
 Kavvos, G. A. (2020). Dual-Context Calculi for Modal Logic. Logical
Methods in Computer Science (LMCS), 16(3), 10:1–10:66.
https://doi.org/10.23638/LMCS-16(3:10)2020

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.23638/LMCS-16(3:10)2020

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Logical Methods in
Computer Science at https://doi.org/10.23638/LMCS-16(3:10)2020 . Please refer to any applicable terms of use
of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/376904618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.23638/LMCS-16(3:10)2020
https://doi.org/10.23638/LMCS-16(3:10)2020
https://research-information.bris.ac.uk/en/publications/b8614688-12f2-4f08-bab2-727b588d7919
https://research-information.bris.ac.uk/en/publications/b8614688-12f2-4f08-bab2-727b588d7919

Logical Methods in Computer Science
Volume 16, Issue 3, 2020, pp. 10:1–10:66
https://lmcs.episciences.org/

Submitted Aug. 07, 2018
Published Aug. 19, 2020

DUAL-CONTEXT CALCULI FOR MODAL LOGIC

G. A. KAVVOS

Institut for Datalogi, Aarhus University, Åbogade 34, 8200 Aarhus N, Denmark
e-mail address: alex.kavvos@cs.au.dk

Abstract. We present natural deduction systems and associated modal lambda calculi
for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems
are in the dual-context style: they feature two distinct zones of assumptions, one of which
can be thought as modal, and the other as intuitionistic. We show that these calculi have
their roots in in sequent calculi. We then investigate their metatheory, equip them with a
confluent and strongly normalizing notion of reduction, and show that they coincide with
the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics
which interprets the modality as a product-preserving functor.

Introduction

The developments that have taken place over the past twenty years have shown that
constructive modalities—broadly construed as unary type operators—are an important and
versatile tool for both type theory and programming language theory.

Modalities have been used for various purposes within dependent type theory, e.g.
to express proof irrelevance [Pfe01, AB04] and truncation in Homotopy Type Theory
[RSS20], to formalise Cartan geometry [Wel17] and quantum gauge field theory [SS14], to
internalise parametricity arguments in dependent type theory [NVD17, ND18], to reason
about differential cohesive toposes [GLN+17], to formally prove theorems that relate topology
and homotopy [Shu18], and to construct models of universes internal to a topos [LOPS18].

To name but a few occurrences in programming language theory, modalities have been
used in staged metaprogramming [DP01, TI10, Dav17], to control the complexity of typed
programs [Hof99b], to enable recursion over higher-order abstract syntax [SDP01] and to
provide categorical models for it [Hof99a], to control information flow [ABHR99, SI08, Kav19],
to design a λ-calculus for distributed computing and mobile code [MCHP04], to build models
of stateful languages with recursive types [BMSS12], in coinductive programming and guarded
recursion [AM13, CBBB16], in functional reactive programming [KB11b, KB11a, Kri13,
BGM19], in modelling contextual computation [Orc14], and, finally, in compartmentalising
effects [Mog91] and combining them with resources [CFMM16].

Key words and phrases: modality, modal logic, modal type theory, Curry Howard correspondence, dual
context, natural deduction, proof theory, categorical semantics, product-preserving functor, comonads.

This is a revised and extended version of a paper presented at LICS 2017 [Kav17].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(3:10)2020
c© G. A. Kavvos
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

10:2 G. A. Kavvos Vol. 16:3

Despite this wide applicability, there have been very few foundational studies on the
Curry-Howard-Lambek correspondence that underlies modal types: we have surveyed relevant
work in [Kav16]. The major impediment to carrying out such work is that the methods of
modal proof theory are at best kaleidoscopic: while one type of calculus may work well for a
specific logic, it may readily fail to express a closely related one. It is possible to develop a
working intuition for these patterns, but it is much harder to precisely explain the root of
these difficulties.

This paper has two goals. The first is to explain why a particular pattern of natural
deduction for modal logics—namely that of dual contexts—is suited to the necessity fragments
of the most popular normal modal logics. The key intuition is that the separation of
assumptions into a modal zone and an intuitionistic zone allows us to mimic rules from cut-
free sequent calculi for these logics. The second goal is to extend the Curry-Howard-Lambek
correspondence and its usual triptych of logic, computation, and categories to normal modal
logics. We show that the dual-context term languages admit a categorical semantics in
which the modality is interpreted by a product-preserving endofunctor equipped with gadgets
corresponding to the sundry axioms of normal modal logic. This deviates from previous
approaches (in particular that of Bierman and de Paiva [BdP00]) but leads to a simpler
syntax that nonetheless encompasses a large number of categorical models.

A road map. Our investigation is structured as follows. First, we define constructive
versions of the most basic normal modal logics, namely K, T, K4, GL and S4, and present
a Hilbert system for each (§1). We then briefly recount previous attempts at presenting
natural deduction systems for them. This discussion leads us to a systematic method for
deriving dual-context systems (§2).

Then, in §3 we reformulate these systems as modal λ-calculi, and study their basic
metatheory. By writing down terms of the appropriate type, we show that our dual-context
systems are equivalent to the Hilbert systems given in §2 at the level of provability. Following
that, we endow these terms with a notion of reduction (§4). We prove that this has the
usual good properties: it is confluent, strongly normalizing, and eliminates all cuts, i.e. the
normal forms satisfy the subformula property. We stop short of deciding equality.

Finally, we give a categorical semantics for these calculi. We first introduce the relevant
category theory in §5: this consists of a self-contained account of strong monoidal functors
between cartesian categories, which we prove coincide with product-preserving functors. We
then define various other gadgets used for interpreting the rules of our calculi, including
coherent comultiplications (for K4) and counits (for T). In the case of S4, which contains
both of these logics, these gadgets are required to satisfy the usual coherence equations of a
product-preserving comonad. Finally, GL requires a novel notion of modal fixed point. We
define a sound and complete interpretation into these structures in §6.

The case of Gödel and Löb. Perhaps one of the most interesting and surprising aspects
of our investigation is that the general pattern described in §2 can be used to derive a natural
deduction system for a constructive version of the logic of provability. While the classical
version of the logic itself is comprehensively covered in the book by Boolos [Boo94], numerous
interesting historical and mathematical facts about its constructive and intuitionistic variants
are collected in a survey by Tadeusz Litak [Lit14].

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:3

GL is the least normal modal logic containing the Gödel-Löb axiom

�(�A→ A)→ �A (?)

for every formula A. If we erase the modal operators from this axiom we obtain the type
(A → A) → A of fixed point combinators at A. It is thus natural to suspect that, from a
computational point of view, GL should lead to a calculus equipped with some unusual,
modal kind of recursion.

This observation, which is originally due to Nakano [Nak00], led to a fruitful research
programme on what is variously known as productive coprogramming [AM13], guarded recur-
sion [BMSS12, BM13, CBBB16, Gua18], or corecursion [SdV12]. However, the underlying
logic of these systems is essentially a variant of the strong Gödel-Löb logic SL, which is the
least normal modal logic closed under the stronger axiom

(�A→ A)→ A

This axiom, which implies (?) as well as the unusual formula A → �A, is incompatible
with classical normal modal logic, as no interesting Kripke frames satisfy the latter formula
[Lit14, Remark 17]. Nevertheless, it appears time and again in various intutionistic settings.

Returning to the weaker logic GL, we find that our methods apply to yield a new
natural deduction system, which—we argue in §2.1—is significantly simpler to the only
other known system for GL, viz. that of Bellin [Bel85]. Given the intricate relationship
between constructive provability logics, guarded recursion, and coinductively-defined infinite
data, it may come as a surprise that the detour-eliminating reduction for this system is
strongly normalizing. We will discuss that in more detail, but the basic intuition is that the
introduction term in our calculus has a coinductive behaviour: it recursively unfolds only
when forced to do so by an occurrence of the elimination rule.

Related work on dual contexts. Dual-context calculi were pioneed by Girard [Gir93],
Andreoli [And92], Wadler [Wad93, Wad94], Plotkin [Plo93], and Barber [Bar96], in the
setting of multiplicative exponential linear logic and its ‘of course’ (!) modality. They were
then imported into the intuitionistic setting by Davies and Pfenning [PD01, DP01], who
introduced the system for S4 that we study in this paper. With the exception of S4, the
systems discussed in this paper are largely new. In some cases, glimpses of similar patterns
have appeared before. Despite the popularity of the S4 system in the programming language
community, there has been no detailed study of its proof-theoretic properties.

An approach that is similar to ours for K and K4 has been considered by Pfenning
[Pfe13, Pfe15] in the context of linear sequent calculi, which seems to be closely related to
the work of Danos and Joinet on elementary linear logic [DJ03]. However, this work of
Pfenning remains unpublished, and the natural deduction system for K in this paper is
independently due to the present author. The technical innovations needed in presenting a
term calculus for K4 and GL are new.

The study of reduction conducted by Davies and Pfenning for dual-context S4 [PD01]
was limited to an evaluation strategy used as operational semantics. In [DP01] a notion
of conversion is introduced, but the study of its properties was left to a future paper,
which never appeared. Neither of these papers discusses commuting conversions. The
categorical interpretation of dual-context S4 in terms of product-preserving comonads was
briefly sketched by Hofmann [Hof99b, §2.6.12].

10:4 G. A. Kavvos Vol. 16:3

Related work on modal proof theory. The history of modal proof theory and construc-
tive modal logics is long and tumultuous, so we shall try to avoid the subject as much as
possible. A more thorough discussion of modal λ-calculi may be found in [Kav16]. For a
broader survey of the proof theory of modal logic we recommend [Neg11].

While the earliest work goes back to Prawitz [Pra65], the first modal λ-calculus seems
to be the Bierman-de Paiva system for S4 [BdP92, BdP96, BdP00]. For reasons we discuss
in §2, this system is unsatisfying: its proof theory requires many commuting conversions
to eliminate all cuts, and its syntax is counterintuitive as a programming language. The
proof-theoretic aspect is extensively discussed by Goubault-Larrecq [GL96, §5.2]. The
programming-related issues are mentioned by Clouston et al. [CBBB16], who use a similar
style of calculus in the context of guarded recursion. Clouston et al. try to argue that
the “burden presented by the explicit substitutions seems quite small,” but the fact this
is a leitmotif in their paper significantly weakens their argument. Furthermore, in op. cit.
it is argued that this style does not economically adapt to dependent types. Indeed, the
dual-context type theory of Shulman [Shu18] seems to vindicate this claim.

There is little previous work on natural deduction for sub-S4 systems of normal modal
logic. Martini and Masini [MM96] presented a Fitch-style system. This was later adapted by
Davies and Pfenning [DP01, §5], who call it the ‘Kripke-style’ formulation. Under various
restrictions on its syntax, the Martini and Masini system captures K, K4, T, and S4, at the
price of having one’s terms annotated with indices. The Kripke-style formulation simplifies
some of this presentation, but does not dispense with indices. A simpler Fitch-style system
for K was extensively studied by Clouston [Clo18].

There is also a calculus in the style of Bierman and de Paiva for K, which was introduced
by Bellin, de Paiva, and Ritter [BdPR01]. This suffered from some technical issues that were
later mitigated by Kakutani [Kak07]. Some of the unsatisfactory aspects of this calculus
are discussed by de Paiva and Ritter [dPR11]: they trace its roots to the aforementioned
system of Bellin [Bel85] for GL, who hints at (but does not study) systems for K and K4.

We argue that the dual-context formulations introduced in the present work lead to
simpler calculi: our terms feature neither delayed substitutions, nor are they littered with
indices. This simplifies the metatheory, and makes them more practicable. Unlike Bierman-de
Paiva style calculi, dual-context calculi are simple enough to lead to implementations: see e.g.
the experimental work of Wickline, Lee and Pfenning [WLP98] on metaprogramming with
dual-context S4. Moreover, our calculi are simple enough to enable large-scale pen-and-paper
proofs: Shulman [Shu18] used a dual-context dependent type theory to produce a formal
proof of Brouwer’s fixed point theorem. Thus, the fact that dual-context style can extended
to a range of sub-S4 modalities is of independent interest in exploring applications in various
sub-S4 settings.

Nevertheless, we ought to stress one central detail: our systems strongly preserve
products. That is, the proof theory of dual-context systems induces an isomorphism of
types �(A×B) ∼= �A×�B. In contrast, systems in the Bierman-de Paiva style prove a
bi-implication that does not necessarily extend to an isomorphism. Indeed, the categorical
semantics of Bierman-de Paiva S4 require only a lax monoidal comonad, which comes with
a natural transformation �A × �B → �(A × B) that is not necessarily invertible. This
means our work is closer to the system of Clouston [Clo18], who requires that the modality
have a left adjoint, and thus that it preserve products. All things considered, if we want to
avoid product preservation we must revert to the system with delayed substitutions.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:5

1. The Logics in Question

We are concerned with (∧ → �) fragment of five of the most commonly encountered normal
modal logics [BdRV01, §1.6] [Fit93, §§1.6–1.7] [HC96, §§2–3] [Boo94, §§4–5]: K (abbrv. CK),
K4 (abbrv. CK4), T (abbrv. CT), GL (abbrv. CGL), and S4 (abbrv. CS4). In this section we
shall discuss their common characteristics, and present a Hilbert system for each.

