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Abstract
Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because
of their cyclicity. This paper presents an investigation of categorical, algebraic, and computa-
tional foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order
algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation
rules for describing and reasoning about cyclic datatypes. We extract the “fold” computation
rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby,
the rules are correct by construction. Finally, we prove strong normalisation using the Gen-
eral Schema criterion for second-order computation rules. Rather than the fixed point law, we
particularly choose Bekic̆ law for computation, which is a key to obtaining strong normalisation.
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1 Introduction

Cyclic data structures in functional programming are tricky to handle because of their
cyclicity. In Haskell, one can define cyclic data structures, such as cyclic lists by

clist = 2:1:clist

The feasibility of such a recursive definition of cyclic data depends on lazy evaluation.
However, it does not ensure termination of computation. It might fall into a non-terminating
situation. For example, what is the sum of all elements of clist? One may think that it is
non-terminating, undefined, or impossible.

An answer using our framework in this paper is different. We do not rely on lazy evaluation.
We provide a way to regard the sum of a cyclic list as a cyclic natural number, which is
computed by the strongly normalising “fold” combinator. In this paper, we investigate a
framework for syntax and semantics of cyclic datatypes that makes this understanding and
computation correct.

Our framework of cyclic datatypes is founded on second-order algebraic theories of Fiore
et al. [13, 14]. Second-order algebraic theories have been shown to be a useful framework
that models various important notions of programming languages, such as logic programming
[32], algebraic effects [15], quantum computation [33]. This paper gives another application
of second-order algebraic theories, namely, to cyclic datatypes and its computation. We
use second-order algebraic theories to give a uniform setting for typed syntax, equational
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Figure 1 Framework: Second-order algebraic theories and iteration theories.

logic and computation rules for describing and reasoning about cyclic datatypes. We extract
computation rules for the fold from the categorical semantics based on iteration categories
[5]. Thereby the rules are correct by construction. Finally, we prove strong normalisation by
using the General Schema criterion [3] for rewrite rules.

Overview. As an overview of cyclic datatypes and their operations we develop in this paper,
we first demonstrate descriptions and an operation of cyclic datatypes by pseudo-program
codes. The code fragments correspond one-to-one to theoretical data given in later sections.
Therefore, they are theoretically meaningful and more intuitive than starting from detailed
theory.

First we consider an example of cyclic lists. The code below with the keyword ctype is
intended to declare cyclic datatype CList of cyclic lists having two ordinary constructors in
Haskell or Agda style.

ctype CList where
[ ] : CList
:: : CNat,CList → CList

with axioms AxCy

We assume that any ctype declared datatype has a default constructor “cy” for making
a cycle. For example, we express a cyclic list of 1 as a term cy(x.1::x), where cy has a
variable binding “x.”, regarded as the “address” of the top of list. A variable occurrence
x in the body means to refer to the top, hence it makes a cycle. The terms built from the
constructors of CList and the default constructor cy is required to satisfy the axioms AxCy
(given later in Fig. 3) as the keyword “with axioms” mentioned (we assume that any ctype
datatype satisfies AxCy, so this is for ease of understanding). We next consider the above
mentioned example of the sum of cyclic list. We define another cyclic datatype of natural
numbers.
ctype CNat where

0 : CNat
S : CNat → CNat

with axioms AxCy

sum : CList → CNat
spec sum ([ ]) = 0

sum (k :: t) = plus(k, sum (t))

The code with keyword spec at the right column describes an equational specification of
function. It requires that the sum function from cyclic lists to cyclic natural numbers must
satisfy the ordinary definition. We intend that the spec code is merely a (loose) specification,
and not a definition, because it lacks the case of cy-term.

fun sum t = fold (0, k,x.plus(k,x)) t

We here assume that the plus function on CNat has already been defined (as presented later
in Example 4.2). The above code with the keyword fun defines the function sum. It is defined
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by the fold combinator on the cyclic datatypes, as in an ordinary fold on an algebraic
datatypes. The first two arguments 0 and k,x.plus(k,x) correspond to the right-hand sides
of the specification of sum. The fold is actually the fold on a cyclic datatype, which knows
how to cope with cy-term. Actually, the sum of a cyclic list can be computed as follows:

sum(cy(x.S2(0)::S(0):: x)) →
cy(x.sum(x.S2(0)::S(0)::x)@x) →+ cy(x.S(S(S(x))))

where we represent n by Sn(0). The final term is a normal form that cannot be rewritten
further. Therefore, we regard it as the computation result. Here sum is intended to denote
“fold(0,..)”. The steps presented above are actual rewrite steps by the second-order rewrite
rules FOLDr given later in Fig. 8.

How to understand the meaning of the result cy(x.S(S(S(x)))) is arguable. The overall
situation we have demonstrated is illustrated in Fig. 1. In this paper, we also provide a
formal basis to understand and to reason about cyclic data, as well as the computation
result. We use second-order equational logic and the axioms AxCy to equate cyclic data
formally (Fig. 1 [III]). It completely characterises the notion of bisimulation on cyclic data.
The expression cy(x.S(S(S(x)))) is equal to (i.e. bisimilar to) cy(x.S(x)), which is a
minimal representation of the result, which may be regarded as ∞ (infinity). In this paper,
we do not develop an explicit algorithm to extract such a minimal representation from the
computation result, but it is noteworthy that this equational theory generated by AxCy is
decidable. Consequently, it is computationally reasonable. More practical examples on cyclic
datatypes and computation will be given in §6.

2 Second-Order Algebraic Theory of Cyclic Datatypes

We introduce the framework of second-order cartesian algebraic theory, which is a typed
and cartesian extension of [13, 14] and [19]. Here “cartesian” means that the target sort of
a function symbol is a sequence of base types. We use second-order algebraic theory as a
formal framework to provide syntax and to describe axioms of algebraic datatypes enriched
with cyclic constructs. The second-order feature is necessary for cycle operation and the fold
function on them. We will often omit superscripts or subscripts of a mathematical object if
they are clear from contexts. We use the vector notation −→A for a sequence A1, · · · , An, and
|
−→
A | for its length.

