

systems try to anticipate the needs and desires of the user.  Any knowledge that the 

Adaptive Hypermedia Architecture (AHA) has belonging to learner is based on previous 

actions.  The system may simply monitor what a user is doing or it may ask questions to 

enable the architecture to adapt to his or her needs.  

 

 In 1998, Brusilovsky et al., suggested a system called InterBook, which represents 

educational material as a set of Electronic Textbooks (ET).  Brusilovsky et al., (1998) 

indicate that InterBook is a Web-based education facility that accommodates the users by 

supporting: different backgrounds; prior knowledge of the subject and learning goals; and 

user adaptively guidance through course materials.  Brusilovsky (2007) indicates that 

future trends of e-learning will focus on Adaptive Hypermedia, which will involve using 

hypermedia and User Modelling together to assist with personalisation.   

 

“Adaptive hypermedia systems (AHS) offer an alternative to the traditional ‘one-

size-fits-all’ hypermedia and Web systems by adapting to the goals, interests, and  

knowledge of individual users as they are represented in the individual user 

models” (Brusilovsky 2007).   

 

Brusilovsky (2007) indicates that to achieve Adaptive Hypermedia Systems (AHS) link 

generation and link annotation will have to be developed, which at is currently being 
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investigated through the use of: ALICE an electronic textbook about the Java 

programming language; ELM-ART a Web-based systems with adaptive navigation 

support; ISIS-Tutor: non-adaptive, adaptive annotation, and a combination of both 

adaptive hiding and annotation; and finally the work done by De Bra AHA!.  

 

Klašnja-Milićević et al., (2010) has indicated that to improve the effectiveness of e-

learning is to incorporate personalized learning. This can be achieved by using Adaptive e-

learning system that incorporates a variety of different learning strategies and technologies 

to predict and recommend the preferred learning material. This can be achieved by 

recommending and adapting the appearance of hyperlinks or simply by recommending 

actions and resources. 

 

2.4.2 Issues with Personalised Learning Environments  

 

Researchers like Kabassi et al., (2004), Dixon (2007) and Juhary (2005), have indicated 

that PLE’ s fail in delivering on-line learning because, on-line domain experts have not 

taken into consideration the students’  capabilities with respect to computer literacy. 

Rosmalen et al.,(2006) and Chieu, (2007) agree with the same concepts that students with 

very little computer related skills can find it difficult to learn in personalised e-learning 

environments due to the complexity of the components required to personalise systems to 

their needs.  

 

Researchers like Dixon (2007) and Juhary (2005) have indicated similar views to Kabassi 

et al., (2004), and have argued that it would be difficult to design course context and 

structure to facilitate student’ s needs with very little ICT skills. In order to deliver course 

content, activities and services, specific research is required in the area of instructional 

design; learner centric’ness; a wide range of functionalities; and domain experts to support 

and guide the learning cycle. According to Liber et al., (2004) and Santos et al., (2006), 

the problems with these approaches are the complexity of managing individual 

environments to compensate the needs of the learners. 

 

However, according to Dixon (2007) and Juhary (2005), to compensate for the individual 

learning experience a more effective learning process must be designed and implemented. 

This would involve direct interaction at the design stage amongst the learners and the 

domain experts, which would enable a balance to be developed; however, this identifies 
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areas of support and time, which sometimes the domain expert does not have. According to 

De Meo et al., (2007), to effectively improve the problems identified by Dixon (2007) and 

Juhary (2005), different web-based technologies and standards must be used for on-line 

materials. 

 

Thyagharajan et al., (2007) and Chieu (2007) indicate that the components for adapting to 

individual needs can be everyday technology, but the problem is associated with how the 

learning materials are structured, as it is not feasible to describe all the conditions that are 

required for determining which part of on-line materials is appropriate for different learner’ 

s needs. According to Chieu (2007) and Meccawy et al., (2007), learning environments 

must be flexible enough to support platform dependences, which can lead different 

institutions to use learning materials from other on-line sources.  

 

In addition Juhary (2005) suggests that an important factor that needs to be solved within 

PLE’ s is how to identify suitable learning theories, this would effectively enable a whole 

new learning experience to be developed and supported by the environments. 

 

To achieve, features like that of Intelligent Tutoring Systems (ITS), AHA, or even AdeLE, 

the use of User Modelling is required. User Modelling utilizes the knowledge from the 

individual to assist or guide where every possible within the learning environment. User 

Modelling varies within on-line learning due to their task or complexity. The basic form of 

User Modelling takes into consideration aspects of the individual; however complex User 

Modelling can facilitate system adaptations like: filtering requests; representation of user 

interests; representation of knowledge.   

 

This Thesis, will hope to address some of the issues associated with Personalised Learning, 

by using User Modelling to develop a new filtering approach; adjusting the learning 

content and materials to support the user’s interests; and finally incorporating grouping to 

create a positive learning experience.  
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2.5 Summary    

 

This chapter guides the reader through the necessary steps required to enable a 

comprehensive guide to be developed on personalising learning. The first initial step was to 

identify what aspects can affect the learning process of the individual; this involved 

researching different learning theories. Secondly, the chapter focused on e-learning and 

more recent advancements related to e-learning 2.0, coupling technologies power with the 

influence of the social web. Finally, the chapter presents a critical overview of research 

related to user modelling, stereotyping and personalised learning systems. 

 

Chapter 3 presents a more detailed analysis of the elements required in the development of 

a personalised learning environment; those of the development of a semantic knowledge 

base and a fundamental approach to matching learners with materials. 
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Chapter 3: Requirements for and approaches to personalising 

the learner experience  

 

On-line learning communities provide participative models for the creation, management 

and exchange of networked community resources to facilitate individual learner needs. 

Researcher’ s like Coman., (2002), Mühlhäuser., (2003), Cristea., (2005), Treviranus et 

al., (2006), Juhary (2007) and Thyagharajan et al., (2007) have shown that there is a 

greater need for environments to be designed around the student’ s requirements (learner-

centric) and to provide additional facilities to exploit the learner’ s full potential. Academic 

literature based around learner-centricity has indicated that certain features have already 

improved learning on-line, with improvements in the interoperability of learning materials 

(Britian  et al., 2006) and the development of innovative pedagogical learning approaches 

(Boticario et al., 2003; and Cagiltay et al., 2006). However, there are still problems to be 

solved.  

 

The analysis of literature related to personalised learning in Chapter 2 effectively results in 

three substantial problem areas. The first problem area is the representation of learning 

materials within learning repositories. The second problem area is how the learner is 

profiled and the final problem area is matching the learner to the learning materials. This 

chapter deals with each of these different problem areas individually.  

 

Sections 3.1 and 3.2 discuss the semantic representation of learning materials outlining 

technologies such as the semantic web, OWL, RDF, LOM and SCORM. Section 3.3 

discusses technologies for profiling individual learners including their limitations. Finally, 

Section 3.4 describes technologies used for matching individual learners to learning 

materials. 

3.1 Semantic Web  

 

3.1.1 Introduction  

 

The Semantic Web is an integrated mesh of web data that is used to link up 

information/data that we use every day. The Semantic Web provides an efficient way of 
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representing a common framework that allows data to be shared and represented within the 

World Wide Web. The Semantic Web enables data to be integrated and combined to allow 

re-usability within applications, communities, and organisations. According to the W3C 

(2007), the Semantic Web can be categorised into two specific identifiable areas: common 

formats of data used for integration and combination; and recording how the data relates to 

the real world object.  

 

The concept of the Semantic Web was devised by Tim Berners-Lee to improve, extend and 

standardise data that is stored within HTML documents (Berners-Lee et al., 2002). The 

problem with the majority of data on the Web is that, it is stored in a contextual form that is 

difficult to use on a large scale because there is no one standard for publishing data in such 

a way as it can be easily processed by anyone (Palmer, 2001). 

 

3.1.2 Technology  

 

There are several technologies that are available for constructing Semantic Web data. 

According to Dumbill (2002) and Matthews (2005), eXtensible HyperText Markup 

Language (xHTML), OWL, RDF, Meta-data and XML can be used to create a 

translational data model. The translational data model must support a variety of syntax to 

facilitate structured information for a machine to understand and process. Table 1 

introduces some of the technologies that can be used to create semantic mark-up of learning 

objects. 

 

xHTML 

 

 

 

 

 

 

 

XHTML forms the foundation of web content.  Semantic information can 

be embedded within xHTML using meta-data as recommended by 

(Dumbill 2000 and Kesteren 2007).  The 'class' attribute has been used in 

the past to facilitate mark-up of learning objects (Dumbill 2000 and 

Kesteren 2007).  However, the problem with xHTML is that it is not a 

specific structure for learning object representation and cannot be used in 

an interoperable way to record significant amounts of data about 

individual objects (Downes, 2001).  



39 

 

        

XML 

 

 

 

 

 

 

 

 

Garro et al., in 2002 introduces XML as “a language for representing 

and exchanging data over the Internet. XML embodies both 

representation capabilities, typical of HTML, and data management 

features” (Garro et al., 2002, P3).     

 

McGreal et al., (2001), Polsani (2003) and Garro et al., (2010) indicate 

that XML is ideal for achieving representation of learning materials  

because it provides a way of dealing separately with content, structure 

and appearance, to semantically mark up objects.  

 

Garro et al., (2002) indicates that XML provides an efficient and effective 

way of representing and classify learning objects like: “documents, 

slides, simulations, role plays, questionnaires, pre- recorded lessons, 

classroom lessons) and their relationships with respect to their 

objective, topic, used media, etc... (i.e. LOM) (Garro et al., 2002, P2).  

                       

RDF 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDF provides a way for describing web resources.  Devedžić (2004) 

suggests that RDF provides the necessary way of representing details 

belonging to a web resource through the use of tools that use common 

syntax.  According to Heery (1998), RDF syntax is based on a data 

model that enables properties to be described in a descriptive structure.  

 

RDF aims to build a web of overlapping metadata vocabularies to create 

a market for data merging, aggregation, annotation and filtering services.  

McGreal et al., (2001), Finland (2004) and Farrell et al., (2004) suggest 

that RDF can be used to semantically represent learning objects on-line.   
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OWL 

 

 

 

 

 

 

 

 

 

 

 

According to Antoniou et al., (2009) OWL is aimed at being the 

“standardised and broadly accepted ontology language of the 

Semantic Web” (Antoniou et al 2009, P1).  Bateman et al., (2006) 

suggests that OWL is built upon RDF and RDF Schema to a large extent, 

to provide a knowledge representation to allow for more intelligent 

searching and retrieval over other resources.  

 

According to Horrock et al., (2003) OWL is primarily designed to 

represent information about categories of objects and how objects are 

interrelated.  Parsia et al., (2004) and Bouquet et al., (2005) agrees with 

Horrock et al., (2003) but expands further on the notion  by indicating 

that OWL uses XML Schema, to  represent, build and   

maintain learning objects found within repositories. 

                         

LOM 

 

 

 

According to Bateman et al., 2006, LOM “is the most widely used 

specification for learning object metadata”.  LOM is taxonomy of terms 

and descriptors, which are constrained by a preset vocabulary.   LOM is 

used to annotate learning objects within the repository to provide a 

standard for describing learning objects. According  to  Bateman  et  al.,  

(2006)  LOM  can  be  used within adaptive  and  personalised  learning  

to  provide  a  way  of  annotating  learning objects.  LOM is further 

explained in Chapter 5.   

The Dublin  

Core Metadata 

Initiative 

(DCMI) 

 

The DCMI is an open organisation engaged in the development of 

interoperable metadata standards used within on-line learning.  Xu et al., 

(2007)* suggests that the DCMI is used to describe data belonging to the 

“content, format or attributes of a data record or information 

resource” (Xu et al., 2007, P2). The Dublin Core standard provides a 

way of describing, sharing, finding, retrieving and managing data.  

 

Xu et al., 2007, indicates that the Dublin Core Metadata standard can be 

used to represent on-line materials within a variety of domains, like those 

found in medical and educational institutions.  For more information 

about the Dublin core Metadata standard, please see Chapter 5. 

                Table 1: Technologies used for constructing Semantic Web Data 
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3.2 Related Issues   

 

The Semantic Web can be exploited within e-learning to provide a platform for 

implementing different learning materials and objects. The Semantic Web can facilitate e-

learning, personalised or adaptive learning environments by introducing descriptive 

annotations that can be closely mapped to the learning profiles or specific learning needs as 

shown by Sancho et al., (2005) and Cerri (2002). 

 

Markellou et al., (2004) and Dieng-kuntz (2007) indicate that the quality and coherence of 

the material cannot be guaranteed when representing learning materials in a repository. 

Brusilovsky et al., (2007) agrees with Markellou et al., (2004) and Dieng-Kuntz (2007) 

about the lack of high quality resources found within repositories; as stated within the 

Open Corpus Adaptive Educational Hypermedia project.  

 

Brusilovsky et al., (2007) indicates there are more issues than just the lack of high quality 

learning materials like: resources may change without notice; standards are not backward 

compatible enough within the changing technologies; and there are major interoperability 

issues between a variety of VLE’ s. Research from Cristea (2004) has indicated that there is 

a lack of support for and problems with keeping the systems up-to-date when newer 

versions of Semantic Web standards have been released.  

 

According to Dicheva et al., (2004) and Nordeng et al., (2005) navigational issues, 

cognitive overload and standard intractability are still issues associated with the Semantic 

Web within e-learning. 

 

3.3 Learning Materials Standards  

 

Learning Materials standards are used throughout adaptive, personalised and e- learning 

environments. The motivation behind the use of learning materials standards is to primarily 

overcome issues of interoperability between on-line learning systems; and the idea of 

reusing learning materials. Learning materials standards provide the domain expert with 

tools to: describe the characteristics of learning resources; index the learning materials 

according to specification; and facilitate more precise retrieval according to learning 

context.    
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According to Verbert et al., (2004), there are a number of learning materials standards that 

are being developed and implemented to support on-line learning, these include: LOM and 

SCORM. The following sections will discuss LO (3.3.1), LOM (3.3.2) and SCORM 

(3.3.3) in greater detail. 

 

3.3.1 Learning Objects (LO)  

 

According to Bannan-Ritland et al., (2000) and Friesen (2004) learning objects can be 

regarded as an educational resource, which use metadata to enable more precise search and 

retrieval from learning repositories. “Learning objects describes any digital resource that 

can be reused to support learning” (Wiley, p. 20). The IEEE itself implies that learning 

objects can include "multimedia content, instructional content, instructional software 

and software tools [and] in a wider sense...learning objectives, persons, organizations, 

or events" (IEEE, 2001). 

 

Learning objects make it easy and convenient for educational course designers to assemble 

instructional materials, which are well-defined and structured to support different 

pedagogical models. Bannan-Ritland et al., (2000) indicates that separating content and 

context within the learning process provides some benefit to the designer by providing 

greater flexibility of reusing learning objects. Friesen (2004) suggests that to gain the full 

potential of learning objects within an education environment, they need to be labeled, and 

described in ways that make learning objects simpler to integrate and support. According to 

Friesen (2004), learning objects have the potential to benefit the learner if the learning 

environment has the capability of using different pedagogical learning approaches in their 

retrieval.  

 

Learning objects are used within this Thesis to represent course content belonging to:  

 

1) How to wire a plug, which will be used to test the initial retrieval findings 

belonging to the Adaptive Intelligence Personalised Learning (AIPL) environment.  

2) A full Java module will be used to examine and compare results from the initial 

findings and also from another VLE called Moodle.   
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The learning objects will enable the domain expert to develop course content to suit the 

required learning outcomes of the module (e.g. how to wire a plug and how to program in 

Java). 

 

3.3.2 Learning Object Metadata   

 

The LOM data model specifies which aspects of a learning object should be described and 

what vocabularies may be used for these descriptions; it also defines how this data model 

can be amended through additions or constraints. Barker (2005) indicates that resources 

can be tailored to suit the specialised needs of an on-line community. Course designers and 

publishers may use the LOM standard along with other specifications to mark-up learning 

resources with a description of the learning object.  LOM is a multi-part standard that 

specifies a conceptual data schema that defines the structure of a metadata instance for a 

learning object. Data schema are used to create meta-data instances for learning objects, 

which can be used by a learning technology system to manage, locate, evaluate or 

exchange learning objects.    

 

The purpose of LOM is to facilitate search, evaluation, acquisition, and use of learning 

objects, for instance by learners or instructors. LOM facilitates the sharing and exchange of 

learning objects by enabling the development of categories and inventories while taking 

into account the diversity of lingual contexts in which the learning objects and their 

metadata are reused. By specifying a common conceptual data schema, this ensures that 

bindings of LOM have a high degree of semantic interoperability. 

 

The core of this Thesis focuses on facilitating the matching of learners to learning objects. 

In this context, LOM is of interest and can be used as a useful mechanism to represent 

learning materials. For more detail about LOM, IEEE-SA (2002) provides an excellent 

resource. LOM will be used within this Thesis to represent the learning objects, which can 

be found within Chapter 5. LOM will assist the domain expert in labeling activities, and 

classifying the activity. 

 

3.3.3 Shareable Courseware Object Reference Model  

 

SCORM can be described as an architecture for developing web-based instructional 
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materials in a way that will allow a global e-learning community to use. It also lets users 

create their own units of instruction by mixing and matching individual content objects. 

The overall framework of SCORM describes a model for structuring and aggregating 

content, along with a run-time environment for presenting the materials to end users via a 

web browser. 

 

SCORM is a set of specifications for developing, packaging, and delivering high-quality 

education and training content/materials, whenever and wherever they are needed. 

SCORM provides strict guidelines for designing course materials with the use of the 

terminology Reusable, Accessible, Interoperable, and Durable (RAID) in the creation and 

implementation of learning objects. According to Jones (2002) and Henriques et al., 

(2004), RAID can be explained as the following:  

 

 Reusable: Easily modified and used by different development tools and platforms.  

 Accessible: Can be searched and made available as needed by both learners and 

content developers.  

 Interoperable: Operate across a wide variety of hardware, operating systems and 

web browsers.  

 Durable: Do not require significant modifications with new versions of system 

software.  

 

SCORM standards provide facilities for: search, identification and content retrieval within 

a repository. This way, it is easier for learners to identify, retrieve, and incorporate valuable 

content from different sources. SCORM constitutes an important first step towards freeing 

learning content objects from individual implementations. It is intended to provide the 

technical means for content objects to be easily shared across multiple learning delivery 

environments; however, this does not solve all of the technical challenges that must be 

overcome to create robust instructional objects.  

 

The main purpose of this Thesis is to provide a way of matching the learners to learning 

materials. In this context, of learning objects SCORM can be seen as an area of interest 

which provides as way of providing a descriptive framework to annotate on-line learning 

materials. For more detail about SCORM the Advanced Distributed Learning Initiative 

(2010) provides an excellent resource. 
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3.3.4  Limitations of SCORM and LOM based repositories  

 

There have been many investigators that have discussed the limitations to the SCORM 

model. Engel Brecht (2003) points out that the SCORM model has several issues 

associated with it, these are: reusability issues, metadata representations and security 

concerns over code malware. Wirski et al., (2004) agrees with (Engelbreht 2003) that 

reusability issues brought about by a lack of interoperability between learning objects from 

one repository to another is a significant problem with SCORM based systems.  According 

to Nakabayashi et al., (2007) some of the interoperability issues have been solved 

dependent on learning activities (same learning content), and adaptive functionality of the 

repository. Nakabayashi et al., (2007) suggests that other problems do exist and these are: 

usability of learning objects, adaptation of learning activities, and time concerned for the 

domain expert to develop these approaches.  

 

Suthers (2001) suggests that the LOM metadata model lacks the metadata representations 

for the domain expert to describe learning objects and additional issues like interactivity. 

Further analysis of Qin et al, 2002, also indicates that LOM like SCORM suffers from 

interoperability issues. Cebeci et al., (2005) indicates that issues associated with the 

representation of learning objects, which Suther (2001) and Qin et al., (2002) had 

indicated, have now been solved through greater standardisation of practice. However, 

Cebeci et al., (2005) points out that there are now more prominent issues like too much 

flexibility, accessibility and interoperability that must be solved. 

  

Karampiperis et al., (2005) indicate that SCORM, and LOM have similar problems, that 

they are incapable of providing a solid format for reusing learning objects between 

repositories. SCORM and LOM have limiting abilities with cross platform repositories 

(interoperability), and shared learning activities (interactivity). 

 

According to Hatala et al., (2004) researchers have been trying to standardise learning 

object metadata by using emergent specifications towards learning objects. Najjar et al., 

(2006) suggests learning objects that are represented by metadata must be flexible and 

diversifiable to enable the learner to search through a repository to find specific content that 

meets expectations. According to Najjar et al., (2006) to overcome these limitations 

learning objects must be rich with descriptive details that enable search mechanisms to scan 
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through and retrieve appropriately relevant materials. 

 

3.3.5 Summary of learning object standards   

 

Learning object standards are used to allow learning objects to be represented by a 

descriptive metadata model that enables sharing among distributed repositories. Due to the 

vision of the Semantic Web, a large body of research regarding learning materials standards 

has been well documented in literature through the use of descriptive models like, 

SCORM, LOM, OWL, RDF, etc… (Bannan-Ritland et al., 2000; Friesen 2004). Finding 

ways in which the models can interoperate and bridge between repository instances can 

facilitate improved functionalities including digital libraries (Decker et al., 2000; Lu et al., 

2004 and Sure et al., 2005), e-learning (Sancho et al., 2005), information sharing, search, 

retrieval, and transformation. 

 

Another problem is in creating a matching balance between search and retrieval of desired 

learning materials for the learner. Basically, learners need to perform content retrieval by 

interacting with: search engines or LMS including queries that have to be resolved based 

on knowledge descriptions. To enable content retrieval across distributed contexts, 

appropriate matching techniques are required to determine a semantic mapping between 

learning object descriptions defined using different standards (Knight et al., 1994; Chaudri 

et al., 1998; Noy et al., 2001; Yao et al., 2007). 

 

3.4 Profiling  

 

It is clear that from Chapter Two, profiling through the aid of User Modelling is extensively 

used (Dietinger et al., 1999; Boticario et al., 2007; Martins et al., 2008 and Neji 2009) in 

a variety of educational settings to filter large knowledge repositories of data. Neji (2009) 

suggests that using User Modelling within on-line educational contexts will enable e-

learning to provide more accurate information retrieval based on the profiling of 

behavioural, psychological and emotional states of individual users. 
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3.4.1 Profiling the individual  

 

Profiling is used to compare or identify a subject’s behaviour or the behaviour of others in 

similar circumstances. The key to good profiling is in deriving what background 

information can be extracted and by identifying certain patterns of the individual. There are 

many different types of profiling, which stem from DNA profiling to profiles that assist 

with learning. There are several different types of profiles that can be used within learning, 

these are: 

 Learning Profile (LP): According to Hummel et al., (2003) LP’ s enable 

psychologists to retrieve specific learning habits, and issues of the individual to 

enable the teacher and the student to better understand their own learning habits. 

Hummel et al., (2003) indicate that there are a number of issues to contend with 

when using LP’ s, within an on-line learning environment these are: roaming 

profiles; ever changing learning styles of the individuals; and the transfer of 

retrieving LP values from server to client. Boticario et al., (2006) indicated that 

LP’s require the following improvement: integration of authoring tools and more 

documentation explaining how to implement different adaptive scenarios.  

 Contextual Profile (CP): Safran et al., (2006) indicate that CP stores raw 

information about terminologies, concepts and context related to a course and 

course materials. CP’s enable the system to access basic information from the 

learner/domain expert. According to Safran et al., (2006) the CP, must be flexible 

within the design to compensate for metadata storage. Strang et al., (2002) 

indicates that using CP’s within on-line environments provide insufficient ways of 

describing complex contextual data structures.  

 Device Profile (DP): De Meo et al., (2007) indicate that a DP stores some 

characteristic aspects of individuals, such as the types of medium (e.g. video, audio, 

etc.), or the software that the student uses. Boticario et al., (2006) suggests that 

there are often problems of usability and accessibility in relation to different 

devices. DP’s help to at least indicate where problems may occur.  

 Self-learning profiles (SLP): According to Manuel et al., (2001) SLP are used 

within the fields of context extraction and evaluation of course materials. According 

to Shih et al., (2005) SLP are capable of identifying learner needs and adjusting the 

learning environment accordingly. The SLP can adapt the profiles to fit a variety of 

different learning situations, and prompt the user in the right direction.  
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Each of the profiles mentioned provide the opportunity to assist the individual within a 

learning environment by helping to adjust the environment based on the profiled needs of 

the user. Much of the research has demonstrated that profiles can assist within the 

environment; however, consideration must be taken when dealing with raw information, 

learners details, interoperability, and data exchange so that problems don’t arise when the 

learners uses them. 

       

3.4.2 Profiling and categorising the individual  

 

Profiles have been applied and adapted to many different environments to facilitate and 

reduce information overload by taking into consideration user interests, themes, 

pedagogical learning theories, and software sharing. The profiles enable students to adjust 

learning environments according to how they learn and filter the repository for appropriate 

learning objects. According to Subramaniam (2006), profiles can capture and store 

information about users’ personal data (e.g. name, contact address, etc.), relations (i.e. with 

their classmates and teachers), performance (i.e. their learning progress), and specific 

learning needs. According to Hummel et al., (2003), Zahedi (2003), Sinha et al., (2004), 

Tzouveli et al., (2005) and Subramaniam (2006), using profiles has enabled environments 

to adapt to groups’  with similar interests, skills, projects, location and personalised 

settings. This presents the opportunity for the individual to experience a more specific 

group surrounding and better correlation between group/collaborative environments. De 

Meo et al., (2007) agrees with the research of Hummel et al., (2003) and Kabassi et al., 

(2004) that using profiles in on-line learning can enable e-learning environments to adapt 

to the specific needs of the individual. However, a profile can offer more than just the 

personality traits of the individual. 

 

Research conducted by Bloedom et al., (1996) incorporates weight-based algorithms to 

facilitate learning experience by exploiting key terminologies within the user profile, which 

can be applied to the filtering mechanisms to reduce information overload. Bloedom et al., 

(1996) indicates that user profiles can be adapted for the World Wide Web and academic 

use by incorporating weight-based algorithms that interrogate key terminologies in the 

learner profile and the retrieval of relevant web-based documents for comparison purposes. 

The comparison takes place by using a weight-based algorithm that exploits the evidence 
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and compares the relativity, thus providing a mechanism for the user to filter out the 

unnecessary retrieval of documents. 

 

The idea of using learning profiles that can quickly adapt to the individual has been 

incorporated into the design of AIPL, which can be found within Chapter 4 and also 

Chapter 5 PAFS. Learning profiles are used to store a detailed description of how an 

individual prefers to learn and also what behaviours they have. Over time ones own 

learning style adjusts according to experiences gained, and within AIPL, the learning 

profile will prompt the individual to carry out their learning style questionnaire again every 

2-3 months to ensure that individuals have correct matching patterns, for more information 

on the learning profile please see Chapter 5 (PAFS). Machine learning of changes over 

time of student learning style could be a place for further research. 

 

Categorisation within learning profiles can enable greater flexibility when designing course 

contents with the pedagogical approach that creates a correlation between the learning 

experience and the learner. Kolb et al., (1999) suggests that experimental learning helps to 

define flexible learning experiences at a more comprehensible level that encourages 

guidance, support, and facilities to aid learners. Heery et al., (2000) expand on educational 

learning profiles by incorporating a relationship between the Semantic Web specifications 

and the data elements that are used to describe documentation within heterogeneous 

environments and communities. These profiles enable different communities to access 

learning profiles to retrieve knowledge through specific repositories to facilitate 

mechanisms for file sharing, peer-to-peer sharing and documentation. According to Aroyo 

et al., (2006) when applying learning profiles to e-learning environments research has 

discovered that using this particular technique has unearthed issues surrounding 

adaptability.  

 

According to Simon et al., (2002) learning profiles have been applied to adaptive e-

learning frameworks to facilitate and maintain personalised learning. Adaptive 

environments provide access to all kinds of educational resources. Simon et al., (2002) 

suggests that the LP can be trained to facilitate a fully electronic educational service that 

enables a tutoring system to assist the learner when encountering problems. The LP can be 

fully integrated into a web-based adaptive environment, which automatically registers 

learning details, and a personal record of achievements. To achieve the LP, matching 
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ontologies of additional academic services are required to incorporate various types of 

educational services that model the learner’ s previous knowledge; this enables the LP to 

describe the capabilities of the student. 

Simon et al., (2002) indicates that matching ontologies must be used to provide 

educational resources that correlate to the most used LP and to additional repositories with 

the use of mainstream Semantic Web technologies. According to Simon et al., (2002) and 

Thalmann et al., (2007), a learner profile can be used to assist the learner experience by 

adjusting the requirements to fit the need of the current learning situation; however, other 

researchers King et al., (2005), Stash et al., (2006), and White et al., (2006) indicate that 

matching the learner needs involves a mixture of techniques and theories to provide a more 

efficient and effective way of improving the learning experience. 

 

3.4.3 Stereotyping and categorising the individual  

  

Another type of profiling found within Computer Science is that of the work from Elaine 

Rich, which introduced a type of individual/group classification called stereotypes. 

Stereotypes are based on modelling groups of users who share common interests or 

characteristics, which can be extracted to form clusters of group-paradigms. 

 

According to Rich (1979) the use of stereotypes, can be achieved by using a small set of 

words (simple self description) to enable a system to adapt to individual needs. Rich (1979) 

suggests that to treat users as individuals stereotyping can be used to identify distinct 

personalities and goals, which will provide a useful mechanism for building models of 

individual users on the basis of a small amount of information. 

 

Elaine Rich in 1979 suggests that “there are many theories about why people use 

stereotypes, but one of the most certain explanations is that people use stereotypes as a 

means for dealing with the fact that the world is far more complex than they can deal 

with without some form of simplification and categorization” (Rich 1979, P3) . 

 

According to Melia et al., (2009) and Brusilovsky et al., (2010) the use of stereotyping 

within on-line learning enables a system to adapt to a variety of individual needs like 

retrieving relevant information; knowledge of a subject, and learning style.  

 

As stated by Brusilovsky et al., “to create and maintain an up-to-date user model, an 

adaptive system collects data for the user model from various sources that may include 
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implicitly observing user interaction and explicitly requesting direct input from the 

user” (Brusilovsky et al., 2010, P1).  

 

Stereotyping is used to help the system to simplify the world it is based on by analysing the 

individual characteristics of a person. Once stereotyping has been carried out and analysed 

the next step is to cluster all possible users into several groups depending on the initial 

design. All users belonging to the same stereotype will be treated in the same way by the 

adaptation mechanisms. 

 

There are many researchers within literature that use stereotyping to categorise the 

individual, for example: Brusilovsky in 2001 caters for the individual by using an e-

learning environment that adapts to their learners goals by using the knowledge level, 

background, interests, preferences, stereotypes, cognitive preferences, and finally learning 

styles of users. Frias-Martinez et al., (2007) used stereotyping to determine the behaviour 

and personal perceptions of users within a personalised web-based application; and Melia 

et al., in 2009, used adaptive courseware to suit a variety of individual needs by using: 

knowledge of a subject, and learning styles.  

 

According to Bartolini et al., (2009) and Rich (2009) stereotyping is very similar to 

Collaborative Filtering (CF), in the fact that they are both used to search and retrieve items 

belonging to particular criteria. Bartolini et al., (2009) suggests that CF exploits 

similarities in user behaviour before recommending search and retrieval patterns. Drachsler 

et al., (2009) indicates that both CF and stereotyping can be used together to reduce 

information over-load and reduce unwanted assumptions about individuals and groups. 

 

Within this Thesis the author has focused on using CF in conjunction with profiling to 

reduce unwanted assumptions of the individual with the aid of learning styles. This 

particular type of profiling can be seen as having similar traits to stereotyping that was 

introduced by Elaine Rich back in the late 1970’s. For more information about the CF and 

profiling, used within this Thesis please see Chapter 5 Personalised Adaptive Filtering 

System (PAFS). 
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3.4.4 Issues  

 

There are a number of key problem areas associated with profiling techniques, which vary 

dependant on the task or function they are meant to perform. According to Tzouveli et al., 

(2005), extracting data, preferences or user history can be an extensive task, which requires 

a range of computer skills and knowledge. Subramaniam (2006) agrees with Tzouveli et 

al., (2005) about the development and instructional design of the extraction process for 

using profiles and indicates that if the profiles are not correctly designed around the 

students/learners’  needs, then a lack of competency can create conflicts with the personal 

learning of the individual. 

 

Subramaniam (2006) indicates that the instructional design stage of the profile must work, 

to ensure that instructional balance between the profiles and the students’ needs is 

implemented successfully. According to Ensminger et al., (2004) and Williams (2004), 

using profiles to match students’ needs within an environment requires further research. De 

Haan et al., (2003) indicates that using a variety of methods and tools to assist with 

guidance while selecting different types of profiles could provide a more blended suitable 

learning experience. Williams (2004) has the same thoughts as De Haan et al., (2003) by 

indicating that using procedural and strategic knowledge in the development of a learner 

profile can create a more effective learning experience. 

3.5 Matching  

 

A large amount of learning material is created and delivered on-line every day. This has 

made it increasingly difficult for individuals to control and effectively manage their own 

learning process. On-line educators are finding it very difficult to adapt to the requirements 

of individual learners in virtual environments. In comparison traditional teaching can be 

adaptive with teachers adapting to learner needs when lecturing, tutoring, and guiding them 

through the learning process. However, whether traditional or on-line, true personalisation 

of experience is a difficult concept to realise. Educators are now striving for ways to match 

learners’ requirements to content through technology to create an efficient and effective 

way to improve their learning experience. 
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 3.5.1 Approaches to matching  

 

The matching process involves systems in programmatically determining the suitability of 

learning resources for individual learners. This process can be achieved in many different 

ways. This section outlines research in this area and highlights the limitations of current 

approaches. 