1.1. Constructive modal logics. All of the above logics belong to the group of constructive
modal logics. These are a family of intuitionistic modal logics which have been cherry-picked
to satisfy a specific desideratum, namely to have a well-behaved, Gentzen-style proof theory,
and thereby an associated computational interpretation.

The special behaviour of these logics is even more appreciable when the possibility
modality (♦) is taken into consideration. First, the de Morgan duality between � and ♦
breaks down, rendering them logically independent. For that reason we shall mostly refer to
the � as the box modality. Second, the principles ♦(A ∨B)→ ♦A ∨ ♦B and ¬♦⊥ are not
provable. These two principles are tautologies if we employ traditional Kripke semantics
[Kri63]. Thus, the way to a computational interpretation seems to necessitates that we
eschew the Kripkean analysis. Even though ♦ is essential in pinpointing the salient differences
between constructive modal logics and other forms of intuitionistic modal logic—e.g. those
studied by [Sim94]—it seems that its computational interpretation is not very crisp. Hence,
we restrict our study to the better-behaved, and seemingly more applicable box modality.

1.2. Preliminaries. All of our modal logics shall be inductively defined sets of formulæ—the
theorems of the logic. These formulæ are generated by the Backus-Naur form

A,B ::= pi | > | A ∧B | A→ B | �A
where pi is drawn from a countable set of propositions. The sets of theorems will be generated
by axioms, closed under some inference rules. The set of axioms will always contain (a) all
the instances the axioms of intuitionistic propositional logic, but over modal formulæ; and
(b) all instances of the normality axiom, also known as axiom K (after Kripke). The set of
inference rules will contain rules for using axioms and assumptions, modus ponens, and the
modal rule of necessitation, namely

A ∈ L

�A ∈ L
The only thing that will then vary between any two of our logics L will be the set of axioms.

1.3. Axioms. We write (A1)⊕ · · · ⊕ (An) to mean the set of theorems that are derivable
from all instances of the axioms (A1), . . . , (An) under the aforementioned rules of axiom,
assumption, modus ponens, and necessitation. Furthermore, we write (IPL�) to mean the
set of all instances of the axiom schemata of intuitionistic propositional logic, but over modal
formulæ. We will use the following modal axiom schemata:

(K) �(A→ B)→ (�A→ �B) (4) �A→ ��A
(T) �A→ A (GL) �(�A→ A)→ �A

Constructive K is then defined to be the minimal normal constructive modal logic. Con-
structive K4 adds axiom 4 to that. Likewise, constructive T is the result of adding axiom T

10:6 G. A. Kavvos Vol. 16:3

(assn)
Γ, A,∆ ` A

A is an axiom
(ax)

Γ ` A

Γ ` A→ B Γ ` A
(MP)

Γ ` B

` A
(nec)

Γ ` �A

Figure 1: Hilbert systems

to CK. Constructive S4 results from mixing all these axiom schemas together. Finally, we
obtain constructive GL from CK by adding the Gödel-Löb axiom GL. In summary:

CK
def
= (IPL�)⊕ (K) CK4

def
= (IPL�)⊕ (K)⊕ (4)

CT
def
= (IPL�)⊕ (K)⊕ (T) CGL

def
= (IPL�)⊕ (K)⊕ (GL)

CS4
def
= (IPL�)⊕ (K)⊕ (4)⊕ (T)

1.4. Hilbert systems. We introduce a judgment of the form

Γ ` A
where Γ is a context, i.e. a list of formulæ defined by the grammar Γ ::= · | Γ, A where A is a
single formula. We shall use the comma to also denote concatenation. For example, Γ, A,∆
shall stand for the juxtaposition of three things: the context Γ, the context consisting of the
single formula A, and the context ∆.

This judgment is generated inductively, and includes rules for axioms and assumptions:
see Figure 1. The main rule concerning the modality is that of necessitation, which we
need state carefully. Otherwise, we risk invalidating the deduction theorem, leading to a
common point of confusion in early work on the proof theory of modal logic: see [HN12] for a
historical and technical account. To approach this issue, we need to recall that necessitation
bears a likeness to universal quantification: �A is a theorem just if A is a theorem, and
there is no reason that this should be so if we need any assumptions to prove A. Thus, we
should be able to infer �A (under any assumptions) only if we can infer A without any
assumptions at all. In symbols:

` A

Γ ` �A
To indicate that we are using the Hilbert system for e.g. CK, we annotate the turnstile

an write Γ `CK A. We write Γ ` A when the relevant statement pertains to all systems.

1.5. Metatheory of Hilbert systems.

1.5.1. Structural rules. We establish the following basic facts about all our Hilbert systems
by a straightforward induction on the derivation of each premise.

Theorem 1.1 (Structural & Cut). The following rules are admissible.1

(1) (Weakening)
Γ ` C

Γ, A ` C
(2) (Exchange)

Γ, A,B,∆ ` C

Γ, B,A,∆ ` C

1Recall that a rule is admissible just if the existence of a proof of the antecedent implies the existence of a
proof of the conclusion, where that existence is determined in our metatheory. In contrast, a rule is derivable
just if a proof of the antecedent can be used verbatim as a constituent part of a proof of the conclusion.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:7

(3) (Contraction)
Γ, A,A,∆ ` C

Γ, A,∆ ` C
(4) (Cut)

Γ ` A Γ, A,∆ ` C

Γ,∆ ` C

Theorem 1.2 (Deduction Theorem). The rule
Γ, A ` B

Γ ` A→ B
is admissible.

1.5.2. Admissible Modal Rules. We now consider some admissible rules that refer to the box
modality. These will prove useful when we tackle the proof of equivalence between Hilbert
systems and dual-context systems.

The first one is Scott’s rule, which ensures that if we ‘box’ all our assumptions then we can
‘box’ the conclusion. We will see that, in categorical terms, Scott’s rule expresses the fact that
the box is a functor, and in particular one that preserves products. We write �Γ to mean the

context Γ which each assumption occurring in it boxed, i.e. �(A1, . . . , An)
def
= �A1, . . . ,�An.

Theorem 1.3 (Admissibility of Scott’s rule). The following rule is admissible:

Γ ` A

�Γ ` �A
Proof. Straightforward induction on the derivation of Γ ` A. We show the case for modus
ponens. If the last step in the derivation of Γ ` A is of the form

···
Γ ` B → A

···
Γ ` B

Γ ` A
then, by applying the induction hypotheses to the two subderivations, we obtain proofs of
�Γ ` �(B → A) and �Γ ` �B. We can then use axiom K and modus ponens twice to build
the desired proof:

�Γ ` �(B → A)→ �B → �A

···
�Γ ` �(B → A)

�Γ ` �B → �A

···
�Γ ` �B

�Γ ` �A

The above theorem also follows by the deduction theorem. However, this proof implicitly
considers derivations of Γ ` A as terms of an underlying modal combinatory logic. It is an
old observation by Curry and Feys [CF58] that combinatory logics vaguely correspond to
Hilbert systems, and Pfenning [Pfe10] has sketched such a system for CS4.

Next, we deal with a rule that is only derivable if the system contains the axiom T. The
gist of the rule is that �A is stronger than A, as it implies it in any context.

Theorem 1.4 (Admissibility of Veridicality). If L ∈ {CT,CS4}, then the following rule is
admissible:

Γ `L A

�Γ `L A

10:8 G. A. Kavvos Vol. 16:3

Proof. By induction on the derivation of Γ ` A. All the cases are straightforward, except
the assumption rule. If Γ ` A because A occurs in Γ, then �Γ ` �A, and using modus
ponens along with an instance of axiom T yields the result.

Finally, we present a rule that we call the Four rule. As its name suggests, the Four
rule encapsulates the deductive behaviour of axiom 4. In a nutshell, it expresses the fact
that if something is derivable from ��A then it is derivable from �A itself.

The Four rule only pertains to logics that include all instances of 4. One of these logics
is CGL, but in that case 4 is a theorem, so we begin by deriving it.

Lemma 1.5. `CGL �A→ ��A
Proof. We follow [Boo94]. By using one of the conjunction axioms of (IPL�) and Scott’s
rule, we have �(�A ∧A) ` �A, and hence A,�(�A ∧A) ` �A ∧A by weakening, axiom,
and the one of the conjunction axioms. Then, Scott’s rule followed by the deduction theorem
yield that �A ` � (� (�A ∧A)→ �A ∧A). The conclusion matches the premise of the
Gödel-Löb axiom, so using modus ponens gives yields �A ` � (�A ∧A). Cutting this with
� (�A ∧A) ` ��A and using the deduction theorem completes the proof.

Theorem 1.6 (Admissibility of the Four Rule). If L is a logic that includes 4 either as
axiom or as theorem, i.e. if L ∈ {CK4,CGL,CS4}, then the following rule is admissible:

�Γ,Γ `L A

�Γ `L �A
Proof. Induction on the derivation of �Γ,Γ ` A. Most cases are straightforward. If
�Γ,Γ ` A by the assumption rule, it follows that A either occurs in �Γ, or it occurs in Γ.
If it occurs in �Γ, then it is of the form �A′; thus �Γ ` �A′, and using modus ponens
alongside an instance of axiom 4 yields �Γ ` ��A′ = �A. If, on the other hand, A occurs
in Γ, then �Γ ` �A by the assumption rule.

A slightly weaker variant of the Four rule appears in [BdP00], and follows by weakening.

Corollary 1.7. If L ∈ {CK4,CGL,CS4}, then the following rule is admissible:

�Γ `L A

�Γ `L �A
If veridicality is admissible as well—i.e. in the case of CS4—we can derive the theorem

from the corollary. If �Γ,Γ ` A, then ��Γ,�Γ ` A by veridicality, and repeatedly cutting
with instances of �B ` ��B yields �Γ,�Γ ` A. Repeated uses of exchange and contraction
then show �Γ ` A, to which we apply the corollary.

Finally, we show that Löb’s rule is admissible in CGL.

Theorem 1.8 (Löb’s Rule). The rule
�Γ,Γ,�A ` A

�Γ ` �A
is admissible in CGL.

Proof. By the deduction theorem we infer that �Γ,Γ ` �A→ A, and hence, by the Four
rule, �Γ ` �(�A→ A). We then use the Gödel-Löb axiom and modus ponens.

The following, which follows by weakening, is often quoted as Löb’s rule.

Corollary 1.9. The rule
�Γ,�A ` A

�Γ ` �A
is admissible in CGL.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:9

2. From sequent calculi to dual contexts

We will now discuss the problems that one usually faces when devising modal λ-calculi for
box modalities. We then demonstrate how the dual-context pattern decisively deals with
many of these, by importing patterns found in well-behaved sequent calculi.

2.1. The perennial issues. Most work on the subject is concentrated on essentially two
kinds of calculi: those with delayed substitutions, following a style that was popularised
by Bierman and de Paiva [BdP00]; and those employing dual contexts, a pattern that was
imported into modal type theory by Davies and Pfenning [DP01, PD01].

Explicit substitutions à la Bierman & de Paiva. The calculus introduced by Bierman
and de Paiva made use of a trick that was previously employed in the context of Intuitionistic
Linear Logic by [BBdPH93] to ensure that substitution is admissible. The trick is simple: if
cut is not admissible, then we build it into the introduction rule.

In the case of CS4, the resultant syntax is an extension of the ordinary simply-typed
λ-calculus. The extension is obtained by adding the following introduction rule:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : �A1, . . . , xn : �An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this example, x1, . . . xn comprise all the free variables that may occur in N . They must
all be ‘modal,’ in that their type has to start with a box. We are allowed to place a box in
front of B, but we must provide a substitute Mi for each of these free variables. Of course,
this Mi must also be of modal type. In short: all the data that goes into the making of
something of type �B must be ‘boxed.’ The given substitutes Mi are ‘frozen’ as part of the
term of type �B: they become a delayed substitution2 in the syntax. This is a combined
introduction and cut rule: the introduction part ensures that modal data depend only on
modal data, and the cut part ensures that substitution is admissible.

The elimination rule is simpler by comparison, and incorporates axiom T:

Γ `M : �A

Γ ` unbox M : A
In order to ensure admissibility of cut and hence subject reduction, the β-rule associated
with these rules has the effect of unrolling the delayed substitutions en masse:

unbox (box N with M1, . . . ,Mn for x1, . . . xn) −→ N [M1/x1, . . . ,Mn/xn]

Calculi of this sort are notorious for suffering from two kinds of problems: the need for
commuting conversions, and the lack of ‘good’ symmetries.