2.1 Cartesian Second-Order Algebraic Theory
We assume that B is a set of base types (written as a, b, c, . . .), and Σ, called a signature, is a
set of function symbols of the form

f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ c1, . . . , cn.

where all ai, bi, ci are base types (thus any function symbol is of up to second-order type). A
sequence of types may be empty in the above definition. The empty sequence is denoted by
(), which may be omitted, e.g., b1, . . . , bm → c , or ()→ c. The latter case is simply denoted
by c. A signature Σc for type c denotes a subset of Σ, where every function symbol is of the
form f : τ → c, which is regarded as a constructor of c. A metavariable is a variable of (at
most) first-order type, declared as m : −→a → b (written as small-caps letters z,t, s,m, . . .).
A variable of the order 0 type is merely called variable (written usually x, y, . . .). The raw
syntax is given as follows.

FSCD 2016
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Terms have the form: t ::= x | x.t | f(t1, . . . , tn).
Meta-terms extend terms to: t ::= x | x.t | f(t1, . . . , tn) | m[t1, . . . , tn].

Terms are used for representing concrete cyclic data, functional programs on them and equa-
tions we want to model. A second-order equational theory is a set of proved equations built
from terms (NB. not meta-terms). Meta-terms are used for formulating equational axioms,
which are expected to be instantiated to terms. We write x1, . . . , xn. t for x1. · · · .xn. t.

A metavariable context Θ is a sequence of metavariable:type-pairs, and a context Γ is a
sequence of variable:type-pairs. A judgment is of the form Θ . Γ ` t : −→b . If Θ is empty,
we may simply write Γ ` t : −→b . A meta-term t is well-typed by the typing rules Fig. 4.
We often omit the types for binders as f( −→x1.t1, . . . ,

−→xn.tn ). Given a meta-term t with
free variables x1, . . . , xn, the notation s [x1 7→ s1, . . . , xn 7→ sn] denotes ordinary capture
avoiding substitution that replaces the variables with meta-terms s1, . . . , sn. A substitution
which replaces metavariables with meta-terms [14] is defined in Fig. 6. For meta-terms
Θ . Γ ` s : −→b and Θ . Γ ` t : −→b , an equation is of the form Θ . Γ ` s = t : −→b , or
denoted by Γ ` s = t : −→b when Θ is empty. The cartesian second-order equational logic
is a logic to deduce formally proved equations. The inference system of equational logic is
given in Fig. 5.

Preliminaries for datatypes. The default signature Σdef is given by the function symbols
called default constructors:

Empty sequence 〈 〉 :() Tuple 〈−, · · · ,−〉:(−→c1), . . . , (−→cn)→ −→c1 , . . . ,−→cn
Cycle constr. cy|−→c | :(−→c → −→c )→ −→c Composition �(−→a ,−→c ) :(−→a → −→c ),−→a → −→c .

defined for all base types −→a ,−→c ,−→c1 , . . . ,−→cn ∈ B. This means that any base type has default
constructors. We assume that any signature includes Σdef in this paper. We identify 〈t, 〈 〉〉
and 〈〈 〉, t〉 with t, and 〈〈s , t〉 , u〉 with 〈s , 〈t , u〉〉; thus we will freely omit the angle brackets
as 〈t1 , . . . , tn〉.

A datatype declaration for a type c is given by a triple (c,Σc, E) consisting of a base type
c, signature Σ and equational axioms E , where every f ∈ Σc is first-order, i.e. is of the form
f : b1, . . . , bn → c, and any equation in E is built from Σc-terms.

2.2 Instance (1): Cyclic Lists modulo Bisimulation
We will present an algebraic formulation of cyclic datatypes. By cyclic datatype, we mean
algebraic datatype having the cycle construct cy satisfying the axioms that characterise
cyclicity. The first example is the datatype of cyclic lists. It has already been defined as
CList in Introduction as the pseudo code. We now give a formal definition using datatype
declaration. Fix a ∈ B. The datatype declaration for CLista, the cyclic lists of type a, is
given by (CLista,ΣCLista ,AxCy) where ΣCLista is

[ ] : CLista, (− ::a −) : a, CLista → CLista

and the axioms AxCy are given in Fig. 3. Note that CLista has also the default constructors,
thus one can form cycle (see the example below). The definition of CList in Introduction
actually represents the datatype declaration (CListCNat,ΣCListCNat ,AxCy). Hereafter, we will
omit the type parameter subscript a of CList. The axioms AxCy mathematically characterise
that cy is truly a cycle constructor in the sense of Conway fixed point operator [5]. The
equational theory generated by AxCy captures the intended meaning of cyclic lists. For
example, the following are identified as the same cyclic list:
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=
AxCy

2 22 2 22=
AxCy

cy(x.2 :: x) = 2 :: cy(x.2 :: x) = 2 :: 2 :: cy(x.2 :: x) .

These equalities come from the fixed point property of cy.

On axioms AxCy We explain the intuitive meaning of the axioms in AxCy. Parameterised
fixed-point axioms axiomatise cy as a fixed point operator. They (minus (CI)) are equivalent
to the axioms for Conway operators of [5, 23, 31]. Bekic̆ law is well-known in denotational
semantics (cf. [34, §10.1]) to calculate the fixed point of a pair of continuous functions.
Conway operators are also arisen in work independently of Hyland and Hasegawa [23], who
established a connection with the notion of traced cartesian categories [25]. There are
equalities that holds in the cpo semantics but Conway operators do not satisfy. The axiom
(CI) is the commutative identities of Bloom and Ésik [5, 31], which ensures that all equalities
that hold in the cpo semantics do hold. See also [31, Section 2] for a useful overview about
this. The equality generated by AxCy is actually bisimulation on cyclic lists. This is included
in the equality of cyclic sharing trees given in next subsection.

2.3 Instance (2): Cyclic Sharing Trees modulo Bisimulation

Next we consider the datatype of binary branching trees, which can involve cycle and sharing.
We call them cyclic sharing trees, or simply cyclic trees. We first give the declaration of
datatype CTree of cyclic trees as the style of pseudo code below, where we assume that f ’s

ctype CTree where
f : CTree → CTree
[ ] : CTree
+ : CTree,CTree → CTree

with axioms AxCy,AxBr([ ],+)

part denotes various unary function symbols such as a,b,c,p,q,. . .. Formally, it is expressed
as the datatype declaration (CTree, {f, [ ],+}, AxCy ∪ AxBr([ ],+)). The binary operator +
denotes a branch. For example, one can write b([])+c([]) (cf. Fig. 2 (A)). It can also
express sharing by the constructor � of composition: x.a(b(x) + c(x)) � p([]) (Fig. 2
(F)). Note that the first argument of composition � has a binder (e.g. x.), which indicates
placeholder filled by the shared part after � (e.g. p([])). A binder at the first argument of
�-term may be a sequence of variables (e.g. “x,y.” in (E)), which will be filled by terms
in a tuple (e.g. <p([]),q([])>). Cyclic trees are very expressive. They cover essentially
XML trees with IDREF, the data model called trees with pointers [7], and arbitrary rooted
directed graphs (cf. Fig. 2 (B)(E)).

