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Abstract—This work aims to provide a method able to distin-
guish between negative and non-negative emotions in vocal inter-
action. A large pool of 1418 features is extracted for that purpose.
Several of those features are tested in emotion recognition for the
first time. Next, feature selection is applied separately to male
and female utterances. In particular, a bidirectional Best First
search with backtracking is applied. The first contribution is the
demonstration that a significant number of features, first tested
here, are retained after feature selection. The selected features are
then fed as input to support vector machines with various kernel
functions as well as to the K nearest neighbors classifier. The
second contribution is in the speaker-independent experiments
conducted in order to cope with the limited number of speakers
present in the commonly used emotion speech corpora. Speaker-
independent systems are known to be more robust and present
a better generalization ability than the speaker-dependent ones.
Experimental results are reported for the Berlin emotional speech
database. The best performing classifier is found to be the
support vector machine with the Gaussian radial basis function
kernel. Correctly classified utterances are 86.73%±3.95% for
male subjects and 91.73%±4.18% for female subjects. The last
contribution is in the statistical analysis of the performance of the
support vector machine classifier against theK nearest neighbors
classifier as well as the statistical analysis of the various support
vector machine kernels impact.

I. INTRODUCTION

Next-generation pervasive computing environments resort to

human-centered designs instead of computer-centered designs.

Traditional human-computer interaction (HCI) designs ignore

emotions [1]. Such monolithic interactions are frequently

perceived as cold, incompetent, and socially inept. In today’s

HCI, an agent would be able to engage emotionally if it has

empathy, i.e. it can understand what a person’s emotional state

might dispose him or her to do, and how that disposition

might be affected by different actions that the agent might

take. hence, tools for user interface support and evaluation

need to include models of emotion.

We are interested to exploit the affective information in

order to create an HCI evaluation tool. Our goal is to assist

detecting problems that arise from dissatisfactory interac-

tions, since inability to rectify negative feelings may impede

concentration, cognitive capacity and decision making [2].

Thus, by discriminating negative from non-negative emotions

HCI designers will be able to recognize which parts of the

interface are problematic, in the sense that they evoke negative

emotions, and consequently improve them, thus boosting the

quality of HCI. Furthermore, by discriminating the negative

emotions from the non-negative ones, we move from cate-

gorical emotion representation to dimensional descriptors [3],

that have attracted the interest of the research community,

albeit there is no general agreement against categorical label-

ing in cognitive theory. Other possible applications include

games, call-center management, educational software, life-

support systems, commercial products, virtual guides, cus-

tomer service, in-car driver interfaces, surveillance systems,

conference room research, art, etc [4] [5].

Previous work has underlined the need to recognize the

negative emotions. Anger was detected in recordings from a

German voice portal in [6]. Support vector machines (SVMs)

and Gaussian mixture model (GMM)-based classifiers were

applied to pitch, energy, duration, and spectral-related features.

No feature selection was exploited. GMM-based classifiers

on pitch and energy succeeded the best speaker-dependent

performance (i.e. F1=0.70), when 90% of the utterances were

used for training and the remaining 10% for testing. The

detection of annoyance and frustration was studied in [5]

by utilizing a dialogue travel database developed under the

DARPA communication project. A combination of prosodic,

speaking style and language model information features was

employed. Features selected by a brute-force iterative feature

selection algorithm were provided as input to decision trees.

A speaker-dependent 75%/25% training/testing schema was

adopted. The set of annoyance and frustration is recognized at

a rate varying between 64.5% and 85.4%, depending on the ex-

tracted features as well as the application of word recognition.

Interest detection is studied in [4]. In particular, three levels of

interest were identified, ranging from curiosity to disinterest.

The following acoustic features were extracted: formants,

pitch, frame energy, envelope, Mel-frequency cepstral coeffi-

cients (MFCC), harmonics-to-noise ratio, jitter, and shimmer.