Commuting Conversions: In order to maintain the validity of vital proof-theoretic results,
calculi with delayed subsitutions often require a large number of commuting conversions.
The rôle of these conversions is to expose ‘hidden’ redexes, the existence of which spoil
the so-called subformula property, i.e. the property that in normal proofs all detours
have been eliminated. The issue of commuting conversions usually arises from positive
connectives, such as disjunction and existence: see the book by Girard [GLT89, §10.1] for
a particularly perspicuous discussion.

2These are often referred to as explicit substitutions. The present author reserves this term for those that
are intentionally build into a calculus, and are not an artifact of proof-theoretic desires.

10:10 G. A. Kavvos Vol. 16:3

In calculi such as the above, commuting conversions invariably take the form of structural
rules that reshuffle the delayed substitutions. Such rules are traditionally found in sequent
calculi, but not in natural deduction, where they are often admissible. Their presence in a
natural deduction system is incompatible with the view that natural deduction proofs
comprise the “real proof objects”—see [GLT89, §5.4]. In the context of Bierman and de
Paiva’s system for CS4, Goubault-Larrecq [GL96] argues that systems with such rules
obscure the computational meaning of modal proofs.

‘Good’ symmetries: The calculus of Bierman and de Paiva for CS4 exhibits reasonable
symmetries: if we forget about the delayed substitutions for a moment, then we can see
an introduction and an elimination rule, the latter post-inverse to the former: there is
reasonable harmony.

Things are not that simple when it comes to other calculi of this sort. As a first example,
consider the calculus of Bellin-de Paiva-Ritter [BdPR01] for CK. Its introduction rule is
only slightly different to the one for CS4, in that the free variables need not be of modal
type. However, the substitutes for these free variables must still be modal. To wit:

Γ `M1 : �A1 . . . Γ `Mn : �An x1 : A1, . . . , xn : An ` N : B

Γ ` box N with M1, . . . ,Mn for x1, . . . xn : �B

In this calculus there can be no harmony, for there is no elimination rule at all. Indeed,
the only plausible ‘β-rule’ is very similar to a commuting conversion for CS4 that was
studied by Goubault-Larrecq [GL96]. Its function is to unbox any ‘canonical’ terms in
the delayed substitutions; e.g

box yx with y, (box M with z for z), N for y, x, w −→ box yM with y, z,N for y, z, w

This reduction locates ‘boxed’ delayed substitutions of ‘boxed’ proofs, and combines them
into a single ‘boxed’ proof. See [Kak07] for a calculus for CK with this rule.

Secondly, this pattern leads to significant complexity in more complicated systems, e.g.
when we need diagonal assumptions, which are natural in the case of GL. The only natural
deduction system for CGL, which is due to Bellin [Bel85], is of this form. Translating the
proof tree formulation to terms terms, its single modal rule is

Γ `M1 : �B1 . . . Γ `Mm : �Bm Γ ` N1 : �C1 . . . Γ ` Nn : �Cn
x1 : B1, . . . , xm : Bm, y1 : �C1, . . . , yn : �Cn, z : �A ` N : A

Γ ` fix z in box N with M1, . . . ,Mn | N1, . . . , Nn for x1, . . . xm | y1, . . . yn : �A

This calculus is virtually at the midpoint between the Bierman-de Paiva calculus for CS4,
and the Bellin-de Paiva-Ritter calculus for CK: some the assumptions that are being closed
come are ‘boxed,’ and some are not. Evidently, this pattern is closely related to Löb’s rule
(Theorem 1.8) for CGL. It also features a diagonal assumption z : �A, which is bound in
the resulting term.

Normalization for the terms of Bellin’s calculus is by no means easy to describe. The
only two small-step reductions that this calculus admits are also akin to commuting

conversions. Using vector notation for succinctness, write box N with ~M | ~N for ~x | ~y to

mean fix z in box N with ~M | ~N for ~x | ~y, where z is a fresh variable that is not free in
N . Following Bellin, we call this a K4R application. The first small-step reduction (“K4R

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:11

reduction”) is essentially the one for CK given above, which here takes the form

fix z in box M with ~P , (box N with ~S | ~T for ~v | ~v′), ~Q | ~R for ~x,w, ~z | ~y

−→ fix z in box M [N/w] with ~P , ~S, ~Q | ~T , ~R for ~x,~v, ~y | ~v′, ~y
The second rule (“segment reduction step”) is closer to a commuting conversion for CS4:

fix z in box M with ~P | ~Q, (fix b in N with ~S | ~T for ~v | ~w), ~R for ~x | ~y, z, ~y′

−→ fix z in box M [(fix b in N with ~c | ~d for ~v | ~w)/z] with ~P , ~S | ~Q, ~T , ~R for ~x,~c | ~y, ~d, ~y′

Normalization of proofs for Bellin’s calculus is contingent on an auxiliary recursive
algorithm, whose purpose is to turn every modal rule into a K4R application by eliminating
diagonal assumptions, so that the small-step reductions can then simplify the remaining
cuts. The details are far too complex to reproduce here.

It is thus evident that, once we step out of CS4, the use of systems based on ‘mixed’
introduction rules with delayed subsitutions becomes less and less tenable: the resulting
systems lack harmony, and proof normalization becomes frighteningly complicated.

In order to reach a better solution we must overcome two problems: (a) we must
‘decouple’ the two flavours—introduction and cut—that together constitute the introduction
or mixed modal rules; and (b) we must minimize as much as possible the commuting
conversions—in particular, we should strive to free them from any computational content.

Dual contexts. The right intuition for achieving this decoupling was introduced by Girard
[Gir93] in his attempt to combine classical, intuitionistic, and linear logic in one system,
and also independently by Andreoli [And92] in the context of linear logic programming.
The idea is simple and can be turned into a slogan: segregate assumptions. This means
that we should divide our usual context of assumptions in two, or—even better—think
of it as consisting of two zones. We should think of one zone as the primary zone, and
the assumptions occuring in it as the ‘ordinary’ sort of assumptions. The other zone is
the secondary zone, and the assumptions in it normally have a different flavour. In this
setting the introduction rule explains the interaction between the two contexts, whereas the
elimination rule effects substitution for the secondary context.

This idea has been most profitable in the case of the Dual Intuitionistic Linear Logic
(DILL) of Plotkin and Barber [Plo93, Bar96] where the primary context consists of linear
assumptions, and the secondary one consists of intuitionstic assumptions. The ‘of course’
modality (!) of Linear Logic is very much like a S4 modality, and—simply by lifting the
linearity restrictions—Davies and Pfenning [PD01, DP01] adapted this work to the modal
logic CS4 with considerable success. In this system, hereafter referred to as dual constructive
S4 (DS4), the primary context consists of intuitionistic assumptions, whereas the secondary
context consists of modal assumptions.

The systems of Barber, Plotkin, Davies and Pfenning do not immediately seem adaptable
to other logics. Indeed, the pattern may at first seem limited to modalities like ‘of course’
and the necessity of S4, which categorically correspond to comonads. As a comonad can be
decomposed into an adjunction, one might think that the dual-context pattern implicitly
makes use of the underlying universal property. In the rest of this section we show that not
only this is not so, but that the dual-context style can be adapted to capture the necessity
fragments of all of the logics introduced in §1.

10:12 G. A. Kavvos Vol. 16:3

2.2. Deriving dual-context calculi. Gentzen introduced the sequent calculus in the 1930s
[Gen35a, Gen35b] in order to study normalization of proofs, which we call cut elimination
in this context. A proof in the sequent calculus consists of a tree of sequents, which take
the form Γ ` A, where Γ is a context. Thus in our notation a sequent is a different name
for a judgment, like the ones in natural deduction.3 The rules, however, are different: they
come in two flavours: left rules and right rules. Broadly speaking, right rules are exactly
the introduction rules of natural deduction, as they only concern the conclusion A of the
sequent. The left rules play a rôle similar to that of elimination rules, but they do so by
‘gerrymandering’ with the assumptions in Γ. See the in-depth discussion of Girard [GLT89,
§5.4] on the correspondence between natural deduction and sequent calculus.

The first attempts to forge sequent calculi for modal logics began in the 1950s, with
the formulation of a sequent calculus for S4 by Curry [Cur52] and Ohnisi and Matsumoto
[OM57, OM59]. There was also some limited success for other simple modal logics, mainly
involving the axioms we discuss here: see the surveys of Ono [Ono98] and Wansing [Wan02].

2.2.1. The Introduction Rules. Let us consider the (intuitionistic) right rule for the logic S4:

�Γ ` A
(�R)

�Γ ` �A
One cannot help but notice this rule has an intuitive computational interpretation in terms
of ‘flow of data.’ We can read it as follows: if only modal data are used in inferring A, then
we may obtain �A. Like in the Bierman-de Paiva calculus, only ‘boxed’ things may flow
into something that is ‘boxed.’

Let us at the same time consider dual-context judgments. These take the form

∆ ; Γ ` A
where both ∆ and Γ are contexts. The assumptions in ∆ are to be thought of as modal,
whereas the assumptions in Γ are run-of-the-mill intuitionistic assumptions. A loose transla-
tion of such a a judgment to the ‘ordinary’ sort would be

∆ ; Γ ` A �∆,Γ ` A
Under this translation, if we ‘mimic’ the right rule for S4 we would obtain the following:

∆ ; · ` A

∆ ; · ` �A
where · denotes the empty context. However, natural deduction systems do not have any
structural rules, so we have to include some kind of opportunity to weaken the context in
the above rule. If we do so, the result is

∆ ; · ` A

∆ ; Γ ` �A
Under the translation described above, this is exactly the right rule for S4, with some extra
weakening included. Incidentally, it is also exactly the introduction rule of Davies-Pfenning
dual-context system for S4 [PD01].

3Fundamental differences arise in the classical case, which features sequents of the form Γ ` ∆ where Γ
and ∆ are lists of formulae. In intuitionistic logic ∆ consists of at most one formula: see [GLT89, §5.1.3].

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:13

This pattern can be harvested to turn the right rules for the box in sequent calculi into
introduction rules in dual-context systems. We tackle each case separately, except T, which
we discuss in §2.2.3.

K. The case for K is slightly harder to fathom at first sight. This is because its sequent only
has a single rule for the modality, namely Scott’s rule:

Γ ` A

�Γ ` �A
As Bellin et al. [BdPR01] discuss, this rule is unsavoury: it is both a left and a right rule at
the same time. It cannot be split into two rules, which is the pattern that bestows sequent
calculus its fundamental symmetries. Despite this, Scott’s rule is reasonably well-behaved.
Leivant [Lei81] and Valentini [Val82] showed that incorporating it yields a system which
admits cut elimination. It also also appears in the sequent calculus for CK studied by
Wijesekera [Wij90].

According to the preceding translation, our introduction rule should be

· ; ∆ ` A

∆ ; · ` �A
Indeed, we emulate Scott’s rule by ensuring that all the intuitionistic assumptions must
become modal, at once. The final form is reached again by adding opportunities for weakening:

· ; ∆ ` A

∆ ; Γ ` �A
At this point the reader may vehemently protest that this introduction rule is not in

the spirit of natural deduction, as we are shamelessly messing with assumptions. So much is
true. But it is also true that even the most well-behaved fragments of natural deduction are
not really trees, but involve some ‘back edges,’ e.g. to record when and which assumptions
are discharged: see [GLT89, §2.1]. The situation is even more involved when it comes to the
not-so-well-behaved positive fragment (∨∃): for example, the elimination rule for ∨, namely

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
involves the silent elimination of two ‘temporary assumptions,’ A and B. Rules involving
such temporary assumptions are known as rules in the style of Schroeder-Heister [SH84].
The sum of it all is this: the proofs were never really trees.

Consequently, the shameless shuffling of assumptions shall not be a cause for concern.
In fact, there is a simple way to think about the ‘jump’ that the context ∆ makes from
intuitionistic to modal position. If we are writing down a deduction on the blackboard, and
we wish to introduce a box in front of the conclusion, then all we have to do is to place a
mark on all the assumptions that are open at that point. This does not discharge them, but
it makes them modal: there shall be a fundamentally different way of substituting for them,
and it shall be a little more complicated than the simple splicing of a proof tree at a leaf.

10:14 G. A. Kavvos Vol. 16:3

K4. The correct sequent calculus rule for the logic K4, as well as the proof of cut elimination,
is due to Sambin and Valentini [SV82]. Using elements from his joint work with Sambin, as
well some counterexamples found in the work of Leivant [Lei81] on GL, Valentini noticed
that the key property induced by axiom 4 is that anything derivable from ��A is derivable
from �A. The following (mixed left-and-right) rule for the encapsulates this insight:

�Γ,Γ ` A

�Γ ` �A
Thus, to derive �A from a bunch of boxed assumptions, it suffices to derive A from two
copies of the same assumptions, one boxed and one unboxed.4 This co-occurence of the
same assumptions in two forms will cause some mild technical complications in the next
section, but that will clarify the structure of the ‘flow of data’ in K4.