We denote by ∼ the equivalence relation generated by the axioms AxCy,AxBr([ ],+) in Fig.
3. Using the axioms AxCy ∪ AxBr([ ],+), we can reason this equality ∼ in the second-order
equational logic. The equality ∼ gives reasonable meaning of cycles as in the case of cyclic
lists and that the branch + is associative, commutative and idempotent (cf. Fig. 2 (C)),
thus nested + can be seen as an n-ary branch (cf. Fig. 2 (D)). Moreover, a shared term and
its unfolding are also identified by ∼ because of the axiom (sub) (cf. Fig. 2 (F)). The axiom
(sub) is similar to the β-reduction in the λ-calculus.

FSCD 2016
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Figure 2 Examples of cyclic sharing trees.

Algebraic theory of bisimulation. Actually, ∼ is exactly bisimulation on cyclic trees. Since
unary f expresses a labelled edge, and + expresses a branch, cyclic sharing trees are essentially
process graphs of regular behaviors, called charts by Milner in [29]. Infinite unfolding of them
are synchronization trees [5]. Thus the standard notion of bisimulation between graphs can
be defined. Intuitively, starting from the root, bisimulation is by comparing traces of labels
of two graphs along edges (more detailed definition is given in [5, 29] or ([22] Appendix)).
Now we see that (C),(F) and (G) are examples of bisimulation. Actually, the axioms in
Fig. 3 are sound for bisimulation, i.e. for each axiom, the left and the right-hand sides are
bisimilar. Moreover, it is complete.

I Proposition 2.1 ([21],([22]§5.3)). Γ ` s = t : CTree is derivable from AxCy and
AxBr([ ],+) iff if s and t are bisimilar.

The main reason of this is that the axioms AxCy and AxBr([ ],+) are second-order
representation of Bloom and Ésik’s complete equational axioms of bisimulation [5]. A crucial
fact is that bisimulation s ∼ t is decidable [5, 6]. There is also an efficient algorithm for
checking bisimulation, e.g. [10]. Hence, cyclic datatypes with the axioms AxCy, or the axioms
AxCy ∪ AxBr are computationally feasible, such as checking equality on cyclic structures we
have seen in Fig. 1.

There are many other instances of cyclic datatypes, some of which will be given in §6.

3 Categorical Semantics of Cyclic Datatypes

In this section, we give a categorical semantics of cyclic datatypes. A reason to consider
categorical semantics is to systematically obtain a “structure preserving map” on cyclic
datatypes. We will formulate the “fold” function for a cyclic datatype as a functor on the
category for cyclic datatypes (Thm. 3.8 and §4).

Since a cyclic datatype has cycles, the target categorical structure should have a notion
of fixed point. It has been studied in iteration theories of Bloom and Ésik [5]. In particular
iteration categories [11] are suitable for our purpose, which are traced cartesian categories
[25, 23] satisfying the commutative identities axiom [5]. We write 1 for the terminal object,
× for the cartesian product, 〈−,−〉 for pairing, and ∆ = 〈id, id〉 for diagonal in a cartesian
category.
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Axioms AxCy for cycles

(sub) t :−→a → −→c ,
s1, . . . , sn : −→a . ` (−→y .t[−→y ]) � 〈s1 , . . . , sn〉= t[s1 , . . . , sn] : −→c

(SP) t : −→c . ` 〈(−→y .y1) � t, . . . , (−→y .yn) � t〉= t : −→c

(dinat) s : −→a →−→c ,
t : −→c →−→a . ` cy(−→x .s[t[−→x ]]) = (−→z .s[−→z ]) � cy(−→z .t[s[−→z ]])] : −→c

(Bekic̆) t : −→c ,−→a → −→c ,
s : −→c ,−→a → −→a . ` cy(−→x ,−→y. 〈 t̂, ŝ 〉) =

〈 cy(−→x . (−→y .t̂) � cy(−→y .̂s)),
cy(−→y . (−→x .̂s) � cy(−→x . (−→y .t̂) � cy(−→y .̂s))) 〉

: −→c ,−→a

(CI) t : −→a → −→a . ` cy(−→y .〈t[ρ1], . . . ,t[ρm]〉) = 〈cy(y.t̃ ), . . . , cy(y.t̃ )〉 : −→a

In (CI), ρi = 〈q1 , . . . , qm〉, each qj is one of yi for i = 1, . . . ,m, and t̃ is short for t[y, . . . , y] .
In (Bekic̆), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively.

Axioms AxBr([ ],+) for branching

(del) t : c . ` cy(xc.t + x) = t : c
(unitL) t : c . ` [ ] + t = t : c
(unitR) t : c . ` t + [ ] = t : c
(assoc) s,t,u : c . ` (s + t) + u = s + (t + u) : c
(comm) s,t : c . ` s + t = t + s : c
(degen) t : c . ` t + t = t : c

Figure 3 Axioms.

I Definition 3.1 ([11, 5]). A Conway operator in a cartesian category C is a family of
functions (−)† : C(A×X,X)→ C(A,X) satisfying:

(f ◦ (g × idX))† = f† ◦ g , (f†)† = (f ◦ (idA ×∆))† ,
f ◦ 〈idA, (g ◦ 〈π1, f〉)†〉 = (f ◦ 〈π1, g〉)†.

An iteration category is a cartesian category having a Conway operator satisfying the
“commutative identities” law [5]

〈f ◦ (idA × ρ1), . . . , f ◦ (idA × ρm)〉† = ∆m ◦ (f ◦ (idA ×∆m))† : A→ X

where
f : A×Xm → X

diagonal ∆m , 〈idX , · · · , idX〉 : X → Xm

ρi : Xm → Xm such that ρi = 〈qi1, . . . , qim〉 where each qij is one of projections
π1, . . . , πm : Xm → X for i = 1, . . . ,m (see also [31]).

An iteration functor between iteration categories is a cartesian functor that preserves Conway
operators.

A typical example of iteration category is the category of complete partial orders (cpos)
and continuous functions [5, 23], where the least fixed point operator is a Conway operator.