Speaker-independent leave-one-speaker-out experiments were

conducted. Feature selection was performed by sequential

forward floating search at each iteration independently. SVMs

with a polynomial kernel were used as classifiers. A mean

accuracy of 69.2% for all the three levels of interest was

reported, when the audio channel is exploited only. A multi-

cue, dynamic approach in audiovisual sequences was presented

in [7]. Recognition was performed by a simple recurrent

neural network. The activation-valence emotional space was

examined [3]. The speech features were related to prosody,

such as the pitch and the rhythm. No feature selection was

applied. The emotional classes were 4. That is, 1 for the

neutral state and another 3 for all the quadrants defined on the

activation-valence space but the positive/passive one. The latter

was neglected. The SAL database was used for evaluation.



The speaker-dependent emotion classification accuracy was

measured to be 73% for the audio only, when the ratio of

the training and test datasets was 3 to 1.

There are several novel contributions in this paper. To

begin with, a large pool of 1418 features is extracted. Sev-

eral features are proposed here for the first time within the

context of emotion recognition. Feature selection by a Best

First strategy is applied next to male and female utterances

separately. The first contribution is the demonstration that a

significant number of the features, that are first tested here for

emotion recognition, are retained after feature selection. The

selected features are fed as input to SVMs as well asK nearest

neighborhood (KNN) classifiers. Various kernel functions are

tested for SVMs, such as the polynomial, the multilayer

perceptron, and the Gaussian radial basis function (RBF).

The second contribution is in conducting speaker-independent

experiments. A thorough literature survey has revealed only

a few works where speaker-independent emotion recognition

assessment is conducted. The SVM with the Gaussian RBF

kernel is found to be the best performing classifier. The third

contribution is related to statistical analysis of the classifiers’

performance. In particular, the KNN and the SVM with the

Gaussian RBF kernel are compared with means of Q-statistic

whereas one-way analysis of variance (one-way ANOVA)

followed by Tukey’s method is applied in order to compare

if the different SVM kernels lead to statistically different

performance gains.

The outline of the paper is as follows. In Section II, the

database is described and the extracted features are summa-

rized in Section III. Feature selection is addressed in Sec-

tion IV. The experimental procedure is detailed in Section V

and conclusions are drawn in Section VI.

II. DATABASE

We are currently working on designing the collection pro-

tocol of a database of vocal interactions derived from a

VoiceXML application. Thus, for the time being, we had to

confine ourselves to an already publicly available database.

We have resorted to the widely used Berlin emotional speech

database (EMODB), whose emotional quality is ensured by

human annotators. In the EMODB, 10 subjects simulate 7

emotional states, namely: anger, fear, joy, sadness, disgust,

boredom, and neutral. The subjects are divided into 5 actors

and 5 actresses. Each of them utters 10 utterances in German.

The set of negative emotions comprises the states of anger,

fear, sadness, discuss and boredom. Such emotional states

possess a negative valence in the activation-valence emotion

description space [3]. Non-negative emotions include the joy

and the neutral state. The recordings are mono-channel, sam-

pled at a frequency of 16 KHz, and their audio format is PCM.

The audio samples have been quantized in 16 bits. The full

database comprises approximately 30 minutes of speech. The

database consists of 535 utterances with 233 utterances uttered

by male subjects whereas the remaining 302 ones are uttered

by female subjects. The EMODB is publicly available [8].

III. FEATURE EXTRACTION

Cognitive scientists have not yet identified the optimal set of

features that reliably discriminates among the emotional states

[1]. Here, a large number of 1418 features has been extracted.

Our aim is two-fold. On the one hand, we attempt to compute

a multitude of features so that an exhaustive feature set is

created. On the other hand, several features are investigated for

discrimination between negative and non-negative emotions

for the first time.

The features are related to:

• the pitch contour

• the formants contours

• the energy contour

• the features derived from the sound description toolbox

[9], that is general audio description including the MPEG-

7 audio framework, such as

– spectral features

– temporal features

– short-time energy

– MPEG-7 low level descriptors (i.e. AudioPower,

AudioFundamentalFrequency, AudioSpectrum-

Spread, AudioSpectrumFlatness, LogAttackTime,

TemporalCentroid and AudioSpectrumRolloff

frequency)

– MFCCs

– total loudness and specific loudness sensation coef-

ficients (SLSC)

• the Teager energy operator on autocorrelation

• the Fujisaki’s model parameters [10]

• the jitter and the shimmer.