 

Knight et al., (1994) proposed a Knowledge-Base Machine Translation (KBMT) engine 

that uses matching to facilitate search and retrieval of word-based text to assist the learner 

with language translation. The Hierarchy Matching Algorithm (HMA) used a multi word 

strategy that tried to search for multiple meanings of the same word (Homophones) to 

reduce assumptions made within the search process. According to Knight et al (1994) the 

HMA had a 96% accuracy rate when retrieving learning objects from a knowledge base 

repository. However, because of the nature of the approach chosen by (Knight et al., 1994), 

it still required the intervention of the domain expert and learner to validate retrieval of 

search, and content that was brought back. 

 

In 1998, Chaudri et al created a Knowledge Representation System (KRS) that uses the 

Open Knowledge Base Connectivity (OKBC) API to provide an interrogation mechanism 

that would enable the learner/domain expert to make assumptions and control the 

behaviour response of the KRS algorithm when retrieving specific search patterns. Chaudri 

et al., (1998) indicated that the KRS algorithm provided an effective way of using semantic 

matching mechanisms to assist the domain/learner with keyword searches. Literature 

surrounding the KRS algorithm indicates that depending on the complexity and severity of 

the search it could bring back a null search, at which point the assistance of the domain 

expert/learner would be required to intervene and adjust the search accordingly. 

 

Noy et al., (2001) introduces the PROMPT algorithm, which uses a form of OKBC 

mechanism to enable the domain experts/learners to perform any-keyword search. This 

particular approach provided the domain expert with the opportunity to search by using 

linguistic similarity i.e. matching words/relations. According to Noy et al., (2001) this 

matching algorithm approach had a 74% success rate when being used by users for 

knowledge acquisition/retrieval. 

 

In 2004, Li et al suggest an e-commerce algorithm that matches the request of the user to a 
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variety of internet based advertisements. The algorithm interrogates a query from the user 

then through the use software agents/bots conducts web-based crawls to retrieve desired 

search results. The prototype algorithm relies on the use of metadata, however, in addition 

to the algorithm the user has to have knowledge of special characters and phrases, which 

enable the user to create more specificity in the search. Li et al., (2004) indicate that using 

matching algorithms was complex; however, if simplified at the user front end it has the 

potential to produce successful results. 

 

Hull et al., 2006, describes a framework that uses matching algorithms to facilitate user 

requests, by using semantic descriptors for particular topics. The framework that Hull et 

al., (2006) suggest enables the matching algorithm to scan through the metadata that 

represents the topic area and bring back only appropriate materials to the search of the 

user/learner.  The approach that Hull et al., (2006) had taken indicates that only domain 

experts with knowledge of Web Ontology Language for Services (OWL-S) and Web 

Service Modeling Ontology (WSMO) could use this feature. 

 

Yao et al., (2007) argues that keyword searches, and page ranking are inadequate when 

large repositories are searched, which involve individuals manually going through the 

results brought back one at a time. Yao et al., (2007) indicates that the typical Knowledge 

Retrieval system as seen in Figure 1 involves three major steps, these are: 

 

 

                             Figure 1: Yao et al., (2007) Typical KR System 

1) Meeting the learners needs when conducting searches  

2) Understanding the structures through which searches are conducted  

3) Modifying search criteria  
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To overcome the limitations of knowledge base retrieval according to Yao et al., (2007) 

researchers must include some of the following approaches: collective family trees; 

hierarchical data representation; intelligent knowledge selection; and knowledge based 

structures to reduce information retrieval. The model that Yao et al., 2007 proposed was 

only a theoretical concept that could be applied to support a new model. 

 

In 2006, Eze et al suggested a framework for Personalising Multimedia Learning 

Resources that uses profile matching to enable the learner to view learning materials. 

According to Eze et al., (2006) the e-learning framework uses a profile matching 

mechanism that utilises the learner preference to retrieve learning materials. Eze et al., 

(2006) indicates that the framework was used as a driving force to enable the development 

of a personalised one-to-one learner experience. For more information see Figure 2. 

 

Figure 2: Frameworks for Personalised Multimedia Learning Resources (Eze et al., 

2006) 

Eze et al., (2006) indicated that there was one major design flaw within the e-learning 

model, which was all about providing a personalised learning resource for effective 

learning, but this did not provide an adequate approach for providing media resources 

towards the learner’ s traits. 

 

The research that was carried out by Eze et al., (2006) indicated that there were three 

possible areas of improvement these were:  
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1) To the personality component for domain profiling of the learner  

2) In using semantic metadata to represent multimedia of specific context using XML 

and RDF.  

3) In the development of the matching algorithm.  

 

Hummel et al., (2007) suggested a personalised adaptive model that focused on producing 

a Personalised Recommender System (PRS). The model that Hummel et al., (2007) had 

suggested focused on sequencing learning activities (the creation of a Learning Path), CF, 

and ratings. The PRS model uses several different types of mechanism to enable matching 

to take place between the learner and the learning materials. The first technique that 

Hummel et al., 2007, used was an information-based approach that uses learning 

technology standards, metadata and the Semantic Web to mark up the learning materials. 

The second technique that Hummel et al., 2007 suggested was the use a social-based 

approach that was designed and implemented using: data mining, social software and CF.   

Hummel et al., (2007) indicates that their design approach has several limitations 

associated with it, these are: 

 

 Limited metadata mark up of learning materials using RDF/XML  

 The course management software was only capable of running a limited amount of 

learning activities.  

 Limitation of research focusing on stigmergy approach of allowing individual to 

form their own groups instead of assistance from the domain expert.  

 

Hummel et al., (2007) indicated that future trends will or should be addressed towards 

using users as a centrepiece. 

 

Mencke et al., (2007) introduces an e-learning framework ―Learning Environment‖ that 

enables technology to enhance the performance and the effectiveness of on-line learning 

mediums. The framework uses a combination of web-based technologies and software 

agents to provide a mechanism to improve: pedagogic diversity, learning activities, 

interoperability between different frameworks; and functionality improvement. According 

to Mencke et al., (2007) there are several issues concerned with this particular framework 

these are: dynamic design of the e-learning framework; complexity and how the 

components react while being using within an on-line environment; data and knowledge 

acquisition. 
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In 2008, Wang introduced an e-learning framework called IDEAL, which was used to 

acquire knowledge about the learner by interrogating their previous learning experiences. 

This interrogation was achieved by using a rule base that provided the e-learning 

environment with a mechanism to group learners according to relevance, browsing habits, 

and statistics. Wang (2008) suggested that the IDEAL e-learning framework was a success 

in providing a potential way of improving performance; however, failed to take into 

consideration the student’ s individual needs (how the individual learns according to their 

own styles; pedagogical learning approaches; and learning states). 

3.5.2 Issues  

 

This section focuses on the issues that have been identified within Section 3.5. The research 

in this section has focused on approaches to matching individuals to learning materials thus 

personalising their learning experience.  

 

Eze et al., (2006), Mencke et al., (2007) and Wang (2008) suggest that there are several 

issues concerned with e-learning frameworks, these are:  

 

 They do not provide a dynamic approach that is learner centric.  

 They are not generally matched to a flexible pedagogical learning model.  

 All present different approaches to matching the learner to the learning materials, 

there is no one ‘golden bullet’ approach to matching.  

 

Eze et al., (2006), Hull et al., (2006), and Hummel et al., (2007) indicate that there are 

issues associated with using semantic metadata to represent multimedia. According to Hull 

et al., (2006) the use of semantic metadata, would provide algorithms with the opportunity 

to scan, interrogate and retrieve specific learning materials in accordance with a 

personalised approach. 

 

Researchers like Knight et al., (1994) and Chaudri et al., (1998) believe that the use of 

keyword searches still need the intervention of the domain expert and learner to validate 

retrieval of search, and content. Li et al., (2004), Hull et al., (2006) and Liu et al., (2010) 

indicate that using matching algorithms is complex and that depending on the complexity 

and severity of the search could bring back a null search.  
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However, there are indicators in Section 3.5, that learning environments using intelligent 

matching approaches to link students to learning resources can provide an effective 

learning experience. Intelligent matching will be used within this Thesis to enable matching 

to take place between the individual and the learning materials, for more information 

regarding the matching approaches used within this Thesis please see Chapter 5, PAFS. 

 

3.6 Summary  
 

This chapter has focused on presenting key elements of any framework to personalise a 

learning experience for individuals. The key elements are the use of semantic technology to 

represent learning objects, a mechanism for understanding user requirements and a method 

of matching user requirements to the search and retrieval of items from an on-line 

repository.  

 

Sections 3.1, 3.2 and 3.3 indicate that any learning objects used on-line must be in some 

way semantically marked up, to enable effective information retrieval even if the semantic 

mark up is based on something other than current educational standards. LOM compliance 

provides at least a standard to work to in marking up the learning objects in knowledge 

bases even if this compliance is thought to be fraught with interoperability problems 

(Engelbrecht 2003; Wirski et al., 2004).  

 

Section 3.4 provided information about other research projects in the field of profiling 

users. Again, this is a very complex area with a multitude of different approaches for 

developing user profiles everything from learning styles through learner personalities to 

learner progress. 

 

The last Section 3.5 focused on providing an explanation of current approaches to 

matching user profiles to knowledge base materials. Again clearly there is a large amount 

of work currently taking place into this area but there is no single solution which provides a 

panacea for all. 

 

The next Chapter will build on the issues presented in this Chapter to develop a framework 

for personalised learning which encompasses elements of the three areas outlined above, 

but concentrates in specific on providing unique contributions with relation to matching 

users with learning content. 
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Chapter 4: Virtual Learning Environment & Pedagogical 

Approach  

 

This chapter focuses on the development of a pedagogical model to support the 

personalisation of a learning environment for users. Chapters Two and Three have outlined 

existing research in the area of personalised learning, providing a detailed investigation of 

producing, searching, intelligently matching, and retrieving semantically annotated 

learning materials. These Chapters indicate that there are still limitations to existing 

research in the field. Of interest within this Chapter is the need to continue the investigation 

of the application of pedagogical models to support the personalisation process. 

 

4.1 Findings Brought Forward From Literature Review  

 

In this section, the author provides support for the framework presented in 4.3 providing 

the linkage between current research issues and the research of the author. In designing and 

developing a framework for personalised learning there are many issues in all of the three 

areas (4.1.1 semantic knowledge representation, 4.1.2 learner profiling and 4.1.3 

matching) that have been identified from the previous chapters. 

 

4.1.1 Semantic Knowledge Representation  

 

The literature review from Chapter 3 indicates that semantic knowledge based searches 

must be used when designing a framework for personalisation, this presents a challenge 

from perspectives such as: 

 

 How do we mark up the data? Which standard(s) do we use?  

 Who marks up the data? Will they mark up the data? Can we trust their mark-up?  

 Can we automatically generate meta-data for learning resources? If we can, then 

how accurate is the meta-data?  

 What do we do with all the non-semantic data?  

 Are there performance issues involved in searching semantic learning materials or 

does semantic data availability improve search and retrieval performance?  
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There continues to be a great amount of work (e.g. Soto et al., 2005; Andrews et al., 2009; 

Jeremic et al., 2009; Zhuhadar et al., 2009, Reynolds et al., 2010, Brut et al., 2011 etc...) 

focused on semantic representation of learning materials suggesting that this is still a large 

and complex issue. 

 

4.1.2 Learner Profiling  

 

Profiling the individual is a significant challenge. At this present moment in time as 

detailed in the previous chapter, different approaches to profiling individuals and 

combinations of approaches are still being evaluated. Again, there are many challenges to 

this aspect, for example: 

 

 Which profiling mechanisms work?  Do they scale? Are they applicable across 

cultures and nationalities?  

 What else do we need to consider in relation to profile?  

 Do profiles change over time and how can we build this flexibility into a tool?  

 Can profiles be used in personalising learning experiences?  

 

4.1.3 Matching  

 

Finally, we have the complex problem of matching profiles to the semantic knowledge base 

whatever the basis of the profile, or the nature of the data. There are usability issues 

inherent with some of the more complex matching mechanisms; however, if the interface is 

simplified we can improve the nature of the online learning experience for users. Very few 

of the current matching mechanisms make use of social structures and social rating systems 

coupled with learner profiles and semantic learning object retrieval. The author suggests 

group based mechanisms which enable learners to use and develop collaborative intelligent 

community learning structures, can make a difference in better enabling learner selection of 

learning resources (Ghali et al., 2009; Safran et al., 2007; and Ullrich et al., 2008). In 

addition, this kind of solution may help to improve the issue identified by (Hull et al., 

2006) in meeting learner needs more effectively in searching. Such group based 

mechanisms and support for the development of collaborative intelligence are presently 

absent from many personalisation frameworks such as those defined by Gutierrez et al., 

(2004), Hummel et al., (2007), Wang (2008), Ghali et al., (2009), and Hamburg et al., 
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(2008). 

 

This Thesis will build upon the framework presented by Eze et al., (2007) for the following 

reasons:  

 Eze et al.’s framework was developed within the University of Hull therefore there 

continues to be support for its further development.  

 The research carried out by Eze et al., (2007) led to the practical development of a 

tool to semantically annotate multimedia resources but did not lead to the full 

development of a system to support the theoretical model. Therefore at this moment 

in time there has been no evaluation of the model in practice.  

 This work expands upon the originally defined framework and integrates aspects of 

collective and collaborative intelligence to support the personalisation process. This 

is implemented through an Adaptive Information Retrieval (AIR) feature, see 

Chapter 5 PAFS.  

 The work of Eze et al. represented progress towards support for the development of 

a personalised learning environment, which was relevant to the focus of the Thesis 

at the outset of the research.  

In addition to building on the Eze et al., (2007) framework, the work within this Thesis 

also considers the impact of issues presented by: Knight et al., (1994), Chaudri et al., 

(1998), Yao et al., (2007), Mencke (2007), and Alevizou et al., (2010) as presented in 

Chapter’ s Two and Three. This includes issues related to the use of collaborative 

community based learning; however, the community concept within this Thesis will be 

used to develop collective intelligence relevant to individual learning resources for different 

classifications of learners. 

 

The following Section 4.2 provides support for the development of a pedagogical model to 

support the personalisation process. Following this, in Section 4.3, a framework for 

developing a personalised learning solution is presented. In the final section, limitations of 

the framework are proposed prior to its development and testing. 

4.2 A Pedagogical Approach  

 

Chapter 2 focused on outlining learning theories, because learners should be matched to 

learning materials based on their approaches to learning. This is supported through Smith’s 

(2000) suggestion that the individual learning experience can be categorised into 
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pedagogical approaches to aid individual needs. Smith et al., (1998) also suggests that 

using pedagogical approaches like learning styles and learning theories enables the student 

to learn effectively and efficiently. Power et al., (2005), Santos et al., (2003) and Cristea 

(2005) suggest that by applying pedagogical learning approaches to learning environments 

can provide an opportunity to better match the students needs to learning techniques and 

theories designed around the learner. According to Smith (2000), learner-centric 

approaches provide enhancements and personalisation to learning, which support a 

multitude of individual learning needs. Pedagogical learning approaches are associated 

with learning strategies, theories, traditional teaching methods, and what educational 

researchers indicate are the best possible ways for students to learn within a personalised 

learning environment. 

 

Researchers Carthey (1993), Calder (2002), and White (2004) indicate that by using direct 

correspondence to the learning experience via the usage of learning styles and theories, it is 

possible to aid the individual within the generic learning situation.  One particular e-

learning environment that uses learning styles is that of Adaptive Educational Hypermedia 

(AEH) systems. According to Cristea (2004) the Adaptive Educational Hypermedia system 

was created by Brusilovsky (2001) to cater for the needs of each individual student by 

adapting to their learning styles. According to Kalaydjiev et al., (2002) and also a recent 

study carried out by Brown et al., (2007) regarding AEH environments they had noticed 

that personalisation could not always be possible due to many variables regarding learning 

styles, learning materials in general, course development, and finally the choice of test 

subjects. Brown et al., (2007) suggests that clarification of the learning style must be freely 

available to make sure that the correct tests can be re-evaluated at a later time.  

 

Another personalised e-learning model that was considered with the idea of adapting to 

individual needs was the LAOS model, which according to Cristea et al., (2003) was 

designed to incorporate and to facilitate the needs of: flexibility, expressivity, reusability, 

non-redundancy, co-operation, inter-operability, and finally standardisation. According to 

Cristea et al., (2003) incorporating the different categories within an on-line learning 

environment can provide feedback patterns, which will lead to the enrichment of learning 

materials, in accordance with the adaptability of and pedagogical differences between 

course materials. The main concept of LAOS is to define either: stereotypes, or groups of 

users within an on-line environment. However, according to Muntean et al., (2007) the 
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new QoE-LAOS e-learning environment, was developed to overcome issues of 

performance-aware adaptation, that were found within the first model. As indicated by 

Muntean et al., 

 

“The QoE extension to LAOS allows for the description of performance-related 

content features, definition of delivery and display environment characteristics, 

and performance-based content adaptation rules” (Muntean et al., 2007).  

 

According to Muntean et al., (2007) the extension to LAOS still has some issues belonging 

to adaptation of course-content, in terms of what to deliver dependant on behavioural traits 

of the individual whether it is static or multimedia learning materials.   Another e-learning 

framework that uses learning styles is that of the work produced by Melia et al., (2009) 

which uses adaptive courseware to move away from the traditional standard of one size - 

fits all, and instead looks to personalisation through the use of adapting courseware to suit 

a variety of individual needs by using: knowledge of a subject, and learning style. It 

provides this functionality through a courseware validation approach which builds on the 

approaches suggested in AEH and LAOS. The CAVIAr system presented by (Melia et al., 

2009) provides the course-creator with the chance to use any learning styles that they feel 

fits the individual, through the use of learner stereotypes in terms of goals and presumed 

knowledge. According to Melia et al., (2009) this allows the course creator to define 

learner groupings in terms of their learning goals and assumed initial knowledge prior to 

starting the course-ware. However, the design approach by Melia et al., 2009, within the 

CAVIAr system would have provided the author with the following limitations: 

 

 CAVIAr focuses primarily on courseware construction, providing a model to 

validate courseware requirements against elements such as “the incorrect 

sequencing of learning resources, an instructional design being applied 

incorrectly, or an inconsistency in the adaptive course-ware structure” (Melia et 

al., 2009). This focuses on material prior to delivery.  

 The complexity issues associated with mark-up metadata belonging to on-line 

objects to fit the variety of different learning styles. CAVIAr can aid pre-delivery in 

resolving incorrect matching.  

 

Researchers like Carthey (1993), Calder (2002), Cristea et al., (2003), White (2004), 
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Muntean et al., (2007), Melia et al., (2009), and Chen et al., (2010) have all tried to solve 

a variety of adaptive and personalised e-learning issues, by incorporating different 

techniques like: stereotyping, grouping, goal orientation, pedagogical approaches, and 

knowledge acquisition. One particular approach of interest to this Thesis was that of Eze et 

al., (2007), which matches course context to the individual, through the use of pedagogy. 

Eze’s in 2007 introduced the idea of using learner profiles, semantics, and a matching 

ontology to assist with information retrieval. Research from Zouaq et al., (2007) supported 

the use of the idea of using pedagogical approaches like (Brusilovsky 2001; Kalaydjiev et 

al., 2002; Cristea et al., 2003*; Brown et al., 2007; Muntean et al., 2007; and Eze et al., 

2007) especially for the design of learning materials. Khan et al., in 2007 introduced the 

CAPEODL model that used pedagogical approaches to assist the individuals on-line 

through the use of learning styles. The pedagogical approaches taken by Khan et al., 

(2007) and Eze et al., (2007), was reinforced by (Coffield, 2004; Calder 2002; Miller 

2004; Atherton 2005) who all indicated that if you used learning styles would ensure a 

better given set of resources specific to a particular learning style. It was important to this 

Thesis to use pedagogical approaches to ensure that learners were placed first, within the 

educational life cycle, and thus enabling the research from Eze et al., (2007), Zouaq et al., 

(2007), Khan et al., (2007), Brown et al., (2007), and Muntean et al., (2007) to fit into 

place. The supportive claims by (Coffield, 2004; Calder 2002; Miller 2004; Atherton 

2005) ensured that the use of pedagogy within education and particularly that of learning 

styles can benefit the learner were established. 

 

 

The use of: stereotyping, CF, collective intelligence, terms of goals and presumed 

knowledge could have been used as indicated by (Cristea et al., 2003; Cristea 2004; 

Brusilovsky 2001; Melia et al., 2009), however, this would not have resulted in a 

substantial contribution to literature.  The recommendations made within this Thesis, 

would still fit in to the ideas of Melia et al., (2009) about trying to rid the world of a one 

size fits all approach to teaching. According to Miller (2004), there is no such thing as a 

‘wrong’ way to introduce pedagogical learning theories to groups of learners. 

 

4.2.1 The Pedagogical Model  

 

The pedagogical model presented within Figure 3 is directly derived from research 

literature, which can be found within Chapter 2 and Chapter 4. Riding et al., (1997) 
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suggest that by amalgamating several learning styles we can support performance by 

providing a way for multiple variations of learning activity to be written. The research 

conducted by Lowe et al., (1994) identified consistencies between two different learning 

style models for example, the reflective observation stage from Kolb can be linked to 

reflective learning category from Honey and Mumford can be used within on-line learning. 

 

Papanikolaou et al., (2001) indicated that they used the extended version of Honey and 

Mumford learning model within their INSPIRE model to enable them to probe the general 

behavioural tendencies of learners while studying on-line. This approach belonging to 

Papanikolaou et al., (2001) was also used by Stash et al., (2004); however, within their 

model they do not offer learners the opportunity to conduct the Learning Style 

Questionnaires (LPQ`s) online, whereas the personalised environment presented within this 

Thesis does. 

 

In addition to the variation of the pedagogical model being used by Stash et al., (2004) the 

approach here within this Thesis does focus directly on asking each individual learner how 

they prefer to learn to assist with profiling and matching, which can be found within 

Chapter 5, Section PAFS. Schippers et al., (2005) pedagogical approach solely focused on 

two critical aspects, which were to use ‘reflecting on experience’ belonging to the Honey 

and Mumford learning model to investigate team reflective activities. Studying the 

differences between the pedagogical approaches taken by Papanikolaou et al., (2001), 

Stash et al., (2004) and Schippers et al., (2005), the authors pedagogical approach has an 

extra dimension, ‘activities’, which is focused on the development of activities matched to 

different learning models enabling course materials to be descriptively marked-up in 

multiple learning styles. 

 

The pedagogical model used within this Thesis will build upon the work carried out by: 

Schippers et al., (2005) in using more than one particular aspect of a learning model i.e. 

both the Honey & Mumford and Kolb learning models will be used to assist in individual 

and group categorisation; Papanikolaou et al.,’ (2001) and Stash et al.,’ (2004) work will 

be expanded to incorporate aspects of asking how the individual prefers to learn, and also 

what general learning behavioural traits can be identified from the individuals.  

 

The pedagogical model presented in Figure 3 works by bridging between the theoretical 

aspects of learning (from abstract conceptualisation) to the practical application of 

knowledge (to concrete experience). The gap is bridged through gaining a detailed 
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understanding of the learner from an amalgamation of two learning style models and using 

those learning style models to facilitate the search for matched activities, thus personalising 

the pedagogical model to the learner. In short, the model presented in Figure 3 contains 

three key concepts, a learning cycle (from conceptualisation through to concrete 

experience), learning activities and an amalgamated learning style model. These three 

concepts are further described in Sections 4.2.2, 4.2.3 and 4.2.4. 

Figure 3: Pedagogical Model (Original) 

The Pedagogical Model, illustrated within Figure 3, is divided into 5 categories, these are: 

 

1) As defined in section 2.1.4, Learning Styles (LS) are used by academics to help 

identify how a particular individual might learn. Identifying how an individual 

learns enables academics to adjust course materials tailored towards their needs. 

This approach enables the individuals to react differently within the learning 

process, by creating interesting exercises that challenges and supports particular 

learning style/s (Castillo et al., 2004; and Moenikia et al., 2010).  According to 

Stash et al., (2004), Schippers et al., (2005), Manochehr (2006), Brown et al., 

(2006), Chapman 2009, and Moenikia et al., (2010) LS’s have been effectively 

used within e-learning to identify and support individuals through their learning 

process.   This wealth of literature has shown that by incorporating LS’s into e-

learning environment can provide: customisation of learning materials (Costello et 

al., 2009*); tailored learning paths (Gutierrez et al., 2004); and adaptation 

(Costello et al., 2009; Stash et al., 2004);  

1 

2 

3 

4 

5:- Amalgamation 
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2) The first learning style being used within the Pedagogical Model is that of, Honey 

& Mumford.  The Honey & Mumford learning style model enables the academic to 

identify and highlight an individual’s learning characteristics and preferences 

(Honey & Mumford 2006; and Schippers et al., 2005). Once this information has 

been extracted the tutor can adjust his/her learning materials to equip the student 

with learning opportunities which match the way they prefer to learn (Honey & 

Mumford 2006).   

 

The Honey & Mumford LS model has been extensively used throughout e-learning 

(Stash et al., 2004; Chapman 2009), and according to Šimonova et al., (2011) it 

can result in a wealth of diverse learning material being developed or collected 

together to ensure a more tailored individual experience. 

 

According to researchers like Kabassi et al., (2004), Dixon (2007), and Juhary 

(2005) it would be difficult to design course content and structure to facilitate 

student’ s needs without incorporating activities.  In order to deliver course content, 

activities are developed and weaved into the initial design of the curriculum; this 

provides academic(s) with an opportunity to create materials that are learner centric 

(Decker et al., 2000; Lu et al., 2004 and Sure et al., 2005).  

 

3) The Second learning style to be used within the Pedagogical Model is that of 

Kolb’s. Kolb’s Model enables academics to identify how an individual might 

perceive and process new information including course materials such as exercises 

or video tutorials.  According to Kolb (1985) identifying the individual learning 

style enables the lecturer to have a greater understanding of how a learner will 

behave towards the learning process.   Kolb et al., (1999) suggests that by using 

this particular approach, it will help to define a flexible learning experience at a 

more comprehensible level that encourages guidance, support, and facilities to aid 

learners. 

 

Kindley, (2002) and Beard et al., (2007) suggests that by applying experiential 

learning theory to on-line learning environments can enable the domain expert to 

build tailored specific exercises and tasks to suit the needs of the individual within 

the learning process.  This approach enables the AIPL model to identify and adapt 
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the learning content to suit the needs of the individuals, while they are studying on-

line.  

 

4) According to Riding et al., (1997), Schippers et al., (2005), and Phan (2006), 

amalgamating learning styles within the education process enables the academic to 

identify a variety of learning behaviours and traits belonging to the individual, 

enabling the learning resources created or collected to be more supportive of their 

needs, thus helping to improve their engagement and enjoyment with the 

exercise(s). Enabling the amalgamation of the learning styles together, will enable 

the model to adjust to a variety of student needs within the categorisation process.  

This approach will enable learning materials to be tailored across a wider spectrum 

of learning needs (linking sound to text based instruction; incorporating videos to 

enable students to reflect upon tasks).  

 

5) As indicated by Lowe et al., (1994); Stash et al., (2004), Castillo et al., (2004) and 

Cassidy 2004; Castillo et al., 2004; Schippers et al., 2005; Phan 2006; Manochehr 

2006; and Moenikia et al., 2010) the use of multiple learning styles is to identify 

and design learning materials in accordance with: individual learning preferences; 

interaction with the learning materials; and how the individual perceives the 

learning content. This approach enables a tailored learning approach for students 

who need different learning materials to stimulate them.  

   

4.2.2 An amalgamated learning style model  

 

The review of existing systems found within 3.5.1 Approaches to matching shows that by 

providing a way for the individual to select learning resources has assisted with improving 

the learning experience. In many cases adaptation to learning styles has taken a singular 

learning model approach by providing learner’s with different presentations of learning 

activities linked to appropriate learning style classifications.  

 

According to Stash et al., (2004), Castillo et al., (2004) and Moenikia et al., (2010), by 

providing the learner with the ability to select a variety of learning styles customised to 

their own learning traits, we can provide a more holistic approach, thus enabling the 

learners to use a multitude of learning activities based on one or two different learning 
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styles to better facilitate the learning process. However, Stash et al., (2004) suggests from 

their research, learners do not know their own learning style and it can be difficult for them 

to select the right one. Manochehr (2006) and Moenikia et al., (2010) agree with Stash et 

al., (2004) about how some learners don’t know their own learning styles, and it is 

important for the domain expert to facilitate student understanding of applicable learning 

styles. According to Manochehr (2006) and Stash et al., (2004) it is important to create 

flexibility within the on-line environment. It is important that the domain expert is aware of 

how the learner obtains his or her skills and how they will use them to access learning 

materials to assist with their progress. Riding et al., (1997), Stash et al., (2004), Schippers 

et al., (2005), Manochehr (2006) and Moenikia et al., (2010) suggest that to overcome 

issues mentioned it is easier for the domain expert to select a variety of learning styles, 

which the individual can use while studying on-line.  According to Riding et al., (1997) 

through using a singular learning style within a learning environment we can either provide 

a negative/positive learning experience in accordance to the design relating directly to the 

learning activities. However, Riding et al., (1997) suggest that by amalgamating several 

learning styles we can support performance by providing a way for multiple variations of 

learning activity to be generated, modified, or appropriated, thus enabling the students 

ability to interpret materials in accordance to how they learn as an individual.  

 

Stash et al., (2004) indicates that using a multitude / amalgamation of learning styles 

within a learning environment enables the learner to inspect the current learning style 

model and change it according to the student’s perception. According to Stash et al., 

(2004), the following learning styles were used to create an amalgamation within the AHA 

& MOT learning environments: Honey & Mumford’s learning model and Holist vs. 

Serialist style (cognitive learning theories).  

 

However, other researchers like Schippers et al., (2005), have provided evidence to support 

different multi-dimensional use of learning styles within the learning environment by using 

the Kolb learning model and the Honey & Mumford learning model. Schippers et al., 

(2005), provides a close examination into the Kolb and Honey & Mumford learning 

models, and indicates that certain aspects of the two learning styles can be closely mapped 

together. According to Riding et al., (1997) and Phan (2006), by amalgamating learning 

styles we can improve academic performance through the adaptation of learning materials. 

The study that Schippers et al., 2005, conducted solely focused on two critical aspects, 
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which were reflective observation from Kolb’s (1985) learning model, and the reflective 

learning styles from Honey and Mumford (1995)’ s learning model.  

 

Research conducted by Lowe et al., (1994) identified a consistency between the reflective 

observation from Kolb and reflective learning that Honey and Mumford uses. Lowe et al., 

(1994) suggested that learners, who were placed within the concrete experience category 

within the Kolb 1984 learning model, were less likely to be an educational match for 

reflective learning by Honey and Mumford. Further research indicated that active 

experimentation from Kolb’s learning model bears a close resemblance to Honey and 

Mumford’ s active learners. However, their research did indicate that Honey and 

Mumford’ s learning styles (reflective, active and analytical) bare a close relationship to 

reflective observation from the Kolb 1984 learning style model. According to Cassidy 

(2004), the Honey and Mumford’s learning model has close similarity with Kolb’s 

experiential learning model. The similarities refer to the descriptive nature of the Learning 

style questionnaires and  

the measurements that are used to identify the learners. 

 

The model presented in Figure 3 outlines an amalgamation of two learning style models, 

that of Honey and Mumford (Honey et al., 2006) and that of Kolb (Kolb et al., 2004; 

Chapman 2009)., these have been used within this Thesis to provide a pedagogical learning 

layer for the Adaptive Intelligent Personalised Learning model. This particular approach 

was used because of the recommendation from literature (Lowe et al., 1994; Cassidy 2004; 

Castillo et al., 2004; Schippers et al., 2005; Phan 2006; Manochehr 2006; and Moenikia et 

al., 2010) about the use of multiple learning styles to provide a way for the domain expert 

to design learning materials in accordance with: individual learning preferences; interaction 

with the learning materials; and how the individual perceives the learning content. 

Manochehr (2006) believes that the use of learning styles within on-line learning provides 

the individual with a good predictor on how he/she might prefer to learn. Moenikia et al., 

(2010) indicates that the domain expert can help and assist individuals by designing 

learning materials in accordance to learning preference, which leads to improved learning. 

 

“Therefore,  it  is  better  to  make  the  content  of  electronic  learning  include 

activities  appropriate  for  various  learning  styles  so  that  learners  can  

choose suitable activities based on their preferred style” (Moenikia et al., 2010)  
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The Honey & Mumford learning style approach has been applied either partially or 

completely to a variety of e-learning environments like those of: AHA & MOT (Cristea et 

al., 2003); INtelligent System for Personalized Instruction in a Remote Environment 

(INSPIRE), (Keenoy et al., 2004), which provided literature with successful evidence. 

However, according to Brown et al., (2006) other alternative approaches have been used 

within e-learning like the AES-CS by Triantafillou et al., (2002) that uses cognitive styles; 

or that of ILASH by Bajraktarevic et al., (2003), which used summarising and questioning 

to match learning materials to individuals. Another e-learning system that does not focus 

on the Honey & Mumford learning style approach is that of iWeaver, which used 

kinaesthetic styles to associate the individual with learning materials and finally CS-383 

Carver et al., (1999) that uses reflective styles to adapt the individual to the learning 

context. 

 

Researchers like Triantafillou et al., (2002), Cristea et al., (2003), Bajraktarevic et al., 

(2003), Brown et al., (2006), Phan 2006, and Moenikia et al., (2010) have all used 

learning styles before within literature. These approaches have enabled e-learning 

platforms to create and adjust their own settings to accommodate a students preferred 

learning traits. However, these approaches have previously been based on the use and 

integration of a single learning style.  The problem with the integration of a singular 

learning style is that this only provides one set of data for an individual and this data may 

not provide a completely clear picture as to what learning resources may be most suitable 

for the learner. The solution demonstrated in this Thesis focuses on the bringing together of 

multiple learning styles in order to create greater clarity over an individuals preferred 

learning processes. Literature surrounding these learning styles has identified that ‘Honey 

& Mumford’ & Kolb’s could be blended together.  Blending these two learning styles 

together helps to enable four things:   

Dealing with the ‘Concept Drift’ see Chapter 5, Section 5.2.3.2 for an explanation;  

Providing an environment that is capable of not just adapting to one learning style but 

blending them together to create an environment that would support group-based-learning, 

for more information on group-based-learning, please see 4.3.1 Discussion of models used 

within AIPL.  