I Definition 3.2. Let Σ be a signature. A Σ-structure M in an iteration category C is
specified by giving for each base type b ∈ B, an object [[b]]M (or simply written [[b]]) in C, and
for each function symbol f : (−→a1 →

−→
b1), . . . , (−→am →

−→
bm)→ −→c , a function

[[f ]]MA : C(A× [[−→a1]], [[−→b1 ]])× · · · × C(A× [[−→an]], [[−→bn]]) - C(A, [[−→c ]]) (1)

FSCD 2016
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y : b ∈ Γ
Θ . Γ ` y : b

(m : a1, . . . , am →
−→
b ) ∈ Θ Θ . Γ ` t1 : a1 Θ . Γ ` tm : am
Θ . Γ ` m[t1, . . . , tm] : −→b

Θ . Γ,−−−→x1 : a1 ` t1 : −→b1 · · · Θ . Γ,−−−−−→xm : am ` tm : −→bm
Θ . Γ ` f(

−→
xa1

1 .t1, . . .
−−→
xam
m .tm ) : −→c

where f : (−→a1 →
−→
b1), . . . , (−→am →

−→
bm)→ −→c .

Figure 4 Typing rules of meta-terms.

(Sub)
m1 : (−→a1 →

−→
b1), . . . ,mk : (−→ak →

−→
bk) . Γ ` t = t′ : −→c

Θ . Γ′,−−−→xi : ai ` si = s′i : −→bi (1 ≤ i ≤ k)

Θ . Γ,Γ′ ` t [−−−−→m := s ] = t′ [
−−−−→
m := s′ ] : −→c

(Ax)
(Θ . Γ ` s = t : −→c ) ∈ E

Θ . Γ ` s = t : −→c

(Ref)

Θ . Γ ` t = t : −→c

(Sym)
Θ . Γ ` s = t : −→c
Θ . Γ ` t = s : −→c

(Tr)
Θ . Γ ` s = t : −→c Θ . Γ ` t = u : −→c

Θ . Γ ` s = u : −→c

Figure 5 Cartesian second-order equational logic.

which is natural in A, where [[b1, . . . , bn]] , [[b1]]× . . .× [[bn]]. Also given a context Γ = x1 :
b1, . . . , xn : bn we set [[Γ]] , [[b1, . . . , bn]]. The superscript of [[−]] may be omitted hereafter.

Interpretation. Let M be a Σ-structure in an iteration category C. We give the categorical
meaning of a term judgment Γ ` t : −→c (where there are no metavariables) as a morphism
[[t]]M : [[Γ]]→ [[−→c ]] in C defined by

[[Γ ` yi : c]]M = πi : [[Γ]]→ [[c]]

[[Γ ` f(
−→
xa1

1 .t1, . . .
−→
xan
n .tn ) : −→c ]]

M
= [[f ]]M[[Γ]]( [[t1]]M , . . . , [[tn]]M ).

We assume the following interpretations in any Σdef-structure:

[[〈 〉]]MA = ! : A→ 1 [[〈−, . . . ,−〉]]MA (t1, . . . , tn) = 〈t1, . . . , tn〉
[[�]]MA (t, s) = t ◦ 〈idA, s〉 [[cy]]MA (t) = t†

Importantly, these satisfy the axioms AxCy because C is an iteration category.

I Definition 3.3. A (Σ, E)-structure is a Σ-structure M in C satisfying [[s]]M = [[t]]M for
every axiom Γ ` s = t : c in E . Let N be a (Σ, E)-structure in an iteration category D. We
say that an iteration functor F : C → D preserves (Σ, E)-structures if F ([[−]]M ) = [[−]]N .

A c-structure (M,α) for a datatype declaration (c,Σc, E) is a (Σc, E)-structure M with
a family of morphisms of C; α , ( ([f ])M : [[b1]] × . . . × [[bn]] → [[c]] )f :b1,...,bn→c∈Σc

. It
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Let Γ = y1 : −→b1 · · · , yk : −→b1 . Suppose Θ . Γ′,−−−→xi : ai ` si : −→bi and

m1 : −→a 1 →
−→
b 1, . . . ,mk : −→a k →

−→
b k . Γ ` e : −→c

where −−−→xi : ai = x1
i : a1

i , . . . , x
m
i : ami for m = |−→ai | and each i = 1, . . . , k. Then a substitution

Θ . Γ,Γ′ ` e [−−−−→m := s ] : −→c is inductively defined as follows.

x [−−−−→m := s ] , x

mi[t1, . . . , tmi
] [−−−−→m := s ] , si [x1 7→ t1 [−−−−→m := s ], . . . , xmi

7→ tmi
[−−−−→m := s ]]

f(−→y1.s1, . . . ,
−→ym.sm) [−−−−→m := s ] , f(−→y1.s1 [−−−−→m := s ], . . . ,−→ym.sm [−−−−→m := s ])

where [−−−−→m := s ] denotes [m1 := s1, . . . ,mk := sk].

Figure 6 Substitution for metavariables.

actually defines a (Σc, E)-structure by [[f ]]MA (t1, . . . , tn) , ([f ])M ◦ 〈t1, . . . , tn〉 for any A in C.
We say that an iteration functor F : C → D preserves c-structures if F ([[c]]M ) = [[c]]N , and
F (([f ])M ) = ([f ])N for every f ∈ Σc.

I Example 3.4 (The cyclic list datatype CList). A CList-structure is given by a (ΣCList,AxCy)-
structure M having the interpretations of “[ ]” and “::”.

I Example 3.5 (The cyclic tree type CTree). A CTree-structure is given by a (ΣCTree,AxBr∪
AxBr([ ],+))-structure M where [[CTree]]M = N and N is a commutative monoid object
(N, η :1→ N, µ :N ×N → N) in C satisfying µ† = idN , where ([ [ ] ])M = η, ([+])M = µ. It
satisfies AxBr([ ],+). Note that any CTree-structure is always a degenerated commutative
bialgebra (cf. [16]) in a cartesian category C, i.e. N is also a comonoid (N, !,∆) that satisfies
the compatibility

∆ ◦ η = η × η, ∆ ◦ µ = (µ× µ) ◦ (id× 〈π2, π1〉 × id) � (∆×∆), µ ◦∆ = id.