Pitch is computed based on an autocorrelation method, while

the method to estimate formants relies on the linear prediction

analysis. The first and second order feature differences are also

computed in order to capture the feature temporal evolution.

Thus, a multivariate time series is obtained and a dynamic

model is feasible [11]. To reduce the dependency on the

spoken phonetic content, several statistics of the features are

extracted [4] [11], such as the maximum, the minimum, the

variance, the mean, the median, the skewness, the interquartile

range, and the 90th percentile. Finally, normalization takes

place, since the different features may possess different scales.

It aims to modify the mean and standard deviation (st. dev.)

of the features values in order to ensure an equal contribution

of each feature to the feature selection algorithm. Moreover,

the normalization helps to eliminate the outliers. All fea-

tures are subject to min-max normalization hereafter. Min-

max normalization is expected to boost performance, since

it preserves all original feature relationships and does not

introduce any bias in the features. Let minF and maxF

be the minimum and the maximum of feature F . Min-max

normalization maps the interval [minF ,maxF ] into a new

interval [newminF
, newmaxF

]. Thus, any value n from the

original interval is mapped into value newn according to:

newn = n−minF

maxF−minF

(newmaxF
− newminF

) + newminF
.

Here, newminF
= 0 and newmaxF

= 1. To the best of



the authors’ knowledge, the MPEG-7 descriptors, the Teager

energy operator on autocorrelation, the total loudness, and

the SLSC are investigated within the context of emotion

recognition for the first time here.

IV. FEATURE SELECTION

Feature selection is applied next, because a small feature

set requires less memory, fewer computations and generally

possesses greater generalization abilities than a large feature

set. Indeed by employing large feature sets the possibility

to include features with less discriminating power increases

not to mention the excess computation time and storage

requirements. Initial experiments without feature selection, i.e.

by exploiting all extracted features, demonstrate a performance

of 64.15%±3.59% for male subjects and 62.22%±9.33% for

female subjects.

Feature selection is applied separately to male and female

utterances. It is widely accepted by the research community

that the two genders convey their emotions in profoundly

different ways [1] [12]. Some features are gender-dependent,

e.g. the pitch. It is well known that in general female speech

has higher pitch than male speech, due to the increase in

mass of a male’s vocal folds. Furthermore, the smaller vocal

tract dimensions in women rather than men produces higher

formant frequencies for women. Moreover, this approach is

compatible to our aim to build an HCI evaluation tool, where

the evaluator can specify his or her gender. However, for the

general case, a gender recognizer is also available [13].

The feature selection algorithm is the Best First. Best First

searches the feature space by greedy hill climbing. That is, a

search is conducted in the feature lattice in order to find the

node that is optimal with respect to the evaluation function.

Here, the evaluation function is the Pearson correlation.

So, the feature subsets that are highly correlated within the

same class (i.e., the negative emotions or the non-negative

ones), while possessing a low correlation across the classes

are preferred. Backtracking and bidirectional search are also

exploited. The selected features for the male utterances are

listed in Table I and for female utterances in Table II. In

particular, 61 features are retained for male utterances and

50 for the female ones.

Exactly 6 features coincide between the male and female se-

lected feature subsets, verifying the importance of the speaker

gender for the emotion recognition task. However, one can

easily check that the two sets of selected features contain

common categories, a result that was also reported in [2]. To be

more specific, the selected features for both male and female

utterances are related to the pitch contour, the energy contour,

the MPEG-7 low level descriptors, the SLSC, the MFCCs,

and the Fujisaki’s model parameters. It is worth noticing that

pitch and energy are among the most commonly used features

in speech emotion recognition research. The MFCCs have

also been tested previously. There has been limited work on

Fujisaki’s model parameters. MPEG-7 low level descriptors

and SLSC are tested within the context of speech emotion

recognition for the first time in this paper.