Following our previous recipe, a direct translation of this rule yields

∆ ; ∆ ` A

∆ ; Γ ` �A

GL. The correct formulation of sequent calculus for GL is a difficult problem that has
repeatedly received attention. There are simple solutions that guarantee that we can derive
all and only theorems of GL, but they fail to satisfy cut elimination.

The first attempt at a cut-free sequent calculus was that of Leivant [Lei81]. Soon
thereafter, Valentini [Val83] showed that Leivant’s proof of cut elimination was incorrect.
Sambin and Valentini [SV80] describe a procedure for building cut-free proofs for all provable
sequents, but their proof is semantic and goes through Kripke structures, and hence does not
constitute Gentzen-style cut elimination. In [SV82], the same authors collect and describe
in detail many early approaches, the reasons they do or do not work, and all relevant results.
Finally, Valentini [Val83] shows that the same rule admits cut elimination, but the proof
is rather complicated, and derives from the techniques of Bellin [Bel85]. Recent progress
on clarifying that result may be found in Goré and Ramanayke [GR12]. Another approach,
this time based on infinitary derivations, has been followed by Shamkanov [Sha14].

The Leivant-Valentini sequent calculus rule for GL is

�Γ,Γ,�A ` A

�Γ ` �A
The only difference between this rule and the rule for K4 is the ‘diagonal assumption’ �A.
We can straightforwardly use our translation to state it as an introduction rule:

∆ ; ∆,�A ` A

∆ ; Γ ` �A

4Indeed, this is the Four rule we presented in §1.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:15

2.2.2. The Elimination Rule. As discussed in §2.1, in a dual-context calculus we consider
one context to be the primary zone, and the other to be the secondary zone. Assumptions
in the primary zone are discharged by λ-abstraction. Thus, the function space of DILL is
linear, whereas the function space of DS4 is intuitionistic.

In contrast, substituting for assumptions in the secondary zone is the capacity of the
elimination rule. This is a customary pattern for dual-context calculi: unlike primary
assumptions, substitution for secondary assumptions is essentially a cut rule. In the term
assignment system we will consider later, this takes the form of a delayed substitution, a
type of ‘let construct.’ The rationale is this: the rest of the system controls how secondary
assumptions arise and are used, and the elimination rule uniformly allows one to substitute
for them.5 To wit:

∆ ; Γ ` �A ∆, A ; Γ ` C
(�E)

∆ ; Γ ` C
The reader might protest that we are trying to pass a cut rule as an elimination rule.
Notwithstanding the hypocrisy, this is not only common, but also the best presently known
solution that recovers the patterns of introduction and elimination in the presence of modality.
It is the core of our second slogan: in dual-context systems, substitution is a cut rule for
secondary assumptions.

One cannot help but notice that such rules are also in the infamous style of Schroeder-
Heister [SH84], and also similar to the elimination rule for disjunction. As we discussed in
§2.1, this kind of rule is known to be problematic, as it automatically necessitates some
commuting conversions: unavoidably, the conclusion C has no structural relationship with
anything else in sight. The pressing question is whether this is an acceptable state of affairs.
Unless we are to engage in more complicated and radical schemes, the present author is afraid
that we must settle for it. Put simply, there is no good way to do away with commuting
conversions: they are part-and-parcel of any sufficiently complicated type theory. All we can
hope for is to minimize their number, and state them systematically.

2.2.3. A second variable rule. We have conveniently avoided discussing two things up to
this point: the left rule for � in S4, which is the only one of our logics that has both left
and right rules, and the case of T. These two are intimately related.

The left rule for necessity in S4 is

Γ, A ` B
(�L)

Γ,�A ` B
We can intuitively read it as follows: if A suffices to infer B, then �A is more than enough.
This is a form of the veridicality rule from §1.5.2, and encapsulates the axiom �A → A.
Together with Scott’s rule, it forms a sequent calculus where cut is admissible; this is
mentioned by Wansing [Wan02], and is attributed to Ohnisi and Matsumoto [OM57].

One way of emulating this rule in our framework would be to have a construct that
makes an assumption ‘jump’ from one context to another, but that is inelegant and leads to
an unworkable metatheory. The right way to imitate the left rule is to include a rule that
allows one to use a modal assumption as if it were merely intuitionistic. To wit:

∆, A,∆′ ; Γ ` A
5Alternative approaches have also been considered. For example, one could introduce another abstraction

operator, i.e. a ‘modal λ.’ This has been adopted by Pfenning [Pfe01] in a dependently-typed setting.

10:16 G. A. Kavvos Vol. 16:3

Types A,B ::= pi | A×B | A→ B | �A
Typing Contexts Γ,∆ ::= · | Γ, x : A

Terms M,N ::= x | λx : A. M |MN | 〈M,N〉 | πi(M) |
box M | let box u⇐M in N

(var)
∆ ; Γ, x : A,Γ′ ` x : A

(�var)
∆, u : A,∆′ ; Γ ` u : A

∆ ; Γ `M : A ∆ ; Γ ` N : B
(×I)

∆ ; Γ ` 〈M,N〉 : A×B

∆ ; Γ `M : A1 ×A2
(×Ei)

∆ ; Γ ` πi (M) : Ai

∆ ; Γ, x : A `M : B
(→ I)

∆ ; Γ ` λx : A. M : A→ B

∆ ; Γ `M : A→ B ∆ ; Γ ` N : A
(→ E)

∆ ; Γ `MN : B

· ; ∆ `M : A
(�IK)

∆ ; Γ ` box M : �A

∆ ; ∆⊥ `M⊥ : A
(�IK4)

∆ ; Γ ` box M : �A

∆ ; ∆⊥, z⊥ : �A `M⊥ : A
(�IGL)

∆ ; Γ ` fix z in box M : �A

∆ ; · `M : A
(�IS4)

∆ ; Γ ` box M : �A

∆ ; Γ `M : �A ∆, u : A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Rules for S4: (�IS4) and (�var)

Rules for T: (�IK) and (�var)

Figure 2: Definition and typing judgments

This translates back to the sequent �∆,�A,�∆′,Γ ` A, which follows by (�L).
A rule like this was introduced by Plotkin and Barber [Plo93, Bar96] for dereliction

in DILL, and is also essential in Davies and Pfenning’s DS4. In our case, we use it in
combination with the introduction rule for K in order to make a system for T.

3. Types, terms, and metatheory

We now collect all the observations we have made in order to turn our natural deduction
systems into term assignment systems, i.e. typed λ-calculi. First, we annotate each
assumption A with a variable, which we write as x : A. Then, we annotate each judgment
∆ ; Γ ` A with a term M representing the entire deduction that with that judgment as its
conclusion—see [GLT89, §3] or [Gal93, SU06] for an introduction to term assignment.

The grammars defining types, terms and contexts, as well as the typing rules for all
our systems can be found in Figure 2. All of our systems contain the introduction and
elimination rules for products and functions, the variable rule (var), and the box elimination
rule (�E). Each of the systems for K, K4 and GL also contain the corresponding introduction
rule, e.g. (�IK). Finally, the systems for T and S4 each contain two additional rules: the
modal variable rule (�var), and a modal introduction rule—(�IK) in the first case, and

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:17

(�IS4) in the second. When we are at risk of confusion we annotate the turnstile with a
subscript to indicate which system we mean.

From this point onwards, we assume Barendregt’s conventions: terms are equal up to
α-conversion, and bound variables are silently renamed whenever necessary. In let box u⇐
M in N , u is a bound variable in N . Finally, we write N [M/x] to mean capture-avoiding sub-
stitution of M for x in N . Furthermore, we shall assume that whenever we write a judgment
like ∆ ; Γ `M : A, then ∆ and Γ are disjoint, in the sense that Vars (∆) ∩Vars (Γ) = ∅,
where Vars (x2 : A1, . . . , xn : An)

def
= {x1, . . . , xn}. This causes a mild technical complication

in the cases K4 and GL. Fortunately, the solution is relatively simple, and we explain it now.

3.1. Complementary variables. Näıvely annotating the rule for K4 would yield

∆ ; ∆ `M : A

∆ ; Γ ` box M : �A

This, however, violates our convention that the two contexts are disjoint: the same variables
will appear both at modal and intuitionistic positions. To overcome this we introduce the
notion of complementary variables. Let V be the set of term variables for our calculi. A
complementation function is an involution on variables. That is, it is a bijection (−)⊥ :

V
∼=−→ V which happens to be its own inverse, i.e.

(
x⊥
)⊥

= x. The idea is that, if u is the

modal variable representing some assumption in ∆, we will write u⊥ to refer to a variable x,
uniquely associated to u, and representing the same assumption, but without a box in front.
For technical reasons, we would like that x⊥ be the same variable as u.

We extend the involution to contexts:

(x1 : A1, . . . , xn : An)⊥
def
= x⊥1 : A1, . . . , x

⊥
n : An

We also inductively extend (−)⊥ to terms, with the exception that it must not change
anything inside a box (−) construct. It also need not change any bound modal variables, as
for K4 and GL these shall only occur under box (−) constructs:

(λx : A.M)⊥
def
= λx⊥ : A. M⊥ (MN)⊥

def
= M⊥N⊥

〈M,N〉 def= 〈M⊥, N⊥〉 (πi(M))⊥
def
= πi(M

⊥)

(box M)⊥
def
= box M (let box u⇐M in N)⊥

def
= let box u⇐M⊥ in N⊥

We use this machinery to modify the rule, so as to maintain disjoint contexts. When we
encounter an introduction rule for the box and the context ∆ gets ‘copied’ to the intuitionistic
position, we will complement all variables in the copy, as well as all variables occuring in M ,
but not under any box (−) constructs, or bound by a let:

∆ ; ∆⊥ `M⊥ : A

∆ ; Γ ` box M : �A

10:18 G. A. Kavvos Vol. 16:3

As an example, here is a derivation of · ;�A ` �(A ∧�A):

· ; x : �A ` x : �A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` u⊥ : A

u : A ; u⊥ : A ` box u : �A

u : A ; u⊥ : A ` 〈u⊥, box u〉 : A×�A

u : A ; x : �A ` box 〈u, box u〉 : �(A×�A)

· ; x : �A ` let box u⇐ x in box 〈u, box u〉 : �(A×�A)

We extend complementation to finite sets of variables, by setting {x1, . . . , xn}
def
=

x⊥1 , . . . , x
⊥
n . It is not hard to see that the involutive behaviour of (−)⊥ is invariant in-

herited by these extensions, and that a number of operations commute with (−)⊥.

Lemma 3.1.

(1) For any context ∆,
(
∆⊥
)⊥ ≡ ∆.

(2) For any finite set of variables S,
(
S⊥
)⊥

= S.

(3) For any context ∆, Vars
(
∆⊥
)

= (Vars (∆))⊥.

(4) If S, T are finite sets of variables, then S ⊆ T implies S⊥ ⊆ T⊥.

There is a simple relationship between complementation and substitution:

Theorem 3.2. If u⊥ is not free in M , then (M [N/u])⊥ ≡M⊥[N,N⊥/u, u⊥].

Proof. By induction on M . Recall that M 6≡ u⊥ by assumption. The cases of λ-abstraction,
application, pairing, projection, and let box u⇐ (−) in (−) follow by the IH.

Case(u). Then (M [N/u])⊥ ≡ N⊥ ≡ u⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥].

Case(v 6≡ u). Then (M [N/u])⊥ ≡ v⊥ ≡ v⊥[N,N⊥/u, u⊥] ≡M⊥[N,N⊥/u, u⊥].

Case(box M ′). We have:(
box (M ′[N/u])

)⊥ ≡ box (M ′[N/u]) ≡ (box M ′)⊥[N,N⊥/u, u⊥]

where the last step follows because box M ′ ≡ (box M ′)⊥, and u⊥ is not free in M ′.

To conclude our discussion of complementary variables, we carefully define what it
means for a pair of contexts to be well-defined.

Definition 3.3 (Well-defined contexts). A pair of contexts ∆ ; Γ is well-defined just if

(1) They are disjoint, i.e. Vars (∆) ∩Vars (Γ) = ∅.
(2) In the cases of K4 and GL, no two complementary variables occur in the same context;

that is, Vars (Γ) ∩Vars
(
Γ⊥
)

= ∅ and Vars (∆) ∩Vars
(
∆⊥
)

= ∅.

The second condition is easy to enforce, and will prove useful in some technical proofs.

3.2. Free variables: boxed and unboxed.

Definition 3.4 (Free variables).

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:19

(1) The free variables Fv (M) of a term M are defined by

Fv (x)
def
= {x} Fv (MN)

def
= Fv (M) ∪ Fv (N)

Fv (λx : A. M)
def
= Fv (M)− {x} Fv (〈M,N〉) def

= Fv (M) ∪ Fv (N)

Fv (πi(M))
def
= Fv (M) Fv (box M)

def
= Fv (M)

Fv (let box u⇐M in N)
def
= Fv (M) ∪ (Fv (N)− {u})

and for GL we replace the clause for box (−) with Fv (fix z in box M)
def
= Fv (M)− {z}.