The last equation is by µ ◦ ∆ = µ ◦ 〈id, id〉 = µ ◦ 〈id, (µ)†〉 =(dinat) (µ)† = id. Thus, a
CTree-structure models branch and sharing of cyclic sharing trees.

We next give a syntactic category and a Σ-structure to prove categorical completeness.
Let Σ be a signature, and E a set of axioms which is the union of AxCy and axioms for all
datatype declarations of base types c. Given axioms E , all proved equations Γ ` s = t : −→c
(which must be the empty metavariable context) by the second-order equational logic (Fig.
5), defines an equivalence relation =E on well-typed terms, where we also identify renamed
terms by bijective renaming of free and bound variables. We write an equivalence class of
terms by =E as [Γ ` t : −→c ]E . We define the category Tm(E) of terms by taking

objects: sequences of base types −→c
morphisms: [Γ ` t : −→c ]E : [[Γ]]→ [[−→c ]], the identity: [−−→x : c ` 〈−→x 〉 : −→c ]E
composition: [−−→x : b ` s : −→c ]E ◦ [Γ ` t : −→b ]E , [Γ ` (−→x .s) � t : −→c ]E

I Proposition 3.6. Tm(E) is an iteration category, and has a (Σ, E)-structure U.

Proof. We define a Σ-structure U by [[c]]U , c for each c ∈ B and [[f ]]U−→a , f for each function
symbol f and arbitrary base types −→a . We take

terminal object: () • pair: 〈[s]E , [t]E〉 , [Γ ` 〈s , t〉 : −→c1 ,−→c2 ]E
product: concatenation of sequences
Conway: ([Γ,−−→x : c ` t : −→c ]E)† = [Γ ` cy(−→xc.t) : −→c ]E
projections: [x1 : c1, x2 : c2 ` xi : ci]E
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Then these data satisfy that Tm(E) is an iteration category and U forms a (Σ, E)-structure
because of the axioms E for each c ∈ B. Moreover, ([[c]]U, (f)f∈Σc

) is a c-structure. J

Then [[t]]U = [t]E holds for all well-typed terms t. Using it, we have the following.

I Theorem 3.7 (Categorical soundness and completeness). Γ ` s = t : −→c is derivable iff
[[s]]MC = [[t]]MC holds for all iteration categories C and all (Σ, E)-structures in C.

I Theorem 3.8. For a (Σ, E)-structure M in an iteration category C, there exists a unique
iteration functor ΨM : Tm(E) - C that preserves (Σ, E)-structures. Pictorially, it is
expressed as the following picture, where Tm denotes the set of all terms (without quotient).

Tm [[−]]U - Tm(E)

C

[[−]]M

?�

Ψ
M

Proof. We write simply Ψ for ΨM . Since Ψ preserves (Σ, E)-structures, Ψ([[−]]U) = [[−]]M

holds. Hence Ψ([[t]]U) = Ψ([t]E) = [[t]]M for any t, meaning that the mapping Ψ is required
to satisfy

Ψ( [Γ ` yi : c]E ) = πi Ψ([Γ ` 〈 〉 : ()]E) = !
Ψ( [Γ ` 〈s , t〉 : −→c1 ,−→c2 ]E ) = 〈Ψ[Γ ` s : −→c1 ]E ,Ψ[Γ ` t : −→c2 ]E〉
Ψ( [Γ ` cy(−→xc.t) : −→c ]E ) = (Ψ[Γ,−−→x : c ` t : −→c ]E)†

Ψ( [Γ ` f(
−→
xa1

1 .t1, . . . ,
−−→
xam
m .tm) : c]E ) = [[f ]]M[[Γ]](Ψ[Γ,−−−−→x1 : a1 ` t1 : b1]E , . . .)

Ψ( [Γ ` (
−→
xb.t) � s : c]E ) = Ψ[Γ,−−→x : b, ` t : c]E ◦ 〈id[[Γ]],Ψ[Γ ` s : −→b ]E〉

(2)

The above equations mean that Ψ is an iteration functor that sends the (Σ, E)-structure U to
M . Such Ψ is uniquely determined by these equations because U is a (Σ, E)-structure. J

4 Fold on Cyclic Datatype

Fix a cyclic datatype c (say, the type CList of cyclic lists). By the previous theorem, for a
c-structure M , the interpretation [[−]]M determines a c-structure preserving iteration functor
ΨM . If we take the target category C as also Tm(E), M should be another cyclic datatype
b (say, the CNat of cyclic natural numbers), where the constructors of c are interpreted as
terms of type b. For example, the sum of a cyclic list in Introduction is understood in this
way. Thus the functor ΨM determined by [[−]]M can be understood as a transformation of
cyclic data from terms of type c to terms of type b.

Along this idea, we formulate the fold operation from the cyclic datatype c to b by the
functor ΨM . Let (M,α) be an arbitrarily c-structure in Tm(E), where [[c]]M = b ∈ B. We
write the arrow part function ΨM on hom-sets as the fold, i.e.

foldcb(α) : Tm(E)([[Γ]]U, c) - Tm(E)([[Γ]]M, b).
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4.1 Formalising fold as a second-order algebraic theory
The fold is a function on equivalence classes of term judgments modulo E including AxCy ∪
AxBr characterised by (2). Equivalently, we regard it as a function on terms (judgments)
that preserves =E , i.e. s =E t ⇒ foldcb(α)(s) =E foldcb(α)(t). In this subsection, we
axiomatise the function foldcb as the laws of fold within second-order equational logic using
(2).

Formalising a c-structure (M,α). To give α = (([f ])M : [[a1]]×. . .×[[an]]→ [[c]])f :a1,...,an→c∈Σc

is to give terms x1 : [[a1]], . . . , xn : [[an]] ` ef : b for all f : a1, . . . , an → c ∈ Σc such that
([f ])M = [ef ]E . We represent α as a tuple of terms ef according to function symbols in Σc by
the order of datatype constructors listed in a ctype declaration of c.