Creating an environment that is more tailored and personalised towards the individuals, 

through supporting the community within sharing ratings, and personal views. 



72 

 

Retrieving academic materials that are directly relevant to the individual, instead of 

shifting through exercises that were tailored to support their preferred learning traits.   

 

This section has covered the use and integration of learning models in systems designed to 

personalise and adapt courseware delivery for individual users. Building on the 

recommendation of researchers’  like (Stern et al., 1999; Magoulas 2003; Stash et al., 

2004; and Schippers et al., 2005) it is recognised that models such as those provided by 

Honey & Mumford (Honey et al., 2006) or Kolb (Kolb et al., 2004; Chapman 2009) can 

be used to assist with building more personalised learning solutions. The amalgamated 

learning style model presented in Section 4.2.1 should improve the flexibility of 

pedagogical approaches being used within on-line learning. The next section will look at 

how important it is to create a balance between learning activities and different learning 

theories. 

 

4.2.3 Learning Activities  

 

Learning activities play an important part in creating a grounded theoretical approach that 

brings together different learning theories within the pedagogical model. Learning activities 

are used to provide educational materials that facilitate not just the curriculum but how the 

learner might be stimulated within an educational experience. Learning activities play an 

important role within the AIPL model in providing the learner with the necessary 

requirements for the completion of the programme.  

 

The AIPL model presented within this Thesis should make it possible to map contextual 

learning materials to the personal learning strategy of the individuals’ needs and 

requirements. The model is aimed at reducing mismatching between individuals/groups 

and the learning materials. This is achieved by gathering knowledge about individuals in a 

knowledge based system and using filtering techniques to reduce the number of learning 

activities retrieved that are not suited to the learner’ s specification. According to Biggs 

(2003) learning activities must provide the learners with the opportunity to use a multitude 

of skills to ensure that they achieve appropriate learning outcomes associated to the 

learning that they are involved in. Applying learning activities to the AIPL environment in 

accordance with Biggs will support the learner, by providing materials, resources and 

strategies to evidence how learning has taken place.  
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According to O’ Brien (1981) when applying learning activities to an educational 

environment, they are used as a process to facilitate the learning process. In relation to 

AIPL, students will be presented with a number of learning activities related to single tasks 

giving the learner more direct control over their own learning experience.  

The AIPL model will use social collaboration and collaborative annotation mechanisms 

(for more information see Chapter 5) associated with learning activities, to link directly 

into the pedagogical model and provide a way for the retrieval and recommendation of 

specific learning activities. 

 

4.2.4 The Learning Cycle  

 

The cycle incorporated into the model is based on the concept of experiential learning 

moving from conceptualisation through to gaining concrete experience of a learning task or 

vice versa. According to Atherton (2005), the concept of experiential learning explores the 

learning cycle pattern of the learner by incorporating: experience, reflection, 

conceptualisation and action. It is recognised that a learner may choose to only develop 

concrete experience without obtaining any element of abstract conceptualisation and vice 

versa. However, the process should be supported for a learner to move through learning 

activities from conceptualisation, through to experience, or from experience through to 

conceptualisation.  

 

In the model, the cycle is important in recognising that there is often space between gaining 

a practical understanding of a problem and gaining knowledge of the underlying concepts. 

It suggests that learning activities need to be developed to support all elements of the 

continuum, in whichever direction the learner decides to go. It also suggests that a match 

can be made between learner profiles based on the amalgamation of learning styles, and 

activities to support knowledge acquisition again across the continuum. In a clearer 

explanation, this suggests that whilst a learner may prefer to learn through practical activity 

(as identified by their learning style), this practical activity can be designed to either aid in: 

learning the conceptual knowledge; obtaining concrete experience; or in gaining other 

elements across the continuum. 
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4.3 Adaptive Intelligent Personalised Learning (AIPL)  

 

Taking the above sections into account, the related research detailed in Chapters 2 & 3, and 

the focus of this Thesis, the author set about designing a model for the intelligent 

adaptation of a VLE to learner requirements (personalisation). To enable the whole 

implementation of the AIPL environment the following aspects were required: 

 

 Pedagogical approaches: Dabbagh (2005) indicates that individual learning 

emphasizes on the systematic interaction between pedagogical theories and learning 

technologies (McLoughlin et al., 2002) (see Section 2.1.8).  

 Educational learning materials standards: According to (Decker et al., 2000; Lu et 

al., 2004 and Sure et al., 2005) learning materials standards can provide for 

interoperability and bridge between repositories for information sharing, search, 

and retrieval (see Section 3.3.5).  

 Profiling and categorising the individual: Hummel et al., (2003) and Boticario et 

al., (2006) indicate that by profiling the individual we can influence the learning 

process, enabling the environment to understand how the individual can learn most 

effectively (see Section 3.4.1).  

 Matching: Understanding individuals needs can result in clearer identification of 

resources which match those needs from the resources available to the learner 

(Bunderson et al., 2000; Souto et al., 2002; Luckin 2008). This matching process 

can play a significant part in the personalisation of learning experiences to learners.  

 Grouping: Profiling the individuals according to Hummel et al. (2003), Zahedi 

(2003), Sinha et al., (2004), Tzouveli et al. (2005) and Subramaniam (2006) 

provides the e-learning environment with a way of grouping students with the same 

learning traits and habits together, to assist within the learning cycle and in the 

recommendation of learning materials (see Section 3.4.2).  

 

In addition to the above, two other important factors require consideration: educational 

balance and mis-matching. 

 

 Educational Balance: According to Stash et al., (2006); Svensson et al., (2007); 

and De Meo et al., (2007), research communities are trying to create educational 

balance on-line by building systems around the learner (the development of learner-
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centric learning environments) to enable a more specific learning experience (see 

Sections 3.4 to 3.4.2).  

 Mis-matching: King et al., (2005); White et al., (2006); Stash et al., (2006) suggest 

that often mis-matching can occur between learners and delivered educational 

resources. This can be as a result of elements such as: limitations with regards to 

profile construction; poorly designed learning resources; lack of consideration of a 

range of learning styles; limitations with regards to learner devices and 

instructional tools; and inappropriate delivery of resources to match learner needs 

(see Section 2.1.9).  

The next section of this Thesis focuses on a discussion of the underlying influences (other 

learner personalisation models) relating to the development of the AIPL model. 

  

4.3.1 Discussion of models used within AIPL  

 

This particular section critically examines several relevant e-learning models, to provide 

support for the creation of the AIPL model (see Section 4.3.2). Each model, within this 

section will be discussed and explained with regards to how it has influenced the AIPL 

model. There are several important models (Community of Inquiry; Simplified 

representation for the ELearning EcoSystem (ELES); and the Reference model for mobile 

social software for learning) aimed at providing personalisation by incorporating aspects of 

community knowledge capture and collective intelligence. These models focus on: 

describing the individual; monitoring behaviour/relationship/interaction or extracting 

information belonging to the individual before fitting them into a community or group. 

These models extract and derive information based upon a learner’s personal preferences, 

which are then used to control the flow between users and other entities within a social 

group-learning-paradigm. 

 

The Community of Inquiry (COI) model according to Anderson (2005) facilitates the 

capture of learner experiences and uses these learner experiences to guide other learners in 

their selection of learning resources. The model encourages individuals using the system to 

construct personal meaning around individual learning resources and present their thoughts 

about resources to communities of other users. User groups are collected together on the 

basis of commonalities drawn from an evaluation of personality and emotional traits. 

However, according to Campbell et al., (2005) this particular model may-not provide 
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opportunities for some individuals to fit into communities due to how grouping is 

performed by the model. Campbell et al., (2005) indicates that using personality and 

emotional traits to form communities could actually cause constraints. Ling (2007) 

expands further on the limitations of the model and indicates these could arise because of: 

capability differences of learners; participation opportunities for learners; and language 

fluency. 

 

The ELES model takes the fundamentals of organic eco-systems and attempts to 

encapsulate these ideas in a community based learning model. This model sees 

communities of learners, teachers and learning material developers as existing as part of an 

organic whole. With each fundamental part (and elements within each part e.g. learner 

communities) having a role to play in knowledge acquisition, and transfer around the 

system. As indicated by Chang et al., (2005) in order for the ELES to be successful it is up 

to each individual or group to find their niche before environmental conditions are met and 

adapted to. However, the research carried out by Dong et al., (2009) has overcome the 

issues belonging to Chang et al., (2005) by implementing a new model based on ELES 

called the Cloud Computer Infrastructure. This new model uses learning styles, learning 

preferences, and cognitive levels to initialize groups of learners and establish and overcome 

group discrepancies. According to Dong et al., (2009) the main feature of the Cloud 

Computer Infrastructure was implemented to efficiently utilise resources within the e-

learning ecosystem. 

 

The model presented within this Thesis, the AIPL model, enables grouping to be performed 

through the use of learning styles, to avoid issues of behaviour and emotional group-

learning-paradigms indicated by Campbell et al., (2005), Chang et al., (2005), and Ling 

(2007). Learners will be placed into a learning-group-paradigm based not on capability, 

nor that of self-finding, rather, with how that individual likes to learn. As indicated by 

Dong et al in 2009, with their Cloud Computer Infrastructure, the use of the group-

learning-paradigm can assist the individual or community within their learning experience. 

Shute (2009) agrees with the similar idea of Dong et al. (2009) by indicating that by 

knowing more about the individual either through the use of: what the student knows, 

believes, and can do, can improve learning experiences. Even though Shute’ s (2009) 

model was directly focused on stealth assessment, it provided the AIPL model with 

reassurance that taking a personalised approach based on socially constructed grouping can 
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assist within the learning experience. 

 

As stated in the previous paragraphs the AIPL model has originated from a variety of 

different e-learning models; however, the Community of Inquiry model by (see Figure 4) 

has been the main inspiration for AIPL. 

 

 

                       Figure 4: Community of Inquiry Model (Andreson, 2005) 

The next section will focus on an explanation of the AIPL model, indicating elements of 

influence from pre-existing models. 

 

4.3.2 AIPL model  

 

The AIPL Model (see Figure 5) used within this Thesis has been inspired by the 

Community of Inquiry model by Anderson (2005) and the simplified representation for the 

e-learning eco-system (ELES) by Chang et al., (2005). 
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                                   Figure 5: Model of AIPL (Original) 

The AIPL model presented within this Thesis can be divided into four main areas:    

 

Teaching Presence (Pedagogical Approach)  

 

“Teaching Presence is the design, facilitation, and direction of cognitive and social 

processes for the purpose of realizing personally meaningful and educationally 

worthwhile learning outcomes” (Anderson 2005). The AIPL model uses Teaching 

Presence as a way of designing pedagogical approaches to facilitate the educational 

experience either from the learner working within a community or individually. 

 

Activities  

 

These are used within the model to provide different views about objects, based on personal 

preferences (Learning Styles Identification & Profiling). Learning objects can be used to 

create relations between activities with personal preferences like: activities of their peers; 

structured learning activities (singular/collaborative); to support learning anything, 

anywhere, anytime. The relations and activities were used in accordance with the research 

and recommendations from De Jong et al. (2008), and Shute (2009). Shute (2009) 

suggests that to optimise the learning experience, you need to engage the learner in an 

activity that challenges them self-consciously. De Jong et al., (2008) suggest that the use of 

rich media within learning contexts can improve the experience for the learners. Relations 

(profiling) and activities (learning exercises) act as a bridge to match individual/groups to 

learning objects within the repository. 
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Educational Experience, Individuality and Social Presence (Community-grouping)  

 

According to Garrison et al., (2000) the educational experience belonging to the 

Community of Inquiry model is used to incorporate teachers and students as centre points 

within their educational process. This particular aspect belonging to Garrison et al. (2000) 

will play a central role in the AIPL model because it will allow personalisation to be 

considered in relation to: learning styles and preferred pedagogical learning approach; 

learning traits; or behavioural traits. 

 

According to Chang et al., (2005) and De Jong et al., (2008) in their models individuality 

is used to hold information about user’ s traits, properties and common interests. Within 

AIPL the same concepts belonging to real world and individuality are applied to that of De 

Jong et al., (2008). According to Garrison et al., (2000) and Anderson (2005) social 

presence is used to aid the ability of learners to project themselves through the use of 

commitment and participation to achieve a further development of higher-order thinking 

skills and collaborative work. 

 

The next section will focus on the system design of the AIPL model, in which further 

explanation of the model and its application will be discussed (see Sections 4.3.2 to 4.3.4). 

A system design representation of the AIPL environment can be found in Figure 6. 
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                 Figure 6: System Design of AIPL (Original) 

For clarity, Section 4.2 the Pedagogical Model was required to provide a foundation layer 

for the AIPL model to be built upon. 

 

Discussion about group-learning-paradigm as applied in AIPL  

 

Looking at the group-learning-paradigm (Group) that is found within AIPL this can be 

compared to the work of (Spector et al., 2003). Spector et al., (2003) suggests that early 

instructional models encapsulating the group-learning-paradigm were used to support 

functions such as the annotation of learning materials and representations of knowledge 

(e.g. concept mapping). These particular features enabled researchers to design the 

following frameworks - Generic Tutoring Environment (GTE), Modelisation par Objects 

Types (MOT), and eXperimental Advanced Instructional Design Associate (XAIDA). 

These early systems were used to create relationships by determining how and when to 

provide the combination of materials to the learners within a sequenced approach to the 

topic area. 

 

Students learn better through the group-learning-paradigm when they are categorised into 

similar learning traits or preferences (Spector et al., 2003 & Benbunan-Fich et al., 2006). 

Benbunan-Fich et al., (2006) indicate that the use of the group-learning-paradigm within 

on-line learning environments enable learner’s to discover what needs to be learned by 

interacting with course content. However, according to Benbunan-Fich et al., (2006) some 
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researchers believe that this approach is more effective than the traditional instruction-

based programmes. Benbunan-Fich et al., (2006) recommends the use of group 

categorisation processes to share resources; and finds that explaining to others clarifies one’ 

s own understanding. 

 

Cristea et al., (2010) uses the group-learning-paradigm within the Social Layers of 

Adaptation and their Operators (SLAOS) Framework. According to Cristea et al., (2010) 

the use of the group-learning-paradigm enables resources to be represented through 

metadata, which can be categorised by: ratings, feedback, etc. The rating and feedback 

mechanism within the SLAOS framework enables users to use CF by calculating and 

working out the average rating belonging to the learning materials. 

 

“A specific advantage in e-learning 2.0 is the fact that the collective knowledge 

of other users can be exploited: the user is not a singular entity anymore, and 

other users can help him (or her)” (Cristea et al., 2010).  

 

The SLAOS Framework can be used within three particular areas, these are: (1) working 

on a project of the same topic; (2) finding peer-reviews based on what other learners have 

used; (3) suggesting specific items for the learner to read within a specific learning context.  

 

The group-learning-paradigm found within this Thesis, builds upon the work carried out by 

Spector et al., (2003), Benbunan-Fich et al., (2006), and finally by Cristea et al., (2010), 

through: 

 

 grouping learners with common learning style themes;  

 matching learning materials to or across these themes  

 collecting community rating data related to individual learning materials (in the 

context of learning style themes);   

 and using peer-reviews belonging to learning objects to assist with retrieval (in the 

context of learning style themes).   

 

Description of the AIPL model  

 

The system design of AIPL can be categorised into three sections:  
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1) The Learner Profile including individual learner profile, contextual profile, and E-

bookmarking   

2) The Personalised Adaptive Filtering System (PAFS)  

3) A Dynamic Background library   

 

4.3.3 The Learner Profile including: the individual learner profile; contextual 

profile and E-bookmarking  

 

 4.3.3.1    Learner Profile   

 

We can think of the learner profile in AIPL as an object which represents the requirements 

of the learner. The object provides input to the adaptive filter to match individuals with 

learning materials. Looking at the research detailed in Chapter 3 Learner Profiles have 

been applied and adapted to suit many different educational needs, for example, in the 

reduction of information overload. There are many different approaches to the generation 

of a learner profile focusing on a range of different values, everything from personality 

traits of the user, through academic profile, to learning styles. Learner profiling in the 

context of this Thesis will be specifically focused on representing the user preferences on 

how they prefer to learn through the aid of an amalgamation of learning styles, please see 

Section 4.2.1 The Pedagogical Model.  

 

The Learner Profile that is used within this Thesis will enable the learning process cycle to 

compensate for the personalised learning trait of the learner in question. The Learner 

Profile focuses on specific indicators of approaches students have to learning, which are 

retrieved by using learning styles within a pedagogical learning framework (for more 

information see Section 4.2.1 The Pedagogical Model). The Learner Profile with the 

assistance of a filtering mechanism, see Chapter 5 PAFS, attempts to realistically 

categorise the student learning style. 

The Learner Profile acts as a bridge to extract evidence about the learner through the use of 

specific evaluation mechanisms, for example, in the case of learning styles through a 

professional LPQ. In the case above, the questionnaires that are used to identify the 

individual’s learning style can be found in Appendix 1 LPQ. Once the Learner Profile has 

recorded the results from the questionnaire, the results can be used to facilitate learner 
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needs and requirements in the learning environment.  

 

Each element of the learner profile is treated separately; a learners profile may be 

composed of multiple elements, some with conflicting values. The job of the adaptive 

filtering system is to represent to the learner the impact of their particular approaches to 

learning (and other learner profile information) on the set of results retrieved, and to 

recommend appropriate learning materials to match elements of their learner profile. The 

detailed explanation of how this impacts on CF and recommendation is contained within 

Chapter 5. 

 

4.3.3.2 Contextual Profile   

 

The contextual profile used within this Thesis plays an important part within AIPL, 

because it allows the individual to store raw information about the learning content like: 

concepts, dates, terminologies, leading researchers, and descriptions. This was based on 

similar ideas to User Modelling and on the research conducted by (Kobsa et al., 1995; 

Martin et al., 2008 and Neji 2009) in enabling the contextual profile to take into 

consideration: user needs and traits.  

 

The contextual profile enables the architecture to interrogate external sources when 

retrieving specific learning materials (Kabassi et al., 2004; Safran et al., 2006). The profile 

within AIPL will have similar attributes that Kabassi et al., (2004) and Safran et al., 

(2006) have indicated including the following: the CP will use raw information about 

concepts, learning context, and terminologies that are associated with on-line course 

materials. The data can be stored in numerical or textual form dependent on the item 

stored. 

 

4.3.3.3 E-Bookmarking  

 

Social bookmarking is a technique used to offer the individual the opportunity to store, 

manage, and organise learning resources. Bookmarking provides necessary methods for 

enabling the individual user to record URLs, which can then be retrieved at any time. 

According to Hotho et al., (2006), social bookmarking provides the opportunity for people 

to share and copy resources from other users, and label them with one’s own notation. Most 
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social bookmark services, according to Damianos et al., (2006), encourage the user to 

organise their bookmarks with informal notation instead of the traditional browser-based 

system of folders. Social bookmarking enables people to view bookmarks associated with a 

chosen topic area, and include information about the number of users who have 

bookmarked them. Koivunen et al., (2001) suggest that social bookmarking enables users 

to share their thoughts and specific details concerning the web pages. 

 

Traditionally, social bookmarking has been applied to the World Wide Web and the 

individual user via browsers such as Internet Explorer, Netscape, or Mozilla Firefox. 

According to Golder et al., (2005) and Damianos et al., (2006), these social bookmarking 

facilities provide the individual with an information retrieval technique that groups 

together key features and specifications. However, researchers like Dell (2003), Safran et 

al., (2007) and Dobrzanski et al., (2007) are applying bookmarking to e-learning to 

provide facilities to record and store learning materials from the repository. According to 

Dell (2003), this gives students the opportunity to search for and retrieve learning 

materials. E-bookmarking will be used in AIPL to store and categories learning materials 

belonging to an individual/community. This will be discussed in more detail in Chapter 5. 

 

4.3.4 Personalised Adaptive Filtering System (PAFS)  

 

The Personalised Adaptive Filtering System plays an important central role in AIPL. PAFS 

responsibility is in matching materials to the learner profile through computational 

algorithms (Hull et al., 2006; Hummel et al., 2007). PAFS also integrates the concepts of 

collaborative community learning to enable learners to gain recommendations on learning 

materials retrieved, which can be related to e-learning 2.0 literature (Hummel et al., 2007; 

etc..; Chatti et al., 2007; Hamburg et al., 2008; Ullrich et al., 2008; Ghali et al., 2009 and 

Cristea et al., 2010). PAFS takes the input of the learner profile into its computational 

algorithms then interrogates the learning repository to find materials that correspond. Once 

materials have been found they are then displayed to the user. At its most simple PAFS 

undertakes keyword searches of the repository and brings back learning objects related to 

the keyword search (Chaudri et al., 1998; Noy et al., 2001; Li et al., 2004). At its most 

complex PAFS uses the learner profile to filter and sort materials retrieved in accordance 

with community grouping and rating (Yao et al., 2007; Hummel et al., 2007; Cristea et al., 

2010). 
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Discussion about the different types of Information Retrieval that PAFS could use  

 

The content of any e-learning environment needs e-courses (Jones 2002), and resources 

(Burgos et al., 2006). Although course materials and resources cannot be changed by the 

learner, the domain expert can build a variety of learning materials fitting different: 

learning traits (Spector et al., 2003; Benbunan-Fich et al., 2006); learning styles (Smith’ s 

2000); pedagogical learning approaches and theories (Santos et al., 2003; Power et al., 

2005; Cristea 2005).  

 

Within any adaptive or personalised e-learning framework, either if it is traditionally or e-

learning 2.0 based, the course content can be adapted to assist the learners by using a 

variety of techniques (Tang et al., 2005) like: Adaptive Information Retrieval; Adaptive 

Hypermedia; CF; Community Collaborative Filtering; and the Group-Learning-Paradigm. 

 

Adaptive Information Retrieval   

 

According to Tang et al., (2005) and Burgos et al., (2006) adaptive information retrieval, 

works by retrieving information that is relevant to the user request. Neji (2009) suggests 

that current AIR systems do not take into consideration of: evolution of Human behaviour; 

lack of psychological aspects; and finally emotional aspects that can be stored within the 

user profile to assist with information retrieval. 

 

Tang et al., (2005) suggests that by using AIR techniques, educational resources can be 

tagged and rated based upon: relevancy, technicality, and usability. One of the adaptive 

Information Retrieval techniques that have been adopted within PAFS allows individuals to 

use keyword searches (Chu et al., 2011) to filter out resources that are held within a 

dynamic background library. The second feature belonging to PAFS is based upon the 

recommendation of: (Tang et al., 2005; Burgos et al., 2006; Yao et al., 2007; Neji 2009), 

which allows the learner/s to give feedback (ratings) towards the learning materials, in 

which the community could share the recommended choices. 

 

However, in addition to using ratings data belonging to a particular group or community, 

the AIPL model enables individuals to use external references belonging to the course-
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context. In 2002, Brusilovsky et al., introduced a framework called the KnowledgeTree 

that uses Adaptive Information Retrieval as a way of allowing the learners to search for 

relevant learning materials based upon learning styles, and their own preferences, while at 

the same time using Adaptive Hypermedia (AH) to suggest course-content. Voorhees 

(2008) indicates that a higher ranking reflects the system’s idea of which documents are 

likely to be relevant to the topic. This approach enables the individual to receive the most 

updated response belonging to a learner’s goal. However, Voorhees (2008) does indicate 

that future trends of AIR could be the use of Adaptive Hypermedia, which will incorporate 

features of Adaptive Information Retrieval. Casamayor et al., (2009) suggests that as long 

as learners are placed within the right category or with his or her own group then retrieval 

and sharing of materials can assist within learning on-line. 

 

Adaptive Hypermedia  

 

According to Tang et al., (2005) Adaptive Hypermedia has been studied extensively within 

literature. Adaptive Hypermedia Retrieval (AHR) works by examining the contents of 

learning resources that have been used by the individual, to derive and extract important 

features belonging to: behaviour; learning traits; interests; knowledge states. Brusilovsky et 

al., (2002) and Brusilovsky (2002) indicates that the use of Adaptive Hypermedia 

technologies within on-line learning will provide further adaptation and personalisation for 

an individual. One particular e-learning framework that uses Adaptive Hypermedia is 

KnowledgeTree, introduced by Brusilovsky et al., in 2002. KnowledgTree offers adaptive 

navigation support like: adaptive annotation, sorting, and direct guidance, which enables 

individual learners to select the most relevant items within the repository. Graf (2006) 

indicates that there are variety of frameworks like: The Extended Abstract Categorization 

Map (E-ACM) (Graf 2006); Personalised Access to Local Information and services for 

tOurists PALIO system (Zarikas et al., 2001); AAHS; and finally the work of Cristea et al., 

(2010) and Ghali et al., (2009) with the concepts of (AHA & MOT 2.0), that employs 

adaptive hypermedia to enable personalisation to reduce information overload. 

 

Summary of discussion   

 

PAFS is designed to incorporate Adaptive Information Retrieval techniques: to encourage 

guidance and to facilitate the learner through the use of community-based filtering within 
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educational or academic institutions (Martin et al., 2008; Martin et al., 2008*; Voorhees 

2008; Neji 2009). However, the design concept for PAFS came from a variety of ideas and 

concepts like: User Modelling; Matching; Filtering; and literature surrounding e-learning 

2.0 systems. According to Graf (2006) and Brusilovsky et al., 2008, Adaptive Hypermedia 

and Adaptive Information Retrieval can be used independently or amalgamated together as 

long as the individual is placed within the right community or group. 

 

Additional research from (Orwant 1995; Yao et al., 2007; Martin et al., 2008; Voorhees 

2008; Brusilovsky et al., 2008; Neji 2009; and Douce et al., 2009) provided theoretical 

concepts and issues that were applied to the PAFS architecture like CF involving rating, 

tagging, e-bookmarking, and keyword searching. Tang et al., (2005), Graf (2006), and 

Brusilovsky et al., (2008), have all identified that the use of Adaptive Information 

Retrieval can achieve similar results to that of Adaptive Hypermedia environments. 

 

4.3.5 Dynamic Background Library  

 

The centralized knowledge repository of AIPL uses standard taxonomies to consolidate 

information into one place allowing knowledge to be searched and retrieved with greater 

efficiency and accuracy.  

 

The learner has access to teaching materials, peer-reviewed papers (Coman, 2002) and 

other resources. The learning materials used within the repository of knowledge comply 

with the LOM standard. This identifies certain key aspects: interoperability, accessibility 

and reusability of web-based learning content (Hadjivassiliou et al., 2002). Additional e-

learning materials are required to assist and help the learner in the rapid growth of 

knowledge. Using a dynamic repository alongside the existing VLE would support the 

retrieval of learning objects from outside the course content via the internet. According to 

Mödritscher et al., (2005) using a Dynamic Background Library can make the learning 

experience more personalised.  

 

In AIPL, a dynamic library resource is used to facilitate learning on-line by enabling web-

site addresses and ratings to be stored in conjunction with already produced static materials 

in the repository such as sound, graphics, and videos. PAFS interrogates the Dynamic 

Background Library for materials relevant to individual users and in this context the 
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dynamic background library simply acts as a knowledge repository. 

 

4.4 Challenges of the AIPL Model  

 

There are a number of challenges which can lead to limitations of the model provided 

above. 

  

 The knowledge base – it is clear from existing research that providing a semantic 

knowledge repository which contains consistent and validated learning materials is 

a difficult task. In relation to this, storage of meta-data linked to learning styles and 

other learner profile aspects is not automatically built into the SCORM and LOM 

standards.  

 

 The AIPL model depends on an assumption that learner profiles, however, they are 

constructed can be used in order to determine learner’s pathways and associated 

learning materials. This assumption whilst backed up by some researchers can be 

questioned once we start constructing the learner profile in relation to particular 

learning styles or other elements.  

 

 Finally, linked to the above the learner profile needs to be flexible, in that it has 

been shown through research that individuals over time develop different learner 

approaches and indeed learner approaches to tasks may be different dependent on 

the learning task, for example, we may adopt a mechanism for learning to drive and 

another mechanism for learning the highway code. So the learner profile has to be 

adaptable dependent on context.  

4.5 Summary of Chapter  

  

This Chapter has presented material related to the development of a model to support the 

personalisation of a learning environment for users. This has involved the development of 

an amalgamated pedagogical learning model linked to a personalisation model (AIPL). 

The roots of these two models in academic literature are also described. Following the 

presentation of these models a system design has been developed and this has also been 

outlined above. 
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Chapter 5 A Personalised Adaptive Filtering System (PAFS)  

 

This chapter describes one of the major contributions of this Thesis, PAFS. It does this 

through initially presenting the motivation for the development of PAFS (Section 5.1).  It  

then  moves  on  to  detail  the  challenges  and  complexities  associated  with  PAFS 

(Section 5.2).  This is followed by a general overview of the PAFS (Section 5.3), and 

finally the summary of the chapter (Section 5.4).   

 

5.1 Inspiration  

 

The majority of the inspiration for PAFS comes directly from research work already 

detailed in this Thesis.  However, this section will indicate the main inspiration behind each 

of the three functions of PAFS starting with the keyword search facility, moving on to the 

semantic meta-data contextual search function, and ending with the motivation behind the 

collaborative categorisation and recommendation function.  

 

As indicated in Chapter 3 there are a number of systems including the Knowledge-Base 

Machine Translation (KBMT) system, proposed by Knight et al?  In 1994, which use 

simple keyword searches to determine matches between learning materials and learners?  

Simple keyword search algorithms suffer from performance problems particularly when the 

size of the learning repository is large.  In relation to the standard keyword search function, 

a number of different algorithms have been evaluated and assessed in relation to how they 

would work in a PAFS context.  These algorithms are detailed in Section 5.3.  

 

The semantic meta-data contextual search function builds on work related to search engine 

retrieval, and spider bots in relation to filtering materials marked up using LOM or 

SCORM and semantic meta-data.  This approach lies in determining matches between 

indicated search parameters (from the learning profile and contextual profile) and the 

marked up content.    

 

Finally, the collaborative categorisation and recommendation function draws on research 

such as that by (Deeb, 2007, Bajraktarevic et al., 2003, and Becks et al., 2003).  Deeb in 

2007 communicates ideas about using communities of learners to rate particular learning 
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materials in order to enable learners to determine the most appropriate learning path.  

Deeb’s ideas focus on evaluations of learning objects derived from whole group responses 

similar to recommender systems such as that used by eBay.  Bajraktarevic et al., (2003) 

indicates that by using rating, and navigation aids to create a correlation between the 

learner and the materials, this enables other learners to share knowledge and personal 

views.  The concepts and ideas presented within Bajraktarevic et al., (2003) can be classed 

as the new generation of e-learning 2.0 like that of (Safran et al., 2007; Chatti et al., 2007; 

Ullrich et al., 2008; and Ghali et al., 2009).  Researchers like Safran et al., (2007), Chatti 

et al., (2007) and that of Ghali et al., (2009), indicate that by using on-line communities, 

social grouping or group-learning-paradigms, we can assist the individual learner when 

retrieving learning materials.    

 

Finally, according to Tzouveli et al., (2005) and Subramaniam (2006), using profiles of 

groups of learners has enabled environments to adapt to: similar group habits, interests, 

skills, projects, location and personalised settings.  So in relation to this final function the 

inspiration is in creating a collaborative mechanism for rating and recommending objects 

based on the grouping of learners linked to elements such as learning styles.  So for 

example, an individual can see recommendations about learning objects from individuals 

with related learning profiles, rather than just seeing a whole group view which may, or 

may not be appropriate.  The recommendation of learning objects (linked to separate 

groups of learners) can be achieved using two methods these are: AIR, and AHR (the use of 

learning paths).  According to Tang et al., (2005) and Burgos et al., (2006) adaptive 

information filtering, works by retrieving information that is only relevant,  and categorized 

to the user request.  Ghali et al., (2009) and Cristea et al., (2010) suggests that Adaptive 

Hypermedia Retrieval using learning paths, works by examining the contents of the page, it 

derives and extracts important features associated with: behaviour; learning traits; interests; 

and  knowledge state.     

 

These can be used to assist other individuals while retrieving learning materials.  For more 

information concerning Adaptive Information Retrieval and Adaptive Hypermedia, please 

see Chapter 4, Section 4.3.2 Personalised Adaptive Filtering System ‘PAFS’.   

 

Tang et al., (2005) suggest that the use of any of the two techniques, Adaptive  

Information Retrieval or Adaptive Hypermedia Retrieval can assist he individual/group 
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when retrieving learning materials based upon a particular learning style, learning traits, or 

grouping category.   

5.2 Design Challenges  

 

This section details particular design challenges linked to the development of an algorithm 

(or series of algorithms), PAFS, that can be used to match learner profiles to learning 

content.  The challenges faced relate to the following:  

 

 How do we represent learning styles on-line?  

 How can the learner profile be represented and interrogated?  

 How can we group?  What do groups consist of?  How can we make best use of the 

power of the group?  

 Homogenous versus collections of representations  

 Dealing with ratings and group lifecycles  

 

5.2.1 Representation of Learning Styles in Semantic Data  

 

Challenges related to semantic representation have been outlined in earlier chapters. Issues 

such as the lack of semantically marked up resources, different standards used, and issues 

regarding the keyword association of different authors are clear barriers to the successful 

implementation of any personalisation system that requires semantic data.  Of particular 

importance to PAFS is the problem of how do we represent learning styles in semantic data.  

 

Stojanovic et al., (2001) indicate that profiles and learning materials can be represented by 

using semantic metadata; however, the domain expert must fully understand the different 

metadata schemas, and the vocabulary associated with them before their application.  

Stojanovic et al., (2001) indicate that there are a variety of web-based technologies that can 

be used to represent profiles, these are: XML, RDF and WiseOwl, for more information 

about these different web-based technologies please refer to Chapter 3 (Section 3.1.2 

technologies).   

 

Cristea (2004) agrees with (Stojanovic et al., 2001) about applying semantic knowledge  

representation to learning materials, via the use of XML-based languages.  Cristea  
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(2004) indicates that using semantic technologies provides researchers with tools to 

represent data via high level representation such as logic, rules, and IF-Then-Else 

statements.   