(2) The unboxed free variables Fv0 (M) of a term are those that do not occur under the
scope of a box (−) construct. The formal definition involves replacing the clause of

Fv (−) for box (−) with Fv0 (box M)
def
= ∅, and, for GL, with Fv0 (fix z in box M)

def
= ∅.

(3) The boxed free variables Fv≥1 (M) of a term M are those that do occur under the scope
of a box (−) construct. The formal definition involves replacing the clauses of Fv (−)

for variables and for box (−) by Fv≥1 (x)
def
= ∅ and Fv≥1 (box M)

def
= Fv (M), and, for

GL, by Fv≥1 (fix z in box M)
def
= Fv (M)− {z}.

We can then prove the following theorem by a simple induction on terms.

Theorem 3.5 (Free variables).

(1) If ∆ ; Γ, x : A,Γ′ `M : A and x 6∈ Fv (M), then ∆ ; Γ,Γ′ `M : A.
(2) If ∆, u : A,∆′ ; Γ `M : A and u 6∈ Fv (M), then ∆,∆′ ; Γ `M : A.
(3) For every term M , Fv (M) = Fv0 (M) ∪ Fv≥1 (M).

(4) For every term M , Fv0

(
M⊥

)
= Fv0 (M)⊥.

(5) For every term M , Fv≥1

(
M⊥

)
= Fv≥1 (M).

(6) If S ∈ {DK,DK4,DGL} and ∆ ; Γ `S M : A, then

Fv0 (M) ⊆ Vars (Γ) , Fv≥1 (M) ⊆ Vars (∆)

(7) If S ∈ {DS4,DT} and ∆ ; Γ `S M : A, then

Fv0 (M) ⊆ Vars (Γ) ∪Vars (∆) , Fv≥1 (M) ⊆ Vars (∆)

3.3. Structural theorems. As expected, our systems satisfy the standard menu of struc-
tural results: weakening, contraction, exchange, and cut rules are admissible.

Theorem 3.6 (Structural & Cut). The following rules are admissible in all systems:

(1) (Weakening)

∆ ; Γ,Γ′ `M : C

∆ ; Γ, x : A,Γ′ `M : C

(2) (Exchange)

∆ ; Γ, x : A, y : B,Γ′ `M : C

∆ ; Γ, y : B, x : A,Γ′ `M : C

(3) (Contraction)

∆ ; Γ, x : A, y : A,Γ′ `M : A

∆ ; Γ, w : A,Γ′ `M [w,w/x, y] : A

(4) (Cut)

∆ ; Γ ` N : A ∆ ; Γ, x : A,Γ′ `M : C

∆ ; Γ,Γ′ `M [N/x] : C

Proof. By induction on the typing derivation of M . As an example, we show the case of
(�IK) for weakening. Suppose ∆ ; Γ,Γ′ `M : C by (�IK). Then M ≡ box M ′ and C ≡ �C ′
and · ; ∆ `M ′ : C ′. A single use of (�IK) then yields ∆ ; Γ, x : A,Γ′ `M : C.

10:20 G. A. Kavvos Vol. 16:3

Theorem 3.7 (Modal Structural). The following rules are admissible:

(1) (Modal Weakening)

∆,∆′ ; Γ `M : C

∆, u : A,∆′ ; Γ `M : C

(2) (Modal Exchange)

∆, x : A, y : B,∆′ ; Γ `M : C

∆, y : B, x : A,∆′ ; Γ `M : C

(3) (Modal Contraction)

∆, x : A, y : A,∆′ ; Γ `M : C

∆, w : A,∆′ ; Γ `M [w,w/x, y] : C

Proof. Straightforward induction on the derivation of the premise. As an example, we
discuss a few cases of (�I) for weakening, the rest being similar.

If ∆,∆′ ; Γ ` M : A by (�IK), then M ≡ box N and A ≡ �B, with · ; ∆,∆′ ` N : B.
We use Theorem 3.6 to obtain · ; ∆, x : A,∆′ ` N : B, and then apply (�IK).

If ∆,∆′ ; Γ `M : A by (�IK4), then M ≡ box N and A ≡ �B, with ∆,∆′ ; ∆⊥,∆′⊥ `
N⊥ : B. By the IH, we have that ∆, u : A,∆′ ; ∆⊥,∆′⊥ ` N⊥ : B. We use Theorem 3.6 to
deduce that ∆, u : A,∆′ ; ∆⊥, u⊥ : A,∆′⊥ ` N⊥ : B, and then apply (�IK4).

Theorem 3.8 (Modal Cut). The following rules are admissible:

(1) (Modal Cut for DK)

· ; ∆ `DK N : A ∆, u : A,∆′ ; Γ `DK M : C

∆,∆′ ; Γ `DK M [N/u] : C

(2) (Modal Cut for DK4)

∆ ; ∆⊥ `DK4 N
⊥ : A ∆, u : A,∆′ ; Γ `DK4 M : C

∆,∆′ ; Γ `DK4 M [N/u] : C

(3) (Modal Cut for DGL)

∆ ; ∆⊥, z⊥ : �A `DGL N
⊥ : A ∆, u : A,∆′ ; Γ `DGL M : C

∆,∆′ ; Γ `DGL M [N [fix z in box N/z] /u] : C

(4) (Modal Cut for DS4)

∆ ; · `DS4 N : A ∆, u : A,∆′ ; Γ `DS4 M : C

∆,∆′ ; Γ `DS4 M [N/u] : C

(5) (Modal Cut for DT)

· ; ∆ `DT N : A ∆, u : A,∆′ ; Γ `DT M : C

∆,∆′ ; Γ `DT M [N/u] : C

Proof. By induction on the typing derivation of M . We show the case of (�I), and—for
DS4 and DT—the case of modal variables (�var).

(1) (DK) If ∆, u : A,∆′ ; Γ `M : C by (�IK), then M ≡ box M ′, C ≡ �C ′, and

· ; ∆, u : A,∆′ `M ′ : C ′

By Theorem 3.6, we have

· ; ∆,∆′ `M ′[N/u] : C

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:21

and hence ∆,∆′ ; Γ ` box (M ′[N/u]) : �C ′ ≡ C by an application of (�IK). But

box
(
M ′[N/u]

)
≡
(
box M ′

)
[N/u] ≡M [N/u]

and hence we have the result.
(2) (DK4) If ∆, u : A,∆′ ; Γ `M : C by (�IK4), then M ≡ box M ′, C ≡ �C ′, and

∆, u : A,∆′ ; ∆⊥, u⊥ : A,∆′⊥ `M ′⊥ : C ′

By the IH, we have

∆,∆′ ; ∆⊥, u⊥ : A,∆′⊥ `M ′⊥[N/u] : C ′

and by Theorem 3.6, that yields

∆,∆′ ; ∆⊥,∆′⊥ `M ′⊥[N,N⊥/u, u⊥] : C ′

But, by Theorem 3.2, we have that M ′⊥[N,N⊥/u, u⊥] ≡ (M ′[N/u])⊥, and hence by a
use of (�IK4), we have

∆,∆′ ; Γ ` box
(
M ′[N/u]

)
: �C ′ ≡ C

and hence the result.
(3) (DGL) If ∆, u : A,∆′ ; Γ `M : C by (�IGL), then M ≡ fix y in box M ′, C ≡ �C ′, and

∆, u : A,∆′ ; ∆⊥, u⊥ : A,∆′⊥, y⊥ : �C ′ `M ′⊥ : C ′

Write N∗
def
= N [fix z in box N/z]. By the first premise and the IH, we have that

∆,∆′ ; ∆⊥, u⊥ : A,∆′⊥, y⊥ : �C ′ `M ′⊥ [N∗/u] : C ′

We now need to substitute for u⊥. By an application of (�IGL) to the first premise we
have

∆ ; ∆⊥ ` fix z in box N : �A

and hence by Theorem 3.6 we substitute this into the first premise itself to get

∆ ; ∆⊥ ` N⊥[fix z in box N/z⊥] : A

But N⊥∗ ≡ N⊥[fix z in box N/z⊥], so by weakening and Theorem 3.6, we obtain

∆,∆′ ; ∆⊥,∆′⊥, y⊥ : �C `M ′⊥[N∗, N
⊥
∗ /u, u

⊥] : C ′

But by well-definedness of contexts, u⊥ 6∈ Fv (M), so by Theorem 3.2 we have that

M ′⊥[N∗, N
⊥
∗ /u, u

⊥] ≡ (M ′[N∗/u])⊥, and hence by a use of (�IGL), we have

∆,∆′ ; Γ ` fix y in box
(
M ′[N∗/u]

)
: �C ′ ≡ C

and hence the result.
(4) (DS4)
• If ∆, u : A,∆′ ; Γ `M : C by (�IS4) then M ≡ box M ′ and C ≡ �C ′ with

∆, u : A,∆′ ; · `M ′ : C
The IH then yields ∆,∆′ ; · `M ′[N/u] : C, and a single use of (�IS4) yields the result.
• If ∆, u : A,∆′ ; Γ `M : C by (�var) then M ≡ v for some v such that (v : C) ∈ ∆, u :
A,∆′. There are two cases:
– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise ∆ ; · ` N : A along with

weakening for both contexts yields the result.
– u 6≡ v: then M [N/u] ≡M , and u does not occur in M . It is easy to show that if

∆, u : A,∆′ ; Γ `M : C and u 6∈ Fv≥1 (M) then ∆,∆′ ; Γ `M : C.

10:22 G. A. Kavvos Vol. 16:3

(5) (DT)
• If ∆, u : A,∆′ ; Γ `M : C by (�IK) then we proceed as in the case of DK.
• If ∆, u : A,∆′ ; Γ `M : C by (�var) then M ≡ v for some v such that v : C ∈ ∆, u :
A,∆′. There are two cases:
– u ≡ v: then M [N/u] ≡ N and A ≡ C. The premise · ; ∆ ` N : A along with

Theorem 3.9 yields ∆ ; · ` N : A. A series of weakenings for both contexts then
yields the result.

– u 6≡ v: then M [N/u] ≡M , and u does not occur in M . It is easy to show that if
∆, u : A,∆′ ; Γ `M : C and u 6∈ Fv≥1 (M) then ∆,∆′ ; Γ `M : C.

Finally, in the cases where the T axiom is present, we may move variables from the
intuitionstic to the modal context:

Theorem 3.9 (Modal Dereliction). If S ∈ {DS4,DT}, then
∆ ; Γ,Γ′ `S M : A

∆,Γ ; Γ′ `S M : A
is admissible.

Proof. By induction on the derivation of ∆ ; Γ,Γ′ `M : A. Most cases are straightfoward,
except (var) and (�IS4)/(�IK). If the judgment holds by (var), then M ≡ x for some
(x : A) ∈ Γ,Γ′. If (x : A) ∈ Γ, we use (�var) to conclude that ∆,Γ;Γ′ ` x : A. If (x : A) ∈ Γ′,
then use of (var). If the judgment holds by (�IS4) then M ≡ box M ′ and A ≡ �A′ for some
M ′, A′ with ∆ ; · `M ′ : A′. Repeated use of weakening for the modal context followed by
an application of (�IS4) yields the result. The case of (�IK) is similar, but uses weakening
for the intuitionistic context.

3.4. Equivalence between Hilbert and dual systems. In this section we prove that
our dual-context λ-calculi correspond to the Hilbert systems given in §1. This ties the knot
with respect to the Curry-Howard correspondence.

Modulo the appearance of proof terms, the translation under which this equivalence is
shown is the same one that we used in §2:

∆ ; Γ `DL M : A �∆̂, Γ̂ `L A
We write Γ̂ to mean the context Γ with all the variables removed: if Γ ≡ x1 : A1, . . . , xn : An,

then Γ̂
def
= A1, . . . , An.

One direction of the proof involves showing that the axioms are indeed derivable in
the dual-context systems. The other direction involves showing the admissibility of the
dual-context rules in the Hilbert systems.

First and foremost, we need to show that axiom (K) is derivable. It is easy to check
that the term

axK
def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in box (g y)

has type �(A→ B)→ �A→ �B in all our systems other than GL. For GL, we instead use

axDGL
K

def
= λf : �(A→ B). λx : �A. let box g ⇐ f in let box y ⇐ x in fix z in box (g y)

It is also not hard to see that in DK4 and DS4 the terms

ax4
def
= λx : �A. let box y ⇐ x in box (box y)

have type �A→ ��A, which is exactly axiom 4.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:23

In the case of DGL, we need to show that the term

axGL
def
= λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z))

has type �(�A→ A)→ �A. The most interesting part of the derivation can be found in
Figure 3.