TABLE I
SELECTED FEATURES WHICH DISCRIMINATE BEST THE NEGATIVE

EMOTIONS FROM THE NON-NEGATIVE ONES IN MALE UTTERANCES.

pitch existence in the utterance (expressed in %)

median of durations in the plateaux of pitch at maxima

mean of pitch values within the plateaux at maxima

maximum of pitch

variance of pitch

interquartile range of pitch

skewness of the second order differences of pitch

interquartile range of durations in the plateaux of energy at minima

mean of energy values within the plateaux at minima

median of energy values within the plateaux at maxima

mean of durations in the rising slopes of energy contours

position of the first energy maximum

st. dev. of energy in the rising slopes of energy contours

energy below 2800 Hz

energy in the frequency band 600-1500 Hz

energy in the frequency band 250-1500 Hz

minimum of the Teager energy operator on autocorrelation

interquartile range of the short-time energy

interquartile range of the short-time energy first order differences

maximum of the 5th SLSC

minimum of the 1st SLSC first order differences

skewness of the 7th SLSC first order differences

interquartile range of the 6th SLSC first order differences

interquartile range of the 9th SLSC first order differences

90th percentile of the 9th SLSC first order differences

variance of the 5th SLSC second order differences

skewness of the 6th SLSC second order differences

skewness of the 7th SLSC second order differences

interquartile range of the 8th SLSC second order differences

90th percentile of the 8th SLSC second order differences

variance of the AudioSpectrumCentroid first order differences

maximum of the AudioSpectrumRolloff frequency

minimum of the AudioSpectrumSpread first order differences

maximum of the 11th MFCC

maximum of the 17th MFCC

minimum of the 6th MFCC

minimum of the 14th MFCC

variance of the 7th MFCC

mean of the 5th MFCC

median of the 5th MFCC

median of the 7th MFCC

interquartile range of the 20th MFCC

mean of the 5th MFCC first order differences

variance of the 5th MFCC second order differences

variance of the 9th MFCC second order differences

median of the 5th MFCC second order differences

skewness of the 5th MFCC second order differences

skewness of the 6th MFCC second order differences

skewness of the 7th MFCC second order differences

interquartile range of the 5th MFCC second order differences

interquartile range of the 8th MFCC second order differences

maximum of Fujisaki’s F0 contour

variance of Fujisaki’s F0 contour first order derivative

mean of Fujisaki’s F0 contour second order derivative

90th percentile of Fujisaki’s F0 contour second order derivative

minimum of the high-pass filter output contour

skewness of the high-pass filter output contour

90th percentile of the accent component first order derivative

mean of the phase component

variance of the accent commands second order derivative

mean of the accent commands second order derivative

V. EXPERIMENTAL PROCEDURE

A. The Applied Classifiers

The classifiers employed for discriminating negative from

non-negative emotions are the KNN and the SVM. The



TABLE II
SELECTED FEATURES WHICH DISCRIMINATE BEST THE NEGATIVE

EMOTIONS FROM THE NON-NEGATIVE ONES IN FEMALE UTTERANCES.