 

According to Cristea (2004), semantic knowledge representation must take into account 

some of the following aspects:  flexibility, expressivity, reusability, non-redundancy, 

cooperation, inter-operability, and standardisation.  Applying semantic knowledge for the 

representation of materials can support and assist a variety of educational resources. Koper 

et al., (2004) agrees with Cristea (2004), about applying semantic knowledge to learning 

materials and educational systems by using descriptive elements and attributes, for 

personalising educational resources.  Koper et al., (2004) indicates that xHTML can be 

used as a tool to represent linkage between learning object and particular learning styles.    

 

Other researchers like Cristea (2004), Dumbill (2000) and Kesteren (2007) all indicate 

that you can use XML, and xHTML, as a way of representing specific design concepts 

within learning materials.  For example Dumbill (2000) and Kesteren (2007) indicate that 

within xHTML you can use the class tag as a way of representing additional information 

belonging to learning materials.   

 

Research has shown that learning objects can be semantically tagged in accordance to 

different types of learning styles. Researchers like Cristea (2004), Dumbill (2000) and 

Kesteren (2007) have provided an insight into how to mark-up specific values relating to 

learning styles identification within learning objects.  User Modelling has played an 

important part in representing the user profile, by accommodating their learning styles; 

learning preferences; behavioural traits; interests and knowledge.  Researchers like (Kobsa 

et al., 1995; Tasso et al., 1999; Martin et al., 2008; Douce et al., 2009; and Neji 2009) 

have used User Modelling to represent the individual learning preference. Koper et al., 

(2004) indicates that Learning Object Models, or databases can hold learning style data 

about individuals this can then be transformed into a semantic representation which can be 

compared against learning object data.   

 

 

 



93 

 

 

5.2.1.1 The solutions to representing Learning Styles in Semantic Data 

 

 

                        Figure 7: Solution to representing learning styles on-line  

To overcome some of the issues of flexibility and reusability within the AIPL model, 

learning materials are held on a Web Server.  The web server enables the author to place 

learning content on-line to be shared across different academic institutions and provide 

facilities for web-crawlers and spider bots to search and retrieve.  To achieve this approach 

each learning object online will be represented using LOM as an industry standard.  

 

As mentioned early on in Chapter 2, and that of Section 5.2.1 User Modelling does play an 

important role within the representation of the learner profile.  According to Froschl (2005) 

without any information about the user then the adaptive system is not able to adapt. By 

using the recommendation of Froschl (2005), Santos et al., (2009) and Douce  et  al.,  

(2009)  the  learning  style  will  be  represented  in  semantic  data  online, using 

xHTML/XML coupled with the LOM standard to provide a way for spider bots/or search 

filtering mechanism to interrogate and compare additional data structures/tags for more 

details.   

 

In Section 3.1.2.5 Waldo (2005), provided a XML structure that allows the author to place 

additional details to represent a learning object, see Figure 8.  

 

      <?xml version="1.0"?>  

 

         <PARENT>  

 

            <CHILD>  

 

            </CHILD>  

        </PARENT>  

Figure 8: Child Tag 

This  <CHILD> </CHILD>  tag,  plays an important  

role with PAFS because it allows the author to add  in 

additional details regarding the learning object (i.e. 

Visual Learning Object)   
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Also in Section 3.1.2.1 Dumbill (2000) and Kesteren (2007) suggest that xHTML as a 

Semantic Web standard can allow data to be extracted by a machine from a document 

intended for consumption.  The layout that Dumbill (2000) and Kesteren (2007)  

Suggested can be seen in Figure 9.    

 

      <P>    

              <SPAN CLASS= “learning Object” ID= “LO identification” >  

 

                      <SPAN CLASS= “ ” >  </SPAN>,  

 

                      <SPAN CLASS= “ ”>  </SPAN>  

 

              </SPAN>  

      </P>  

                                        Figure 9: Span Class 

Using global variables and class tags as a way of providing specific details regarding the 

learning object will provide a way for PAFS to extract tags from the learning objects and 

compare these tags against the semantic representations of the learner profiles. For a 

graphical representation of this solution see Figure 12.  

 

 

5.2.2 Representation of the Learner Profile & the Learner Profile Lifecycle  

  

The following subsections address these issues respectively. According to Dolog et al., 

(2005) learning profiles have a variety of key challenges associated with them ranging 

from: representing learner profiles (5.2.2.1); accessing the learner profile (5.2.2.2); 

integration of how to process heterogeneous profiles (5.2.2.3) and in addition to the above 

research, the profile life-cycle (5.2.2.4).  How PAFS deals with these problems is indicated 

below.  

 

5.2.2.1 Representing learner profile  

 

Dolog et al., (2003) indicates that the representation of the learner profile can be depicted 

in a variety of ways ranging from: interests, experience, learning preferences, disabilities, 

and knowledge. It is however, important that the learner profile depicts and represents the 

correct category it was designed for.    The Dolog et al., 2003, learning profile example was 
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based upon learner information, which contained the following items: content type, 

identification, competency, goal, accessibility, activities, affiliation, interests, relationships 

and security issues.   

 

However, other researchers like Mainemelis et al., (2002) indicate that learner profiles can 

be used to represent: learner traits, learning theories and learning styles.  Sampson et al., 

(2002) and Sampson et al., (2002)* like Mainemelis et al., (2002) uses the following 

features to represent the necessary aspects for representing the learner profile: 

authentication, requirements, preferences, interests, and goals.   

 

To represent the learner profile on-line, according to Dolog et al., (2003), web based 

technologies are required.  This is due to accessibility restrictions, security, and querying 

capabilities.  Kobsa et al., (1995), Tassco et al., (1999), Aroyo et al., (2006) and Martin et  

al., (2008) indicate that the learner profile must be able to represent a variety of learning 

traits, to enable a tailored learning experience to be generated.  

 

5.2.2.1.1 Solutions to representing the learner’s profile  

 

To overcome the issues of how to represent the learner profiles with the AIPL environment 

the author used similar ideas of that from (Dolog et al., 2003; and Mainemelis et al., 2002) 

about using learning styles as a way of categorising how some one learns.  Enabling the 

learner’s profiles to be categorised by learner styles provided the author with a way of 

representing what factors should be placed into the profile.   

 

The learner profiles within AIPL will require the following factors: course ID, student  

ID, access rights, learning style identification, and group type.      

 

The learner profile within AIPL has the following data structure properties to enable the 

learner  profile  to  work  effectively  when  being  interrogated  by  the  Personalised 

Adaptive Filtering System.   
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Student 

ID  

Access  

Right  

Course 

ID  

LT  LTV  LT  LTV  LT  LTV  LT  LT

V  

3100034  Y/N  3002  Pragmatic  11  Analytical  8  Reflector  4  Theoretical  12  

 

Continued:  

LT  LTV  LT  LTV  LT  LTV  LT  LTV  Group type  

Concrete 

experience  

2  Reflective 

observation  

4  Abstract 

conceptualization  

1  Active 

experimentation  

5  

                                    Figure 10: Learner's Profile 

The example in Figure 10 is original and used within the AIPL model.  The learner profile 

will be stored using a database management system, which will hold the personal values 

and traits of the individual.   

 

5.2.2.2 Accessing the learner profile  

 

According to Dolog et al., (2005) accessing the learner profile, a system must be able to 

deal with issues like: interoperability; exchangeability of data, and data mappings between 

system variables.  According to Aroyo et al., (2006) learning profiles have limited 

interoperability between one system to another, thus creating barriers when trying to 

accomplish tasks.      

 

Aroyo et al., (2006) and Sampson et al.,(2002) suggest that learning profiles should be 

designed through the use of adaptive web technologies to enable different architectures to 

be used, these are: adaptive web-based systems, adaptive hypermedia systems, and adaptive 

task-based systems.  However, to represent different learning profiles via a multitude of 

different architectures, the internal variables must be able to be directly mapped in 

accordance with the technology being used.  Aroyo et al., (2006) indicates that data 

mapping between system variables can be tedious and manually intensive.    

 

5.2.2.2.1 Solution to Accessing the learner profile  

 

As stated in Section 4.1.3 this Thesis builds upon the e-Learning framework presented by 

Eze et al.  (2006) see Figure 11.  This web based framework aligns with the 

recommendations of (Aroyo et al., 2006; Dolog et al., 2005; and Sampson et al., 2002) to 

use web-based architectures to facilitate on-line learning.  It also enables the exploitation of 
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learning styles as a mechanism of identifying how the learner prefers to learn, as supported 

by Calder (2002), Brusilovsky et al., (2003), Coffield, (2004), Dolog et al.,(2004), Miller 

(2004),  Atherton (2005), Wang et al., (2008)*, Martins et al., (2008)*, and Alves et 

al.,(2008).  

 

 

                                Figure 11: Eze e-learning Framework 

Eze et al., (2006) indicated that there was one major design flaw within their e-learning 

framework, which was the lack of provision of an adequate personalised approach for 

providing media resources to match the learner traits.   

 

The research that was carried out by Eze et al., (2006) indicated that there were three 

possible areas of improvement these were:  the development of a personality component for 

the domain profiling of a learner; the use of semantic metadata to represent multimedia of 

specific context using XML and RDF; and finally the algorithm to match learner to 

learning resource.  

 

The changes to the e-learning Framework from Eze et al., (2006) enabled the development 

of AIPL to be created, for example: a new improved pedagogical learning approach 

(Anderson 2005; Campbell et al., 2005; Chang et al., 2005; Ling 2007; De Jong et al., 

2008); the use of learning styles to capture the learner’s approaches to learning (Calder 

2002; Brusilovsky et al., 2003; Coffield, 2004; Dolog et al., 2004; Miller 2004; Atherton 

2005; Wang et al., 2008*; Martins et al., 2008*; and Alves et al., 2008); the use of 
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semantics and LOM standards to represent learning objects (Dumbill 2000; Ogbuji 2003; 

Waldo 2005; and Kesteren 2007); and finally PAFS to create an effective match between 

the individual and the learning resources within the Repository (Bajraktarevic et al., 2003; 

Becks et al., 2003; Deeb, 2007; Safran et al., 2007; Chatti et al., 2007; Ghali et al., 2009).   

 

The web-based technologies within the AIPL environment would overcome issues of 

exchangeability of data, and data mappings between system variables.  The Learning 

Profiles will be stored on a local database server that will take requests and queries from 

the AIPL environment.  By storing the Learning Profiles within a database server, the AIPL 

environment will be able to map internal variables from one server to another, for example: 

For more information see Figure 12.  

 

 

Figure 12: Representing the learner's profile (LP) 

 Section A: is the representation of the learner profile, which uses a database to hold 

the values belonging to the individual.   

 Section B: is the client end i.e. AIPL Environment   

 Section C: represents the on-line Repository of learning objects  

 

For these mechanisms to communicate directly, mapping the internal variables from one 

web-based technology to another was required.   
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 The learner profile’ s are stored within a PostgreSQL database   

 The AIPL environment was written and designed using Java  

 An on-line repository was used to hold the learning resources, which was annotated 

by using LOM and semantic (XML, xHTML) standards as a way of representing 

the learning objects, please see Section 5.3.2  Semantic Matching Algorithm for an 

example of mark-up.   

The internal variables being used within AIPL required mapping the JDBC drivers, and 

PAFS together to enable communication to take place.  In addition to the mapping of 

internal variables, the AIPL environment uses a variety of web-based adaptive technology 

to control access to the learner profile and monitor interoperability issues.   

 

Aroyo et al., (2006) indicate interoperability issues exist when different information 

systems use formats that are not compatible across multiple systems. As indicated PAFS 

does deal with interoperability issues by granting access to a specific location within the 

on-line repository, which enables the learning object to be matched to a variety of Learning 

Object  Standards (LOM, RDF),  and metadata representation  through the use of xHTML, 

and XML.  This is achieved through the use of the Dublin Core metadata editor to generate 

descriptive metadata to support other repositories and systems.   

The web-site for allowing this conversion can be found below:   

http://www.ukoln.ac.uk/metadata/dcdot/.   

Figure 13 is a snapshot of a learning object being used within AIPL.  

 <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" />   

 <link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" />   

        <meta name="DC.title" lang="en" content="Wiring a Kettle Plug" />   

        <meta name="DC.creator" content="Robert Costello" />   

         <meta name="DC.subject" lang="en" content="Wiring a Kettle Plug” /> 

        <meta name="DC.description" lang="en" content="Specific Exercise Based on  

                                         Pragmatist activities: Learning Style KOLB, practical, logical and systematic" />   

        <meta name="DC.publisher" content="Hull University" />   

         <meta name="DC.date" content="December 2009" />   

   <meta name="DC.type" scheme="DCTERMS.DCMIType" content="Text" />   

   <meta name="DC.format" content="text/html" />   

    <meta name="DC.format" content="23610 bytes" />  

Figure 13: Dublin Core Metadata 
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Taken from the Dublin Core Metadata editor - http://www.ukoln.ac.uk/metadata/dcdot/   

The  above  metadata  representation  of  learning  objects  can  also  be  represented  

within  RDF,  which can seen in Figure 14.  

 

<?xml version="1.0"?>  

<!DOCTYPE rdf:RDF SYSTEM "http://dublincore.org/documents/2002/07/31/dcmes-xml/dcmes-xml-dtd.dtd">  

<rdf:RDF   

  xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

  xmlns:dc="http://purl.org/dc/elements/1.1/">  

<rdf:Description  rdf:about="http://~310567/">  

    <dc:title>  

        Wiring a Kettle Plug  

    </dc:title>  

         <dc:creator>   

         Robert Costello  

     </dc:creator>   

    

 <dc:subject>  

Wiring  a Kettle Plug, about how to Wire a Kettle Plug, The Table of Contents, Step 1 How to identify  

the correct Screwdriver, Link to YouTube,  

     </dc:subject>   

    <dc:description>  

        Specific Exercise Based on Pragmatist activities: LearningStyle KOLB, practical, logical and systematic  

   </dc:description>   

    

      <dc:publisher>  

        Hull University  

    </dc:publisher>   

     

    <dc:date>  

        December 2009  

    </dc:date>  

   

<dc:type>  

            Text   

  </dc:type>  

 

<dc:format>   

      text/html  

  </dc:format>   

   <dc:format>  

         23610 bytes  

   </dc:format>   

</rdf:Description>  

    

</rdf:RDF>  

        December  2009  

  </dc:date>  

 

    <dc:type>  

        Text   

  </dc:type>  

 

    <dc:format>  

        text/html   

    </dc:format>  

 

    <dc:format>  

    23610  bytes  

    </dc:format>  

  </rdf:Description>   

</rdf:RDF>  

 

Figure 14: Dublin Core RDF 

As stated above the AIPL environment through the use of PAFS does provide access to an 
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area located on the web-server that provides a link to the learning objects that use different 

learning standards like: RDF.  However, this approach is only used for demonstration and 

testing purpose it would not be cost effective or stakeholder friendly to represent a large 

bank of learning materials in this way, as indicated by Aroyo et al., (2006).  This area of 

‘interoperability’ is out of the scope of this Thesis research and there is no contribution is 

made to literature.    

 

5.2.2.3 Integration of and how to process heterogeneous profiles  

 

A heterogeneous profile is a profile which uses multiple items and can have many different 

structural variations.  So for example, an individual may have a profile which contains 

results data from multiple institutions, or multiple learning style categorizations and 

another individual may have something completely different. According to Dolog et al., 

(2003) and Eyssautierbavay et al., (2009) heterogeneous profiles are still an unsolved issue 

within e-learning literature.  However, according to Xu et al., (2003) and Dalsgaard 

(2006) it is possible for LMS and learning standards to share resources.   

 

However, Aroyo et al., (2006) suggests that to process heterogeneous profiles web-based 

technologies are needed to enable this to happen.  Dolog et al., (2003) and Eyssautierbavay 

et al., (2009) indicates that to achieve heterogeneous profiles, knowledge acquisition is 

needed from all researchers within the field.  Simon et al., (2003) and Eyssautierbavay et 

al., (2009) indicates that to process heterogeneous profiles in the support of a multitude of 

educational environments, a personalised intelligent educational system is needed.  The 

heterogeneous profiles must be designed to facilitate the complexities associated with 

dealing with a multitude of heterogeneous environments, and the flexibility of linking them 

into: assessment tools; learning management systems; educational repositories; and support 

materials such as video conferencing and interactive materials.  

 

5.2.2.3.1 Solutions provided for the processing of heterogeneous profiles  

 

The AIPL environment deals with heterogeneous profiles, by directly storing the learner’s 

profile into a database server.  The design of the heterogeneous profiles (Learner Profiles) 

within the AIPL environment could support a multitude of cross platform educational 

systems; as long as the AIPL environment provides the right security privileges to enable 
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sharing across systems, see Figure 15.   

 

 

Figure 15: Heterogeneous Profiles 

According to Graf et al., (2008) it is quite often that different management systems are 

used to store details like: students, staff, and guest details. However, modern integrated IT 

infrastructure requires a holistic view of the personal data that is stored and used by web 

applications, such as learning platforms.  Graf et al., (2008) introduces concepts of using 

User Modelling to hold details belonging to the student, staff, and guest details, which can 

be held within profiles to enable heterogeneous sharing between campuses, departments 

etc...  This concept of allowing details to be shared to compensate for re-usability, and cross 

system access provided the backdrop for the ideas within this Thesis belonging to 

Heterogeneous Profiling.   

 

The heterogeneous profile (learner’s profiles) using concepts belonging to (Graf et al., 

2008) works within the AIPL environment as follows:   

 

A student from institution A has just completed his first year and decides to move to another 

institution i.e. B.  Institution B requests the learners profile from institution A. Once the 

request has been granted a direct communication link is opened on the server that holds the 

Learner’s Profile.  Once this communication is connected the learner’s profile can be 

downloaded into a flat file format.  This file will contain all the details about how the 

learner learns: what learning style they are; and what modules they have completed.  The 

file can then be recreated on the other institution’s database for manipulation.   
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5.2.2.4 Learner profile cycle and Group Life  

 

The learner profile cycle and the group life begins as soon as the individual has been 

enrolled into the AIPL environment.  AIPL monitors all new students as soon as they login, 

and they are prompted for the following details, please see Figure 16.  

 

Figure 16: Life Cycle 

The life cycle diagram has six features belonging to the AIPL environment, which are 

critical for the learner profile to work. Module assignment and course code: this 

represents what module the student is studying on to assist PAFS while filtering course 

content conduct Learning Process Questionnaire: this enables the learner to undergo 

two tests to indicate how they learn through the use of LPQ’ s.  

 

 Retrieve LPQ’s: The values from the LPQ are stored for later processing.  

 Access Rights: Are used to control what materials they are allowed to view i.e.  

This works in conjunction with module assignment and course code.   

 Learner cluster type:  This is used to store the identification on how the learners 

prefer to learn.  The values are retrieved from LPQ’s in step 3, and sent directly to 

PAFS for use.  Once the value from the LPQ is worked out PAFS will then use this 

value to identify how they learn i.e. I am a pragmatic learner.  

 End of course date: used in two parts to control access and also to terminate the 

end of The life cycle belonging to the individuals.   

 

Once the above learner’s profile has been created, the group life cycle will begin.  AIPL 

will scan through all Learning Profiles and categories the individuals into groups in 
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accordance with their learning styles. For more information, see Section 5.2.3 grouping 

learners – challenges and complexities to see how this is achieved.  Once the values have 

been interrogated, the group value will be placed and stored into the LP, for creating 

clusters.  AIPL will monitor the end of course date belonging to the individual learner 

profiles to control the grouping life cycle.   

 

The group life cycle will be stored and maintained to track the progress of the groups. The 

cluster information belonging to the group life cycle can be extracted depending on people 

within the group, which will then be applied to different courses during their educational 

life cycle.  Updating the individuals within the cluster profile will enable the system to keep 

up to date and to continue to monitor their development.  

 

5.2.3 Grouping Learners – Challenges and Complexities  

 

This section is written to introduce the challenges and complexities associated with 

grouping learners within PAFS.  The following layout will be used to represent a logical 

approach that is needed to deal with the complexities: homogenous views (Section 5.2.3.1); 

concept drift (Section 5.2.3.2); e-bookmarking (Section 5.2.3.3); collaborative grouping 

(Section 5.2.3.4); and advanced methods (Section 5.2.3.5).   

 

5.2.3.1 Homogenous Views  

 

According to Spiro et al., (1996) grouping individuals can vary depending on subject 

matter and learning capabilities.  The characteristics of the individuals within group 

settings can be varied depending on how they learn, for example: some learners might like 

to learn through orderly tasks; others might like complex challenges; and some learners 

might not like the pedagogical approaches adopted by the domain expert.  It is these 

homogenous views of the individuals within a group setting that can make the group either 

succeed or fail.   

 

It is important that the homogenous views are compensated within any group setting by 

building on interests, traits and personal preferences of the learners.  To overcome some of 

the issues associated with homogenous views, researchers like Alexander et al., (2004), 

Oxford (2003), Severiens et al., (1994) and Gutiérrez et al., (2003) are using learning 
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traits to group students.    

 

According to Alexander et al., (2004) you can group learners through the use of cluster 

analysis.  Cluster Analysis is where profiles can be grouped together on the basis of their 

expertise i.e. participant’s knowledge, interests and strategic processing.    

 

Group categories can be categorised as the following:   

 

 Acclimatisation cluster: New students with low levels of domain knowledge and 

Individual interest within specific areas.   

 Early competence cluster: This particular cluster relates to individuals that seek 

Knowledge in specific fields, interests and professions.   

 Mid-competence cluster: Refers to knowledge and experiences that individuals 

already have which they can apply to deep-processing strategies or text-based 

strategies.  

 Proficiency  cluster: Students  and  staff  members  with  a  high  level  of  

academic  and experience.   

 

The research conducted by Alexander et al., (2004) through the use of cluster analysis, 

within grouping does work.  However, grouping individuals into academic levels would 

not give a fair advantage to the students with very little knowledge, or mixed abilities.   

 

Researchers like Oxford (2003) indicate that psychological and socio-cultural trends can 

be used as a way of grouping individuals; however, this is complex and requires a vast 

amount of knowledge and research into understanding the characteristics of the individuals, 

for example: anxiety, beliefs, support, assisting relationships and actual knowledge of the 

individual themselves.  There are, however, more efficient ways of grouping individuals 

that have been demonstrated by Severiens et al, (1994) and Gutierrez et al., (2003).      

 

Researchers like Severiens et al., (1994) and Gutierrez et al., (2003) believe that you can 

group individual learners into clusters belonging to their learning styles and learning 

theories.  Severiens et al., (1994) and Gutierrez et al., (2003) indicate that by categorising 

individuals through the use of learning styles/theories a balance can be created within 

education experiences between resources and approaches to learning.   
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Eisenstadt et al., (1990), Leutner et al., (1998) and Boyd et al., (2004) would argue 

against the points of (Severiens et al., 1994; Gutierrez et al., 2003) that no matter what 

features applied by the domain expert to assist the individuals, the learner may still find it 

difficult, and even if the materials are designed accordingly this can still mislead them.  

 

It seems that the comments made by Baroness Greenfield are similar to that of Eisenstadt et 

al., (1990), about applying learning styles or learning aids to individuals might not actually 

help them within their learning experience.   

 

However, Genovese (2004), Litzinger et  al., (2005) and Mehigan et al., (2010) would 

argue against the views of (Eisenstadt et al., 1990; Leutner et al., 1998), that the use of 

learning styles within on-line learning does improve the educational balance and also 

improves the learner experience.   

 

Oxford (2003) has similar views to (Severiens et al., 1994) about using learning 

styles/theories to group together learners with the same learning traits.  However, in 

addition to the research carried out by (Severiens et al., 1994; Oxford 2003) they indicate 

that other variables must be included like: motivation, proficiency, and achievement.   

 

According to Oxford (2003), some of the major limitations associated with grouping are: 

how the learning activities are written in accordance to the behaviour of the individual set 

within a group environment; matching the needs of the individual/group to the right 

learning materials; and finally, creating and exploring relationships between tasks to 

engage group learning.    

 

Whilst researchers like Severiens et al., (1994), Oxford (2003), Alexander et al., (2004), 

and Cristea et  al., (2010), have provided a great wealth of knowledge, it is still in the early 

stage of academic research about how to categories groups of individuals in successful 

ways.      

 

Even though, there is not a correct procedure for grouping there is enough academic 

research to support the idea that certain aspects of grouping can be applied, for example: 

(Oxford 2003; Severiens et al., 1994; Gutierrez et al., 2003) indicate that applying 

learning styles and theories to groups can assist with enhancing a learner’s learning 

experience.  According to Oxford (2003), using learning styles can improve: perception, 
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reception, storage, and retention belong to their learning experience.  

 

5.2.3.1.1 The solutions to Homogenous Views  

 

To tackle the issues associated with homogenous views, PAFS will use the principle 

research that (Oxford 2003; Severiens et  al., 1994; Gutierrez et al., 2003) conducted 

about considering learning styles as a way of grouping individuals in accordance with how 

they learn most effectively.  By grouping individuals in accordance with their own learning 

styles provides a way within the AIPL environment to overcome the following problems: 

unfair categorisation of knowledge and expertise (i.e. all abilities are placed together); 

placing the learner with other learners that have similar learning traits as each other; 

placing the learner/s in an environment that was designed for them thus creating a more 

tailored learning experience.    

To solve the issues associated with homogeneity within PAFS there are three levels,  

These are:   

1) Singular: - One student has only one category i.e. Analytical   

2) Amalgamation: - One student can have many values i.e. Analytical and Pragmatic 

or even Reflective with Analytical.   

3) Concept Drift: - For more information see Section 5.2.3.2 The Concept Drift for a 

definition and how it works within PAFS.   

 

Each one of these particular group clustering methods (i.e. singular, amalgamation and 

concept drift) can create homogenous views within PAFS.  The concept of homogenous 

views within PAFS can be represented through a three layer triangle that enables students 

to change clusters over time, depending on their learning styles results.  For more 

information see Figure 17.  

  

Figure 17: Three layer triangle 
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By grouping the individuals into clusters of learning styles, according to Severiens et al., 

(1994) and Gutierrez et al., (2003) this will improve the learner’s experience.  To 

overcome the issues that (Oxford 2003) had suggested the PAFS environment will use the 

three layer cluster as a way of directly matching individuals with specific groups, reducing 

some of the limitations associated with collaborative grouping, for example: inappropriate 

matching and creating relationships within a dynamic moving environment.   

 

5.2.3.1.2 Technical aspect of grouping  

 

 The technical aspect of grouping used within PAFS can be found within Section 5.2.3.4 

Categorising of Groups (CG) and 5.2.3.5 Advanced Methods.  This approach builds upon 

the research carried out by (Oxford 2003; Severiens et al., 1994; Gutiérrez et al., 2003).    

 

5.2.3.2 The Concept Drift  

 

The community-based algorithm relies on the results from the psychometric measuring 

which is retrieved using the LPQ. The psychometric measuring used within this algorithm 

has, however, divided the research community. On the one hand, some researchers argue 

that learning styles do not effectively improve the learning experience (Eisenstadt et al., 

1990; Leutner et al., 1998; and Boyd et al., 2004) and that psychometric measuring 

systems are ineffective. However, reading the Learning Styles and Pedagogy in post-16 

learning: A systematic and critical review report by Coffield indicates that: 

 

“The logic of lifelong learning suggests that students will become more 

motivated to learn by knowing more about their own strengths and weaknesses 

as learners. In turn, if teachers can respond to individuals’ strengths and 

weaknesses, then retention and achievement rates in formal programmes are 

likely to rise and ‘learning to learn’ skills may provide a foundation for lifelong 

learning” Coffield et al., (2004). 

 

The Coffield report does question the whole concept of using learning style and indicates  

“whether a particular inventory has a sufficient theoretical basis to warrant 

either the research industry which has grown around it, or the pedagogical uses 

to which it is currently put” Coffield et al., (2004).  
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Further reading into the Coffield report would indicate that their final assumption about 

learning styles would be that of  

 

“researchers and users alike will continue groping like the five blind men in the 

fable about the elephant, each with a part of the whole but none with full 

understanding” Coffield et al., (2004).  

 

From the authors perspective based on the Coffield et al., (2010) report it is clear that the 

impact of Learning Styles cannot either be proven or disproven due to the large amounts of 

literature supporting both claims.  Due to the nature of learning styles being freely 

available from the internet, it is possible for the domain expert to use them to find out 

quickly about ones learning type, so they can adapt coursework, and learning materials.  

 

As stated above:  

 

“If teachers can respond to individuals‟ strengths and weaknesses, then 

retention and achievement rates in formal programmes are likely to rise and 

learning to learn‟ skills may provide a foundation for lifelong learning” Coffield 

et al., (2010) 

 

Some researchers like Leutner et al., (1998), Genovese (2004), Boyd et al., (2004), and 

Litzinger et al., (2005) have indicated that many models within pedagogical theories can 

improve instructional design. By using a variety of different models and pedagogical 

approaches such as learning strategies and learning styles can arguably help improve 

instructional design, through modifying teaching and student self knowledge awareness 

about how they learn best. However, their research suggested many of the investigations 

carried out on learning styles lack theoretical clarity and adequate measurement 

instruments. Research conducted by Leutner et al., (1998) suggested that individual 

learning differences depend on the extent of availability, reliability and the validity of 

psychometric measuring. Boyd et al., (2004) furthers the debate initiated by Leutner et al., 

(1998) by arguing that learning styles have several weaknesses in terms of the reliability, 

validity, and the identification of the different characteristics of learners’ needs.  

 

According to Leutner et al., (1998), Genovese (2004) and Litzinger et al., (2005), 
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psychometric measuring is a popular method for identification and analysis of the learner’ s 

needs, however, the scales used to capture individual needs sometimes lead to negative or 

low correlations between the needs of learners, and the actual outcome of results. Research 

conducted by Leutner et al., (1998) has indicated that to sufficiently test the validity of 

psychometric measurements it would be necessary to implement the scale based upon 

behavioural observation, instead of using self-based learning process questionnaires to 

identify the student’ s needs. Isaksen et al., (2007) suggested that psychometric 

measurements should be designed to assist the mediation between stimulus and response in 

relation to the scales that would best describe the characteristic ways in which individuals 

conceptually learn best within a learning environment.  

 

The research conducted by Leutner et al., (1998), Genovese (2004), Boyd et al. (2004) 

and Litzinger et al., (2005) has indicated that psychometric measurements used in 

identifying learning styles are ineffective, inefficient, and lack clarity in how they are 

applied; however, researchers like Duff et al., (2002), Zywno (2003) Markham (2004) and 

Carmona et al., (2007) believe that learning styles have been widely accepted within the 

academic world, even though limited evidence exists concerning the psychometric 

properties.  

 

Duff et al., (2002) have indicated those learning style questionnaires (LSQ) that use 

psychological factors serve as an indicator of how an individual interacts with and responds 

to the learning environment, and guarantees that some scales will be negatively correlated.  

However, LSQ are designed to probe the relative strengths of the individuals, therefore, it 

could be expected that students with a preference for particular learning activities would 

outperform those with preferences for other learning activities. Zywno (2003) agrees with 

Duff et al., (2002) by stating that learning styles are important to the individual learner, 

and that psychometric measurements have been rigorously tested over time. They have 

concluded that psychometric tools are statistically acceptable for characterising individual 

learning preferences. Zywno (2003) suggested that instructors that have applied 

psychometric learning tools to the individual have shown/demonstrated a greater statistical 

significance between learning styles and performance based on results retrieved from the 

LPQ. 

 

According to Kovar et al., (2001) and Zywno (2003) a considerable amount of research 
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has been conducted in the area of learning styles and psychometric measurement tools, 

which has revealed that students learn better when using preferences with which they have 

success, and have the potential to be better learners. Kovar et al., (2001) suggests that it is 

important for the learner to be able to take steps to change their learning style to suit the 

situation by developing competence in a variety of learning styles’ categories. Carmona et 

al., (2007) furthers the debate by arguing that psychometric measurement tools can be used 

to identify ways in which the individual will collect, process, and organise new 

knowledge/information. The research carried out by Carmona et al., (2007) suggests that 

the higher a psychometric value an individual obtains the closer the correlation to the 

learner needs. For an example of student learning needs see Table 2: 

 Pragmatic Analytical  Reflector   Theoretical  

Student A:  10  8  9  12  

Student B:  9  11  12  7  

Table 2: Student learning needs 

According to the research of Carmona et al. (2007), the table above would produce the 

following results:   

 

Student A: would be classed as Theoretical  

 

Student B: would be classed as Reflector  

 

For a graphical representation of the table: See Graph 1 - Student learning needs.  

 

Graph 1 - Student learning needs 
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However, Carmona et al., (2007) have indicated that a concept drift can occur with student 

B, where Analytical and Reflector are closely associated; in which case the student would 

try both possibilities to adjust accordingly to his/her needs. For more information see Table 

3: Concept Drift. 

 

 Pragmatic   Analytical    Reflector    Theoretical 

Student A:                                10   8                                                           9    12 

Student B:                                                             9   11 12                               7 

Table 3: Concept Drift 

The concept drift is concerned with the two top values within the scale. In the table, 

concept drift is identified within the shaded sections.  

 

In a concept drift, Genovese (2004) would suggest offering the student the chance to use 

both settings to see which one would effectively improve the learning experience. Genovese 

(2004) suggests that values that are low within the psychometric scales do not influence the 

results and the true result would be the highest number, depending on the scale used and 

the amount of research carried out to support the learning style in question.  

 

Markham (2004) suggests that the psychometric scales would not have been accepted 

within the academic community without the consent of, or authorisation from the American 

Psychological Association (APA), which is supported by local bodies such as the 

Australian Council for Educational Research (ACER).  

 

According to Markham (2004), researchers that use learning styles to capture learners’ 

behaviours must have a greater understanding, and should define how the scales within the 

psychometric testing have been conducted, by illustrating the consequences for, and 

benefits to the individual using them. Isaksen et al., (2007) suggests that learning styles 

seem to be more spontaneously applied without conscious deliberation, whereas strategies 

seem to be more a matter of choice and training.  