· · · ` x : �(�A→ A)

···
∆, f : �A→ A ; ∆, f⊥ : �A→ A, z⊥ : �A ` f⊥ z⊥ : A

∆, f : �A→ A ; Γ, x : �(�A→ A) ` fix z in box (f z) : �A

∆ ; Γ, x : �(�A→ A) ` let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

∆ ; Γ ` λx : �(�A→ A). let box f ⇐ x in (fix z in box (f z)) : �(�A→ A)→ �A

Figure 3: Derivation of the Gödel-Löb axiom in DGL

Finally, in DT and DS4, the term

axT
def
= λx : �A. let box y ⇐ x in y

has type �A→ A, i.e. inhabits axiom T.
With all that we can show:

Theorem 3.10 (Hilbert to Dual). If Γ is a well-defined context and Γ̂ `L A, then there
exists a term M such that · ; Γ `DL M : A.

Proof. By induction on the derivation of Γ̂ `L A. In the case of the assumption rule, we use
(var) to type the associated variable in Γ̂. The cases for axioms of (IPL�) are easy. For the
modal axioms, we use the terms derived above. For modus ponens we use application.

This leaves the case of necessitation. Suppose Γ̂ `L A by it; then A ≡ �A′, and `L A′.
By the IH, there is a term M ′ such that · ; · `DL M ′ : A′. We then use the appropriate
introduction rule for box—e.g. (�IK), and so on—to obtain · ; Γ `DL box M ′ : �A′.

The essence of the opposite direction lies in showing that the rules of the dual-context
calculus are admissible in the corresponding Hilbert system—that is, after erasing the proof
terms. We have done most of the required work in §1.5.2.

Theorem 3.11 (Dual to Hilbert). If ∆ ; Γ `DL M : A then �∆̂, Γ̂ `L A.

Proof. By induction on the derivation of ∆ ; Γ `DL M : A.
If the premise holds by (var), then we use the assumption rule of the Hilbert system. If

the last step in the derivation of the premise is the rule (→ I), we use the IH followed by
the Deduction Theorem (Theorem 1.2). If the last step is by (→ E), we use modus ponens.
It is simple to translate the rules that pertain to the product, namely (×I) and (×Ei) to
uses of the IPL axioms pertaining to the product along with modus ponens. It is also not
hard to see that, under the given translation, (�E) can also be matched by a use of the IH
along with an invocation of the admissibility of cut for Hilbert systems (Theorem 1.1). Uses
of the modal variable rule (�var) can be imitated by a use of the assumption rule, modus
ponens, and an instance of the T axiom.

This leaves the introduction rules for the box. The rule (�IK) is matched with Scott’s
rule (Theorem 1.3). The rule (�IK4) is matched with the Four rule (Theorem 1.6). The rule

10:24 G. A. Kavvos Vol. 16:3

(�IGL) is matched with the generalized Löb rule (Theorem 1.8). Finally, the rule (�IS4) is
matched with the corollary to the Four rule (Corollary 1.7).

4. Reduction

We will now show that it is possible to eliminate cuts from proofs in our systems. This
elimination of cuts will be complete, in the sense that normal proofs will satisfy the subformula
property, i.e. they will not reference any external logical formulæ that are unrelated to their
assumptions or conclusion. We will achieve this with the traditional technique of a confluent
and strongly normalizing small-step reduction. Rather strikingly, this reduction will be the
same across all systems—with the exception of DGL, whose term former for the introduction
of the modality has a very different shape. This avoids repeating work to deal with different
systems, as most of our proofs are by induction on the typing judgments, and most rules are
shared between all systems. We discuss GL separately in §4.5.

In this paper we stop short of deciding equality of proofs, which is a much more
challenging problem. There are many reasons that make it so. The first one is related to the
known problematic behaviour of η-contraction. The second arises from the fact that our
reduction does not eliminate all redundacy from our proofs. For example, the terms

· ; x : �A, y : B ` y : B · ; x : �A, y : B ` let box u⇐ x in y : B

will be equal in the equational theory of §6.1, but will also be normal forms with respect to
reduction. In a sense, there have to be additional commuting conversions that—amongst
other things—‘garbage collect’ unnecessary eliminations, and which we only discover when
we consider the categorical semantics §6. The third problem is deeper: it arises because
� essentially behaves as positive connective. Deciding equality in the presence of such
connectives requires either advanced rewriting or categorical techniques. For example, the
case of βη-equivalence in the presence of sums and an empty type was open until Scherer
resolved it in 2017 [Sch17]; see op. cit. for an extensive bibliography.

Normalization of proofs for this kind of system has not been extensively studied before.
Pfenning and Davies [PD01] hint at our notion, and use a strict subset of it as operational
semantics [DP01]. A similar notion was studied in the context of DILL by Ohta and Hasegawa
[OH06], including η-contractions and the full set of commuting conversions.

4.1. The reduction. The notion of reduction −→ is defined as the least relation satisfying
the rules of Figure 4. This includes the usual β-reduction, plus the modal β-reduction

let box u⇐ box M in N −→ N [M/u]

which is suggested by Theorem 3.8. It also includes congruences—so that reductions can
happen anywhere in a term—and, finally, three commuting conversions, which are required
for the subformula property to hold.

We begin with the following lemma, which shall also prove useful in §4.4. Recall the
definition and discussion of complementary variables from §3.1.

Lemma 4.1 (Complement reduction). If ∆ ; ∆⊥ `DK4 M
⊥ : A then M −→ N implies

M⊥ −→ N⊥.

Proof. By induction on M −→ N . We only prove the cases that are not straightforward.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:25

(λx:A. M)N −→M [N/x] πi(〈M1,M2〉) −→Mi

M −→ N

πi(M) −→ πi(N)

Mi −→ Ni M1−i ≡ N1−i

〈M0,M1〉 −→ 〈N0, N1〉
M −→ N

λx:A. M −→ λx:A. N

M −→ N

box M −→ box N

M −→ N

MP −→ NP

P −→ Q

MP −→MQ

M −→ N

let box u⇐M in P −→ let box u⇐ N in P

P −→ Q

let box u⇐M in P −→ let box u⇐M in Q

πi (let box u⇐M in N) −→ let box u⇐M in πi(N)

(let box u⇐M in P)Q −→ let box u⇐M in PQ

let box v ⇐ (let box u⇐M in N) in P −→ let box u⇐M in let box v ⇐ N in P

Figure 4: Reduction

Case(β for →). Suppose ∆ ; ∆⊥, x : B `M : C for some B,C. Then

((λx : B. M)N)⊥ ≡ (λx⊥ : B. M⊥)N⊥ −→M⊥[N⊥/x⊥]

We want to show that the latter is just (M [N/x])⊥. We can rename x so that it does
not clash with any variable nor its complement in the context of M . We will show
that (a) x⊥ 6∈ Fv (M), and that (b) x 6∈ Fv

(
M⊥

)
. By (a) we may apply Theorem

3.2 and then use (b) to infer that

(M [N/x])⊥ ≡M⊥[N,N⊥/x, x⊥] ≡M⊥[N⊥/x⊥]

Both (a) and (b) follow from Theorem 3.5. For (a): by (3) it suffices to show
that x⊥ 6∈ Fv0 (M) and x⊥ 6∈ Fv≥1 (M). But x⊥ does not occur in either context,
so we use (6). For (b): we know that x⊥ 6∈ Fv0 (M), so this implies by (4) that
x 6∈ Fv0

(
M⊥

)
. Hence, it suffices by (3) to also show that x 6∈ Fv≥1

(
M⊥

)
. But by

(5) the latter is equal to Fv≥1 (M), and by well-formedness of contexts we know
that know that x 6∈ Vars (∆), so by (6) it is not in Fv≥1 (M) either.

Case(β for box (−)). It is easy to see that

(let box u⇐ box M in N)⊥ ≡ let box u⇐ (box M)⊥ in N⊥

≡ let box u⇐ box M in N⊥

−→ N⊥[M/u]

It now suffices to show that (a) u⊥ 6∈ Fv (N), and that (b) u⊥ 6∈ Fv
(
N⊥
)
. For then

Theorem 3.2 applies, and (N [M/u])⊥ ≡ N⊥[M,M⊥/u, u⊥] ≡ N⊥[M/u]. We will
use Theorem 3.5 again, recalling that ∆, u : A ; ∆⊥ ` N⊥ : A.

For (a): by (3) it suffices to show that u⊥ 6∈ Fv0 (N) and u⊥ 6∈ Fv≥1 (N). By (4)
and (5) it suffices to show that u 6∈ Fv0

(
N⊥
)

and u⊥ 6∈ Fv≥1

(
N⊥
)
. Both follow by

(6), as neither u nor u⊥ are allowed to occur anywhere in ∆ and ∆⊥.
For (b): we know that u⊥ 6∈ Fv≥1

(
N⊥
)
, so by (3) it suffices to show that

u⊥ 6∈ Fv0

(
N⊥
)
. But we can use (6): u cannot be in ∆, so u⊥ cannot be in ∆⊥.

10:26 G. A. Kavvos Vol. 16:3

We then show that

Theorem 4.2 (Subject reduction). If ∆ ; Γ `M : A and M −→ N , then ∆ ; Γ ` N : A.

Proof. By induction on M −→ N . Most cases follow straightforwardly from the IH. The
cases for the β rules follow from Theorems 3.6 and 3.8.

4.2. Subformula property. A calculus satisfies the subformula property when any normal
proof (i.e. one that has no reducts) of a formula A from assumptions Γ only involves
formulæ that are either (a) subformulæ of the conclusion of A, or (b) subformulæ of some
premise in Γ. This is tantamount to saying that the proof has a very specific structure: it
proceeds by eliminating logical symbols of assumptions in Γ, and then uses the results to
construct a proof of A using only introduction rules. In short, the proof has no detours, and
proceeds as quickly as possible from assumptions to conclusion: see [Pra65] and [GLT89].

Without the commuting conversions of Figure 4, our systems do not satisfy the subfor-
mula property. The reason is the presence of the elimination rule

∆ ; Γ `M : �A ∆, u : A ; Γ ` N : C
(�E)

∆ ; Γ ` let box u⇐M in N : C

Notice that the conclusion C is given to us by the minor premise ∆, u : A ; Γ ` N : C, and
it is structurally unrelated to �A, the major premise that is being eliminated: in Girard’s
terminology, it is parasitic. This is so because—as we discussed in §2—the elimination rule
is secretly a kind of cut rule, or a rule in the style of Schroeder-Heister [SH84].

It is not so easy to see where the actual trouble lies at first. The point is that the
let box u⇐ (−) in (−) construct may ‘hide redexes.’ Once we introduce the extra reductions
that are needed, and prove the subformula property, this will become quite clear. But—in
the meantime—let us consider three examples.

Suppose that ∆, u : A ; Γ ` 〈N1, N2〉 : A1 × A2 and ∆ ; Γ ` M : �A are normal forms,
and that the latter is not of the form box (−). We may use (�E) to obtain

∆ ; Γ ` let box u⇐M in 〈N1, N2〉 : A1 ×A2

This is indeed—and should be!—a normal form. But what if we just want to prove A1? We
may apply one of the elimination rules for products to get

∆ ; Γ ` π1 (let box u⇐M in 〈N1, N2〉) : A1

This is now a proof of A1, but it surreptitiously contains a proof N2 of A2, which is entirely
unrelated to A1 (neither need be a subexpression of the other). The problem is that the
eliminator let box u⇐ (−) in (−) obstructs the meeting of the destructor π1(−) with the
constructor 〈N1, N2〉. The solution is to allow a commuting conversion that allows the two
to meet by pulling the let construct outside:

π1 (let box u⇐M in 〈N1, N2〉) −→ let box u⇐M in π1(〈N1, N2〉)
A similar situation occurs when ∆, u : A ; Γ ` λx : B. P : B → C. We may form

∆ ; Γ ` let box u⇐M in λx : B. P : B → C

which is a perfectly reasonable normal form. But if ∆ ; Γ ` Q : B then

∆ ; Γ ` (let box u⇐M in λx : B. P)Q : C

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:27

is not: we should be able to reduce

(let box u⇐M in λx : B. P)Q −→ let box u⇐M in (λx : B. P)Q

Finally, there is third, less visible case of this phenomenon. If we understand (�E) to be a
‘bad’ elimination, we have considered the cases of ‘good’ elimination (πi(−), application)
following ‘bad’ elimination. The final case is that of ‘bad’ elimination following another ‘bad’
elimination. To give an example, let us consider an elimination after a box (−) introduction:

∆ ; Γ ` let box u⇐M in box N : �A

We can then plug this into a term ∆, v : A ; Γ ` P : C by eliminating the box:

∆ ; Γ ` let box v ⇐ (let box u⇐M in box N) in P : C

Now things are clear: the second let-construct is obstructing the meeting of the first
let-construct with the introduction form box N . We need to convert

let box v ⇐ (let box u⇐M in box N) in P −→ let box u⇐M in let box v ⇐ box N in P

whilst taking care to not confuse our bound variables.
With these commuting conversions in place we can now prove the property. We only

need to slightly strengthen the induction hypothesis, using the notion of principal branch.