mean of the 3rd formant

skewness of the 3nd formant

interquartile range of durations within the falling slopes of pitch

contours

maximum of durations in the plateaux of energy contour at minima

median of durations in the plateaux of energy contour at maxima

maximum of AudioFundamentalFrequency second order differences

mean of the 3rd SLSC

interquartile range of the 1st SLSC

minimum of the 1st SLSC first order differences

minimum of the 3rd SLSC first order differences

minimum of the 8th SLSC first order differences

skewness of the 1st SLSC first order differences

variance of the 2nd SLSC second order differences

mean of the 4th SLSC second order differences

skewness of the 5th SLSC second order differences

interquartile range of the 8th SLSC second order differences

skewness of the AudioSpectrumCentroid

maximum of the AudioSpectrumCentroid first order differences

skewness of the AudioSpectrumCentroid first order differences

interquartile range of the AudioSpectrumRolloff frequency

minimum of the AudioSpectrumRolloff frequency first order differ-

ences

variance of the AudioSpectrumRolloff frequency first order differences

90th percentile of the AudioSpectrumRolloff frequency second order

differences

maximum of the 9th MFCC

minimum of the 6th MFCC

variance of the 9th MFCC

variance of the 16th MFCC

variance of the 17th MFCC

median of the 7th MFCC

skewness of the 24th MFCC

interquartile range of the 7th MFCC

variance of the 6th MFCC first order differences

mean of the 5th MFCC first order differences

interquartile range of the 5th MFCC first order differences

90th percentile of the 6th MFCC first order differences

maximum of the 7th MFCC second order differences

variance of the 6th MFCC second order differences

variance of the 7th MFCC second order differences

skewness of the 5th MFCC second order differences

skewness of the 24th MFCC second order differences

interquartile range of the 1st AudioSpectruFlatness coefficient second

order differences

minimum of Fujisaki’s F0 contour first order derivative

90th percentile of Fujisaki’s F0 contour first order derivative

median of Fujisaki’s F0 contour second order derivative

90th percentile of Fujisaki’s logarithmic F0 spline

minimum of the low-pass filter output contour

skewness of the accent commands first order derivative

interquartile range of the accent commands first order derivative

median of phrase commands

interquartile range of the phrase commands

classification accuracy is tested for several parameterizations.

The best parameter is indicated by experimentation, as in [2].

SVMs are ideal for the case under consideration, since they

create a hyperplane that separates the data into two classes

with the maximum-margin. Let vi be the ith training vector.

Three different kernels are used.

• Polynomial:

KSV M (vi, vj) =
(

vTi vj
)M

, (1)

with M being the polynomial order;

• Multilayer perceptron:

KSV M (vi, vj) = S
(

vTi vj − 1
)

, (2)

where S(·) is the sigmoid function;
• Gaussian RBF:

KSVM (vi, vj) = exp(−γ||vi − vj ||2), (3)

where γ is a scaling factor.

The corresponding SVMs are referred to as SVMPOL,

SVMMLP, and SVMRBF, respectively.

B. Experimental Protocol and Figures of Merit

With the term speaker-independent we mean that the ut-

terances that are included in the test set come from a

specific speaker, whose utterances are not included in the

training set. Only a few researchers have conducted speaker-

independent experiments. Speaker-independent systems are

more robust and demonstrate a better generalization abil-

ity than the speaker-dependent ones. Moreover, the speaker-

independent systems are suitable for real-life applications,

such as call-center applications, media segmentation, public

transport surveillance. Furthermore, speaker-independent sys-

tems can cope with the limited number of speakers present

in the commonly used emotion speech corpora [14]. An

additional advantage of the speaker-independent systems is

the fact that the experimental protocol is deterministic, in the

sense that the exact configuration is known. This way, result

comparisons are facilitated in contrary to random speaker-

dependent partitions that can not be reproduced exactly [15].

Moreover, it is reported that speaker-dependent emotion recog-

nition leads to far better results than speaker independent mod-

eling. For example in [14], 10 different classifiers are tested.

The averaged performance equals 89.49% for the speaker-

dependent case, whereas it drops to 71.29% for the speaker-

independent one. In order to measure speaker-independent

emotion recognition rate, leave-one-speaker-out evaluation is

applied and the average rate is reported over the 5 male

subjects as well as the 5 female subjects. That is, for each

gender separately, the classifier is trained 5 times, each time

leaving one speaker out of the training set and then testing

the performance on the utterances of the speaker left out.

The interest is the assessment of emotion recognition accuracy

without mixing it with speaker recognition. This is guaranteed

by the proposed protocol.