Formalising fold. We next formalise the fold operation in second-order algebraic theory.
The type of fold may be chosen as foldcb : (−→a1 → b), . . . , (−→ak → b), (cm → c) → (bm → b),
where the first k-arguments correspond to the c-structure α. But in second-order algebraic
theory, the codomain of function symbol must be a sequence of base types (§2.1), so the
current codomain (bm → b) is inappropriate. To solve it, we introduce a new base type
jtybm as the type of “encoded judgments” and a function symbol judgmtbm : (bm → b)→ jtybm
for each m ∈ N, b ∈ B. We encode a judgment −−→y : b ` t : b as a term judgmtbm(−→y .t), for
m = |−→y |, which will be denoted by −→y 
 t for readability. In case of m = 0, jtyb0 = b and
we do not use the constructor judgmtb0. In summary, the fold is formalised as the function
symbol of the type

foldcb : (−→a1 → b), . . . , (−→ak → b), jtycm → jtybm
and the mathematical expression foldcb(α)([Γ ` t : c]E) at the level of semantics is formalised
as a term foldcb(e1, . . . , ek, Γ 
 t) in second-order algebraic theory, where each ei corresponds
to ([fi])M for fi ∈ Σc in α.

Finally, we axiomatise fold by using the characterisation (2) in case of particular category
C = Tm(E) and a c-structure. Here we assume an additional function symbol app : (−→a →
b),−→a → b. We give the axioms FOLD in Fig. 7, which is straightforward formalisation of (2)
in case of the target c-structure is given by terms of type b. The arguments of fold expressing
the c-structure are abbreviated as E for simplicity. We also include the axioms and theorems
(8)-(12) taken from AxCy and AxBr for simplification. This importation of several axioms
from AxCy∪AxBr to the second-order algebraic theory FOLD is harmless because our general
framework is second-order equational logic under E ∪FOLD which includes AxCy∪AxBr. The
following is immediate by construction.

I Proposition 4.1. Using the above formalisation process, the following are equivalent.
foldcb(α)([Γ ` t : c]E) = [Γ′ ` u : b]E
` fold(e1, . . . , ek, Γ 
 t) = (Γ′ 
 u) : jtybm is derived from the axioms E ∪ FOLD using
the second-order equational logic.

where α, ei and t are fold free, Γ = x1 : c, . . . , xm : c, Γ′ = x1 : b, . . . , xm : b.

I Example 4.2. The plus function on CNat can be defined as fold as follows.

plus : CNat,CNat → CNat
spec plus(m, n) = pl(m)

where pl(0) = n
pl(S(m)) = S(pl(m))

fun plus(m, n) = fold (n, x.S(x)) m
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Fold
(1) fold(E,

−→
yc 
 yi) =

−→
yb 
 yi (for yi ∈ {−→y })

(2) fold(E, −→y 
 〈 〉) =−→y 
 〈 〉
(3) fold(E, −→y 
 〈s[−→y ],t[−→y ]〉) =−→y 
 〈app(fold(E, −→y 
 s[−→y ]),−→y ), app(fold(E, −→y 
 t[−→y ]),−→y )〉
(4) fold(E, −→y 
 cy(−→x .t[−→y ,−→x ])) =−→y 
 cy(−→x .app(fold(E, −→y ,−→x 
 t[−→y ,−→x ]),−→y ,−→x ))
(5) fold(E, −→y 
 d(−→a ,t1[−→y ], . . . ,tn[−→y ])) = −→y 
 (−→x .ed[−→a ,−→x ]) � 〈app(fold(E, −→y 
 t1[−→y ]),−→y ), . . . , 〉
(6) fold(E, x 
 (−→y .t[−→y ]) � s[−→x ])=−→x 
 −→y .app(fold(E, −→y 
 t[−→y ]),−→y ) � app(fold(E, −→x 
 s[−→x ]),−→x )
(7) app(−→x 
 s[−→x ], z1, . . . , zm) =s[z1, . . . , zm]
Bekic̆ and cycle cleaning
(8) cy(−→x ,−→y. 〈 t̂, ŝ 〉) =〈 cy(−→x . (−→y .t̂) � cy(−→y .̂s)), cy(−→y . (−→x .̂s) � cy(−→x . (−→y .t̂) � cy(−→y .̂s)))〉
(9) cy(−→y.t) =t (NB. t cannot contain y)
(10)cy(xc.x) = [ ] cy(xc.t + x) =t (if a type c has [ ] and “+” satisfying AxBr)
Composition
(11)(−→y .t[−→y ]) � 〈s1 , . . . , sn〉 =t[s1 , . . . , sn]

Here E is a sequence (ed)d∈Σc of metavariables and d ∈ Σc.
In (8), t̂ and ŝ are short for t[−→x ,−→y ] and s[−→x ,−→y ], respectively.

Figure 7 Second-order algebraic theory FOLD of fold from the datatype c to b.

In specification, we understand plus in terms of a unary function pl which recurses on the
first argument m and gives the second argument n if m = 0. Hence it is fold where the
parameter n is passed to the Σ-structure of fold.

4.2 Primitive recursion by fold
The fold formalised above covers the ordinary fold on algebraic datatypes. Thus, we expect
that various techniques on fold developed in functional programming, such as the fold fusion
technique and representation of recursion principles such as [28] may be transferred to the
current setting. Here we consider a way to implement a particular pattern of recursion
appearing often in specifications as a fold. Consider a specification having a clause

spec f(d(t)) = e

where e contains f(t) as well as t solely (cf. examples in §6). (If e constrains only the
recursive call f(t), it is merely a pattern of structural recursion, so it can be implemented
by fold using the structure x.e′ where all the recursive calls f(t) in e are abstracted to x as
Example 4.2.)

The above specification (i.e. the clause with spec keyword) can be seen as describing
primitive recursion, because it is similar the primitive recursion on natural numbers f(S(n)) =
e(f(n), n), where both n and f(n) can be used at the right-hand side. In functional
programming, it is known that primitive recursion on algebraic datatypes can be represented
as fold, called paramorphism [27]. We sketch how we can import this technique (see also
[21, §3.5], [22, §4.2]). For the above case, we take the fold where the target Σ-structure is
the product b, b of types, i.e. foldcb,b. In this case, variables in context are doubled at the
right-hand sides of the axioms FOLD, e.g. for (1) fold(E, −→y 
 yi) = (−→y ,

−→
y′ 
 〈yi, y′i〉). Let

π1 = (x, y.x). We implement f as

f(Γ 
 t) , π1 � fold(· · · , 〈x, y.e′, d(y)〉, · · · , Γ 
 t)

where e′ is obtained from e in the specification by replacing every “f(t)” with x and every “t”
not in the form f(t) with y. The other components of the c-structure for fold are implemented
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Fold
(1) fold(E,

−−→
yVarc. v(yi)) →

−−→
yVarb. v(yi)