Theorem 4.3 (Subformula Property). Let ∆ ; Γ `M : A, and suppose M is a normal form.

(1) Every type occuring in the derivation of ∆ ; Γ `M : A is either a subexpression of the
type A, or a subexpression of a type in ∆ or Γ.

(2) If M is an elimination form that is not form let box u⇐ P in Q—i.e. if it is a projection
πi(N) or an application PQ—then it entirely consists of a sequence of eliminations:
that is, there is a sequence of types A0, . . . , An for which
- A0 occurs in either ∆ or Γ,
- An is A, and
- Ai is the major premise of an elimination whose conclusion is Ai+1 for 0 ≤ i < n.

This sequence is called a principal branch. In particular, An is a subexpression of A0.

Proof. By induction on the derivation of ∆ ; Γ `M : A. We omit some cases, as they are
similar to others: the case of (�var) is like that of an ordinary variable, the other introduction
forms (〈M,N〉, box M) are similar to the case for λ, and the case for πi(M) is similar to
the one for MN .

Case(x). Then ∆ ; Γ ` x : A and hence (x : A) ∈ Γ. This is the complete derivation,
and satisfies both desiderata.

Case(λx : A. M). Then the immediate premise is of the form ∆ ; Γ, x : A `M : B.
By the IH, all types that occur in that are either subexpressions of types in ∆ or Γ,
subexpressions of A, or subexpressions of B. All of these are subexpressions of types
in ∆, Γ, or A→ B.

Case(MN). Then the major premise is ∆ ; Γ `M : B → A and the minor premise
is ∆ ; Γ ` N : B for some type B.

Look at M : it cannot be a λ-abstraction, for that would make MN a redex. It
also cannot be any other introduction rule, for it introduce some other type (e.g.
A×B or �A). Hence, it must be an elimination. Of the eliminations, it cannot be
a let-expression, for a commuting conversion would make that a redex too.

10:28 G. A. Kavvos Vol. 16:3

It follows that M is a ‘good’ elimination: either πi(−) or PQ. We can thus apply
(2) from the IH thesis to conclude that there is a principal branch beginning with an
assumption in ∆ or Γ, and ending with B → A. We can extend that to a principal
branch for M , ending with A. This proves (2), and furthermore implies that B → A
is a subexpression of some premise in either ∆ or Γ.

Over to (1): applying the IH to the major premise we know that every type that
occurs in the derivation of ∆ ; Γ `M : B → A is either a subexpression of a type in
∆ or Γ, or a subexpression of B → A. But we have already deduced that B → A is
a subexpression of some premise in either ∆ or Γ, so that all types occuring in the
derivation of the major premise satisfy the desideratum.

Applying the IH to the minor premise, every type that occurs in the derivation of
∆ ; Γ ` N : B is either a subexpression of some type in ∆ or Γ, or a subexpression
of B. But B is a subexpression of B → A, which in turn is a subexpression of a
premise in one of the contexts. Hence all types occurring in that branch also occur
in either ∆ or Γ. This concludes the proof of this case, for we have examined all
types appearing in the derivation.

Case(let box u ⇐ M in N). The major premise is then ∆ ; Γ ` M : �B and the
minor premise is ∆, u : B ;Γ ` N : A for some B. (2) does not apply to let-constructs,
so we only need to show (1).

Consider M . It cannot be a box (−), for that would make the entire term a
redex. It also cannot be any other introduction form, because it would introduce
a type of a different shape. Hence, it must hence be an elimination form, but not
another let-construct, for that would be a redex too due to our commuting conversion.
Therefore it must be either of the form πi(M

′) or of the form PQ. It follows that (2)
of the IH applies: there is a principal branch beginning with a premise and ending
with �B. In particular, �B is a subexpression of some type in ∆ or Γ.

By the IH, any type that occurs in the derivation of the major premise is either
a subexpression of a type in ∆ or Γ, or a subexpression of �B. But �B is a
subexpression of some type in one of those two contexts, so every type that occurs in
the derivation of the major premise is actually a subexpression of a type in ∆ or Γ.

As for the minor premise, any type that occurs in it is either a subexpression of a
type in ∆ or Γ, or a subexpression of the types B or A. But B is a subexpression
of �B, which by our previous reasoning is in turn a subexpression of some type in
either ∆ or Γ. Thus all types occuring in it are either subexpressions of some type
in ∆ or Γ, or subexpressions of A. This concludes the proof.

4.3. Confluence. We will prove that

Theorem 4.4. The reduction relation −→ is confluent.

One can show this result in many ways. We will use the method of parallel reduction,
which was discovered by Tait and Martin-Löf. The history of the method and a few variations
of it are discussed by Takahashi [Tak95]. The idea is simple: we introduce a second notion of
reduction, =⇒, which we will ‘sandwich’ between reduction proper and its transitive closure,
so that −→ ⊆ =⇒ ⊆ −→∗. We will then show that =⇒ has the diamond property. By
the above inclusions, the transitive closure =⇒∗ of =⇒ is then equal to −→∗, and hence
−→ is confluent. In fact, we will follow [Tak95] in doing something better: we will define

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:29

x =⇒ x

M =⇒ N P =⇒ Q

(λx : A. M)P =⇒ N [Q/x]

Mi =⇒ N

πi(〈M1,M2〉) =⇒ N

M =⇒ N

πi(M) =⇒ πi(N)

M1 =⇒ N1 M2 =⇒ N2

〈M1,M2〉 =⇒ 〈N1, N2〉

M =⇒ N

λx : A. M =⇒ λx : A. N

M =⇒ N

box M =⇒ box N

M =⇒ N P =⇒ Q

MP =⇒ NQ

M =⇒ N P =⇒ Q

let box u⇐M in P =⇒ let box u⇐ N in Q

M =⇒ N P =⇒ Q

let box u⇐ box P in M =⇒ N [Q/u]

M =⇒ N P =⇒ Q

πi (let box u⇐M in P) =⇒ let box u⇐ N in πi(Q)

P =⇒ Q M =⇒ N S =⇒ T

(let box u⇐ P in M)S =⇒ let box u⇐ Q in NT

P =⇒ Q M =⇒ N S =⇒ T

(let box u⇐ (let box v ⇐ P in M) in S) =⇒ let box v ⇐ Q in let box u⇐ N in T

Figure 5: Parallel Reduction

for each term M its complete development M?. The complete development is intuitively
defined by ‘unrolling’ all the redexes of M at once. We will then show that if M =⇒ N ,
then N =⇒M?. M? will then suffice to close the diamond:

M

P Q

M?

The parallel reduction =⇒ is defined in Figure 5. It is immediate that

Lemma 4.5. =⇒ is reflexive.

Definition 4.6 (Complete development). The complete development M? of a term M is
defined by the following clauses:

x?
def
= x (〈M,N〉)? def

= 〈M?, N?〉

(πi(〈M1,M2〉))?
def
= M?

i (πi(let box u⇐M in N))
? def

= let box u⇐M? in πi(N
?)

((λx : A. M)N)
? def

= M?[N?/x] ((let box u⇐ P in M)N)
? def

= let box u⇐ P in M?N?

(πi(M))
? def

= πi(M
?) (λx : A. M)

? def
= λx : A. M?

(box M)
? def

= box M? (let box u⇐ box M in N)
? def

= N?[M?/u]

(MN)
? def

= M?N? (let box u⇐M in N)
? def

= let box u⇐M? in N?

(let box u⇐ (let box v ⇐ P in M) in N)
? def

= let box v ⇐ P ? in let box u⇐M? in N?

First, a little lemma capturing the essence of parallel reduction:

Lemma 4.7. If M =⇒ N and P =⇒ Q, then M [P/x] =⇒ N [Q/x].

Proof. Straightforward induction on M =⇒ N .

10:30 G. A. Kavvos Vol. 16:3

And here is the main result:

Theorem 4.8. If M =⇒ P , then P =⇒M?.

Proof. By induction on M =⇒ P . The case for variables is trivial, the case for the congruence
rules follows from the IH, and β for function types is as usual. We show the rest.

Case(β for ×). Then we have πi(〈M1,M2〉) =⇒M ′i , with Mi =⇒M ′i . By the IH,
M ′i =⇒M?

i ≡ (πi(〈M1,M2〉))?.
Case(β for �). Then we have let box u ⇐ box M in N =⇒ N ′[M ′/u] where
M =⇒ M ′ and N =⇒ N ′. By the IH, M ′ =⇒ M? and N ′ =⇒ N?. It follows that
N ′[M ′/u] =⇒ N?[M?/u] ≡ (let box u⇐ box M in N)? by Lemma 4.7.

Case(comm. conv. for ×). Then we have πi(let box u⇐M in P) =⇒ let box u⇐
N in πi(Q) where M =⇒ N and P =⇒ Q. By the IH, N =⇒ M? and Q =⇒ P ?,
whence let box u⇐ N in πi(Q) =⇒ let box u⇐M? in πi(P

?), which is α-equivalent
to (πi(let box u⇐M in P))?.

The cases for the other commuting conversions are similar.

4.4. Strong normalization. In this section, we will prove that

Theorem 4.9. The reduction relation −→ is strongly normalizing.

There is a very orderly way of doing so for all systems, save for GL. The idea is to embed
the modal proofs in the simply-typed λ-calculus, for which strong normalization is a known
result [Pra71, dG02]. This strategy is used by [MM96, TI10], and hinted at for the dual-
context S4 system by [DP01]. Because of the binding structure of let box u⇐ (−) in (−),
one cannot do so by simply erasing the modalities: we would then map modal β-reductions to
syntactic equality in the simply-typed λ-calculus, which would not provide enough leverage
to lift strong normalization to the modal calculi.

Instead, we use a strategy inspired by the proof of strong normalization for Moggi’s
monadic metalanguage [BBdP98]: we will interpret � as the product-with-the-unit comonad.6

More specifically, we define a translation (−)z of modal types to simple types:

(pi)
z def

= pi (A×B)z
def
= Az ×Bz

(A→ B)z
def
= Az → Bz (�A)z

def
= 1×Az

Next, we extend (−)z to terms:

(x)z
def
= x (〈M,N〉)z def

= 〈Mz, Nz〉

(πi(M))z
def
= πi(M

z) (λx : A. M)z
def
= λx : Az. Mz

(MN)z
def
= MzNz (box M)z

def
= 〈∗,Mz〉

(let box u⇐M in N)z
def
= Nz[π2(Mz)/u]

where ∗ : 1 is the introduction form for the unit type. We can then show that

Theorem 4.10 (Simulation).

6[BBdP98] translate the monadic type TA to the exception monad 1+ (−). They simulate the commuting
conversions for ‘bind’ using the commuting conversions for coproducts, which leads to a more direct proof.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:31

(1) (M [N/x])z ≡Mz[Nz/x]
(2) If ∆ ; Γ `DL M : A then ∆z,Γz `Mz : Az in the simply-typed λ-calculus.
(3) If M −→ N then Mz −→∗β Nz in the simply-typed λ-calculus.

Proof.

(1) By induction on M .
(2) By induction on ∆ ; Γ ` M : A. We show the two most difficult cases, namely the

elimination rule, and that of K4.
Case(∆ ; Γ ` let box u⇐ P in Q : C).
By the IH, the premises imply that ∆z,Γz ` Pz : 1×Az, and ∆z, u : Az,Γz `
Qz : Cz. Applying exchange multiple times, we obtain ∆z,Γz, u : Az ` Qz : Cz,
and using cut yields ∆z,Γz ` Qz[π2(Pz)/u] : Cz.

Case(∆ ; Γ `DK4 box M : �A).

By the IH, we have ∆z,
(
∆⊥
)z ` (M⊥)z : Az. Notice that, when acting on

contexts, (−)⊥ only acts on variables and (−)z only on types, so
(
∆⊥
)z ≡ (∆z)⊥.

Substitute all the variables in
(
∆z
)⊥

with the corresponding ones in ∆z. We thus

obtain a term ∆z ` (M⊥)z[∆z/
(
∆z
)⊥

] : Az. But we have by (1) that

(M⊥)z[∆z/(∆z)⊥] ≡ (M⊥[∆/(∆z)⊥])z ≡ (M⊥[∆/∆⊥])z ≡Mz

We thus apply weakening and the introduction rules for ∗ and products to obtain
∆z,Γz ` 〈∗,Mz〉 : 1×Az.

(3) By induction on M −→ N . The only cases that are not immediate are those involving
modal constructors. For the modal β, we notice that by the congruence rules

(let box u⇐ box M in N)z ≡ Nz[π2(〈∗,Mz〉)/u] −→ Nz[Mz/x] ≡ (N [M/x])z

where the last step follows by (1). For the first commuting conversion, we have

(πi(let box u⇐M in N))z ≡ πi(Nz[π2(Mz)/u]) ≡ (let box u⇐M in πi(N))z

so we use the fact −→∗β is reflexive. The cases for the other commuting conversions are

similar, and they translate to syntactic equalities.