 

The research associated with grouping relied upon the use of learning styles as a way of 

grouping individuals therefore the author thought it was important to include the issues that 

have divided the academic community relating to: Do learning styles work?; and How 

relevant are they to the individual?  
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5.2.3.2 Solution to the Concept Drift within PAFS  

 

The Concept Drift according to Carmona et al., (2007) is when the student has been 

identified as having two or more high numbers that are closely associated with each other. 

For a graphical representation of a concept drift, see graph 2: Concept Drift.   

 

Graph 2: Concept Drift 

 

 The concept drift can be identified on the graph by the symbols   

 

 

  The circle indicates scale value belonging to each category  

             The  line  joins  the  two  elements  together  indicating  the  values  belongs  to    

            the same student.  

To overcome the issue of concept drift within PAFS a rule base was designed and 

implemented to calculate and categorise the psychometric values belonging to the learning 

process questionnaire. Once the psychometric values have been retrieved the values would 

be placed into a complex rule-base, such as that demonstrated in Figure 18. However, the 

complete version can be found in Appendix B: RuleBaseComplex. 
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Figure 18: Rule-Bases 

The algorithm will use the rule-base to retrieve the highest psychometric value before 

placing the learner into a community that best suits the learner’ s needs; however, the 

above rule-base must be capable of detecting a concept drift, which would flag/indicate that 

two high similar values have been identified.  

 

If at any time the rule-base cannot work out the value concerning the concept drift, then the 

profile will adapt and retrieve the values that are stored concerning the David Kolb 

learning style test results. The AIPL environment was built using two learning style 

models, for more information see Figure 19. 

   

Figure 19: Two learning styles models 

The first learning style has the values of 1 – 14 as seen below: 

    IF (((Theoretical > Active) &&   

 

            (Theoretical > Pragmatic)) &&  

 

            (Theoretical > Reflective))   

 

      THEN   

 

      Set AIPL environment to Theoretical  

 

      Map AIPL variables (learning types, course selection, access rights)  

 

      Set location/destination of specific learning materials  

 

      Map URL locations for learning materials  

 

      Set community values   

 

      Map community values to Theoretical, grant access to communication software: chat  

      facility, discussion board, and forum room.      

   END IF  
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The above table from the Honey and Mumford learning style is the primary learning style 

that would enable the algorithm to retrieve the psychometric measurements from the 

individual. However, the second learning style from David Kolb will be used to aid the 

concept drift by enabling the algorithm to select the two highest similarities from both 

learning styles. 

 

The second learning style is represented by the values of A, B & C, D to enable the matrix 

to calculate the difference. According to Kolb (1985) the learning style is divided into two 

sections, which are: Concrete Experience, and Abstract Conceptualisation (A, B) and 

Active Experimentation, and Reflective Observation(C, D). 

 

 The total of As is computed as the Concrete Experience (A) score.  

 Total of Bs is computed as the Abstract Conceptualization (B) score.  

 Total of Cs is computed as the Active Experimentation (C) score.  

 Total of Ds is computed as the Reflective Observation (D) score.  

 

For  a  graphical  and  tabular  representation  of  the  above  details  see  Table  4  and 

Graph 3.   
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   Table 4: Learning Style & Graph 3: Learning style 

The tabular and graphical representation of Table 5 & Graph 3 has indicated that Abstract 

conceptualisation has the highest value within the psychometric scale.  

According to Kolb (1985) the learning style is capable of supporting 4 different concept 

drifts which are:  

 Abstract Conceptualization (AC) and Active Experimentation (AE)  

 Concrete Experience (CE) and Reflective Observation (RO)  

 Abstract Conceptualization (AC) and Reflective Observation (RO)  

 Concrete Experience (CE) and Active Experimentation (AE)  

To represent the concept drift, Table 5 will be used. 

 

Abstract Conceptualization (AC 16 Active Experimentation (AE) 14  

Concrete Experience (CE) 8 Reflective Observation (RO) 12  

 Abstract Conceptualization (AC) 16 Reflective Observation (RO) 12  

 Concrete Experience (CE) 8 Active Experimentation (AE) 14  

Table 5: Two Learning styles 

Once the rule base adjusts to accommodate the second learning style the system will record 

the highest values into a matrix.  
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According to the research carried out within Chapter 4 the two learning styles being used 

within this author’ s work can be closely correlated, for example see Table 6:  

 

 

Table 6: Closely correlated 

Within the matrix, applying the two learning styles together can enable the two scales to be 

joined enabling a more specific psychometric value to be used, for more information see 

graph 4: Close Correlation.  As indicated early on in this Thesis, the AIPL model being 

presented will make it possible to map contextual learning materials to the personal 

learning strategy of the individuals’ needs and requirements.  Several researchers 

(Brusilovsky et al., 2003; Dolog et al., 2004; Wang et al., 2008*; Martins et al., 2008*; 

and Alves et al., 2008) have all used learning styles to adjust the learning content to suit 

the individual. As indicated by Alves et al., (2008) the use of learning styles within on-line 

learning can assist with the categorisation of individuals into groups. The facilities 

designed, and implemented by (Wang et al., 2008*; Alves et al., 2008; and Martins et al., 

2008*) all use a singular Learning Style while trying to personalise the learning 

experience; however, due to the nature of AIPL, there will be two learning styles to enable 

a more in-depth understanding of the individual to assist with the adaptation of course-

content and grouping.  

 

The AIPL model is aimed at reducing mismatching between the individuals/groups to the 
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learning materials by gathering knowledge about the individual into a knowledge base 

system that uses filtering techniques to reduce learning materials/learning activities that 

aren’t suited to the learner’s specification. The benefits of blending these two learning 

styles together are:  

 The Honey and Mumford learning style enables the domain expert to have an 

understanding of how the individual prefers to learn.  

 The Kolb learning style enables the domain expert to have an understanding of the 

individual learning behaviour.  

 Using the blended learning styles will enable a precise group categorisation to be 

performed within the on-line learning environment.  

 The environment will be able to adjust to a variety of learning needs of the 

individual because of the blended learning styles together (how the individual 

prefers to learn; and what learning behaviours they have).  

Each of the two learning styles was designed for a particular reason to study the behaviour 

of the individual, and how that individual prefers to learn. By blending these two learning 

styles together the domain expert will be able to extract and create a more specific image 

on how that individual learns and what behavioural traits they have. In accordance with 

Brusilovsky et al., (2003), Dolog et al., (2004), Wang et al., (2008)*, Martins et al., 

(2008)*, and Alves et al., (2008) the use of one learning style can provide an effective way 

of personalising the learning experience, and by blending two learning styles together, the 

AIPL Model will be able to provide a more in-depth understanding of how the individual 

prefers to learn, and will ensure a more effective learner experience. 

 

5.2.3.3 E-Bookmarking  

 

According to Mobasher et al., (1999), enabling web personalisation via using user 

preferences can provide search engines with the opportunity to retrieve specific content for 

users through the use of: interests, personal preferences, and user traits. While keeping to 

the challenges and complexities associated with grouping, E-bookmarking takes into 

consideration homogeneous views by creating a foundation layer belonging only to learners 

that have similar learning traits in which a match can be adhered to. This approach will 

enable other learners not to get frustrated with inappropriate materials and mismatching 

issues, mentioned within Chapter 2, and Chapter 4.  
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However, in addition to using web personalisation other techniques are available to assist 

with grouping web-based materials: search and retrieval regarding CF; data mining 

techniques to extract usage patterns from users; and the clustering of user sessions to 

predict future user behaviour. 

 

5.2.3.3.1 Solution to e-bookmarking  

 

The quality assessment rating algorithm used in PAFS will use E-bookmarking as a 

technique for information retrieval to assist the individual in determining which learning 

materials are closely associated with their needs. To fully understand the process of the 

quality assessment rating algorithm, see Figure 20. 

 

Figure 20: e-bookmarking 

 Figure 20 can be broken into three sections enabling a comprehensive step by step guide to 

be developed on how the function will work within the AIPL environment. The actual 

ebookmarking that the learners see within AIPL can be found within Figure 20A. 

 

   

  

 

Figure 20A (Original)  

Figure 20A, demonstrates the retrieval of a highly rated learning object from the repository.   

  

The above image allows you to retrieve, view and rate learning objects  

from the repository.  To retrieve values later on you have to use Figure 

20A.  
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1 – Learner  

 

The learner retrieves the learning materials and rates each object between zero and ten (ten 

being the most positive). If the learner feels that the learning object was suitable to his/her 

learning then he/she will rate the learning object quite highly, alternatively if not then the 

learning object will not be highly rated. Once the bookmark has been stored the learner can 

quickly retrieve the learning object through his/her favorites that are stored within the AIPL 

environment.  

 

The rating system being used within e-bookmarking is similar to that of the project 

MERLOT and that of the recommender system by Ghauth et al., (2010). “Highly rated 

objects are returned ahead of objects that have lower ratings or have not been 

evaluated” (Nesbit et al., 2002). Ghauth et al., (2010) introduces a recommender system, 

whereby any item with similar content will be retrieved, which is based similar to that of 

PAFS but using rating and learning styles to classify learning objects. However, going back 

to the concept belonging to (Nesbit et al., 2002) within PAFS objects that have not been 

rated or have been given a low rating will not be automatically displayed. The PAFS e-

bookmarking system does provide a feature to the individual, which allows them to 

override the Information Retrieval (IR) mechanism to enable access to those learning 

objects that either have a low rating or none at all. 

 

2 – Retrieval  

 

Each learning material that is viewed by the individual can be rated depending on the 

learning experience. As mentioned above this approach is similar to that of (Nesbit et al., 

2002) and the MERLOT project. However, the AIPL environment does embrace the group-

learning-paradigm, which enables learners to be placed into communities best suited to 

their learning styles. As not clearly stated within the above Section PAFS does provide a 

way for allowing individuals to retrieve learning objects that have been viewed and rated 

within their individual community. The rating belonging to individuals within the 

community can be retrieved to indicate what other learners have viewed. This is similar in 

concept to the recommender system by Ghauth et al., (2010). 

  

The rating system being used here bares similarity to the Pearson Correlation algorithm, 

which rates objects from 0.0 to 0.9, in which 0.9 is the best suited. Within AIPL the 
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algorithm rating system works from 0 to 10, in which 7 to 10 is the best suited. A 

modification to the weight-based scale has enabled a calibration to be designed: 

 

 Rating Scale: Specification of Search Type  

 0 – 3 Low Search  

 4 – 6 Medium Search   

7 – 10 High Search   

     

The quality assessment algorithm has an additional function which enables the learner to 

retrieve specific values thus enabling a more comprehensive search to be derived. For more 

information see Table 7: Additional Search technique.      

 

Rating Scale: Search Type Rating Scale: Search Type  

0 – 3 Low Search 2 – 5 Fuzzy Low Search  

4 - 7 Medium Search     

8 – 10 High Search 6 – 9 Fuzzy  Medium Search 

Table 7: Additional Search Techniques 

Table 7 can be represented using a Venn diagram to illustrate set operations, for more 

information sees Figure 21. 
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                                     Figure 21: Venn Diagram 

 3 – Repository   

 

The repository is used to store learning materials within the AIPL environment. The 

repository has the capability of enabling communities to save dynamic references from an 

exterior source. The e-bookmarking mechanism through the use of recommendation from 

the community could make it easy for homogeneous groups to share ratings belonging to 

the learning materials that have been viewed. 

 

The importance of this approach provides a way for clusters to be developed from 
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homogeneous views. Homogeneous views within e-bookmarking can be seen as a filtering 

device that uses the clustering of results to be retrieved in accordance with CF. 

 

5.2.3.3.2 Technical Aspects of e-bookmarking  

 

To achieve the collaborative clustering of homogenous views within PAFS, Figure 22 

expands on the theoretical work conducted by Yao et al., 2007, the Typical KR System, 

which can be found in Chapter 3, Section 3.5.1 Approaches to matching. 

 

 

Figure 22: Approaches to Matching 

To achieve the collaborative clustering and build upon the theoretical model that (Yao et 

al., 2007) suggested within Figure 22 the following changes were required:  

 

Query a: Sends two internal state variables belonging to the individual containing how 

that individual wants to learn. These internal variables feed directly into the (Source) to 

enable the first step of retrieving the group views. This internal state variable acts like an 

indicator, which feeds along the process till reaching the Selected Relevant Knowledge.  

 

Sources: Within PAFS the sources consist of: Rating data belonging to the learning 

materials; how the learners prefer to learn; and what category/s they fit in. Query a, feeds 

directly into the source by indicating what module the student is on and how that learner 

prefers to learn in accordance with their own learning style/s.  

 

Selected Relevant Knowledge: The selected relevant knowledge section retrieves the 
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following values:  

 

1. Search criteria: i.e. 0 to 10  

2. Module course code: i.e. Internet Computing  

3. Learner’s category: i.e. how they learn in accordance to their own learning style/s.  

4. Collaborative grouping value (linked from Learner’s category)  

 

These four internal state variables are critical to the whole Personalised Adaptive Filtering 

System when retrieving homogenous views. 

 

Once these internal state variables have been selected, the next important aspect is to create 

a knowledge structure for the algorithm to use within the search results. The search results 

will then be used again to filter out any unnecessary and repeated results. For more 

information on this technical issue see Section 5.2.3.5 Advanced Methods.     

 

5.2.3.4 Categorising of Groups (CG):   

 

According to Tzouveli et al., (2005) and Subramaniam (2006), using groups of profiles 

has enabled environments to adapt to: similar groups’ habits, interests, skills, projects, 

locations and personalised settings. The purpose of using CG within PAFS is to find any 

close correlations between the learning relationships of individual learners and fellow 

learners within a module. CG works by interrogating and comparing string parameters 

belonging to individual learning profiles and records them into a matrix. CG is derived 

from close interrogation of LPs belonging to all the students studying on a particular 

module, to enable comparisons to be made. Once similarities have been identified within 

the CG, the algorithm will group them into a matrix, for an example of the CG operational 

functionality see Figure 23. 

Figure 23: procedures: (original) 

 Pragmatic Analytical Reflector Theoretical 

Student A: 11 8 4 12 

            

 

         

 

The CG reads in each parameter from left to right of the LP. Once all the values belonging 
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to the LP have been read and recorded, the next step of the operation is to use a cycle that 

loops through a rule base until the highest value can be identified and it is this value which 

the CG uses. The following four steps are required to enable the CG to work. 

 

Step 1: Placing values into a rule base see Figure 24.   

 

Learners Style Response Student A:   

 

Active 

Experimentation 

Reflective 

Observation 

Abstract 

Conceptualization 

Concrete 

Experience  

14 

 

12 

 

16 8 

Activist Reflector Theorist Pragmatist 

8 

 

4 

 

12 

 

11 

 

Figure 24: Matrix 

  Step 2:  The Rule Base will average out each conjoining value  

 

Active 

Experimentation 

Reflective 

Observation 

Abstract 

Conceptualization 

Concrete 

Experience  

14 

 

12 

 

16 8 

Activist Reflector Theorist Pragmatist 

8 

 

4 

 

12 

 

11 

 

Average Calculation  Average 

Calculation 

Average Calculation Average 

Calculation  

 

14 + 8 / 2 = 11                      12 + 4 / 2 = 8 16 + 12 / 2 = 14 8 + 11 / 2 = 9.5  

 

 

      Step 3:  The highest value belonging to the matrix will be extracted in this case (14)  

      With   the category (Abstract Conceptualization & Theorist)   
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      Step 4: A group will be formed or if a group already exists Student A will be placed         

into that particular cluster.   

 

 

  

 

                                                                                       Student A Group Theorist  

 

The Personalised Adaptive Filtering System will use the CG to overcome some of the 

issues associated with grouping (like unfair matching depending on experience; abilities 

and capabilities). According to research conducted by (Oxford 2003; Severiens et al., 

1994; Gutierrez et al., 2003) matching groups based on learning preferences can improve 

the learning experience while studying on-line. Genovese (2004), Litzinger et al., (2005) 

and Mehigan et al., (2010) indicate that trying to match individuals into groups via 

learning preferences can assist with the development of students to gain knowledge of how 

other people learn. Matching individuals through learning preferences will disregard issues 

such as those indicated by: Alexander et al., (2004) of inappropriate grouping based on 

academic levels; of Leutner et al., (1998), Oxford (2003), and Boyd et al., (2004) around 

misleading course materials; and of Cook et al., (2004) about inappropriate goal setting 

towards group performance). 

 

However, researchers like Severiens et al., 1994; Oxford 2003; Alexander et al., 2004; and 

Cristea et al., 2010, have provided a great wealth of knowledge about grouping using a 

variety of approaches, and it is still in the early stage of academic research about how to 

categories groups of individuals in a successful way. Spiro et al., (1996) does indicate that 

using learning styles within on-line learning environments can assist with matching 

learning materials to groups/individuals while studying on-line. The approach that was 

provided within CG was adopted due to the recommendation from literature that using 

learning preferences can assist with group development. 

                                            

5.2.4 Dealing with Ratings  

 

Yen et al., (2009) suggest that when dealing with ratings, the e-learning environment could 

use weights to calculate and rank the resources in accordance with personal preferences. 
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Once the learning objects have been ranked, the repository could provide a way for 

intelligent searches to retrieve specific and relevant materials in accordance with the rating. 

Yen et al., (2009) indicates that when dealing with rating, a large number of objects and 

participants are required to provide an efficient way of analysing results before learners can 

be assisted within the e-learning environment.  

 

According to Almudena et al., (2009) other limitations are associated with 

recommendation retrieving systems for example: lack of expertise regarding querying 

within the domain area; lack of diversity within the retrieval of the learning materials 

themselves i.e. high quality of search and retrieval; and how to effectively apply a social 

and hybrid learning environment in retrieving specific group views. 

 

5.2.4.1 Solutions to Rating  

 

According to Middleton et al., (2002), Ahn (2007), Yen et al., (2009) and the cold start 

problem is based upon very little or no initial ratings available to represent the learning 

object before a recommendation system can work. There are many approaches that 

according to Middleton et al., (2002), Ahn (2007) and Ghauth et al., (2010)* can be used 

to overcome the cold start problem, for example, bootstrapping (pre-loading of information 

from a group of ‘experts’), ontology’s (using secondary data to support assumptions made 

about object quality), machine learning techniques (to supplement initial data), hybrid 

systems (combination approaches), keyword recommendation, and content-based 

recommendation. 

 

PAFS uses a rating and recommendation system and does suffer from the cold start 

problem. Users are able to rate resources once they have retrieved and viewed those 

resources, however, in the beginning resources will have limited ratings. In addition to this 

PAFS uses a group based recommendation system, categorising ratings data from 

individuals into independent group perspectives on particular learning resources, this is 

also subject to the cold start problem. Therefore PAFS suffers from two levels of the cold 

start problem. The first level is a lack of ratings data linked to individual learning materials 

and the second is a lack of ratings data linked to collaborative grouping. This can be best 

illustrated through the below example:  
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Clive is a pragmatist undertaking a module about Computer programming.  Clive selects a 

resource to use from within PAFs that has not been previously rated and rates the resource. 

When this resource is presented to another pragmatic learner then they will view Clive’s 

rating (generally this is as part of an aggregated total – but in this case it is a single rating). 

Another learner who is not pragmatic will not be presented with Clive’s ratings data for this 

resource.  

 

Due to the nature of the cold start problem PAFS uses a trivial approach (keyword search), 

which according to Ahn (2007) can assist individuals in retrieving materials which are 

unrated. The AIPL environment does provide a keyword search that the individual can use 

based upon: terminologies; key phrases; and knowledge about the topic. This approach can 

assist the individual in building up the rating system with the materials that were retrieved, 

which can assist the group from the cold start problem. Middleton et al., (2002) and 

Ghauth et al., (2010)* does indicate that any additional data that can be used to assist with 

the cold start problems can be beneficial not just to the system but also for the individual. 

 

“In return for any bootstrap information the recommender system could      

provide details of dynamic user interests. This would reduce the effort involved 

in acquiring and maintaining knowledge of people’s research interests” 

(Middleton et al., 2002).   

 

PAFS does not introduce any new concepts to the cold start problem but does use an 

existing approach to assist with the issue.  

 

Dealing with the cold start problem within a community is not the only problem as 

indicated by Almudena et al., 2009, which refers to how to effectively group individuals. 

According to Severiens et al., 1994; Oxford 2003; Alexander et al., 2004; Almudena et al., 

(2009); and Cristea et al., (2010), there are still issues like: how to place the individual 

within an environment (community based); how to share homogenous views; and what 

factors are involved within grouping. 

 

Section 5.2.3 deals with what factors are involved within grouping and how to place the 

individuals into a collaborative cluster. The research conducted by (Spiro et al., 1996; 

Oxford 2003; Severiens et al., 1994; and Gutierrez et al., 2003) indicates that using 
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learning styles to group individuals into a community does provide an effective way. This 

leaves a problem of how to share homogenous views. 

 

To deal with how to share homogenous views within AIPL the learners will be placed in 

clusters that have the same learning traits, creating a similarity between the learners. By 

grouping learners into the same category this will enable homogenous views to be created. 

To enable other views to be shared, a rating mechanism was introduced: that focused 

directly on feedback regarding what they have found interesting. Even though PAFS still 

uses the rating and recommendation system it groups the learners with similar learning 

traits, thus enabling them to share more specifically focused opinions on the learning 

materials. 

 

5.3 The Personalised Adaptive Filtering System (PAFS)  

 

In writing this Section 5.3, the purpose is to summarise the individual functions associated 

with the Personalised Adaptive Filtering System. It does this through introducing the Non 

Semantic Matching Algorithm (Section 5.3.1), the Semantic Matching Algorithm (Section 

5.3.2) and then finally the collaborative categorisation and recommendation function 

(Section 5.3.3).   

 

5.3.1 Non Semantic Matching  

 

The Non-Semantic Matching Algorithm (NSMA) is a search mechanism that enables 

learners to find relevant information using a pre-defined list of characters, symbols, and 

numbers. According to Xul et al., (2005), the keyword search is now the most popular 

search method for retrieving on-line documents.  

 

Figure 25 and 25A demonstrate the overall features associated with NSMA. 
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Figure 25: Features of the NSMA 

  

 

Figure 25A: Actual keyword search facility found within AIPL. 

 

The NSMA obtains keywords from the subject domain expert and the learner. The NSMA 

enables the learner to add keywords that are relevant to the domain topic area. If we take 

an example of wiring a plug, a domain expert may choose keywords such as: {fuse, earth, 
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live, neutral, socket}, the individual may add keywords such as {kettle or EU} (in this 

example this may provide a specific context). The NSMA would then use the pre-defined 

keywords mentioned above to search through on-line learning resources for appropriate 

content.  

 

The NSMA can also take keywords related to the learning styles of the learners, for 

example, for a visual learner it may use keywords related to gathering visual learning 

objects e.g. image, diagram etc… This is a fairly primitive search and retrieval mechanism 

when linked into learning styles but is worth considering.  

 

Once the NSMA has searched through the on-line materials, the algorithm then retrieves 

the resources and produces a summary of its findings, from which a selection of resource is 

made by the individual learner. 

 

5.3.2 Semantic Matching Algorithm  

 

The Semantic Bridging Algorithm (SBA) functions through extracting from an individual’ 

s learning profile a representation of how that individual prefers to learn, it  then matches 

this representation against semantically marked up learning objects contained within the 

learning repository.  

 

Figure 26 represents the process involved while retrieving learning materials associated 

with one’ s learning style. The SBA interrogates the learner profile and extracts relevant 

information i.e. how that learner prefers to learn (for example: pragmatist), once this 

information is found the SBA will then shift through the learning repository to find 

materials associated with practical, logical or systematic exercises. For the SMA, please see 

Figure 26 and 26A. 
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Figure 26: Semantic Matching Algorithms 

 

Figure 26A: Actual Semantic Matching Algorithm 

 

To enable the SBA to shift through the learning resources, each individual learning 

resource needs to be marked up using LOM.  This standard enables the SBA to check for 

matches between individual learners and learning resources.    
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Once the SBA has searched through the repository of materials, the function will then 

retrieve best matched resources and enable the individual learner to select from these.   

Figure 27 is a snippet belonging to one of the learning objects used to challenge pragmatist 

learning within the AIPL environment.  

 

 

The learning object above can be represented using the parent and child tag that is 

associated with XML.  For a representation of the learning object above, please see Figure 

27.  
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              <?xml version="1.0" encoding="ISO-8859-1"?>  

              <?xml-stylesheet type="text/css" href="lss.css"?>  

 <xml id='xmldata' style='display:none;'>  

              <LearningStyle>  

             

    <lstyle category="KOLB">  

                    <classification> Concrete Experience </classification>  

                    <activity> practical exercise </activity>  

                    <activity> logical exercise </activity>   

                    <activity> systematic exercise </activity>  

                </lstyle>    

                    <lstyle category="Honey and Mumford">  

                  <classification> Pragmatist </classification>  

                    <activity> practical exercise </activity>  

                  <activity> logical exercise </activity>   

                    <activity> systematic exercise </activity>  

                     </lstyle>  

                </LearningStyle>  

              </xml>  

 

                                         Figure 27: XML 

 

For an xHTML representation of the above pragmatist exercise, please see Figure 28. 

 

 

 

 

 

 

Figure 28: xHTML 

Figure 28 was extracted in accordance with the recommendations of Dumbill, 2000 and 

Kesteren 2007.  The SBA was built to facilitate the Adaptive Information Retrieval system, 

by extracting relevant information (learning style categorisation) from the learner profile, 

which is then used to search the repository for activities and exercises that best suit the 

individual needs.    

 

5.3.3 Collaborative Categorization and Semantic Bridging (CC&SB)  

 

The CC&SB function was designed to facilitate and act as an educational tool within the 

AIPL environment by providing the opportunity for the learner to retrieve clusters of 

<p> Specific Exercised Based on Pragmatist activities:   

    <span class="LearningStyle" id="KOLB">   

        <span class="Pragmatist"> practical, logical and systematic exercise </span>        

        <span class="ConcreteExperience"> practical, logical and systematic exercise </span>        

    </span>  

</p>  
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homogenous views (from learners with similar learning approaches).  The function 

interrogates clusters of learners that have similar or matching learning traits through the 

use of the Learner Profiles.  Once the grouping has been created the collaborative 

categorisation mechanism shifts through viewing records and ratings belonging to each 

individual and brings back only the highly rated learning materials from particular groups 

of users.    

 

                                   Figure 29: CC&SB actual design 

Using CC&SB within AIPL enables other learners to retrieve materials via ratings based 

upon their group profile.  Figure 29, shows how the learner can click a button (retrieve) 

which will then filter out the learning materials with a low rating.  For more details 

regarding how Collaborative Categorization works within PAFS, see Section 5.2.4.4 

Categorising of Groups.  

 

The CC&SB requires five main concepts to work: these are:  

 Section 5.2.2  Representation of the Learner Profile   

 Section 5.2.4.1 Homogenous Views  
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 Section 5.2.4.3 E-Bookmarking  

 Section 5.2.4.4 Categorising of Groups   

 Section 5.2.4.5 Dealing with Ratings and Group Life  

It is these five principles that the author attributes to the whole collaborative categorisation 

of grouping within the AIPL environment.   

There are, however, complexities and challenges associated with each of the five  

sections mentioned, but they do have design solutions/issues that can be seen as a 

significant contribution from this Thesis.   

5.4 Overview  

Search and retrieval techniques play an important part within education: they enable 

learners to search for specific learning resources, and can be used to filter out any 

unwanted noise (inappropriate resources).  Each search and retrieval approach has its own 

beneficial aspects and limitations associated with them.  The literature search has indicated 

that certain filtering approaches can be grouped together to overcome issues like: 

improving performance relating to the retrieval of learning objects; computational issues 

regarding large repositories and materials; and creating clusters of homogenous views to 

scale down retrieval and unwanted reading materials.  Combining these enables the use of:  

sharing knowledge; acquiring group knowledge acquisitions to support those with little or 

new knowledge; or to assist and develop those with existing knowledge.       

 

The Personalised Adaptive Filtering System was designed to facilitate learning centricity, 

by taking the individual learner and building a solution around their needs.  By grouping 

individuals together they can share points of views, allowing them to develop and change 

how they might learn over time, by encouraging them to re-evaluate their own approaches 

through the use of learning process questionnaires.  Within this chapter, complexities and 

challenges were researched to indicate which problems and issues were associated with the 

filtering mechanism and collection of homogenous views.  This chapter concludes with 

some of the main findings as follows:  

 

The five principles that are required to enable collaborative categorisation of grouping to 

be formed are: Representation of the Learner Profile & the Learner Profile Lifecycle; 

Homogenous Views; E-Bookmarking; Categorising of Groups (CG) and Dealing with 

Ratings and Group Life.                                        
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Chapter 6: Experimentation  

 

This chapter provides detail about the Experimental suite of tests selected to evaluate the 

model presented in Chapter 4, and the algorithms presented in Chapter 5. This test suite 

includes a range of baseline tests designed to establish performance prior to system 

implementation, and a range of post implementation tests designed to establish change 

against the baseline.  This suite uses a mixed methods approach evaluating technological 

performance, and user experience to establish support for the solution presented in this 

Thesis.    

 

The chapter starts with an introduction to the Thesis question and what hypotheses are 

directly associated with the research.  It follows this with a detailed examination of the 

mixed methods used to conduct the research.  Finally, the chapter critically analyses the 

results from testing the AIPL environment.   

6.1 Research Questions and Hypotheses Re-stated      

 

This Thesis posed the following research question:  

 

Can the underlying principle of web 2.0, that of the ‘participatory web’, be used as the 

basis for a model to provide more intelligent personalisation of learning content to users?    

 

In essence, this will explore whether an intelligent environment which incorporates the 

ideas of social and community grouping can be developed to aid in the personalisation of 

learning materials to the learner.  

 

The results from this chapter should provide supportive evidence that the theoretical 

concept of the AIPL model can enhance the learner’s experience.   

6.2 Design of Experimental Test Bed  

 

In this section a detailed description of each individual test is set out, to enable other 

researchers to follow the research conducted within this chapter.   
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The AIPL test suite was developed to evaluate whether the system supports learners in 

providing content of interest and value to their studies through the various levels of 

matching algorithm.  The tests focused on the techniques used within the AIPL algorithm: 

keyword searching; semantic bridging; collaborative grouping and rating.  Each technique 

was built using separate functions to enable a comparison to be made of the effectiveness 

and efficiency of matching the learner needs to the materials. According to Ardito et al., 

(2006) and Liebowitz et al., (2009) it also useful to measure the effect of how individual 

functions work together, through a more synergetic evaluation.  Therefore the techniques 

are also evaluated collaboratively through feedback from the user.   

 

The test bed was split into several sections including the creation of a Baseline Test 

(establishing a mechanism for comparison), a preliminary test (a short course on how to 

wire a kettle plug), a primary test (another short course module called Introduction to Java 

Script) and finally a comparative test with a VLE (using the same module as the primary 

test).  Experiment A, B and C as outlined below were used to enable measurement of 

system performance, and user response.  Experiment D focused on the measurement of user 

response related to comparison with another VLE.  

 

6.2.1 Experiment A: Baseline Test  

 

To enable a system to be evaluated, it is useful to establish some form of baseline testing.  

Baseline tests provide a mechanism to enable correlation between ‘normal’ practice and the 

impact of any given change (Field et al., 2007).  According to (Shepherd et al., 2000; 

Kindley 2002; Nordic 2006) using baseline testing within ICT situations enables critical 

responses to be analysed and compared.  This provides evidence through the use of 

feedback to interpret what people liked and responded well too when using e-learning 

facilities.  Sinner et al., (2003), indicates that the provision of baseline testing gives other 

researchers the opportunity to carry out similar tests.  The baseline testing according to 

Sinner et al., (2003) is used to set and test particular behaviours of algorithms by analysing 

the following specifications:  environmental components, environmental variables, and 

probability distributions.         

 

The baseline test will initially involve test candidates finding out how they learn through 
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the use of a Learning Process Questionnaire (LPQ).  The results of the LPQ will then be 

explained to the individual as well as what factors they look for, and how they should 

perceive the learning materials.  Once the results from the LPQ have been explained the 

candidate will be provided with access to a repository of learning materials.  They will then 

need to go through this repository and select relevant learning content that appeals to them 

in relation to a particular learning context. This baseline set of results will provide an 

indication of the sample set of learning materials that individuals judge as being most 

relevant to their learning needs, and will be used as a comparator against Experiment B and 

C.  

 

For example: A candidate with a learning style category of reflector may pick out a sample 

set of nine learning materials from the learning materials contained in the repository.  These 

materials they will have judged to be the most suitable, relevant, and of enough quality to 

help them in their learning journey.   

 

Three instructional studies were required within this Thesis to make this research possible.  

The first instructional study was the introduction of a domain topic i.e. wiring a plug 

(learning activity).  A range of learning materials was presented to students enabling them 

to select appropriate learning materials relevant to their approach to learning.  The 

particular study was used to summaries (self-review), clarify, and predict materials closest 

to how they learn within this given topic (wiring a plug).  The results belonging to the 

learning activity (wiring a plug) were stored for comparison against 6.3.2 Experiment B: 

Preliminary Test results.  

 

The second instructional study required within this Thesis was the introduction of  a 

module called ‘Introduction to Java Script’, which involved the candidates going through 

another repository of learning materials  selecting the most relevant  content to their 

approach to learning.    

 

The third and final study involved comparing the AIPL environment with the Moodle VLE, 

shown in Section 6.3.4 Experiment D: Comparison Test. This approach allowed for a close 

comparison  between the AIPL  environment and Moodle  environment  with respect  to:  

handling  student  queries;  Human  Computer  Interaction  (HCI)  issues; pedagogical 

course approach; mapping of course navigation; and handling in general.    
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These three studies should provide an insight into how the student will interact with online 

learning materials based upon their individual preferences.  This may lead to a significant 

improvement in the quality of delivery and provision. The comparison tests between the 

two VLE’s will be able to identify reliable issues over time, and the transfer of tasks that 

tapped the  trained skills  of summarizing, questioning, and clarifying, on-line learning 

materials.   