(2) fold(E, −→y. 〈 〉) →−→y. 〈 〉
(3) fold(E, −→y. 〈s[−→y ],t[−→y ]〉) →−→y. 〈fold(E, −→y. s[−→y ])@−→y , fold(E, −→y.t[−→y ])@−→y 〉
(4) fold(E, −→y. cy1(x.t[−→y , x])) →−→y. cy1(x.fold(E, −→y , x.t[−→y , x])@−→y , x)
(5) fold(E, −→y. d(−→a ,t1[−→y ], . . . ,tn[−→y ]))→−→y. (−→x .ed[−→a ,−→x ]) � 〈 fold(E, −→y.t1[−→y ])@−→y , . . .〉
(6) fold(E, −→x. (−→y .t[−→y ]) � s[−→x ]) →−→x. (−→y .fold(E, −→y.t[−→y ])@−→y ) � fold(E, −→x. s[−→x ])@−→x
Bekic̆ and cycle cleaning (for m,n ≥ 1)
(8) cym+n(−→x ,−→y. 〈 t̂, ŝ 〉) →〈 cym(−→x . (−→y .t̂) � cyn(−→y .̂s)),

cyn(−→y . (−→x .̂s) � cym(−→x . (−→y .t̂) � cyn(−→y .̂s)))〉
(9) cy(−→y.t) →t
(10) cy(x.v(x))→ [ ] cy(x.t + v(x)) →t (if a type c has [ ] and “+” satisfying AxBr)
Composition
(11) (−→y. v(yi)) � 〈−→s 〉 →si

(12) (−→y. d(−→x1.t1[−→y ,−→x1], . . .)) � 〈−→s 〉 →d(−→x. (−→y.t1[−→y ,−→x1]) � 〈−→s 〉, . . . , (−→y.tn[−→y ,−→xn]) � 〈−→s 〉)
(for each constructor d)

Figure 8 Rewrite system FOLDr.

by the same way, according to the specification. Then by induction on the structure of
terms t, we have foldcb,b(E,−→y 
 t) = −→y 
 〈 app(f(−→y 
 t),−→y ), t 〉 for closed t using FOLD.
By the characterisation (2), we have f(d(t)) = (x, y. e′) � 〈f(t), t〉 = e, thus it satisfies the
specification. We use extensively this technique in §6.

5 Strongly Normalising Computation Rules for FOLD

We expect that FOLD provides strong normalising computation rules. An immediate idea is
to regard the axioms FOLD as rewrite rules by orienting each axiom from left to right.

But proving strong normalisation (SN) of FOLD is not straightforward. The sizes of both
sides of equations in FOLD are not decreasing in most axioms. So, assigning some “measure”
to the rules in FOLDr that is strictly decreasing is difficult for this case. If the axioms
(regarded as rewrite rules) are a binding CRS [18] (meaning that every meta-application
m[t1, . . . , tn] is of the form m[−→x ]), then it is possible to use a simple polynomial interpretation
to prove termination of second-order rules [18]. Unfortunately, this is not the case because in
(5) and (11) there are meta-applications violating the condition. Existence of meta-application
means that it essentially involves the β-reduction, thus it has the same difficulty as proving
strong normalisation of the simply-typed λ-calculus.

We use a general established method of the General Schema[4, 3], which is based on
Tait’s computability method to show SN. The General Schema has succeeded to prove SN of
various recursors such as the recursor in Gödel’s System T. The basic idea of the General
Schema is to check whether the arguments of recursive calls in the the right-hand side of a
rewrite rule are “smaller” than the left-hand sides’ ones. It is similar to Coquand’s notion of
“structurally smaller” [8], but more relaxed and extended.

Rewrite rules using strictly positive types. In order to apply the General Schema criterion,
we refine the second-order algebraic theory FOLD to the rewrite rule FOLDr. The General
Schema in [3] is formulated for a framework of rewrite rules called inductive datatype systems,
whose (essentially) second-order fragment is almost the same as the present formulation
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given in §2. Minor differences are as follows.
(i) The target of function symbols must be a single (not necessary base) type in inductive

datatype systems. Hence we introduce the product type constructor ×, assume that
b1 × b2 is again a base type in the sense of §2.2, and use it for the target type.

(ii) Instead of term x1, . . . , xn.t that binds a sequence of variables and is of sort a1, . . . , an → b

in second-order algebraic theory, we use x1. · · · .xn.t that repeatedly binds single variables
and is of type a1 → · · · → an → b. Now the abbreviation −→x .t denotes x1. · · · .xn.t.

(iii) We assume that a function symbol @ : (a→ b), a→ b and a rule (x.t[x])@s→ t[s] for
application ([3] Def. 2, β-IDTS). We write (−→x .t)@−→s for (−→x .t)@s1 · · ·@sn.
The General Schema requires a notion of strictly positivity. Crucially, the constructors

used in FOLD are not strictly positive, as cy and � involve negative occurrence of c in (c→ c).
We can overcome this problem by modifying the type (c → c) to a restricted (Varc → c),
where Varc is a base type having no constructor considered as a type of “variables” of type c.
We assume the constructor v which embeds a “variable” into a term. We modify the types of
constructors as follows:

〈−, · · · ,−〉 : c1, . . . , cn → −→c , cy : (−−→Varc → −→c )→ −→c ,
v : Varc → c, − � − : (−−→Vara → −→c ), a1 × · · · × an → −→c ,

where −→c denotes c1 × · · · × cn , ci’s and a are base types, −−→Vara → τ is short for Vara1 →
· · · → Varan

→ τ and similarly for −−→Varc → τ . The use of a type Varσ → τ to represent
binders is known in the field of mechanized reasoning, sometimes called (weak) higher-order
abstract syntax [9]. Accordingly, the type of fold is now

fold : (−−−→Vara1 → b), . . . , (−−−→Varak
→ b), (Varmc → c)→ (Varmb → b),

and rules are modified to FOLDr giving in Fig. 8. In case of inductive data type system, a
term of the form −→y .t is allowed and well-typed (although not allowed as a sole term in case
of second-order algebraic theory), thus we can now write the binder −→y .− directly at the
right-hand side. FOLDr is correct.

I Lemma 5.1. If t →+
FOLDr t

′ where t′ does not involve @, then ť = ť′ is derivable from
FOLD without using (Sym) where ť, ť′ recovers the original term notation from the encoding
we gave above.

I Theorem 5.2. The rewrite system FOLDr is strongly normalising.