Let us define the figures of merit used. Let hits be the

number of utterances that are classified correctly and misses

the number of utterances that are classified incorrectly. Then,

the ratio of correctly classified utterances (CCU ) equals

CCU =
hits

hits+misses
. (4)

For incorrectly found utterances (ICU ) it holds that ICU =
1 − CCU , while the root mean squared error (RMSE) is

defined as RMSE =
√
ICU . The standard deviation of each

figure of merit across the 5 evaluations is also reported.
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Fig. 1. Speaker-independent CCU (%) of the KNN versus various
values of K for male utterances, female utterances, and utterances of
both genders.
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Fig. 2. Speaker-independent CCU (%) of the SVMRBF versus various
values of γ for male utterances, female utterances and utterances of both
genders.

The KNN classifier is used as a baseline classifier. The

distance metric used within the KNN is based on the cor-

relation. It is defined as one minus the sample correlation

between the training vectors. Ten different numbers of nearest

neighbors K ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} are tested, as can

be seen in Figure 1. In general, CCU in female utterances

tends to be higher than that in male utterances, especially

for low and medium K values. The best average ratio of

CCU is measured for K=3 neighbors. Exact figures of merit

are listed in Table III. Concerning the SVMPOL, values of

M ∈ {3,4,5,6,7,8,9,10} are examined. The best performance
is obtained when M=3 as can be seen in Table III where

experimental results for the SVMMLP are also included. The

SVMRBF is tested for various γ values, as demonstrated in

Figure 2. γ is a real parameter whose range is [1, 10]. The best
performance is obtained for γ = 4.8. The average ratio of the
CCU for the SVMRBF is rather poor for small γ values, while

it converges to 85% for large γ values. The figures of merit

for the SVMRBF, when γ = 4.8, are exhibited in Table III.

For discussion, in [2] the authors also aim to negative and

non-negative emotion detection. The data are derived form a

call-center. Linear discriminant classifiers (LDC) and KNNs

were tested for each gender utterances separately. Parameters

such as the fundamental frequency, energy, duration, and for-

mant features were extracted. Then forward feature selection

was applied followed by principal component analysis. Results

were reported for 10-fold cross-validation making the exper-

imental procedure speaker-dependent. Concerning exclusively

the audio channel, the lowest classification error of the LDCs

was 17.85% and 12.04% in male utterances and female ones,

respectively.

C. Statistical Assessment

Two sets of comparisons are carried out. The first one

refers to testing the dependency between the KNN and the

SVMRBF. The second one compares the performance gains

for the 3 different kernels of the SVM.

1) Comparing Classifiers: The SVMRBF is considered,

since the Gaussian RBF kernel yields the best CCU for both

genders, as can be seen in Table III. Thus, we examine the

dependency between the KNN and the SVMRBF with respect

to the average ratio of CCU over both genders. Q-statistic is

calculated to measure the dependency between the classifiers

[16]. Q-statistic measures the pairwise symmetrical similarity.

For two classifiers, Q-statistic is defined as:

Q =
N11 N00 −N01 N10

N11N00 +N01N10

, (5)

where N11 is the number of utterances both KNN and

SVMRBF classify correctly, N10 is the number of utterances

KNN classifies correctly while the SVMRBF classifies incor-

rectly, N01 is the number of utterances the KNN classifies

incorrectly while the SVMRBF classifies correctly and N00 is

the number of utterances both the KNN and the SVMRBF

classify incorrectly. The Q-statistic admits values between -1

and 1. If the classifiers are statistically independent, the Q-

statistic equals 0. If the classifiers tend to recognize correctly

the same utterances then positive values of Q-statistic are

admitted, whereas for classifiers, which commit errors on

different utterances, a negative Q-statistic is rendered. In our

case, Q = 0.803. This can be attributed to the fact that both

classifiers are trained and tested on the same data.

2) Comparing Kernels: There are 3 different SVM variants,

namely the SVMPOL, the SVMMLP and the SVMRBF, due

to the 3 different kernels employed. In particular, for the

SVMPOL and the SVMRBF the parameters that yield the

highest CCU are considered, i.e. M = 3 for the SVMPOL

and γ = 4.8 for the SVMRBF. One-way ANOVA is applied,

to test whether or not the 3 SVM variants are of equal average

CCU . At 95% confidence level, the p-value equals 1.546 ×
10−5, that is less than 0.05, meaning that the average CCU

differences are due to systematic variations and not due to

randomness. However, no information is provided by one-way

ANOVA about the pairs of the SVM variants that differentiate



TABLE III
SPEAKER-INDEPENDENT FIGURES OF MERIT ON EMODB FOR KNN, SVMPOL, SVMMLP AND SVMRBF FOR BOTH GENDERS.