 

6.2.2 Experiment B, Preliminary Test  

 

Please see Figure 30 for the 3 tests involved within Experiment B.   

 
 Name of Test Testing criteria  

    Test 1 Keyword Search Wiring a plug  

    Test 2 Semantic meta-data contextual search Wiring a plug  

    Test 3 Collaborative grouping Wiring a plug  

Figure 30: Preliminary Testing (Wiring a plug) 

Within Test 1 there were two types of tests conducted which looked at a simple generic 

keyword search and a more domain specific one.  The  response  from  the experiments  

was  used  to  compare  whether  a  simple  generic  keyword  search produced  the same 

results as a more specific one  and to  question how effective the retrieval  filter was in both  

searches.  The user feedback on the operation was analysed and the materials retrieved.  

 

Test 2 involved the analysis of learning materials returned using AIPL through use of a 

learners profile against the baseline results from Experiment A.  Precision and recall were 

evaluated to determine if the algorithm has performed equally well as human judgment.   

 

Test 3 involved the students sharing their recommendations (homogeneity views) with 

other students that have similar learning traits.  The learners were able to retrieve other 

views using a collaborative grouping rating mechanism to retrieve feedback from similar 

learner groups to enable comparisons to be made.  This particular test, test 3 provided an 

insight into how group dynamics might affect the overall performance of sharing personal 

views and ratings.  The test results from this Experiment were analysed to determine if mis-

matching was reduced in accordance to rating, and group views.  Test 3 was developed to 

support the Thesis question.  
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6.2.3 Experiment C, Primary Test   

 

Experiment C was created to enable comparison results to be formulated from the results 

found within Experiment B.  This would be achieved by using a primary domain topic 

(Introduction to Java Script) for the testing procedure. The following tests were set out, 

which according to Shepherd et  al., (2000); Kindley (2002); and Nordic  (2006) provided 

the correct setting to facilitate a comparison between the preliminary (wiring a plug) and 

primary (Introduction to Java Script) activities.  Please see Figure 31 for the three testing 

steps involved within Experiment C.  

 

 Name of Test Testing criteria  

    Test 1 Keyword Search Introduction  to Java Script                                   

    Test 2 Semantic meta-data contextual search Introduction to Java Script  

    Test 3 Collaborative grouping Introduction to Java Script  

Figure 31: Primary Testing (Introduction to JavaScript) 

The testing procedures used within Experiment C, were based upon those designed for 

Experiment B.   

 

Test 1 was used to evaluate a generic and specific keyword search and compare this with 

the results obtained in Experiment B.  

 

Test 2 evaluated the meta-data contextual search and enabled comparison of Precision and 

Recall results to the baseline presented in Experiment A and the result set obtained within 

Experiment B.    

 

Test 3 enabled analysis of the results from the collaborative grouping and rating algorithm 

presented in Experiment C with the similar result set from Experiment B.  

 

6.2.4 Experiment D: Comparison Test   

This experiment looks at and explores the similarities between the AIPL environment using 

Introduction to Java Script and the same course being run on the Moodle environment.  

The comparison test will look at particular features belonging to: the course structure, the 

interface design and finally student thoughts about the different features offered within 

AIPL.   
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6.2.5 Limitations  

 

During the transitional period from the theoretical model to the framework for testing, a 

variety of environmental and variable constraints were identified, which could have 

affected the testing stage.  These factors are: 1) marking up of meta-data regarding the 

learning objects; 2) number of students required to set the tests for; 3) time factors, which 

varied during testing; and 4) corrupting the test data.   

 

Designing the course content involved the use of LOM to represent the learning objects 

found within the on-line repository.  The limitations and issues identified, when using LOM 

were: designing the correct annotation that would successfully represent the materials. This 

particular factor involved further complications due to the representation techniques 

required to mark up on-line learning objects. These are:   

 

 How to attach the LOM standards to every learning object used throughout the 

tasks for each week? This involved much time wasted on the course content by 

going through each individual learning object to check for validation regarding the 

individual tasks set each week; and finally to ensure that the algorithm can identify 

course content that is marked up semantically.   

 

 The number of students that are involved during the whole testing procedure will be 

in the range of thirty-fifty students due to the expected interest in evaluating the 

project in the institutional context.  This small number raises concerns in relation to 

statistical significance, and causes some issues in relation to the collaborative group 

feedback algorithm, which relies on greater numbers of students viewing and rating 

learning objects.   

 

However, Goldberg et al., (1994) and Cobb et al., (1998) recommends the use of 

small groups when trying to capture the abilities  of VLE’s; but, results should only 

be taken as a preliminary finding.  Goldberg et al.,(1994), Cobb et al., (1998), 

Whitelock et al., (2000) and Zhang et al., (2004) have all used a variety of 

candidates sample sets ranging from seventeen to thirty to verify statistical 

significance belonging to their e-learning research.   
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According to Cobb et al., (1998) when testing VLE’ s it is critical to the project that 

a diverse group of candidates are used, which will support a multitude of abilities 

and backgrounds.  The diversity of groups can vary depending on “background 

demographic information (age, gender, reading ability, numeracy, 

comprehension, physical disability and computer use)" (Cobb 1998 et al., P 2).  

 

To undertake such research varies depending on complexity and the realistic 

number of test benches being offered.  Using a real life module that is associated 

with the degree classification involves students turning up on time for testing, and 

this would mean that consistency over the life cycle of the on-line module is 

ensured.  

 

As indicated by (Goldberg et al., 1994; Cobb et al., 1998; Whitelock et al., 2000; 

and Zhang et al., 2004) the use of small sample sets can still produce significant 

evidence to support research goal.   

 

 The time factor played an important part: it involved using a specific timetable to 

which each individual test was carried out; because of the size of the project, test 1 

and test 2 within each Experiment were tested at the same time to check for 

comparison between the two.  The module run time started at the beginning of the 

semester and ended at the end of semester, to keep within the educational life cycle. 

Algorithm 3 could only be applied when enough data had been recorded within the 

on-line system.   

 

 It is necessary to assume that participants do not have full knowledge of the total 

structure of AIPL and PAFS, or the ability and inclination to go through any 

complex reasoning to change the results throughout the testing procedures.  In 

addition to participants, the following issues have been identified:  The testing 

procedures involve all learning materials being used for this testing purpose being 

marked up with metadata. This would ensure that a fair test can be conducted and 

the total learning objects retrieved for each algorithm can be recorded. 

   

In conclusion, the limitations and issues of testing the theoretical model has given rise to 

many implications for future research, for example: to measure the full potential would 
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require testing over a longer period of time, which would produce more accurate results.   

6.3 E-learning Research Measurements  

 

This section describes experimental methods used by other researchers in the area of e-

learning.  Essentially, researchers suggest that experimentation in this area can be analysed 

through both quantitative and qualitative methods with most researchers encouraging a 

mixed methods approach (Bonk et al., 2000; Britian et al., 2004).  Mixed methods provide 

the researcher with him opportunity to capture programmatic usage data whilst also 

capturing the essence of system use through opinion based questionnaires or interviews.  

Begičević et al., (2006) suggests that mixed methods allow for a closer match between 

experimental results and research aims.  

 

Bonk et al., (2000) indicates that Human Computer Interaction should play an important 

part when testing e-learning environments, for example:  learner-content interaction; 

learner-instructor interaction; and learner-learner interaction.  Britian et al., (2004) 

indicates that for each of the multiple dimensions of learners’ interaction, we should look to 

metrics for analysing adaptability and interactivity, in addition to using a variety of 

monitoring mechanisms.  According to Britian et al., (2004) the following three elements 

should be used when examining e-learning environments:  

 

 Adaptability - According to Britian et al., (2004) testing for this provides an insight 

into how participants react to activities associated with a learning topic, and the 

needs of the individual or groups of users.  

 

 Interactivity - Cappuccio et al., (2004), Begičević et al., (2006) and Britian et al., 

(2004) suggest that interactivity must play an important role in analyzing students 

when using an on-line environment.  Interactivity enables the domain expert to 

monitor student behaviour when using on-line materials, resources of their own, 

external materials, and launch and run simulations.  

 

 Monitoring - Britian et al., (2004) suggests that monitoring through usage patterns 

can be broken down into three particular areas, these are: usability, observation, 

and data capture.  Usage patterns to monitor include computer log data (e.g. 
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number of participants, reading time, creation time, etc.), video screen grabs, 

student and instructor attitudes, peer responsiveness and interactivity. Silius et al., 

(2003); Chen (2001); Frankli et  al., (2004), Lanzilotti et al., (2006) also indicate 

that Human Computer Interaction, in particular, usability testing is important.  

They suggest that observing learners whilst on-line can provide the opportunity to 

gather details regarding: what stimulates the learner’s interest; what motivates the 

student to learn; system level perspectives on the user interface; overall system 

performance; and the general effectiveness of the facilities offered.  The 

methodology used within this Thesis runs parallel to recommendations from (Bonk 

et al., 2000; Britian et al., 2004) for using mixed methods and that of (O’ Riordan 

et al., 2003; Ghauth et al., 2007; Hahsler 2010), which will use recall and 

precision to ensure the decision-support accuracy of the system.   

 

According to Alvarez, precision can be defined as “the fraction of the items retrieved by   

the system that are interesting to  the user, and recall (as), the fraction of  the items of 

interest to the user that are retrieved by the system” (Alvarez 2002, P1).   

 

In addition to the measurement of precision and recall, it is also useful to calculate the F  

Measure (Lin et al., 2004) as this improves the accuracy of results.  Cambridge University 

Press suggests that “a single measure that trades off precision versus recall is the F 

measure, which is the weighted harmonic mean of precision and recall” (Cambridge 

University Press, 2008).  

 

The mathematical formula’s used to measure precision and recall, are the following:  

Recall (R) F-Measure (FV) Precision (P) 

“R = TP/(TP + FN)” 

Cambridge University Press (2008) 

“FV= 2PR/(P + R)” 

Cambridge  University  Press (2008) 

P =  “TP/(TP + FP)” 

Cambridge University Press (2008) 

Key:  

 

TP stands for True Positive - is used to derive the correct values within a test set, for classification purposes.   

 

False Positive (FP) - is used to compute the proportion of false positives between values within a test procedure.   

 

FN stands for False Negative - A false negative is when the outcome is incorrectly classified as negative when it is in fact positive.  

 

 

According to (Kamenský et al., 2006), the independent variables associated with  
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Assessment of system performance is:   

 Measuring the complexity of the algorithm  

 Precision   

 Recall  

 

By using the recommendation of (O’Riordan et al., 2003; Kamenský et al., 2006; Ghauth 

et al., 2007; Hahsler 2010) complexity will be measured using the retrieval rate of learning 

materials (through the use of Precision and Recall). Salton et al., (2002) and Kamenský et 

al.,(2006) indicate that other qualities like time factor, complexities, emotional, analytical, 

and structural intervention can also be used to measure: sensitivity and performance.  

 

The independent variables that are associated with these are:   

 

 Emotional State: According to Lu et al., (2008) an emotional state set is 

associated with the learning experience.  The emotional state set can be found in 

Table 7: State Set  

 

Interest Curious about the new knowledge, attentive, eager to learn  

Confusion Faced with problems, trying to solve the problems.  

Frustration Completely unable to understand the course material, reluctant to learn. 

Hopefulness Difficulties solved, pleased with the new findings, willing to explore more. 

Table 8: Lu et al., (2008) State Set 

An additional emotional state is the state of boredom as outlined by Chen (2000) in Table 

8.  
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Boredom 

 

 

 

 

 

 

 

 

 

 

According to Chen (2000) to overcome boredom within on-line learning, the person has 

to be in a flow state of mind. This flow state of mind refers to “when  an  activity  

stimulates  an  individual’s  enjoyment  and  peak experience,  this  engagement  

frequently  promotes  psychological growth  and increased personal skills” Chen 

(2000).   

 

The AIPL environment does provide activities that challenge the individual through the 

use of pedagogical approaches and rich learning materials to capture the individual 

learning needs; however, in  cases where this does not work AIPL does provide access to 

a dynamic background library in which, the student can place their own resources that is 

found elsewhere to enable resourcefulness.   

Table 8 State Set Continued 

 

 Analytical:  According to Bonk et al., (2000) the overall design of the e-learning 

environment can be measured through the analysis of interactivity, which focuses 

on the following independent variables:   

 Measurement of the clarity of understanding of the problem given to the 

students.  

 Measurement of the received feedback on how the environment handled the 

problem given.   

 

 Structural Intervention: Adjusting content to optimize the learning for a specific 

audience becomes possible.  According to Falcão et al., (2007) this is achieved by 

measuring the independent variables associated with the learning outcomes against 

the students’ own views on how successful it was.    

 

In addition to performance evaluation according to Thulal (2003), Mutation Analysis 

involves a detailed look into the overall effectiveness of a system.  These values or 

independent variables can be declared as the following:  handling student’s queries, student 

volume in terms of assignments, the payment system for fees, and the security of the 

student’ s account details.  However, according to Nguyen et al, (2008) mutation analysis 

pre-focuses on how effective the system is in handling consistent data changes.  For 

example, the number of times a statement should be executed to achieve a certain 

confidence with a new system. Also if there was a fault, it would be revealed by testing, 
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using the test-bed suite.   

 

Neumann, (2005) has similar ideas to Thulal, (2003) about using independent variables to 

measure the effectiveness of a system.  However, these variable factors are closely 

associated with interaction and how the environment can handle change.  It is these small 

factors such as: recording event changes; executing different tasks and recording personal 

views (Papy et al, 2004); and how the documents are perceived, which according to 

Neumann, (2005) are important.   

 

The author is interested in a variety of ideas that (Thulal 2003; Papy et al., 2004; 

Neumann 2005; Nguyen et al 2008) have suggested.  However, the following factors were 

used as independent variables when using Mutation Analysis as a way of measuring 

effectiveness:  

 

 Handling students queries i.e. search and filtering of learning materials.   

 Recording  personal  views,  for  event  changes,  or  tasks  when  dealing  with  the 

three stage evolutionary algorithm.  

 Fault identification or empty searches.     

 Overall design of the solution to the specification.   

 

6.3.1 Summary of independent variables being monitored within this 

experimentation chapter  

 

 By using performance and effectiveness (mutation analysis) as a measurement goal the 

author will be able to assess the effects on the performance and accuracy of the AIPL 

learning environment, and PAFS functions.  The independent variables being used within 

each experiment can be broken into several parts. These are outlined in Table 9 including 

identification of which experiment is used to provide results for them.    
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Measurement Measurement Criteria Experiment(s)  

Performance 

 

Precision A, B, C  

Recall A, B, C  

Complexity of the algorithm B, C  

Emotional Confusion B, C  

Interest B, C  

 

Analytical & 

 

Interactivity  

Measuring the clarification of understanding of the 

problem  given to the students  

B, C  

 

Measure the received feedback on how the 

environment  handled to the given problem 

B, C 

Effectiveness 

 

Handling student s query 

Recording personal views 

Fault identification 

Design of the solution to the problem specification  

B, C, D  

B, C, D  

B, C, D  

B, C, D 

Table 9: Independent Variables 

 

The above has provided a review of existing evaluation techniques used in e learning 

system testing.  The design of the experimental test bed is described in the next section.  To 

successfully gather the independent variables the following psychometrics measurement 

devices will be used: Likert’ Scale; Visual-Analog Rating Scales (VAS Scales); and Self-

report measures i.e. Yes/No scales. The use of Analog Rating Scales (VAS  Scales) and the 

Likert Scale, provides an opportunity to run similar tests, in which the opposite scales will 

be used so that the test candidate can not formally guess the results they achieved within 

the previous test.  According to Field et al., 2007, using two different scales will provide 

the methods to check for validity and accuracy between two similar tests.   

 

For each test that was conducted within the Adaptive Intelligent Personalised Learning 

(AIPL) environment the measurements were taken over time for each state.  This ensured 

that the test candidates know what was happening and their personal reviews were 

documented to ensure accuracy and validity.   

 

The next section will provide an analysis of the results of the experimentation.  These 

results will be presented in relation to each measurement factor rather than each 
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experiment.  This will allow for analysis of the results to be presented alongside each result 

set.  

 

6.4 Analytical Results:    

 

Using the recommendations of (Goldberg et al., 1994; Cobb et al., 1998; Whitelock et al., 

2000; and Zhang et al., 2004), thirty six candidates were used to undertake the tests within 

Experiment A and B and sixteen candidates were used to undertake the tests in Experiment 

C and D. The research candidates varied in:  age, computer literacy skills, education, and 

knowledge background to enable a diverse cross section to be analysed.  The results from 

this section have been divided into four specific areas of measurement:  

Performance (6.4.1), Emotional Response (6.4.2), Analytical & Interactivity (6.4.3), and 

finally Effectiveness (6.4.4).  

 

6.4.1 Performance Measurement  

 

This section focuses on analysing and discussing the results from the system performance 

testing outlined in Experiments A, B and C.    

 

Experiment A - Baseline Testing  

 

This section provides analysis of the baseline test results consisting of the result sets from 

each of the academic activities.  These result sets will then be compared in future sections 

to the system based testing.  The first set of baseline test results will be used for comparison 

in Experiment B (preliminary testing).  These results can be found in Table 10. The second 

set of baseline test results will be used for comparison in Experiment C (primary testing). 

These results can be found in Table 11. 
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 Mean Precision Mean Recall Mean F  

    Experiment  A     0.783 

 

0.773 

 

0.763   

 

 Stdev Precision 

 

Stdev Recall   

 

 

0.18924359 

 

0.136948538   

 

 Human Retrieved    

285    

 Test candidates 36    

Mean/Average 7.916666667    

Standard Deviation 2.811964235    

Table 10: Base line test for Experiment B, preliminary wiring a plug 

          

 Mean Precision Mean Recall Mean F 

    Experiment  A 0.655 

 

0.704 

 

0.670 

 

 Stdev Precision 

 

Stdev Recall 

 

 

0.195805852 0.153024992 

 Human Retrieved    

345    

Test candidates 16    

Mean/Average 21.5625    

Standard Deviation 2.0320351   

Table 11: Base test results for Experiment C, Primary Introduction to Java Script 

Table 10 and 11 represent the test candidate’s views while selecting relevant learning 

materials for Experiment A relating to Preliminary and Primary testing.  Using Table 10 

and 11 provides a compassion for Experiments B and C.   

 

Test 1 - Keyword Search  

 

Using the recommendations that (Salton et al., 2002 and Kamenský et al., 2006) 

suggested, a two phase test was introduced.  The two phase test involved using a set of 
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generic keywords and a more specific set of keywords that the domain expert had 

developed with the help of qualified electricians’.    

 

The results from the generic search from Experiment B are shown in Table 12:   

 
 

Test 1 Primitive Keyword Search 

 

 

Mean Precision 

 

Mean Recall 

 

 

Mean F 

 

Number of students that took part in test 1: 

100% or 36 candidates. 

0.213 

 

0.735 

 

0.325 

 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

 

 

 

0.0562 0.14932 

 Table 12: First test results, relating to the generic keyword search 

The first set of results indicated within Table 12, was achieved by averaging out the scores 

belonging to Precision, Recall, and F-Value Rate.    

The results from the specific keyword search in Experiment B are shown in the Table 13:   

 

 

Test 2 Specific Keyword Search 

 

 

Mean Precision 

 

Mean Recall 

 

 

Mean F 

 

Number of students that took part in test 2: 

100% or 36 candidates. 

0.639 

 

0.799 

 

0.702 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

0.128 0.0860 

Table 13: Second test results, relating to the specific keyword search 

 

Looking at the results from Table 12, using a generic keyword search provided the 

candidates with an average threshold recall value of 0.735, this indicates that it is relevant 

(Kiu et al., 2006; and Ghauth et al., 2007 suggest anything with a value over 0.6 is 

relevant).  The results from Table 13 indicate that a specific search has increased the recall 

value from 0.735 to 0.799 on this occasion.   
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Using the recommendations from Folorunso et al., (2006), Ai et al., (2007), and Sosnovsky 

(2008), anything that is close to 0.7 is relevant to a retrieval search regarding Precision.  

The first set of results from Table 12 and 13 do not look promising for the preliminary 

(Wiring a Plug) test regarding precision, which only reached 0.639 within the search 

criteria.   

 

To validate these results further, Experiment C was constructed.  This enabled further 

evidence to be collected regarding system performance and compared with Experiments A 

and B, please see tables 14 and 15.   

 

The results from the generic keyword search in Experiment C are shown in Table 14:   

 

Test 1 Primitive Keyword Search 

 

 

Mean Precision 

 

Mean Recall 

 

 

Mean F 

 

Number of students that took part in test 2: 

100% or 16 candidates. 

0.406 

 

0.926 

 

0.564 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

 

0.0297 0.0331 

Table 14: First test results, relating to the generic keyword search 

The first set of results indicated within Table 12, were again achieved by averaging out the 

scores belonging to Precision, Recall, and F-Value Rate.  The results from the second 

specific keyword search in Experiment C are shown in the Table 15:   

 

 

Test 2 Specific Keyword Search 

 

 

Mean Precision 

 

Mean Recall 

 

 

Mean F 

 

Number of students that took part in test 2: 

100% or 16 candidates. 

0.790 

 

0.823 

 

0.803 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

 

0.062 0.101 

Table 15: Second test results to the specific keyword search 
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These results from both tables 13, and 15, do support the idea of the more specific the 

search is, the more the precision rate is increased as indicated by (Fidel 1985; Klein et al., 

2001; Cederberg et al., 2003).  

 

Test 2 - Semantic Metadata Retrieval   

 

The semantic metadata retrieval test involved using a baseline test (see above Experiment 

A) to check for accuracy and performance. This approach ensured that the author was able 

to assess the effects on performance and accuracy of the AIPL learning environment and 

PAFS.  To monitor the accuracy, each learning object which the candidate chose within the 

baseline test, was recorded and compared to the automatic retrieval tool of the semantic 

metadata retrieval algorithm.    

 

Experiment B (Wiring a Plug)  

 

Tables 16 and 17 will demonstrate the statistical analysis of a comparison between 

Experiment A and Experiment B (Test 2).   

 

 Human Retrieved Total Materials Retrieved 

285.00 263.00 

      Standard Deviation 2.8 1.1 

      Standard Error 0.47 0.19 

Table 16: A comparison of Experiment A and Experiment B (Test 2) 

 

Taking the results from Table 16 further, the statistical significance is:  

 

Mean Precision Mean Recall Mean F 

0.710 0.725 0.698 

Table 17: Statistical Analysis of Experiment B (Test 2) 

 

The first set of results from Table 16 and 17 looked promising for the preliminary (Wiring 

a Plug) Experiment.  To validate these preliminary results further, a primary Experiment 
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(Introduction to Java Script module) was implemented to gather analytical responses for 

comparison purposes.  

Experiment C (Introduction to Java Script)   

 

Tables 18 and 19 will demonstrate the statistical analysis of a comparison between 

Experiment A and C (Test 2).   

 Human Retrieved Total Materials Retrieved 

345 291 

Standard Deviation 2.0320351 3.63719214 

Mean/Average 21.5625 18.1875 

Table 18: A comparison of Experiment A and Experiment C (Test 2) 

 

Looking at Table 18 PAFS has retrieved less learning materials than that of Human 

selection.  Even though the Human selection had a higher number, PAFS still brought back 

relevant materials from the repository through the search facility.  The next set of results 

will look at the results more closely by examining through the use of: Mean Precision, 

Mean Recall and Mean F.   

Mean Precision Mean Recall Mean F 

0.910 0.911 0.910 

Table 19: Statistical Analysis of Experiment C (Test 2) 

The result from Table 18 and 19 indicates that by using a search facility tailored to the 

individual can increase the relevance of learning materials being retrieved.  The Semantic 

Metadata Retrieval would search through the repository bring back anything relevant to 

that particular learning style categorisation i.e. (Reflector).  

 

Test 3 – Collaborative grouping and Rating  

 

The collaborative grouping and rating retrieval test involved using a baseline test (see 

Experiment A) to check for accuracy and performance. This approach ensured that the 

author was able to assess the effects on performance and accuracy of the AIPL learning 

environment.  To monitor the accuracy, each learning object which the candidate chose 

within the baseline test, was recorded and compared to the collaborative grouping and 

rating algorithm.  Test 3 involved two experiments relating to preliminary (wiring a plug) 

and primary (Introduction to Java Script) which is documented through Experiment B and 
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C.   

Experiment B (Wiring a Plug)   

This particular experiment involved students from the preliminary investigation (wiring a 

plug) using the collaborative grouping and rating algorithm to search and retrieve relevant 

learning materials.  As indicated 36 test candidates participated within this investigation 

and analysing Table 20 the collaborative rating overall retrieved fewer learning materials.    

 Human Retrieved Total Materials Retrieved 

285 241 

Standard Deviation 2.81964235 2.26551091 

Mean/Average 7.91666667 6.69444444 

Table 20: Comparison between Experiment A and B 

Table 20 demonstrated that overall fewer learning materials were retrieved compared to  

the baseline test, found within Experiment A.  Table 21 demonstrates that Precision and 

Recall within this test is nearly the same, which shows that this approach has enabled a 

more specific search to be conducted that has assisted individuals in their on-line learning 

experience.   

 

Experiment C 

 

Mean Precision 

 

Mean Recall 

 

Mean F 

Number of students that took part in the test: 

100% or (36 n) candidates. 

0.802 

 

0.695 

 

0.738 

 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

 

0.141828856 0.131968094 

Table 21: Statistical analysis belonging to Experiment B 

As indicated through tables 20 and 21 this approach has reduced the total amount of 

learning materials being retrieved.  To validate this approach another experiment was 

required, which can be seen in Experiment C.   

 

Experiment C (Introduction to Java Script)   

 

Looking at Table 22 by using the collaborative grouping and rating facility the students  

were  retrieving  more  relevant  and  specific  learning  materials  that  were  closely  

associated with their learning styles.  
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Experiment C 

 

Mean Precision 

 

Mean Recall 

 

Mean F 

Number of students that took part in the test: 

100% or (16 n) candidates. 

0.853 

 

0.623 

 

0.718 

 

 

 

 

 

 

Stdev Precision 

 

Stdev Recall 

 

 

 

 

0.0601 0.1333 

Table 22: Statistical analysis belonging to Experiment C 

 

Table 23 demonstrates that using the collaborative grouping feature increases the amount 

of learning materials being retrieved by the individual whenever a search is being 

conducted.    

 Human Retrieved Total Materials Retrieved 

345 214 

Standard Deviation 2.032035105 3.32415403 

Mean/Average 21.5625 13.375 

Table 23: Comparison between Experiment A and C 

 

The results from Table 22 and 23 does indicate that by using collaborative grouping and 

rating can help to reduce mis-matching and unwanted learning resources.   

 

6.4.2 Emotional Response  

 

The author used emotional states to measure the theoretical concept of this Thesis, by 

analysing specific aspects of human nature i.e. Confusion and Interest.  In analysing 

Confusion and Interest it enabled the author to take a direct look into the whole conceptual 

idea, and design of AIPL.  Confusion and interest provide an insight into how the 

candidates react to the system in practice.   

 

The results that are associated with emotions are broken into two sections, these are:  

 

6.4.2.1 Confusion and 6.4.2.2 Interest.   
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6.4.2.1 Confusion  

 

See Table 24 for results in relation to confusion, regarding the AIPL environment.   

 

Keyword Search Automatic Retrieval Collaborating grouping 

 

Did you at any time find that 

the keyword search was 

confusing? 

 

Did  you  find  that  at  any  time 

the automatic search confusing? 

 

 

Did you find that at any time the 

collaborative grouping search 

confusing?  

    Experiments B C Experiments B C Experiments B C  

Strongly Disagree 20 6 Strongly Disagree 10 1 Strongly Disagree 15 2  

Disagree 16 9 Disagree 20 12 Disagree 14 12 

No Strong Feelings 0 1 No Strong Feelings 6 3 No Strong Feelings 5 2  

Agree 0 0 Agree 0 0 Agree 2 0  

Strongly Agree 0 0 Strongly Agree 0 0 Strongly Agree 0 0  

Table 24: Confusion Test Results 

The above Table indicates that the keyword search facility was the least difficult for 

candidates to use.  There are some indications in the qualitative responses to the above 

questions related to use of the Collaborative grouping function which indicate some of the 

issues:  

 

      “I found it difficult to relate to someone else search”  

      “To me some of the rating I would give would be slightly higher”.    

 

Table 25 will demonstrate statistical significance of the aggregated set of results from 

Experiment B and C linked confusion while using the AIPL environment.   
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Keyword Search Automatic Retrieval Collaborating grouping 

 

Did you at any time find that 

the keyword search was 

confusing? 

 

Did you find that at any time the 

automatic search confusing? 

 

 

Did you find that at any time the 

collaborative grouping search 

confusing?  

 

    Experiments 

 

 

B 

 

 

C 

 

 

Experiments 

 

 

B 

 

 

C 

 

 

Experiments 

 

 

B 

 

 

C  

 

Standard 

deviation 

2.84 

 

4.09 

 

Standard 

deviation 

7.21 

 

1.73 

 

Standard deviation 6.48 

 

1.16  

 

Standard Error 0.47 1.02 Standard Error 1.20 0.43 Standard Error 1.08 0.29 

Unbiased  "n-1" 2 3.66 Unbiased  "n-1" 5.89 1.41 Unbiased  "n-1" 5.61 0.94  

Table 25: Statistical Significance Confusion 

Looking at the results from Experiments B and C belonging to the Keyword search, on 

average the test candidates have indicated that 97% did not find this feature confusing at 

all, and that 3 % had no strong feelings.   However, looking at the Automatic Retrieval 

Search belonging to Experiments B and C, this would indicate that on average 82% of the 

test candidates did not find this facility confusing to use.  The other 18% belonging to the 

Retrieval Search had no strong feelings at all towards this particular feature.  The 

collaborating grouping Experiments B and C would indicate that on average 84% of test 

candidates believed that this feature was not confusing at all.  14% of the students on 

average had no strong feelings about the collaborative grouping and rating feature and the 

final 2% disagreed with the 82% by saying it was confusing to them.    However, looking 

at all the tests belonging to B and C, the average error rate was 0.748, which would 

indicate that the test results produced a low rate of uncertainty amongst the test candidates.  

  

6.4.2.2 Interest  

 

To measure interest as an independent variable, the following aspects were analysed:  how 

beneficial the system is; the relevance of materials being retrieved; whether the learning 

experience is aided; and whether the test subjects would use these facilities on another 

VLE.  

 

The benefits of using a keyword search  
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 Beneficial: on average from both tests 87% of candidates found it beneficial to 

their learning experience.  

 

Keyword Search Question asked: Did you find that 

using a keyword search, beneficial? 

Categorisation of 

feedback: 

Experiments B C 

Strongly Disagree 2 0 

Disagree 0 0 

No Strong Feelings 5 2 

Agree 14 5 

Strongly Agree 15 9 

Standard Deviation 10.44 3.5 

Unbiased "n-1" method 8.52 2.87 

Standard Error 

 

1.74 0.88 

Table 26: Benefits of using keyword search 

Table  26  indicates  that  87%  of  candidates  found  the  keyword  search  beneficial. The 

other  14%  of  test  candidates  had  no  strong  feeling  towards  the  information retrieval 

search feature.   
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 Useful  

 

Table 27 will examine the significance belonging to how relevant and useful was the 

retrieval of learning objects.  

 

Keyword Search Question asked: Overall how relevant & 

useful did you find the keyword search?  

Categorisation of 

feedback:  

Experiments  B C 

Poor  0 0 

Fair  0 0 

Satisfactory  4 3 

Very Good  22 12 

Excellent  10 1 

Standard Deviation  9.17 5.86 

Unbiased "n-1" method  7.48 4.79 

Standard Error  1.53 1.46 

Table 27: Usefulness and relevance of using a keyword search 

Table 27 indicates on average, 85% of the test candidates agreed that on both experiments 

the keyword search bought back relevant learning objects associated with the tasks.  The  

other  15%  were  satisfactory  with  the  responses  bought  back  from the keyword search.   
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 Aid learning experience  

 

Table 28 demonstrates statistical significance belonging to the responses relating to how 

effective the keyword information retrieval tool was when aiding the candidate’ s online 

experience.   

 

Keyword Search Question asked: The results that were brought 

back from using the keyword search; did this aid 

your learning experience? 

Categorisation of 

feedback: 

Experiments B C 

Strongly Disagree 0 0 

Disagree 0 0 

No Strong Feelings 4 4 

Agree 28 8 

Strongly Agree 4 4 

Unbiased "n-1" method 11.31 1.89 

Standard Error 2.31 0.57 

Table 28: System Effectiveness 

Looking at the results from Table 28 it shows on average, 82% of test candidates from 

Experiment B and C would indicate that this feature has helped them with their learning  

experience.  
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 Would use on another VLE:  

 

On average 85% of test candidates from Experiments B and C, indicates that they would 

use this facility again.  Please see Table 29, for statistical significance.  

 

 Keyword Search  Question asked: Would you use this 

facility again if it was provided on 

another VLE/LMS 

Categorisation 

of feedback: 

Experiments  B C 

Strongly Disagree  0 0 

Disagree  0 0 

No Strong Feelings  6 2 

Agree  16 10 

Strongly Agree  14 4 

Standard Deviation  5.29 4.16 

Unbiased "n-1" method  4.32 3.40 

Standard Error  0.88 1.04 

Table 29: Would use the feature on another VLE 

As mentioned above 85% would like to see this feature appear within another VLE, LMS 

or Content Management System (CMS).  However, the other 15% had no strong feelings of 

this feature being used within another VLE/LMS/CMS.   
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Semantic Metadata Search based on Interest:   

 

 Beneficial  

 

Table 30 indicates that on average 88% of candidates from Experiments B and C found it 

beneficial to their learning experience. The other 12% of test candidates had no strong 

feeling towards the information retrieval search feature.   

 

Metadata Search  Question asked: Did you find that 

using the semantic metadata search 

beneficial?  