Proof. Since FOLDr fits into the General Schema using the well-founded order

fold > cym > cyn > � > v > any other constructors,@

for natural numbers m > n, it is strongly normalising. Note that the superscript of cy in (8)
indicates the number of arguments (cf. §2.1). This kind of indication of an “invariant” is
similar to the idea of higher-order semantic labelling [19], but here we just make the existing
superscript explicit rather than labelling. J

6 Computing by Fold on Cyclic Datatypes

In this section, we demonstrate fold computation on cyclic data by several examples.

I Example 6.1. As an example of primitive recursion on cyclic datatypes mentioned in §4.2.
we consider the tail of a cyclic list, which we call ctail. It should satisfy the specification
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below right. But how to define the tail of cy-term is not immediately clear. For example,
what should be the result of ctail (cy(x.1::2::x))? This case may need unfolding of cycle
as in [17]. A naive unfolding by using the fixed point law cy(x.t) = t [cy(x.t)/x] violates
strong normalisation because it copies the original term. It actually increases complexity.

ctail : CList → CNat
spec ctail ([ ]) = [ ]

ctail (k :: t) = t
ctail (cy(x. t))= ??

t s
t

s

s(Bekič)

Rather than the fixed point law, we use another important principle of cyclic structures
known as Bekic̆ law, given by the axiom (Bekic̆) in AxCy or (8) in FOLDr. It says that the
fixed point of a pair can be obtained by computing the fixed point of each of its components
independently and composing them suitably (see the right figure). It can be seen as decreasing
complexity of cyclic computation because looking at the argument of cy, the number of
components of tuple is reduced. We define ctail by fold.

fun ctail(t) = π1 � fold (<[],[]>, k.x.y.<y, k :: y>) t

ctail(cy(x.1 :: 2 :: x)) →+ π1 � cy(x.y. <2 :: y, 1 :: 2 :: y>)
→+ π1 � <cy(x.2 :: cy(y.1 :: 2 :: y)), cy(y.1 :: 2 :: y)>
→ cy(x.2 :: cy(y.1 :: 2 :: y)) → 2 :: cy(y.1 :: 2 :: y) (Normal form)

Note that the above normal form does not mean a head normal form and we do not rely on
lazy evaluation. The highlighted step uses Bekic̆ law.

I Example 6.2. This example shows that our cyclic datatype has ability to express directed
graphs. The graph shown below right represents friend relationship, which describes Alice
knows Carol, Bob knows Alice, and Carol knows Alice and Bob. This is represented as a
term

cy(a.b.c.<name("alice")+knows(c), name("bob")+knows(a),
name("carol")+knows(a)+knows(b)>)

which we call g. The term g is of type FriendGraph defined as follows.
ctype FriendGraph where

knows : FriendGraph → FriendGraph
name : String → FriendGraph
[ ] : FriendGraph
+ : FriendGraph,FriendGraph → FriendGraph

with axioms AxCy,AxBr([ ],+)

alice

bob carol
knows

We define a function collect that collects all names in a graph as a name list of type Names.

FSCD 2016
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ctype Names where
nm : String → Names
[ ] : Names
+ : Names,Names → Names

with axioms AxCy,AxBr([ ],+)

collect : FriendGraph → Names
spec collect (knows(t)) = collect(t)

collect (name(p)) = nm(p)

fun collect t = π1� folde t

Then we collect certainly all names by FOLDr as follows, where folde is short for
fold (x.y.<x,knows(y)>, x.y.<nm(y),name(y)>).

collect g = π1� folde g
→ π1� (cy(a.a’.b.b’.c.c’.

<folde(a.b.c.name("alice")+knows(c)), folde(a.b.c.name("bob")+knows(a)),
folde(a.b.c.name("carol")+knows(a)+knows(b)>)))

→+ π1� (cy(a.a’.b.b’.c.c’.
< <nm("alice"),name("alice")>, <nm("bob"),name("bob")>, <nm("carol"),name("carol")> >)

→+ nm("alice")+nm("bob")+nm("carol")

7 Related Work

There has been various work to deal with graph computation and cyclic data structures in
functional programming and foundational calculi including [12, 30, 6, 24, 26, 2, 1]. Several
work [12, 30, 26] relies on lazy evaluation to deal with cycles. The present paper is different
in this respect. We do not assume any particular operational semantics nor strategy to
obtain strongly normalising fold on cyclic data. This point may be useful to deal with cyclic
datatypes in proof assistance like Coq or Agda.

Foundational graph rewriting calculi, such as equational term graph rewriting systems
[2], are general frameworks of graph computation. The fold on cyclic datatype in this paper
is more restricted than general graph rewriting. However, our emphasis is clarification of
the categorical and algebraic structure of cyclic datatypes and the computation fold on
them by regarding fold as a structure preserving map, rather than unrestricted rewriting.
It was a key to obtain strong normalisation. We also hope that it will be useful for further
optimisation such as the fold fusion based on semantics as done in [22] Sec. 4.3. The general
study of graph rewriting was also important for our study at the foundational level. The
unit “[ ]” of branching in AxBr corresponds to the black hole constant “•” considered in [2],
due to [5]. This observation has been used to give an effective operational semantics of graph
transformation in [26].

In [17, 20], the present author aimed to capture the unique representations of cyclic sharing
data structures (without any quotient) in order to obtain efficient functional programming
concept. The approach taken in this paper is different. We have assumed the axioms AxCy
and AxBr to equate bisimilar graphs. The point is that bisimulation on graphs can be
efficiently decidable [10], thus now we regard that uniqueness of representation is not quite
serious.

In [21, 22], the author and collaborators gave algebraic and categorical semantics of a
graph transformation language UnCAL [6, 24] using iteration categories [5]. The graph data
of UnCAL corresponds to cyclic sharing trees of type CTree in the present paper. UnCAL
does not have the notion of types. Hence structural recursive functions in UnCAL are
always transformations from general graphs to graphs, thus typing such as sum:CList→CNat
(in Introduction) or collect:FriendGraph→Names (in §6) could not be formulated. The
present paper advanced one step further by developing a suitable algebraic framework that
captures datatypes supporting cycles and sharing. We have used a rewriting technique of
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the General Schema [3] to show strong normalisation (not merely termination of a particular
computation strategy or algorithm) of fold. Such a direction has not been pursued so far.

Acknowledgments. I am grateful to Kazutaka Matsuda and Kazuyuki Asada for various
discussions about calculi and programming languages about graphs.
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