2,747 research outputs found

    Predicting continuous conflict perception with Bayesian Gaussian processes

    Get PDF
    Conflict is one of the most important phenomena of social life, but it is still largely neglected by the computing community. This work proposes an approach that detects common conversational social signals (loudness, overlapping speech, etc.) and predicts the conflict level perceived by human observers in continuous, non-categorical terms. The proposed regression approach is fully Bayesian and it adopts Automatic Relevance Determination to identify the social signals that influence most the outcome of the prediction. The experiments are performed over the SSPNet Conflict Corpus, a publicly available collection of 1430 clips extracted from televised political debates (roughly 12 hours of material for 138 subjects in total). The results show that it is possible to achieve a correlation close to 0.8 between actual and predicted conflict perception

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Feature extraction based on bio-inspired model for robust emotion recognition

    Get PDF
    Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin

    Sensory contribution to vocal emotion deficit in patients with cerebellar stroke

    Get PDF
    In recent years, there has been increasing evidence of cerebellar involvement in emotion processing. Difficulties in the recognition of emotion from voices (i.e., emotional prosody) have been observed following cerebellar stroke. However, the interplay between sensory and higher-order cognitive dysfunction in these deficits, as well as possible hemispheric specialization for emotional prosody processing, has yet to be elucidated. We investigated the emotional prosody recognition performances of patients with right versus left cerebellar lesions, as well as of matched controls, entering the acoustic features of the stimuli in our statistical model. We also explored the cerebellar lesion-behavior relationship, using voxel-based lesion-symptom mapping. Results revealed impairment of vocal emotion recognition in both patient subgroups, particularly for neutral or negative prosody, with a higher number of misattributions in patients with right-hemispheric stroke. Voxel-based lesion-symptom mapping showed that some emotional misattributions correlated with lesions in the right Lobules VIIb and VIII and right Crus I and II. Furthermore, a significant proportion of the variance in this misattribution was explained by acoustic features such as pitch, loudness, and spectral aspects. These results point to bilateral posterior cerebellar involvement in both the sensory and cognitive processing of emotions

    Speaker-independent negative emotion recognition

    Get PDF
    This work aims to provide a method able to distinguish between negative and non-negative emotions in vocal interaction. A large pool of 1418 features is extracted for that purpose. Several of those features are tested in emotion recognition for the first time. Next, feature selection is applied separately to male and female utterances. In particular, a bidirectional Best First search with backtracking is applied. The first contribution is the demonstration that a significant number of features, first tested here, are retained after feature selection. The selected features are then fed as input to support vector machines with various kernel functions as well as to the K nearest neighbors classifier. The second contribution is in the speaker-independent experiments conducted in order to cope with the limited number of speakers present in the commonly used emotion speech corpora. Speaker-independent systems are known to be more robust and present a better generalization ability than the speaker-dependent ones. Experimental results are reported for the Berlin emotional speech database. The best performing classifier is found to be the support vector machine with the Gaussian radial basis function kernel. Correctly classified utterances are 86.73%±3.95% for male subjects and 91.73%±4.18% for female subjects. The last contribution is in the statistical analysis of the performance of the support vector machine classifier against the K nearest neighbors classifier as well as the statistical analysis of the various support vector machine kernels impact. © 2010 IEEE

    An investigation into vocal expressions of emotions: the roles of valence, culture, and acoustic factors.

    Get PDF
    This PhD is an investigation of vocal expressions of emotions, mainly focusing on non-verbal sounds such as laughter, cries and sighs. The research examines the roles of categorical and dimensional factors, the contributions of a number of acoustic cues, and the influence of culture. A series of studies established that naive listeners can reliably identify non-verbal vocalisations of positive and negative emotions in forced-choice and rating tasks. Some evidence for underlying dimensions of arousal and valence is found, although each emotion had a discrete expression. The role of acoustic characteristics of the sounds is investigated experimentally and analytically. This work shows that the cues used to identify different emotions vary, although pitch and pitch variation play a central role. The cues used to identify emotions in non-verbal vocalisations differ from the cues used when comprehending speech. An additional set of studies using stimuli consisting of emotional speech demonstrates that these sounds can also be reliably identified, and rely on similar acoustic cues. A series of studies with a pre-literate Namibian tribe shows that non-verbal vocalisations can be recognized across cultures. An fMRI study carried out to investigate the neural processing of non-verbal vocalisations of emotions is presented. The results show activation in pre-motor regions arising from passive listening to non-verbal emotional vocalisations, suggesting neural auditory-motor interactions in the perception of these sounds. In sum, this thesis demonstrates that non-verbal vocalisations of emotions are reliably identifiable tokens of information that belong to discrete categories. These vocalisations are recognisable across vastly different cultures and thus seem to, like facial expressions of emotions, comprise human universals. Listeners rely mainly on pitch and pitch variation to identify emotions in non verbal vocalisations, which differs with the cues used to comprehend speech. When listening to others' emotional vocalisations, a neural system of preparatory motor activation is engaged

    On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing

    Get PDF
    Objective: While Parkinson’s disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. Method: EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Results: Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. Conclusion: These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients

    The Company Prosodic Deficits Keep Following Right Hemisphere Stroke: A Systematic Review

    Get PDF
    Objectives: The aim of this systematic review was to identify the presence and nature of relationships between specific forms of aprosodia (i.e., expressive and receptive emotional and linguistic prosodic deficits) and other cognitive-communication deficits and disorders in individuals with right hemisphere damage (RHD) due to stroke. Methods: One hundred and ninety articles from 1970 to February 2020 investigating receptive and expressive prosody in patients with relatively focal right hemisphere brain damage were identified via database searches. Results: Fourteen articles were identified that met inclusion criteria, passed quality reviews, and included sufficient information about prosody and potential co-occurring deficits. Twelve articles investigated receptive emotional aprosodia, and two articles investigated receptive linguistic aprosodia. Across the included studies, receptive emotional prosody was not systematically associated with hemispatial neglect, but did co-occur with deficits in emotional facial recognition, interpersonal interactions, or emotional semantics. Receptive linguistic processing was reported to co-occur with amusia and hemispatial neglect. No studies were found that investigated the co-occurrence of expressive emotional or linguistic prosodic deficits with other cognitive-communication impairments. Conclusions: This systematic review revealed significant gaps in the research literature regarding the co-occurrence of common right hemisphere disorders with prosodic deficits. More rigorous empirical inquiry is required to identify specific patient profiles based on clusters of deficits associated with right hemisphere stroke. Future research may determine whether the co-occurrences identified are due to shared cognitive-linguistic processes, and may inform the development of evidence-based assessment and treatment recommendations for individuals with cognitive-communication deficits subsequent to RHD
    • …
    corecore