Categorisation of 

feedback:  

Experiments  B C 

Strongly Disagree  0 0 

Disagree  0 0 

No Strong Feelings  6 1 

Agree  24 12 

Strongly Agree  6 3 

Standard Deviation  10.39 5.86 

Unbiased "n-1" method  8.49 4.78 

Standard Error  1.73 1.10 

Table 30: Benefits of using a semantic search 
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 Relevance  

 

 The following table will examine the significance belonging to how relevant and useful  

was the retrieval of learning objects.    

 

Metadata Search Question asked: How relevant were 

the materials being retrieved in 

accordance to your learning needs? 

Categorisation of 

feedback: 

Experiments  B C 

Strongly Disagree  0 0 

Disagree  0 0 

No Strong Feelings  7 2 

Agree  17 5 

Strongly Agree  12 9 

Standard Deviation  5 3.51 

Unbiased "n-1" method  4.081 2.87 

Standard Error  0.83 2.88 

Table 31: Usefulness and relevance of using a semantic search 

Looking at Table 31, on average 88% of the test candidates from Experiments B and C 

thought that information retrieval automatically in accordance with their learning styles 

was relevant. The other 12% of the test candidates had no strong feelings towards the 

relevance of the retrieval facility.   
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 Aid learning experience  

 

Table 32 demonstrates the statistical significance belonging to the responses relating to how 

effective the metadata search retrieval facility was when aiding the candidate’ s on-line 

experience.   

Metadata Search Question asked: The results that were 

brought back from using automatic search 

did this aid your learning experience? 

Categorisation of 

feedback: 

Experiments  B C 

Poor  0 0 

Fair  2 0 

Satisfactory  8 1 

Very Good  16 6 

Excellent  10 9 

Standard Deviation  5.77 4.04 

Unbiased "n-1" method  5 3.30 

Standard Error  0.96 1.01 

Table 32: System Effectiveness 

Looking at the responses from Table 32 it shows that from both Experiments B and C 94% 

of candidates on average found that this particular feature helped their learning experience.  

The other 6% of the test candidates found it fair in what it was trying to achieve.   
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 Would use on another VLE:  

 

Table 33 shows the statistical significance with regards to the Metadata search facility.  

Looking at the results from Experiment B and C on average 85% of test candidates would 

like to see this feature to be used within other VLE/LMS.  However, the other 15% of test 

candidates had no strong feelings with regards to this feature being used within on-line 

learning.   

 

Metadata Search Question asked: Would you 

use this facility again if it 

was provided on another 

VLE/LMS 

Categorisation of feedback: 

Experiments  B C 

Strongly Disagree  0 1 

Disagree  0 0 

No Strong Feelings  4 2 

Agree  22 8 

Strong Agree  10 5 

Standard Deviation  9.17 4.20 

Unbiased "n-1" method  7.48 3.40 

Standard Error  1.53 1.04 

Table 33: Would use the feature on another VLE 
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Collaborating grouping and rating  

 

 Beneficial: Table 34 indicates that 88% of candidates from Experiment B and C 

found it beneficial to their learning experience.   

 

Collaborative Grouping Question asked: Did you find 

that using the collaborative 

grouping search, beneficial? 

Categorisation of 

feedback: 

Experiments  B C 

Strongly Disagree  2 0 

Disagree  1 0 

No Strong Feelings  3 3 

Agree  21 8 

Strongly Agree  9 5 

Standard Deviation  8.32 2.51 

Unbiased "n-1" method  7.44 2.10 

Standard Error  1.39 0.62 

Table 34: Benefits of using a collaborative grouping and rating search 

Looking at Table 34, 12% of test candidates from Experiment B and C were not happy  

with this approach to on-line learning.    
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 Relevance: The following table (35) will examine the significance belonging to 

how relevant and useful was the retrieval of learning objects.    

 

Collaborative Grouping  Question asked: How relevant 

were the materials being 

retrieved?  

Categorisation of 

feedback:  

Experiments  B C 

Strongly Disagree  1 0 

Disagree  2 0 

No Strong Feelings  6 1 

Agree  15 11 

Strongly Agree  12 4 

Standard Deviation  6.14 5.13 

Unbiased "n-1" method  5.49 4.20 

Standard Error  1.02 1.30 

Table 35: Usefulness and relevance of using a collaborative grouping and rating search 

Table 35, demonstrates that 88% of the test candidates from Experiment B and C thought 

that the information retrieved was relevant to their learning styles.  The other 12% of the 

test candidates were divided by: no strong feeling towards the relevance of the retrieval 

facility; and did not like this particular approach to learning, using someone else’s feedback 

to improve, on one own self.  Looking at the qualitative responses belonging to the 

feedback associated with Strongly Disagree and Disagree, the test candidates have 

indicated the following:  

 

“How do I know if the results that were retrieved from other people were correctly rated?”  

 

“What makes a good learning rating, because each person might have different views?”  

 

“I like to have my own views kept quietly!”  

 

 

 Aid Learning Experience: 81% of candidates from Experiment B and C on 

average found that this approached helped their learning experience.  
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Collaborative Grouping  Question asked: Did you find that 

using other people personal views 

on learning materials helpful?  

Categorisation of 

feedback:  

Experiments  B C 

Strongly Disagree,  0 0 

Disagree,  0 0 

No Strong Feelings  7 3 

Agree  17 6 

Strongly Agree  12 7 

Standard Deviation  5 3.16 

Unbiased "n-1" method  4.08 2.74 

Standard Error  0.83 0.80 

Table 36: System Effectiveness 

According to Table 36, this approach indicates that the extra 19% of test candidates had  

no strong feelings with group sharing.  81% of test candidates indicate using group 

feedback and rating to be a positive educational experience.   
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 Would use on other VLE: 81% of candidates indicated that they would use this 

facility again.  

 

Collaborative 

Grouping  

Question asked: Would you use this 

facility again if it was provided on 

another VLE/LMS? 

Categorisation of 

feedback: 

Experiments  B C 

Strongly Disagree  0 0 

Disagree  4 1 

No Strong Feelings  3 2 

Agree  16 6 

Strongly Agree  13 7 

Standard Deviation  6.48 2.94 

Unbiased "n-1" method  5.61 2.55 

Standard Error  1.08 0.74 

Table 37: Would use the feature on another VLE 

Table 37 indicates from the results that from the results belonging to Experiment B and C 

on average 81% of the test candidates would like to see this approach applied to other 

VLE/LMS.  The other 19% of candidates disagreed with this whole concept of sharing 

rating with other people on line.   

 

Looking at the results from all three sections, on average 84% percent of the students that 

used the AIPL environment found it in some way interesting, and beneficial to their 

learning experience, while studying on-line. This particular percentage mark indicates that 

the theoretical concept of the AIPL model would create or improve a more tailored learning 

experience/approach.   

 

6.4.3 Analytical & Interactivity  

 

This section focuses on analysing and discussing the results from the system performance 

testing outlined in Experiments B, C and D.  To measure the feedback from the AIPL 

environment and compare these results to Moodle, the following aspects were developed to 

incorporate independent variables, these are: 6.4.3.1 pedagogical course approach; and 

finally 6.4.3.2 interface consistencies ‘HCI’.  
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6.4.3.1 Pedagogical course approach  

 

The pedagogical learning approach is important because this is one of the major aspects of 

developing a whole course structure on-line. If the course was not developed properly then 

the candidates’ answers could be flawed with dissatisfaction, and anguish. Table 38  

presents  test  candidates  views  of  the  presentation,  accessibility  and navigability  of 

material within the system.  

 

Presentation of 

supplementary material 

Accessibility and 

navigational facilities 

Inter-course navigability 

94% of the test candidates 

believed that the course 

content was developed and 

shaped for on-line learning. 

6% of the students had no 

strong feelings towards the 

presentation of learning 

materials. 

75% of candidates agreed 

that the accessibility and 

navigational facilities were 

designed for individual 

users. 14% of test 

candidates had no strong 

feeling towards 

accessibility, and the other 

11% found it difficult  

81% of the candidates 

found flicking back and 

forward through course 

materials easy; however, 

14% had no feeling 

towards the navigation of 

studying online course 

materials. 6% found it 

difficult to come to terms 

with. 

 

Statistical Significant  

 

Standard 

Deviation  

9.17  Standard 

Deviation  

5.60  Standard 

Deviation  

7.87  

Unbiased  7.48  Unbiased  4.85  Unbiased  6.82  

Standard Error  1.53  Standard Error  0.93  Standard Error  1.32  

Table 38: Presentation, accessibility, and navigability 

 

Looking at the results from Table 38, 94% of candidates believed that the presentation of 

supplementary materials were suitable for viewing on-line.  However, 6% of the candidates 

were not interested with the whole on-line learning experience.  The inter-course 
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navigability results from Table 38 indicate that there was an 81% success rate with testing 

AIPL.  14% of the test candidates that were asked about inter course navigability had no 

strong feelings of flicking through course content.  The other 6% belonging to inter-course 

navigability had difficulties.  To expand on the 6% that had a negative the following 

qualitative responses were recorded:  

 

 “I was anxious while using the on-line environment, and I just kept clicking backward 

button to many times.”  

 

“Compared to other software that I used, I thought it could have been laid out more 

simple when retrieving and viewing materials.”  

 

6.4.3.2 Interface Consistencies  

 

Interactivity plays an important part in evaluating the solution to the given problem; this 

can be evaluated by looking at how the candidates react to environmental changes in the 

system.  These environmental changes can vary from fonts, text size, and alignment of 

icons, and presentational materials that could alter the thought process of the test 

candidates while answering the questionnaires. The following questions were asked to the 

students to retrieve feedback belonging to interface inconsistencies.  The system was also 

compared against Moodle to provide results for Experiment D.  
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Font was consistent throughout the AIPL Environment & Moodle Environment?  

(Results regarding preliminary and primary testing) 

 

 Preliminary testing 

(AIPL)  

Primary Testing 

(AIPL) 

Moodle 

Experiments B C D 

 Strongly Agree            12 Strongly Agree    10 Strongly Agree    14 

 Agree                           16 Agree                   5 Agree                   2 

 No Strong Feelings                8 No Strong Feelings    1    

 

 

Standard Deviation 4 Standard Deviation 4.51 Standard Deviation 8.4

9 

Unbiased 3.27 Unbiased 3.68 Unbiased 2.1

2 

Standard Error 0.67 Standard Error 1.13 Standard Error 6 

Table 39: Font Consistency 

 

Looking at Table 39, 80% of the students within the preliminary testing considered that the 

fonts used throughout the AIPL environment were consistent, and the other 20% had no 

strong views about the fonts being used. Comparing the results from the preliminary testing  

and  primary  testing,  there  was  a  14%  increase  in  consistency.  Even with 94% 

consistency the AIPL environment could not complete against Moodle, which achieved 

100% from the test candidates.   
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Text size was consistent throughout the AIPL & Moodle Environment?  

(Results regarding preliminary and primary testing) 

 

 Preliminary testing 

(AIPL)  

Primary Testing 

(AIPL) 

Moodle 

Experiments B C D 

 Strongly Agree    16 Strongly Agree    3 Strongly Agree    10 

 Agree                  15 Agree                  12 Agree                   6 

 No Strong Feelings      2              No Strong Feelings      1               

 Disagree               3   

 

Standard Deviation 7.53 Standard Deviation 5.86 Standard Deviation 5.0

3 

Unbiased 6.52 Unbiased 4.79 Unbiased 4.3

0 

Standard Error 1.26 Standard Error 1.47 Standard Error 1.2

6 

Table 40: Statistical Significance 

As indicated by Table 40, 86% of the candidates from the preliminary test believed that the 

text size was consistent, and easy to follow when selecting the appropriate facility. 

However, the other 8% totally disagreed. However, the other 6% had no strong feeling 

towards the text consistency.  Comparing the results from the preliminary and the primary 

test did improve its consistency by 8%.  However, looking at the results from Moodle, this 

learning environment had also achieved a 100% success rate similar to that of the primary 

grouping data.  

 

Did you find that the Element Placement of ICON, facilities buttons was designed  

to be user friendly? (Results regarding preliminary and primary testing).    

 

Looking at the results from Table 41, 80% of the preliminary test candidates agreed that 

the facilities and icons were positioned correctly in accordance with usability guidelines; 

the other 20% of test subjects had no strong feeling towards the GUI layout of AIPL.  

However, further analysis of Table 41, indicates that 69% of students belonging  to  the  

primary  test  found  the  Windows  Icons  Menu  Pointers  (WIMP) environment adequate. 
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Comparing this to Moodle, the result of 94%, indicates that the Moodle environment is 

more HCI friendly.  The other 6% had no strong feeling towards  

Moodle.   

 

 Preliminary testing: - Did you 

find that the Element 

Placement of ICON, facilities 

buttons was designed to be 

user friendly?  

Primary Testing  

- Did you find that the Element 

Placement of ICON, facilities 

buttons was designed to be 

user friendly? 

Moodle 

- Did you find that the 

Element Placement of 

ICON, facilities buttons 

was designed to be user 

friendly? 

Experiments B C D 

 Strongly Agree     13 Strongly Agree        6 Strongly Agree      6 

Agree                   18 Agree                      5 Agree                    9 

No Strong Feelings      5 No Strong Feelings       5 No Strong Feelings      1 

 

Standard Deviation 6.56 Standard Deviation 0.58 Standard Deviation 4.0

4 

Unbiased 5.35 Unbiased 0.47 Unbiased 3.2

9 

Standard Error 1.09 Standard Error 0.14 Standard Error 1.0

1 

Table 41: Statistical Significance 

Presentation of supplementary materials was suitable: (results regarding preliminary 

and primary testing). 

 

According to Table 42, the preliminary testing showed that 90% of the students believed 

that the supplementary materials were suitable for this activity and the other 10% were 

satisfied about the learning materials.  Comparing this result to the primary testing and also 

results from Moodle indicates that:  88% of students found that material found within 

Moodle was suitable, and that the other 12% were satisfied with the learning materials.  

Comparing this result from Moodle to the primary testing would show that AIPL achieved 

75% and the other 25% had no strong feeling with the learning materials.  
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 Preliminary testing: -  

Did you find that the 

presentation of 

supplementary materials 

suitable for this testing? 

Primary Testing: -  

Did you find that the 

presentation of 

supplementary 

materials suitable for 

this testing? 

Moodle: - 

Did you find that the 

presentation of 

supplementary materials 

suitable for this testing? 

Experiments B C D 

 Excellent                   14 Excellent                 

7 

Excellent                        4 

Very Good                20 Very Good              5 Very Good                    10 

Satisfactory               2 Satisfactory             

4 

Satisfactory                    2 

 

Standard Deviation 9.17 Standard Deviation 1.53 Standard Deviation 4.1

6 

Unbiased 7.48 Unbiased 1.25 Unbiased 3.4

0 

Standard Error 1.53 Standard Error 0.38 Standard Error 1.0

4 

Table 42: Statistical Significance 

The results from Table 42 show that the primary test achieved 75%, which when  

compared to the result from Moodle, there was a 13% decrease on the test candidates  

believing that the materials were suitable for testing.   

 

The final section of results from consistency will look at the averages in general  

belonging to the AIPL (Preliminary and Primary Testing) and the Moodle environment.  
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Table 43, will demonstrate the results from the averages.  

 

 Preliminary Primary Moodle 

Experiments  B C D 

Font was consistent throughout the 

Environment  

86 75 94 

Text size was consistent throughout the 

Environment  

80 69 100 

Did you find that the Element Placement of 

ICON, facilities buttons was designed to be 

user friendly?  

90 94 94 

Presentation of supplementary materials  80 94 88 

Overall result  84% 83% 94% 

Table 43: Overall Averages 

After the tests were conducted, a final question was asked to see what features of the AIPL 

environment, test subjects would like to be built into the Moodle environment.   

 

The results are as follows:   

 

 Yes No Maybe 

Experiment C    

Collaborative Grouping  14 2 0 

Automatic retrieval of LO  13 1 2 

Keyword Search  16 0 0 

Table 44: Extra Features 

As you can see from the table above, most of the students asked, would be happy to have 

some sort of e-learning 2.0 technology incorporated into the current Moodle Environment.  

This supports the work carried out by the author, by making these features more accessible 

and mainstream then students can benefit from a more personalised learning experience.   
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6.4.4 Effectiveness  

To measure the effectiveness of the whole e-learning environment certain specific areas 

must  be  integrated  into  the  results  and  these  are  the  following:  6.4.4.1  Handling 

students’   query;  6.4.4.2  Fault  identification;  6.4.4.3  Design  of  the  solution  to  the 

problem  specification;  and  finally  6.4.4.4  Overall  effectiveness  of  the  AIPL 

environment.  

 

Each section will provide an insight into the design features and facilities to ensure that  

all aspects that could possibly be covered were.   

 

6.4.4.1 Handling the students’ query  

Handling students’ queries was important to the whole of this Thesis investigation because 

it provided a means to test the theoretical concept of the AIPL environment.   AIPL was 

based on learner centricity, which means placing the students needs first in regards to their 

learning abilities, before any internet technologies can be applied.  To enable the author to 

analyse the results from this particular section, it is divided into three key areas: Keyword 

Search, Semantic Metadata search, and Collaborative grouping.  

 

Keyword Search  

 

The following questions were asked, based upon the abilities of handling students’ queries. 

How did you find the functionality of the algorithm, when dealing with your query?   

 

The following table presents the results from questions surrounding the functionality of  

the algorithm.  

Experiments Preliminary Testing  Primary Testing 

B C 

Very Good 11 Very Good 6 

Excellent 25 Excellent 10 

Standard 

Deviation 

9.90 Standard 

Deviation 

2.83 

Standard Error 1.65 Standard Error 0.71 

Unbiased 7 Unbiased 2 

Table 45: Statistical Significance 
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The results from the preliminary and primary test data show that the test candidates found 

the functionality of algorithm while retrieving learning materials to be very good or 

excellent. Looking at the results in relation to their statistical significance both had a low 

Standard Error Rate.   

 

Semantic Metadata Search  

 

The following questions were asked, based upon the abilities of handling students’ queries. 

How  did  you  find  the  functionality  of  the  algorithm,  when  dealing  with  your 

query?   

 

Looking at the results, 69% of the candidates asked thought that the ability to handle user 

queries was excellent or very good.  The extra 31% thought that the search facility was 

satisfactory.  However, to support this concept further an additional test was applied to see 

if this was not just a one off result, please see Table 46 for statistical analysis.   

 

Experiments Preliminary Testing Primary Testing 

 B C 

Excellent  9 Excellent  6 

Very Good  16 Very Good  7 

Satisfactory  11 Satisfactory  1 

 Fair                                    2  

Standard Deviation  3.61 Standard Deviation 3.22 

Standard Error  0.60 Standard Error 0.81 

Unbiased  2.94 Unbiased 2.63 

Table 46: Statistical Analysis 

Studying the results from Table 46, it shows that on the primary testing data the automatic 

retrieval feature was given 81% compared to the 69% from the preliminary test.  However, 

both tests produced a low standard error rate indicating a low chance of uncertainty within 

the test candidates when using the AIPL environment.   
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Collaborative grouping  

 

The following  question  was  asked,  based  upon  the  abilities  of  handling  students’  

queries.  How did you find the functionality of the algorithm, when dealing with  

your query?   

 

The results demonstrated that 67% of the candidates asked reported that the functionality 

of the algorithm was very good or excellent. 14% suggested that the handling of their 

request was fair, and 19% satisfactory.    

  

 

 

 

    Preliminary Test               Primary Test   

Experiments B C 

 

 

 

 

Views Score  Views Score  

Excellent 9 Excellent 11 

Very Good 15 Very Good 5 

Satisfactory 7 Satisfactory 0 

Fair 5 Fair 0 

Standard Deviation 4.32 Standard Deviation 5.23 

Standard Error 0.72 Standard Error 1.31 

Unbiased 

 

3.74 

 

Unbiased 

 

4.53 

 

Table 47: Statistical Analysis 

However, to expand on these results, statistical analysis was applied, which can be seen 

within Table 47.  The results indicate that on the primary data set, test candidates found the 

functionality of the collaborative grouping to be Excellent (69%) or Very Good (31%).  

Looking at the results further, there was an increase of uncertainty even within a low 

number of students, compared to the low error rate belonging to the preliminary testing.   

 

This section has demonstrated that the general conceptual thought regarding the different 

effectiveness and functionality of the different features has been supportive towards from 

the test candidates. 
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6.4.4.2 Fault identification  

According to 50% of candidates tested within the AIPL environment no faults were found.  

However, looking at the graph “Faults Identified”,  50% of test candidates recorded some 

typical errors that happened during the testing period. 22% of students recorded that during 

the filtering and retrieval of learning objects, they found that the AIPL environment had 

taken a while for the learning objects to be retrieved and displayed. 14% of the candidates 

also said that the image displacement and realignment was causing trouble while reading.  

The last 14% indicated that the font size was too small for people with long sightedness.  

For a graphical representation of the above statistics please see graph 4. 

   

 

Graph 4: Fault identified regarding preliminary and primary data set. 

 

Looking at Graph 4 indicates that one of the major problems associated with AIPL was  

The delay of the retrieval of learning objects.   

 

6.4.4.3 Design of the solution to the problem specification  

 

To measure the design solution to the problem specification, the following questions were 

needed to enable an analytical approach to be used.    
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Overall how effective did you find the keyword search?   

 

Table 48 demonstrates and expands on the results that were retrieved during the testing  

procedures, through the use of statistical analysis: 

  

 

 

 

 

Preliminary Test                   Primary Test   

 

Experiments B C 

 

 

 

 

Views Score % Views Score 

% 

Excellent 28 Excellent 38  

Very Good 61 Very Good 50  

Satisfactory 11 Satisfactory 12  

Standard Deviation 9.165 Standard Deviation 3.055  

Standard Error 1.528 Standard Error 0.764  

Unbiased 7.483 Unbiased 2.494  

Table 48: Statistical Analysis 

The results in Table 48 indicate that 89% of the test candidates agreed that the keyword 

search  feature  was  very  effective  in  retrieving  learning  materials  while  the  other 

11% believed  that  it  was  satisfactory.  To validate this success rate within the AIPL 

environment the primary test rate will now be examined.  While validating the data, the 

keyword search feature again was rated as 88%, while the other 12% were satisfied with its 

effectiveness.  Even looking at the standard error rating, it shows that on both accounts a 

low uncertainty was identified.   

   

Overall how effective did you find the Meta data search?   

 

The whole concept of the semantic metadata search facility was to fully automate the 

retrieval process of filtering out unnecessary learning materials that were not designed for 

the individual.  The results demonstrate similar findings to the keyword search.  About 

75% of candidates believed that the whole design concept was effective.  Table 49 will be 

used to expand further on the results, by looking into their statistical analysis and 

comparing the preliminary results to the primary test data.   
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Preliminary Test            Primary Test   

 

Experiments B C 

 

 

 

 

Views Score % Views Score 

% 

Excellent 42 Excellent 38  

Very Good 33 Very Good 56  

Satisfactory 14 Satisfactory 0  

Fair 11 Fair 6  

Standard Deviation 5.354 Standard Deviation 4.243  

Standard Error 0.892 Standard Error 1.061 

Unbiased 4.637 Unbiased 3.674 

Table 49: Statistical Analysis 

The results from the primary test set indicate that this particular feature has performed well 

in its effectiveness in retrieving learning materials, based upon the individual learning style.  

The two results have shown a 19% increase on its ability throughout both tests.   The 

Standard Error data ranges within Table 49 have a low rate of uncertainty.    

 

Overall how effective did you find the collaborative grouping and rating  

algorithm?   

 

The results from Table 50 indicate that 78% of the candidates recorded that the overall 

effectiveness of the design specification with regards to the collaborative rating function, 

was excellent or very good. The other 22% believed that the retrieval tool was satisfactory. 

This result demonstrates that by using a collaborative rating tool to share other people’s 

views and ratings it can effectively create a bridging mechanism between the individuals 

and the learning materials.  
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   Preliminary Test                   Primary Test   

 

    Experiments B C 

 

 

 

 

 

 

Views Score  Views Score  

Excellent 16 Excellent  5  

Very Good 12 Very Good 7  

Satisfactory 8 Satisfactory 4  

Standard Deviation  4 Standard Deviation 1.528  

Standard Error 0.667 Standard Error 0.382  

Unbiased 3.266 Unbiased 1.247  

Table 50: Statistical Analysis 

Even though the first preliminary test had a 78% success rate, the primary test only reached 

75% and the other 25% were satisfied with the overall effectiveness.  It is clear the concept 

of using collaborative grouping to share resources has provided an effective tool within this 

scenario.  To support this claim, further analysis belonging to Standard Error would 

indicate again a low uncertainty rate belonging to the test candidates.   

 

6.4.4.4 Overall effectiveness of the AIPL environment.  

 

Overall how effective did you find the keyword search algorithm?   

 

Out of the 36 candidates asked, 86% of them thought that the keyword search was effective 

within its abilities to assist the students’ learning needs. To support this claim, statistical 

significance was applied to study any correlation between values, please see Table 51 for 

tabular representation of results.   
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  Preliminary Test               Primary Test   

 

Experiments B C 

 

 

 

 

Views Score % Views Score 

% 

Excellent 39 Excellent 38  

Very Good 42 Very Good 50  

Satisfactory 17 Satisfactory 12  

Fair 3 Fair 0  

Poor 0 Poor 0  

Standard Deviation 4.97 Standard Deviation 3.06  

Standard Error 0.83 Standard Error 0.76  

Unbiased 

 

4.30 

 

Unbiased 

 

2.49  

 

Table 51: Statistical Significance 

Compared to the primary test results candidates had rated the effectiveness of the AIPL 

environment  to  be  88%  compared  to  81%  from  the  preliminary  test. Looking at the 

standard error rate, both test results produced a low rate of uncertainty among the test 

candidates.   

 

Overall how effective did you find the semantic metadata search algorithm?  

 

For this question, the results were very distributed, 25% of the candidates believed that the 

effectiveness of handling the queries were high, 44% of them believed that it was very 

good, and 31% thought it was satisfactory. Expanding on these results further, statistical 

analysis was applied to enable or to identify any correlation between the results from the 

Preliminary and Primary testing, for a tabular representation of these results please see 

Table 52.  
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             Preliminary Testing    Primary Testing   

Experiments B C 

 

 

 

 

 

 

 

 

Views Score Views Score 

Excellent 10 Excellent 6 

Very Good 16 Very Good 9 

Satisfactory 8 Satisfactory 0 

Fair 2 Fair 1 

Standard Deviation 

Standard Error 

Unbiased 

5.77 

0.96 

5 

Standard Deviation 

Standard Error 

Unbiased 

4.24 

1.06 

3.67 

Table 52: Statistical Analysis 

 

Looking at the results from Table 52, it is clear to see that the primary testing had 

improved the effectiveness of the semantic metadata search by increasing the success rate to 

94%.  However, other factors like the standard error scale would indicate some uncertainty 

between the test candidates when using this particular feature.   

 

Overall how effective did you find the Collaborative Grouping?  

   Preliminary Test                   Primary Test  

Experiments B C 

 

 

 

 

 

 

 

 

 

Views Score 

% 

Views Score % 

Excellent 25 Excellent 31 

Very Good 56 Very Good 44 

Satisfactory 8 Satisfactory 25 

Poor 11 Poor 0 

Standard Deviation 7.79 Standard Deviation 1.53 

Standard Error 1.30 Standard Error 0.38 

Unbiased 

 

6.75 

 

Unbiased 

 

1.25 

 

Table 53: Statistical Analysis 

 

Looking at the results from Table 53, 81% of the candidates believed that the conceptual 
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idea of enabling the students to retrieve queries belonging to other individuals with similar 

learning needs was very good/excellent. Another 11% thought it was poor while the last 8% 

thought it was satisfactory.  However, looking at results from the primary test data, 75% of 

the test candidates thought it was effective when using other people views, ratings and 

sharing.  The other 25% was satisfied with the overall effectiveness of the collaborative 

grouping feature.   

 

Overall how effective did you find the AIPL Environment?   

 

The final set of data results, will look at how effective was the AIPL environment in 

providing a personalised experience.  Table 54, will be used to indicate statistical analysis 

belonging to the preliminary and primary data sets, which will take into consideration 36 

students point of views.  

 

 

 

 

 

Preliminary Test                         Primary Test  

Experiments B C 

 

 

 

 

 

 

 

Views Score Views Score 

Excellent 16 Excellent 7 

Very Good 15 Very Good 6 

Satisfactory 5 Satisfactory 3 

Standard Deviation 6.083 Standard Deviation 2.082 

Standard Error 1.014 Standard Error 0.520 

Unbiased 4.967 Unbiased 1.700 

Table 54: Statistical Analysis 

After close analysis, the results from both data sets indicate that 81-86% of candidates 

when asked about the overall effectiveness of the AIPL environment concluded that it 

performed to their level of expectation.  This was to create a learner centric approach that 

would bridge together the individual learner and the learning materials.  The other 14% 

were satisfied with the performance and effectiveness of the AIPL approach in providing a 

personalised learning experience.    
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6.5 Summary  

 

This chapter looked at examining the whole theoretical design concept of this Thesis by 

using two sets of test candidates to investigate a new novel approach in matching the 

individual to the learning repository based upon their learning styles.  The use of 

independent variables within this Thesis enabled statistical analysis to be performed.  

 

Statistical analysis enabled the author to carry out research to support the Thesis question.  

Graph 5 demonstrates the overall effectiveness of AIPL, in creating a new approach to 

matching the needs of the individual to the learning resources.   

 

 

Graph 5: Rating belonging to PAFS & AIPL environment 

Offering the students a variety of ways of mapping their needs to the learning resources 

through AIPL was shown to have had a beneficial impact on their learning experience. It is 

also shown that 80% of the students asked found it to be beneficial and effective in creating 

synergy between the learner and the learning materials.   

 

The results from these initial sets of results indicate that the approach taken to personalised 

one learning experience through the use of matching courseware to the individuals needs, 

can work.  Looking at Table 40 averages belonging to testing for consistency belonging to 

preliminary and primary testing indicate that AIPL had the same success rate as that of 

Moodle.     
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Chapter7.0 Evaluation, Critique, Contribution and Proposed 

Further Work  

 

This evaluation makes reference to the research direction outlined in Chapter 1, and 

explored through literature in Chapters 2 and 3.  It provides an analysis of the contributions 

of this Thesis as presented in Chapters 4 and 5, and a critique of the experimentation 

outlined in Chapter 6.  Finally, this chapter outlines directions for further research and 

further development of the system presented in this Thesis.   

 

7.1 Main Findings of Research  

 

In this section each of the objectives originally specified in Chapter 1 are critically 

reviewed in relation to the approach taken, and the main findings drawn out from their 

investigation and achievement.    

 

Provide a critical overview of the current research trends within the area of e-learning and 

most closely linked to this Thesis, those of: adaptive learning, personalised learning and 

content based retrieval.  Utilise the knowledge of the identified current issues in order to 

develop a new approach to resolving the research problem.  

 

The critical overview concentrated to begin with on the following key areas: pedagogical 

approaches, e-learning, personalised learning, matching (Adaptive Information Retrieval) 

and learning object standards.   

 

 According to Noy et al., (2001) matching algorithm approaches have a 74% 

success rate when being used by users for knowledge acquisition/retrieval.    

 The research that was carried out by Eze et al., (2006) indicated that there were 

three possible areas of improvement within personalised learning these are:   

 

                  i.  The development of a personality component for domain profiling of  

                      the learner  
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                  ii.  Using semantic metadata to represent multimedia of specific context  

                       using xml and RDF.  

                  iii.  In the development of the matching algorithm.  

 

The AIPL environment expands on the theoretical work of Eze et al., (2006) by introducing 

a mechanism built around learning style categorisation to extract how individuals’ prefer to 

learn (Personality Component).  The learning activities found within the AIPL on-line 

Dynamic Background Library (DBL) are semantically constructed being written in LOM 

instead of RDF.  The Personalised Adaptive Filtering System (PAFS) was created to expand 

on Eze’s primitive search (profile to media context) by using an Adaptive Information 

Retrieval feature to match the Learning Profile to the resources found within a repository.  

As indicated above the research carried out by Eze et al., (2006) provided some of the 

theoretical inspirations for the development of AIPL and its particular features.   

 Yao et al 2007, argues that keyword searches, and page ranking are inadequate 

when large repositories are searched, which involves individuals manually going 

through the results brought back one at a time.  Therefore the AIPL model contains 

a range of search and retrieval techniques.  

 Hummel et al.,(2007) indicates that their design approach for a Personalised 

Recommender System (PRS) required the use of: learning technology standards, 

metadata and the Semantic Web to mark up the learning materials, this has several 

limitations associated with it, these are:   

o Limited metadata mark up of learning materials using RDF/XML   

o The course management software was only capable of running a limited 

amount of learning activities. 

o Limitation of research focusing on stigmergy approach of allowing 

individuals to form their own groups instead of with assistance from the 

domain expert.   

 Mencke et al., (2007) introduces an e-learning framework ‘Learning Environment’ 

that provides technology to enhance the performance and the effectiveness of on-

line learning.  According to Mencke et al., (2007) there are several issues 

concerned with this particular framework these are: dynamic design of the e-

learning framework; complexity; and how the components react while being used 

within an on-line environment.  

 Eze et al., (2006), Mencke et al., (2007) and Wang (2008) suggest that there are 
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several issues concerned with e-learning frameworks, these are: 

o They do not provide a dynamic approach that is learner centric.  

o They are not generally matched to a flexible pedagogical learning model.  

o In all present different approaches to matching the learner to the learning 

materials, there is no one ‘golden bullet’ approach to matching.  

Researchers like Knight et al., (1994) and Chaudri et al., (1998) believe that the use of 

keyword searches still need the intervention of the domain expert and learner to validate the 

retrieval of content. Li et al., (2004) and Hull et al., (2006) indicate that using matching 

algorithms is complex and that depending on the complexity and severity of the search 

could bring back a null search.  

 

Design a model based on the concepts of Adaptive Information Retrieval (AIR) for 

learning to facilitate the construction of a personalised content retrieval for learning 

environment.  

