27,151 research outputs found

    A Note on Logic Programming Fixed-Point Semantics

    No full text
    In this paper, we present an account of classical Logic Programming fixed-point semantics in terms of two standard categorical constructions in which the least Herbrand model is characterized by properties of universality. In particular, we show that, given a program PP, the category of models of PP is reflective in the category of interpretations for PP. In addition, we show that the immediate consequence operator gives rise to an endofunctor TP{T}_P on the category of Herbrand interpretations for PP such that category of algebras for TP{T}_P is the category of Herbrand models of PP. As consequences, we have that the least Herbrand model of PP is the least fixed-point of TP{T}_P and is the reflection of the empty Herbrand interpretation

    Cyclic Datatypes modulo Bisimulation based on Second-Order Algebraic Theories

    Full text link
    Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because of their cyclicity. This paper presents an investigation of categorical, algebraic, and computational foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation rules for describing and reasoning about cyclic datatypes. We extract the "fold" computation rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby, the rules are correct by construction. We prove strong normalisation using the General Schema criterion for second-order computation rules. Rather than the fixed point law, we particularly choose Bekic law for computation, which is a key to obtaining strong normalisation. We also prove the property of "Church-Rosser modulo bisimulation" for the computation rules. Combining these results, we have a remarkable decidability result of the equational theory of cyclic data and fold.Comment: 38 page

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Strongly Normalising Cyclic Data Computation by Iteration Categories of Second-Order Algebraic Theories

    Get PDF
    Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because of their cyclicity. This paper presents an investigation of categorical, algebraic, and computational foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation rules for describing and reasoning about cyclic datatypes. We extract the ``fold\u27\u27 computation rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby, the rules are correct by construction. Finally, we prove strong normalisation using the General Schema criterion for second-order computation rules. Rather than the fixed point law, we particularly choose Bekic law for computation, which is a key to obtaining strong normalisation

    Iteration Algebras for UnQL Graphs and Completeness for Bisimulation

    Full text link
    This paper shows an application of Bloom and Esik's iteration algebras to model graph data in a graph database query language. About twenty years ago, Buneman et al. developed a graph database query language UnQL on the top of a functional meta-language UnCAL for describing and manipulating graphs. Recently, the functional programming community has shown renewed interest in UnCAL, because it provides an efficient graph transformation language which is useful for various applications, such as bidirectional computation. However, no mathematical semantics of UnQL/UnCAL graphs has been developed. In this paper, we give an equational axiomatisation and algebraic semantics of UnCAL graphs. The main result of this paper is to prove that completeness of our equational axioms for UnCAL for the original bisimulation of UnCAL graphs via iteration algebras. Another benefit of algebraic semantics is a clean characterisation of structural recursion on graphs using free iteration algebra.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    A principled approach to programming with nested types in Haskell

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the buildcombinator, and immediately consumed using the foldcombinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines buildcombinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell
    corecore