KNN (K=3 ) SVMPOL (M=3) SVMMLP SVMRBF (γ = 4.8)
male female male female male female male female

CCU% (mean) 81.16 88.36 85.60 89.75 74.70 69.89 86.73 91.73

CCU% (st. dev.) 4.00 4.24 8.14 6.99 4.32 11.69 3.95 4.18

RMSE (mean) 0.43 0.34 0.37 0.30 0.50 0.54 0.36 0.28

RMSE (st. dev.) 0.05 0.06 0.10 0.12 0.04 0.12 0.05 0.09

statistically. Thus, Tukey’s method is applied to find these

SVM variants that differentiate at the 95% confidence level.

Tukey’s method is optimal for one-way ANOVA, which is our

scenario. The confidence intervals for all pairwise averaged

CCU comparisons among the 3 SVM variants are listed in

Table IV. If the confidence interval includes 0, the pairwise

average CCU difference is not statistically significant.

TABLE IV
PAIRWISE COMPARISONS BETWEEN THE SVMPOL, THE SVMMLP AND

THE SVMRBF.

classifier variants

compared

95% confidence

interval

statistically

different

SVMPOL, SVMMLP [0.07, 0.23] yes

SVMPOL, SVMRBF [-0.09, 0.06] no

SVMMLP, SVMRBF [-0.25, -0.09] yes

VI. CONCLUSIONS

This paper has dealt with the discrimination between ne-

gative and non-negative emotions in speech utterances. 1418

features have been extracted and the best features have been

selected by the bidirectional Best First algorithm with back-

tracking separately for male and female utterances. In both

cases, the selected feature subset includes features that are first

tested here for emotion recognition. The selected features have

been fed as input to the KNN, the SVMPOL, the SVMMLP

and the SVMRBF. Speaker-independent experiments have

been conducted on the EMODB using a leave-one-speaker-out

evaluation. A high ratio of correctly classified utterances has

been reported for both male and female subjects by the best

performing SVMRBF classifier. Statistical tests have shown

that the Q-statistic equals 0.803, when comparing the KNN

and the SVMRBF, whereas the SVMRBF and the SVMPOL

have been shown to attain an equal performance. In the future,

we plan to apply a hierarchical strategy, where the recognition

of negative and non-negative emotions will be the performed

first and next a more detailed classification to emotional states

will be conducted. Within such an hierarchical scheme, it

would be easier to accommodate different number of speakers

and different number of emotional states.
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G. Rigoll, “Audiovisual recognition of spontaneous interest within
conversations,” in Proc. 9th Int. Conf. Multimodal Interfaces, November
2007, pp. 30–37.

[12] D. Ververidis and C. Kotropoulos, “Emotional speech classification using
Gaussian mixture models and the sequential floating forward selection
algorithm,” in Proc. IEEE Int. Conf. Multimedia and Expo, July 2005,
pp. 1500–1503.

[13] M. Kotti and C. Kotropoulos, “Gender classification in two emotional
speech databases,” in Proc. 19th Int. Conf. Pattern Recognition, Decem-
ber 2008, pp. 4898–4901.

[14] B. Schuller, R. Villar, G. Rigoll, and M. Lang, “Meta-classifiers in
acoustic and linguistic feature fusion-based affect recognition,” in Proc.
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, March 2005,
pp. 325–328.

[15] B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEECH 2009 emo-
tion challenge,” in Proc. 10th Annual Int. Conf. Speech Communication
Association, September 2009, pp. 312–315.

[16] L. Kuncheva and C. Whitaker, “Measure of diversity in classifier
ensembles,” Machine Learning, vol. 51, no. 2, pp. 181–207, May 2003.