 

Designing a new theoretical model based on the limitations from Chapter two and three 

proved to be challenging, complex and fraught with difficulties and logical problems. There 

were four main areas, which presented substantial challenges:  

 

1. A new pedagogical approach was based upon the ideas and concepts of researchers 

like (Riding et al., 1997; Santos et al. 2003; Power et al., 2005; Cristea 2005; Eze 

et al., 2007; Zouaq et al., 2007; Khan et al., 2007 and Melia et al., 2009), which 

suggest that the application of pedagogical learning approaches to learning 

environments can provide an opportunity to better match students requirements to 

learning techniques and theories designed around the learner.    However, the main 

adaptations to the model being presented within this Thesis expand directly on 

(Papanikolaou et al., 2001; Stash et al., 2004 and Schippers et al., 2005) in the 

amalgamation of learning styles to effectively identify how an individual prefers to 

learn. For more information see Section 4.2.1 The Pedagogical Model.  

 

2. The new personalised e-learning model introduced within this Thesis was inspired 

by the work carried out by: Anderson (2005) regarding the Community of Inquiry 

model, which takes the educational experience as a centre point; and that of Dong 

et al. in (2009), with their Cloud Computer Infrastructure that places individuals 
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into group-learning-paradigms.  The model that Anderson (2005) proposed presents 

a direct focus on the educational experience, which the rest of the academic 

experience is built around.  The model being presented by Dong et al., (2009) uses 

group-learning-paradigms to collectively group individuals into common interests 

and experience.  The AIPL model uses the ideas of Dong et al., (2009) and 

Anderson (2005) by placing pedagogical approaches, at its center point, to harness 

the individual learning experience through a focus on learning activities.  These 

activities can then be matched to the individuals or group-earning-paradigms.  For 

more information regarding the above model, see Section 4.3.2 AIPL model.   

 

3. The AIPL framework was built upon the work carried out by (Eze et al., 2007), 

expanding their primitive context-based information retrieval tool with an Adaptive 

Information Retrieval (AIR) mechanism.  Over the years since the presentation of 

Eze’s framework there has been a growth in the popularity and usage of social 

networking services. Part of the advancement that the AIPL framework brings is the 

introduction and the incorporation of concepts belonging to social and community 

grouping, and the use of community information retrieval mechanisms.  Please see 

Section 4.1.3 Matching for more information regarding this feature.  

 

4. AIPL presents a new novel approach to matching pedagogical content to learner 

preferences.  The inspiration for the matching technique used within this Thesis 

expanded on the research carried out by (Knight et al., 1994; Becks et al., 2003; 

Bajraktarevic et al., 2003; Deeb, 2007; Eze et al., 2007; Chatti et  al., 2007; 

Ullrich et  al., 2008; and Ghail et al., 2009) about incorporating a variety of 

searches to enable matching to be performed.  The main concept of the matching 

approach being presented within this Thesis uses and builds on the work carried out 

by (Tzouveli et  al., 2005; Subramaniam 2006; and Yao et al., 2007) in using 

group-learning-paradigm profiles as a way of identifying and clustering individuals 

into groups.  This approach uses two learning styles as a way of identifying and 

categorising individuals before assigning them into groups.  The learning styles act 

as a way for the Adaptive Information Retrieval (AIR) system to search through 

connected on-line repositories and retrieve relevant learning activities.  However, in 

addition to this approach, a group-learning-paradigm rating mechanism was 

employed to assist with the reduction of mis-matching.  The validation of 
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individual learning style categorisation is carried out by a complex rule base.  This 

rule base identifies Learning Process Questionnaire data and assigns individuals to 

groups based on their profile (Honey & Mumford and Kolb).  This approach can 

found in Chapter 5 A Personalised Adaptive Filtering Systems.  

 

These four concepts mentioned above provide a solution to creating a personalized content 

retrieval for learning model to enable the construction of a personalised learning 

environment.   

 

Implement a prototype of the proposed model cataloguing significant design and  

implementation challenges faced.  

 

To overcome the issues that were mentioned above, the proposed model had to overcome 

the first issue of how to choose the correct pedagogical approach to support learners 

(Britian et al., 2004; Dabbagh 2005; Low 2005; Juhary 2007; Thyagharajan et al., 2007; 

and Svensson et al., 2007).    

 

The design involved researching different learning theories and concepts to achieve a 

learner-centric approach.  Using the experiential learning approach as a way of controlling 

the whole learning cycle provided a solid theoretical base.  Once this approach was 

researched it was noticed that learning styles can be applied as a way of categorising and 

creating a tailored learner-centric approach.   

 

Once this pedagogical approach was chosen the next challenge was how to apply this into 

an e-learning environment. See Figure 3 for the pedagogical approach chosen. After 

studying other personalised e-learning environments like: Intelligent Tutor System 

(Gutierrez et al., 2006); Personalising Multimedia Learning Resource (Eze et al., 2006); 

Personal Recommender System (Hummel et al., 2007); IDEAL (Wang 2008); and finally 

the personalised e-learning system called MOT  2.0 (Ghali et al., 2009).  The following 

model was implemented called the AIPL environment see Figure 5.  

 

Once the two models were designed the next stage was the most complex and difficult  

to comprehend.   
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This is where a number of contributions to research were achieved:  

 

The Learning Profile (LP) being presented within this Thesis takes into consideration the 

research of (Ray 2000, Tzouveli et al., 2005 and Subramaniam 2006) by incorporating 

group-learning-paradigm profiles as a way of identifying and clustering individuals into 

groups.  This provides a way of holding details belonging to individuals and also provides a 

mechanism for grouping. According to Ray (2000) this would help to build communities 

based upon common interests and themes. See Chapter 5, Section 5.2.2 Representation of 

the Learner Profile & the Learner Profile Lifecycle.  The approach here has built upon the 

work of Tzouveli et al., (2005) and Subramaniam (2006) by applying learning styles to 

group-learning-paradigm profiles to enable the adaptation of the environment to how the 

student prefers to learn.   

 

The AIPL environment provides a way for other institutions and e-learning environments to 

share academic resources through the use of heterogeneous profiles.  To see how this 

resource could be used and shared (hypothetically), see Chapter 5, 5.2.2.3 Integration of 

how to process heterogeneous profiles.  As indicated by Dolog et al., (2003), Xu et al., 

(2003), Prolog et al., (2003) and Dalsgaard (2006) there is a need for a solution to the 

current problems associated with heterogeneous profiles. As mentioned the heterogeneous 

profile is available within the AIPL environment; however, only as a demonstration of how 

this could work across different LMS’s and VLE’s, depending on the database types each 

institution uses.       

 

Finally, the research has also investigated the challenges and complexities associated with 

grouping learners together: See Chapter 5, 5.2.3 Grouping Learners – Challenges and 

Complexities.  The results from Chapter 6 associated with group learning, indicate that the 

use of group-learning-paradigm profiles can benefit on-line learning from sharing personal 

views, and rating.  The findings from the preliminary and primary testing indicate that 

learner participants’ responses concerning the factors affecting the learning materials being 

retrieved were useful, and beneficial when reducing mis-matching.   

 

How the AIPL environment dealt with the implementation of grouping views   

 

According to Richardson et al., (2003), Tzouveli et al., (2005) and Subramaniam (2006) 
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the use of community views can assist student perceptions of learning on-line and can have 

a direct impact on improving their learning experience by enabling categorisation to similar 

groups, interests and habits.  In Chapter 6 the AIPL environment was tested using the 

recommendations from researchers like Richards, Tzouveli and Subramaniam about using 

group views to see how this approach could affect the learning process. After analysing the 

responses within Chapter 6, in the first set of candidates 29 (80.5%) of the 36 students 

indicated that this approach was good/excellent when matching group’s views in 

accordance with their learning categorisation.  Comparing the preliminary test data to the 

primary results, 75% would agree (n=12) and the other 25% (n=4) were satisfied with this 

approach. The results belonging to the preliminary test data (80.5%) and that of the 

primary results (75%) do indicate that this approach of using group views as a way of 

matching the needs of the learners to the learning materials would assist the learner within 

the learning process.   

 

Based upon the results presented above it shows that this approach has the potential to  

have an impact on student learning.   

 

Evaluate the new approach using a set of learners and a set learning context.  

 

Evaluating the new personalised content retrieval mechanism is not as simple as matching 

a set of learners requirements to a set of functions in order to filtering out mis-matches. As 

indicated by Sherry (1996) to have a successful on-line education system, a balance must 

be developed to incorporate equilibrium between the learners and the learning 

environment.  According to Baber et al., (2004) effective on-line learning requires the 

environment to respond to changes to the learner requirements. The relationship between 

the learner, the learning activities, and the requirements were complex, and the research 

conducted within Chapter 6 produced a positive response in accordance with matching the 

learner to a set of learning materials.    

 

The results from the preliminary findings indicated that on average 85% (n=36) of the test 

candidates believed that matching the learning materials in accordance with their learning 

styles assisted their learning experience.  To validate the results from the preliminary 

testing, another study was conducted, in which 81% of the test candidates agreed that this 

approach benefited their educational experience.   
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The analytical responses from Chapter 6 support the research carried out by (Becks et al.,  

2003; Bajraktarevic  et  al.,  2003; Tzouveli  et  al.,  2005; Subramaniam  2006  and 

Deeb, 2007), which indicate that matching learning materials to the learners can have a 

dramatic influence on the learning process.  

 

Critically evaluate project success/failure and approaches taken.  

 

Analysis of the preliminary and primary result sets demonstrates that generally 

candidates rated the AIPL environment as effective (over 80% of the sample) in matching 

the learner to appropriate learning materials.  In breaking down the results further into the 

three categories of search (collaborative grouping/group views; keyword search and 

automatic retrieval of learning objects) the following analytical responses were identified.   

 

The preliminary studies indicated that over 80% of the test candidates believed that the 

concept of clustering in groups based on their learning approaches assisted the learner’s 

experience.  This was supported through a further experimental study which indicated 

100% of the study group believed that this approach did benefit their on-line education 

experience.   

 

Studying the analytical results from the keyword search belonging to the preliminary 

investigation, over 80% of the test candidates believed that the keyword search was 

beneficial.  The primary testing results indicated an increase in satisfaction (100%) with 

this tool.  Both sets of results indicated that these search facilities assisted with their 

learning experience.  The analytical results from the semantic metadata search algorithm 

both indicated that 94% of the sample found the feature to be beneficial to their educational 

experience.   

 

After looking at the analytical results that were gathered from Chapter 6 the author 

believes that the Thesis question is supported and the new approach outlined in  this Thesis 

for matching the learners’ to the learning materials benefits and improves the learning 

experience.   

 

So far by critically evaluating the project the results looks promising for this new novel  
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approach of personalised learning. The next set of results will look at the responses from 

the candidates when AIPL was compared to Moodle using the following criteria: (Human 

Computer Interface; Pedagogical course approach; Presentation of supplementary 

materials; and what features would they like to see on Moodle).  

 

The following Table 55 demonstrates the results from the averages belonging to each 

question asked within Chapter 6 about consistencies between HCI, and course materials 

used throughout the test suite.   

  Preliminary Primary Moodle 

Font was consistent throughout the Environment 86 75 94 

Text size was consistent throughout the Environment 80 69 100 

Did you find that the Element Placement of ICON, 

facilities buttons was designed to be user friendly? 

90 94 94 

Presentation of supplementary materials 80 94 88 

Over all result 84% 83% 94% 

Table 55: Averages belonging to testing for consistency 

After the tests were conducted, a final question was asked to discover what features of the 

AIPL environment learners would like to see on other on-line learning environments  

and the results are contained in Table 56:   

 Yes No Maybe 

    Collaborative Grouping 14 2 0 

    Automatic retrieval of LO 13 1 2 

    Keyword Search 16 0 0 

Table 56: Transferable Features 

Overall, the author feels that the approach that was chosen has got the potential to improve 

personalisation features within VLE and offers an mechanism for enabling experiential 

learning through collaborative grouping and rating.    

 

7.2 Implications and Limitations  

 

Throughout this project there have been a number of limitations that have to be indicated 
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these are, for example:  The primary test size of candidates, which involved 16 students, 

could have been increased to 30+ equaling the preliminary test study sample group.  In 

addition to the test bed size the author could have broadened the test group to different 

disciplines to fully understand the true potential of the AIPL environment and the PAF 

matching mechanisms.      

 

With hindsight the questionnaire used (see Appendix C) for evaluation of the user 

experience of AIPL contains a number of questions which are positively biased (e.g. did 

you find the keyword search useful?). The way that these questions are phrased may have 

impacted on the results in a positive way.  A better approach to developing the 

questionnaire would have been to run the questionnaire past a number of individuals to 

check question validity; to run some preliminary testing to check that these work in 

practice; and then to run the series of tests.   

 

The design of AIPL did not fully take into consideration learners with various learning 

barriers e.g. partially blind or visual impairments.  The environment was not flexible 

enough to deal with the next generation of adapted learning materials. The implementation 

of AIPL throughout a variety of institutions (other than the two institutions where testing 

occurred) would have provided a greater insight into the on-line capabilities of providing 

personalised content retrieval for learning.  Even though the AIPL environment was used to 

test two learning activities, one at University of Hull and one at Yorkshire Coast College, it 

did not provide enough detail to support how effective it could really be in cross 

institutional contexts.   

 

7.3 Author’s Contributions  

 

This Thesis through the analysis, design, creation and evaluation of a system for  

personalised content retrieval for learning, provides contributions both theoretically and  

practically to the field of e-learning.  

In theoretical terms, the Thesis:  

 Provides an incremental enhancement to personalised content retrieval for learning 

through building upon research belonging to:  Anderson (2005) and Dong et al in 

(2009), by introducing a new e-learning model called AIPL that uses a pedagogical 
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and group-learning-paradigm approach through learner groups and a group rating 

system linked to learning styles.  

 A new pedagogical approach was based upon the ideas and concepts of researchers 

like (Riding et al., 1997; Santos et al. 2003; Power et al., 2005; Cristea 2005; Eze 

et al., 2007; Zouaq et al., 2007; Khan et al., 2007 and Melia et al., 2009), which 

suggest that by applying pedagogical learning approaches to learning environments 

we can better support the learner.   

 A new novel approach to matching the pedagogical content to learner preferences.  

The inspiration for the matching technique used within this Thesis expanded on the 

research carried out by (Knight et al., 1994; Becks et al., 2003; Bajraktarevic et 

al., 2003; Deeb, 2007; Eze et al., 2007; Chatti et al., 2007; Ullrich et al., 2008; 

and Ghail et al., 2009) about incorporating a three stage evolutionary algorithm 

approach to match learning objects to learners needs based on learning styles and 

group categorisation.  

 

 Provides contributions to e-learning literature in the area of PLE’s (Costello and 

Mundy, 2009a) (Costello and Mundy, 2009b).  

In practical terms, the Thesis:  

 Provides a new practical solution for personalised content retrieval for learning with 

the development of a personalised learning environment called AIPL.  

 Details the evaluation of this practical solution linked in to a learning scenario.  

 

7.4 Recommendations for Further Work  

 

Literature has shown that there are a variety of ways of personalising on-line learning.  

Within this Thesis the primary focus was on content retrieval. There are many different 

categories, which content retrieval can be placed into, for example: Adaptive Information 

Retrieval, Adaptive Hyper Retrieval, Learning Paths, Intelligent Tutoring Systems, 

knowledge-base and finally clustering.  The retrieval mechanism used within this Thesis 

was based upon using AIR, which searched the user profile and matched content relevant to 

the learner’s specification.   

 

Further development of AIPL could be the incorporation of learning paths, and an 
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intelligent tutoring system, which could suggest learning materials based upon other 

learners activities, interests, commonly accessed features etc.   A further advancement to the 

AIPL environment could then be to monitor each time a learner interacts with a learning 

activity; the learner data could then be mined for patterns depending on the learning 

situation, and shared across a group-learning-paradigm. This approach can be as seen as 

related to Intelligent Tutor Systems or Learning Paths.  Understanding why that particular 

learning activity was accessed could provide a more specific rating system which could be 

applied to better support the learning experience.    

 

Another feature that the AIPL environment did not incorporate was the design of e-

Portfolios.  These would require the individuals to be encouraged to update their on-line 

folders like (CV’s, assignments, or personalised views (ratings) to belonging to on-line 

content). E-Portfolios could be used as a way to improve the individual learning through 

keeping track of their own progress, and abilities.   

 

The author notes that at present the evaluation process defined in this Thesis is heavily 

focused on whether the solution presented provides an acceptable experience for online 

learning, through evaluation of student acceptability.  Further work should be undertaken 

in the evaluation process to determine how much of an improvement (if any) the solution 

provides over other existing systems through some form of comparative study. 

7.5 Thesis Conclusions  

 

In this Thesis, the author has developed a new theoretical model called the Adaptive 

Intelligent Personalised Learning (AIPL) environment, to improve the learning experiences 

of the individuals while studying on-line.  The literature review exposed problems and 

issues with current models that are being used within universities and colleges, for 

example: not using pedagogical learning approaches to structure the materials; over use of 

technology to demonstrate course materials; mis-matching of learning content to the users; 

information overload of learning resources; and not incorporating learner centricity as a 

centre point for on-line learning.   

 

The AIPL model was developed to create a mapping between the individual learner and the 

learning materials.  The results from Chapter 6 demonstrate that the overall performance of 
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the AIPL environment and the three-stage evolutionary algorithm (PAFS), in creating a 

new approach to matching the needs of the individual to the learning resource/materials 

was successful.   

 

After careful analysis of the results the author found that AIPL and PAFS in general terms, 

improves and helps the student in their learning experience.  The results demonstrate that 

the approach that the author took looks promising for future integration of such ideas into 

mainstream on-line learning environments.  It is important that e-learning frameworks 

incorporate new theoretical concepts, and ideas, to fully harness the learning abilities of the 

individuals.  
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Appendices:  

Appendix A:     Learning Process Questionnaires                  

 

 

Kolb Learning Inventory, Quick Activity  

  
 

 1. When I learn:  

 

            I like to deal with my feelings. (CE)               ___ I like to think about ideas. (AC)  

 __ 

           I like to be doing things. (AE)                           ___ I like to watch and listen. (RO)  

 __ 

 

  

 2. I learn best when:  

 

 __  I listen and watch carefully. (RO)                  __  I rely on logical thinking. (AC)  

 

 __ I trust my hunches and feelings. (CE)             __  I work hard to get things done. (AE)  

 

  

3. When I am learning:  

 

 __  I tend to reason things out.(AC)               __  I am responsible about things. (AE)  

 

 __  I am quiet and reserved. (RO)                   __  I have strong feelings & reactions. (CE)  

 

   

 4. I learn by:  

 

 __  feeling. (CE)                                                           __ doing. (AE)  

 

       watching. (RO)                                                      __ thinking. (AC)  

 __ 

 

 5. When I learn:  

  

 __  I get involved. (CE)                                             __  I like to observe. (RO)  

 

 __  I evaluate things. (AC)                                        __  I like to be active. (AE)  

 

  

AE  Active Experimentation Score                   RO  Reflective Observation Score    

CE  Concrete Experience Score                        AC  Abstract Conceptualization Score    
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Honey and Mumford: Learning Styles Questionnaire  

1. I have strong beliefs about what is right and wrong, good and bad.  

2. I often act without considering the possible consequences.  

3. I tend to solve problems using a step-by-step approach.  

4. I believe that formal procedures and policies restrict people.  

5. I have a reputation for saying what I think, simply and directly.  

6. I often find that actions based on feelings are as sound as those based on careful thought and 

analysis.  

7. I like the sort of work where I have time for thorough preparation and implementation.  

8. I regularly question people about their basic assumptions.  

9. What matters most is whether something works in practice.  

10. I actively seek out new experiences.  

11. When I hear about a new idea or approach I immediately start working out how to apply it 

in practice.  

12. I am keen on self-discipline such as watching my diet, taking regular exercise, sticking to a 

fixed routine etc.  

13. I take pride in doing a thorough job.  

14. I get on best with logical, analytical people and less well with spontaneous, "irrational" 

people.  

15. I take care over the interpretation of data available to me and avoid jumping to 

conclusions.  

16. I like to reach a decision carefully after weighing up many alternatives.  

17. I’ m attracted more to novel, unusual ideas than to practical ones.  

18. I don't like disorganised things and prefer to fit things into a coherent pattern.  

19. I accept and stick to laid down procedures and policies so long as I regard them as an 

efficient way of getting the job done.  

20. I like to relate my actions to a general principle.  

21. In discussions I like to get straight to the point.  

22. I tend to have distant, rather formal relationships with people at work.  

23. I thrive on the challenge of tackling something new and different.  

24. I enjoy fun-loving, spontaneous people.  

25. I pay meticulous attention to detail before coming to a conclusion.  

26. I find it difficult to produce ideas on impulse.  

27. I believe in coming to the point immediately.  

28. I am careful not to jump to conclusions too quickly.  

29. I prefer to have as many sources of information as possible -the more data to mull over the 

better.  

30. Flippant people who don't take things seriously enough usually irritate me.  

31. I listen to other people's point of view before putting my own forward.  

32. I tend to be open about how I'm feeling.  

33. In discussions I enjoy watching the manoeuvrings of the other participants.  

34. I prefer to respond to events on a spontaneous, flexible basis rather than plan things out in 

advance.  

35. I tend to be attracted to techniques such as network analysis, flow charts, branching 

programmes, contingency planning, etc.  

36. It worries me if I have to rush out a piece of work to meet a tight deadline.  

37. I tend to judge people's ideas on their practical merits.  

38. Quiet, thoughtful people tend to make me feel uneasy.  

39. I often get irritated by people who want to rush things.  

40. It is more important to enjoy the present moment than to think about the past or future.  

41. I think that decisions based on a thorough analysis of all the information are sounder than 

those based on intuition.  

42. I tend to be a perfectionist.  

43. In discussions I usually produce lots of spontaneous ideas.  
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44. In meetings I put forward practical realistic ideas.  

45. More often than not, rules are there to be broken.  

46. I prefer to stand back from a situation and consider all the perspectives.  

47. I can often see inconsistencies and weaknesses in other people's arguments.  

48. On balance I talk more than I listen.  

49. I can often see better, more practical ways to get things done.  

50. I think written reports should be short and to the point.  

51. I believe that rational, logical thinking should win the day.  

52. I tend to discuss specific things with people rather than engaging in social discussion.  

53. I like people who approach things realistically rather than theoretically.  

54. In discussions I get impatient with irrelevancies and digressions.  

55. If I have a report to write I tend to produce lots of drafts before settling on the final version.  

56. I am keen to try things out to see if they work in practice.  

57. I am keen to reach answers via a logical approach.  

58. I enjoy being the one that talks a lot.  

59. In discussions I often find I am the realist, keeping people to the point and avoiding wild 

speculations.  

60. I like to ponder many alternatives before making up my mind.  

61. In discussions with people I often find I am the most dispassionate and objective.  

62. In discussions I'm more likely to adopt a "low profile" than to take the lead and do most of 

the talking.  

63. I like to be able to relate current actions to a longer-term bigger picture.  

64. When things go wrong I am happy to shrug it off and "put it down to experience".  

65. I tend to reject wild, spontaneous ideas as being impractical.  

66. It's best to think carefully before taking action.  

67. On balance I do the listening rather than the talking.  

68. I tend to be tough on people who find it difficult to adopt a logical approach.  

69. Most times I believe the end justifies the means.  

70. I don't mind hurting people's feelings so long as the job gets done.  

71. I find the formality of having specific objectives and plans stifling.  

72. I'm usually one of the people who puts life into a party.  

73. I do whatever is expedient to get the job done.  

74. I quickly get bored with methodical, detailed work.  

75. I am keen on exploring the basic assumptions, principles and theories underpinning things 

and events.  

76. I'm always interested to find out what people think.  

77. I like meetings to be run on methodical lines, sticking to laid down agenda, etc.  

78. I steer clear of subjective or ambiguous topics.  

79. I enjoy the drama and excitement of a crisis situation.  

80. People often find me insensitive to their feelings.  
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Scoring  

 

You score one point for each item you ticked.  There are no points for crossed items.  Circle 

the questions  

 

you ticked on the list below:  

02      07    01      05   

04      13     03      09   

06      15      08       11   

10   16      12      19   

17      25      14        21   

23      28     18      27   

24      29     20      35   

32      31      22      37   

34      33     26      44   

38      36      30      49   

40      39      42      50   

43      41      47      53   

45      46      51      54   

48      52      57      56   

58      55      61      59   

64      60      63      65   

71      62      68      69   

72      66      75      70   

74      67      77      73   

79      76      78      80   

 

Totals              

 

 

 Activist   Reflector   Theorist   Pragmatist  
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Appendix B: RuleBaseComplex   

BEGIN  

   

       Retrieve studentlogon  

 

        //Security control for accessing   

       IF studentlogon == TRUE THEN  //AIPL   if a member then grant  

        Flag1 == TRUE //access to student  

       ELSE BEGIN  

        Flag1 == FALSE  

        DISPLAY Error Message Learning Identification Type cannot be found.   

              DISPLAY Error Internal Application Fault  

  END IF  

  

        IF Flag1 == TRUE THEN   

 

          Initialise  learningtypeidentificationPRAG  //Setting up of variable belonging   

              Initialise  learningtypeidentificationREFL //to part of the interrogation  

          Initialise  learningtypeidentificationANc //of the learner profile  

              Initialise  learningtypeidentificationTHE //access code to module   

              Initialise  modulecode  //they are studying on  

    

         Retrieve learningProfileValue  //Retrieve from database connection  

   

                                                  //Extracting variables and values from the Learning Profile on  

   WHILE LearningProfilevalue != NULL  

                        modulecode == LearningProfilevalue(2)    

                                                  //set location in field for retrieval  

                        learningtypeidentificationPRAG == LearningProfilevalue(4)  

                                                        //set location in field for   

                                                          //retrieve  

                 learningtypeidentificationREFL == LearningProfilevalue(6)  

                 learningtypeidentificationANc == LearningProfilevalue(8)  

                 learningtypeidentificationTHE == LearningProfilevalue(10)  

   END WHILE //end loop when all records have been read  

  

        //======= CONVERT STRINGVALUESTOINTEGER ============  

        Initialise a, b, c, d  

        Initialise learningstrategy //Converting String into Integer    

         a integerCAST(learningtypeidentificationPRAG) //Reading from Database, which   

         b integerCAST(learningtypeidentificationTHE) //Learning Profile sits in  

         c integerCAST(learningtypeidentificationANc) //The casting converts from String  

         d integerCAST(learningtypeidentificationREFL) // to Integer to allow Rule base to                                                           

        //extract values 
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   //====== START OF RULE BASE INDENTIFICATION ==========  

        IF(((a > b) && (a > c)) && (a > d))  

          setvalue learningstrategy = Pragmatist //Start of RULE BASE for identifying the  

        ELSE IF(((b > c) && (b > a)) && (b > d)) //learner s specific learning  type   

          setvalue learningstrategy =  Theorist  

        ELSE IF(((c > a) && (c > b)) && (c > d))  

          setvalue learningstrategy = Activist  

        ELSE IF(((d > b) && (d > a)) && (d > c))  

          setvalue learningstrategy = Reflector  

        ELSE IF((((((a == b) && (a > c)) && (a >d)) || (b == a)) && (b > c))  && (b > d))  

          setvalue learningstrategy =  Pragmatist, Theorist  

        ELSE IF((((((a > b) && (a == c)) && (a > d)) || (b > a)) && (c == a)) && (d > a))  

          setvalue learningstrategy = Pragmatist, Activist  

        ELSE IF((((((a > b) && (a > c)) && (a == d)) || (b > a)) && (c > a)) && (d == a))  

          setvalue learningstrategy = Pragmatist, Reflector  

        ELSE IF((((((a > b) && (a > c)) && (c == d)) || (b > a)) && (c > a)) && (d == c))  

          setvalue learningstrategy =  Activist & Reflector  

        ELSE IF((((((a > b) && (a > c)) && (b == c)) || (b > a)) && (c > a)) && (c == b))  

          setvalue learningstrategy =  Theorist, Activist  

        ELSE IF(a==b && a==c && a==d)  

          setvalue learningstrategy = Pragmatist, Reflector, Theorist, Activist  

        ELSE IF(((((((((a == b) && ( a == c)) && (a >d)) || (a == b)) && ( a == c)) && (a > d)) || (b == a))  

      && ( c == a)) && (d > a))  

          setvalue learningstrategy = Pragmatist, Theorist, Activist  

        ELSE IF(((((((((a == b) && ( a == c)) && (a < d)) || (a == b)) && ( a == c)) && (a < d)) || (b == a))  

      && ( c == a)) && (d < a))  

          setvalue learningstrategy = Pragmatist, Theorist, Activist  

        ELSE IF((((((a == b) && (a < c)) && (a <d)) || (b == a)) && (b < c))  && (b < d))  

          setvalue learningstrategy = Pragmatist, Theorist  

        ELSE IF((((((a < b) && (a == c)) && (a < d)) || (b < a)) && (c == a)) && (d < a))  

          setvalue learningstrategy = Pragmatist, Activist  

        ELSE IF((((((a < b) && (a < c)) && (a == d)) || (b < a)) && (c < a)) && (d == a))  

          setvalue learningstrategy = Pragmatist, Reflector  

        ELSE IF(a < b && b == d && c < b)  

          setvalue learningstrategy = Theorist, Reflector  

        END IF  

  

       Function call identification (learningstrategy, modulecode) String   

  

      ELSE BEGIN  

  

         DISPLAY Error  

                     DISPLAY ERROR PLEASE LOGIN  

  

      END IF  

  

     END   
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  //===== START OF FUNCTION CALL =========  

  

      STRING collaborative_retrieval_values(Learningstrategyarraylist, modulecode)  

      BEGIN   

  

        Initialise Displayarraylearningobjects[]  

  

      Retrieve LearningMaterials  //Retrieve Learning Materials   

      WHILE LearningMaterials !=  NULL //from DATABASE  

       IF ((LearningMaterials == Learningstrategyarraylist) && (LearningMaterials == modulecode))  

      THEN  

   

                                      READ LearningMaterials  

                                      SET displayarraylearningobjects[ ] = LearningMaterials   

      ELSE  

                                                          //Store any materials that is  

                    DISPLAY ERROR  

      END IF  //filtered into array list for displaying   

      END WHILE  

  

                      FORLOOP displayarraylearningobjects [] != NULL  

  

                            NEXT  //Display Filtered Results   

                                         DISPLAY LearningMaterials  

  

                      ELSE BEGIN  

                       DISPLAY not designed to your learning needs  

                      END IF  

   

                    END FORLOOP  

  

  

      END   
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Appendix C:    Questionnaires                  

Can you name any Learning Management System?  

  

Have you had any experience of a VLE/LMS before either at college or another university?   

 

Do you find VLE/LMS useful, within the context of learning on-line?   

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  

  

Did you find the keyword search useful, while searching through learning materials?   

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Did you find that using a keyword search, beneficial?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

The results that were brought back from using the keyword search, did this aid your learning experience?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Would you use this facility again if it was provided on another VLE/LMS?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Overall how effective did you find the keyword search algorithm?   

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Did you find that at any time the keyword search was confusing?   

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

 

How did you find the functionality of the algorithm, when dealing with your query?   

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  
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How relevant were the materials being retrieved in accordance to your learning needs?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Did you find that using the semantic metadata search beneficial?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Would you use facility again if it was provided on another VLE?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Overall how effective did you find the semantic metadata search algorithm?   

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent High  

  

Did you find that at any time the semantic search confusing?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

How did you find the functionality of the algorithm, when dealing with your query?   

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  

  

Did you find that using other people personal views on learning materials helpful?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

How did you find the functionality of the algorithm, when dealing with your query?   

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  

  

How relevant were the materials being retrieved?   

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  
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Did you find that using the collaborative grouping search, beneficial?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Would you use this facility again if it was provided on another VLE/LMS?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Overall how effective did you find the Collaborative Grouping?  

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  

  

Did you find that at any time the collaborative grouping alg 3 confusing?   

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

  

Overall how effective did you find the keyword search?  

        Excellent  

        Very good  

        Satisfactory  

        fair  

        Poor  

  

Overall how effective did you find the auto retrieval tool?  

         Excellent  

        Very good  

        Satisfactory  

        fair  

        Poor  

  

Overall how effective did you find the AIPL Environment?   

         Excellent  

        Very good  

        Satisfactory  

        fair  

        Poor  

  

Overall how effective did you find the Collaborative Grouping?  

        Poor  

        Fair  

        Satisfactory  

        Very Good  

        Excellent  

  

Did you identify any problems errors within the AIPL environment and if so what where they?  

 

Do you find that the Font was consist throughout the AIPL Environment?  

        Strongly Agree  

        Agree  

        No Strong Feelings  
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        Disagree  

        Strongly Disagree  

  

Did you find that the text size was consistant throughout the AIPL Environment?  

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

  

Did you find that the Element Placement of ICON, facilities buttons were designed to be user friendly?  

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

  

Did you find that the presentation of the AIPL environment was consist throughout the VLE?   

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

  

 Did you find that the presentation of supplementary materials suitable for this testing?   

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

  

 Did you find that the Accessible and navigable home or course map suitable?   

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

 

Did you find that the Intercourse navigability suitable for online usage?  

        Strongly Agree  

        Agree  

        No Strong Feelings  

        Disagree  

        Strongly Disagree  

  

 Did you find that using a keyword search aided in reducing materials?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

 

 Did you find that using a Metadata search aided in reducing materials?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  

 

 Did you find that using the collaborative group and rating algorithm aided in reducing materials?  

        Strongly Disagree  

        Disagree  

        No Strong Feelings  

        Agree  

        Strongly Agree  
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How do you think the AIPL environment could be improved?  

  

What have you learnt from using the AIPL environment? Please list topics or themes that have helped you in 

your research?  

  

How would you rate the overall effectiveness of the AIPL environment between 1 (Excellent) and 5 (Poor)  

        Poor (5)  

        Fair (4)  

        Satisfactory (3)  

        Very Good (2)  

  

         Poor (5)  

        Fair (4)  

        Satisfactory (3)  

        Very Good (2)  

  

How would you rate the overall effectiveness of the Metadata Search, between 1 (Excellent) and 5 (Poor)  

        Poor (5)  

        Fair (4)  

        Satisfactory (3)  

        Very Good (2)  

        Excellent (1)  

  