We can now almost obtain Theorem 4.9 as a corollary: an infinite sequence of reductions
N1 −→ N2 −→ . . . would lead to an infinite sequence of reductions Nz1 −→∗β Nz2 −→∗β . . .
in the simply-typed λ-calculus, which would contradict strong normalization. This is not yet
a proof, because there is no guarantee that each reduction Nzi −→∗β Nzi+1 is a non-trivial
β-reduction. However, scrutinising the proof of Theorem 4.10 leads to the conclusion that
the only trivial reductions arise when Ni −→ Ni+1 due to a commuting conversion. It thus
remains to prove that Ni −→ Ni+1 is infinitely often a proper β-reduction.

For that, we employ a trick used by de Groote [dG02]: we assign a permutation degree
to every term. We define it by the following clauses.

|x| def= 1 |λx : A. M | def= |M |

|MN | def= |M |+ #(M) · |N | |〈M,N〉| def= |M |+ |N |

|πi(M)| def= |M |+ #(M) |box M | def= |M |

|let box u⇐M in N | def= |M |+ #(M) · |N |

10:32 G. A. Kavvos Vol. 16:3

where

#(x)
def
= 1 #(λx : A. M)

def
= 1

#(MN)
def
= #(M) #(〈M,N〉) def

= 1

#(πi(M))
def
= #(M) #(box M)

def
= 1

#(let box u⇐M in N)
def
= 2 ·#(M) ·#(N)

Briefly, #(M) = 2n, where n is the number of let box u⇐ (−) in (−) constructs in M that
are either at an ‘outermost’ position, or can be commuted to be so. It follows that

Lemma 4.11. If M −→ N by a commuting conversion, then #(M) = #(N).

The metric |M | uses #(M) to weigh the appearance of let box u⇐ (−) in (−) constructs,
with the weight being higher the more deeply they appear in a term. It is easy to show that

Lemma 4.12. If M −→ N by a commuting conversion, then |M | > |N |.

It follows that in an infinite sequence of reductions it must be the case that β-reductions
occur infinitely often, as the metric | − | strictly reduces for each commuting conversion.
This completes the proof of strong normalization.

4.5. The case of GL. It remains to prove normalization for GL, which—because of the
presence of a certain amount of self-reference—behaves in an unusual way.

Recall that fix z in box M is the term corresponding to an application of the Löb rule to
the proof M . One might first think that this term must reduce in the manner of a fixpoint,
for example to M [fix z in box M/z] where the diagonal variable z : �A has been replaced
by the entire term. Notice, however, that this does not preserve subject reduction. Instead,
we follow the statement of modal cut admissibility (Theorem 3.8), and replace the modal
β-reduction used in the other systems by

let box u⇐ (fix z in box M) in N −→ N [M [fix z in box M/z]/u]

which preserves subject reduction. We also include the congruence rule

M −→ N

fix z in box M −→ fix z in box N
This leads to to a system with manifest coinductive behaviour : The introduction form

fix z in box M is a largely inactive term former which—contrary to expectation—does not
unfold infinitely. Instead, we are free to use the congruence rule to eliminate cuts in its body
M . On the other hand, when this term meets the elimination form let box u⇐ (−) in N , it
unfolds as much as necessary to fill the position of the variable u in N . Thus, fix z in box M
unfolds ‘on demand’ whenever it is deconstructed.

We can extend complement reduction (Lemma 4.1) to this system: if ∆ ; ∆⊥, q⊥ :
�A `DGL M

⊥ : A, then M −→ N implies M⊥ −→ N⊥. The proof is the essentially the
same, even in the case of the the new β-reduction: we have

(let box u⇐ fix z in box Q in N)⊥ −→ N⊥[Q∗/u]

where Q∗
def
= Q[fix z in box Q/z]. We want to show that the RHS is (N [Q∗/u])⊥. It suffices to

show that u⊥ 6∈ Fv (N) and u⊥ 6∈ Fv
(
N⊥
)
, for then by Theorem 3.2 we get (N [Q∗/u])⊥ ≡

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:33

N⊥[Q∗, Q
⊥
∗ /u, u

⊥] ≡ N⊥[Q∗/u]. Recalling that ∆, u⊥ : B ; ∆⊥, q⊥ : �A ` N⊥ : A for some
B, we see that the rest of the argument is essentially identical to that for K4.

It is then easy to extend the proof of confluence and the subformula property to this
notion of reduction. However, the method used to prove strong normalization in §4.4 no
longer applies. Intuitively the reason is that, up to the isomorphism A ∼= 1 × A, the
Gödel-Löb axiom would be translated to the type (A→ A)→ A, which is the type of fixed
point combinators at A. We would thus have to augment the target language with such
fixed point combinators. This would make it essentially equivalent to PCF [Plo77], which is
the archetypal language with non-terminating terms!

Instead, we will prove normalization using the method of candidates (candidats de
reducibilité). This method originates in Girard’s proof of strong normalization for System F
[Gir72]. Our variant is a combination of two presentations. The main structure of the proof
is due to by Koletsos [Kol85], as presented in simplified form by Gallier [Gal95]. However,
the Koletsos-Gallier presentation does not carry typing information in the proof, whereas in
our calculi typing is vital. Thus, we enhance their method, insofar as our can candidates
consist of typing judgments ∆ ; Γ `M : A rather than simply terms M : A. Ideas on how
this is done were drawn from another chapter by Gallier [Gal90], which surveys multiple
variants of the candidats method. The proof itself is rather long. We abbreviate it by only
presenting the cases that are relevant to the modal fragment of the language. The interested
reader can obtain the full proof from the author’s website.7

The overall structure of the proof is the following. Suppose we have a family of nonempty
sets of typing judgments,

P = {PA}A
indexed by the type A they assign to the term they carry. If C ⊆ PA, we write ∆;Γ `M ∈ C
as a shorthand for (∆ ; Γ `M : A) ∈ C. We will state six properties, P0–P5, that such a
family should satisfy. In case it does indeed satisfy them, we show that

∆ ; Γ `DGL M : A =⇒ ∆ ; Γ `M ∈ PA
In our case, we show that the family of typing judgments

SN def
= {SNA}A

satisfies the properties P0-P5, where SNA consists of all the judgments ∆ ; Γ `M : A for
which M is strongly normalizing. Then SNA = ΛA, and all typable terms are strongly
normalizing.

Here is a brief summary of the proof. We begin by stating the first four properties,
namely P0–P3. We also define what it means for a set C of derivable judgments to be a
candidate. Then, we define a subset JAK ⊆ PA for each type A. We call judgments in JAK
reducible, and we show JAK to be a candidate. Finally, we introduce two further properties,
P4 and P5. If these hold of PA, then we show that JAK contains all derivable judgments.

We write Γ v Γ′ to mean that the context Γ is a subsequence of Γ′ (in other words, Γ′

is obtained after a series of weakening steps on Γ). We also write Λ for the set of all terms.
We will make use of the following helpful definitions.

Definition 4.13.

(1) A term is a intro term just if it is an introduction form, i.e. of the form

λx : A. M, 〈M,N〉, fix z in box M

7https://www.lambdabetaeta.eu

https://www.lambdabetaeta.eu

10:34 G. A. Kavvos Vol. 16:3

(2) A term is a simple term just if it is a variable or an elimination form, i.e. of the forms

x, MN, πi(M), let box u⇐M in N

(3) A stubborn term is a term that is either a normal form w.r.t. −→ , or a term that does
not reduce to an intro term, i.e. if M −→∗ N then N is not an intro term.

Candidates and the first four properties. The sets of judgments we will use will always
satisfy the following four important properties.

Definition 4.14 (Properties P0-P3). For a family P we define the following properties.

(P0) (a) ∆ ; Γ `M ∈ PA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ PA
(b) ∆ ; Γ `M ∈ PA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ PA

(P1) ∆ ; Γ ` x ∈ PA for all (x : A) ∈ Γ.
(P2) ∆ ; Γ `M ∈ PA and M −→ N imply ∆ ; Γ ` N ∈ PA.
(P3) For simple terms M ,

(a) If
– ∆ ; Γ `M ∈ PA→B,
– ∆ ; Γ ` N ∈ PA, and
– whenever M −→∗ λx : A. M ′ then ∆ ; Γ ` (λx : A. M ′)N ∈ PB
then this implies that ∆ ; Γ `MN ∈ PB.

(b) If
– ∆ ; Γ `M ∈ PA×B, and
– whenever M −→∗ 〈M1,M2〉 then ∆ ; Γ ` π1(〈M1,M2〉) ∈ PA and ∆ ; Γ `
π2(〈M1,M2〉) ∈ PB,

then this implies that ∆ ; Γ ` π1(M) ∈ PA and ∆ ; Γ ` π2(M) ∈ PB.

Definition 4.15 (P-candidate). A set CA ⊆ PA is P-candidate at A just if

(R0) (a) ∆ ; Γ `M ∈ CA and Γ v Γ′ imply ∆ ; Γ′ `M ∈ CA.
(b) ∆ ; Γ `M ∈ CA and ∆ v ∆′ imply ∆′ ; Γ `M ∈ CA.

(R1) ∆ ; Γ `M ∈ CA and M −→ N imply ∆ ; Γ ` N ∈ CA.
(R2) If ∆ ; Γ ` M ∈ PA is simple, and M −→∗ N and for an intro term N implies

∆ ; Γ ` N ∈ CA, then it follows that ∆ ; Γ `M ∈ CA.

Notice that (R0) is analogous to (P0), and (R1) is analogous to (P2). Moreover, these
conditions in tandem imply an analogue of (P1):

Lemma 4.16. For any P-candidate CA, if (x : A) ∈ Γ then ∆ ; Γ ` x ∈ C.

Proof. By (P1), we have that ∆ ; Γ ` x ∈ PA, and by definition x is simple, and a normal
form, so it cannot ever reduce to an intro term. The result follows by (R2).

A family P for which P0–P3 hold is almost a candidate. In fact, the only condition that is
not automatically satisfied is R2. To remedy that situation, we define a particular subfamily
JAK ⊆ PA of reducible judgments, which—as we show—satisfies it. This definition has the
familiar flavour of logical predicates.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:35

Definition 4.17 (Reducible judgments). We define for each type A a set of derivable
judgments JAK ⊆ PA by induction on A.

JpiK
def
= Ppi

JA×BK def
= {∆ ; Γ `M ∈ PA×B | ∆ ; Γ ` π1(M) ∈ JAK ∧ ∆ ; Γ ` π2(M) ∈ JBK }

JA→ BK def
=
{

∆ ; Γ `M ∈ PA→B
∣∣ ∀∆ v ∆′, Γ v Γ′,∆′ ; Γ′ ` N ∈ JAK . ∆′ ; Γ′ `MN ∈ JBK

}
J�AK def

=
{

∆ ; Γ `M ∈ P�A
∣∣∣M −→∗ fix z in box Q =⇒ ∆ ; ∆⊥, z⊥ : �A ` Q⊥ ∈ JAK

}
We can now show that

Theorem 4.18. If P = {PA} satisfies properties P0-P3, then

(1) For any A, JAK is a P-candidate.
(2) For any A, JAK contains all the stubborn terms in PA.

Proof. By induction on types.

Case(�A). For (1):
(R0) (a) trivially holds, for none of the judgments for Q in J�AK depend on Γ.

For (b): we first use (P0) to ascertain that ∆′ ; Γ `M ∈ P�A. If M reduces to
fix z in box Q, we use (R0)(a, b) of the IH for A to weaken ∆ and ∆⊥ respectively.

(R1) Let ∆;Γ `M ∈ J�AK and suppose M −→ N . By (P2) we have ∆;Γ ` N ∈ P�A.
It remains to show that whenever N −→∗ fix z in box Q then ∆ ; ∆′⊥, z⊥ : �A `
Q⊥ ∈ JAK . But then M −→∗ fix z in box Q as well, so this follows from
M ∈ J�AK.

(R2) Suppose that ∆ ; Γ ` M ∈ P�A is a simple term, and whenever M −→∗
fix z in box Q then fix z in box Q ∈ J�AK, i.e. fix z in box Q −→∗ fix z in box Q′

implies ∆ ; ∆⊥, z⊥ : �A ` Q′⊥ ∈ JAK. We need to show that, if M −→∗
fix z in box Q, then ∆ ; ∆⊥, z⊥ : �A ` Q ∈ JAK. But this follows by the
reflexivity of −→∗.

For (2): if M ∈ P�A is stubborn, then it never reduces to an intro term fix z in box Q,
so it is vacuously in J�AK .

Closure under formation: the latter two properties. Unfortunately, this is not enough
to show that the candidates JAK contain all the provable judgments of DGL. We will thus
need the following two additional conditions on P.

Definition 4.19 (Properties P4-P5).

(P4) (a) If ∆ ; Γ, x : A `M ∈ PB then ∆ ; Γ ` λx : A. M ∈ PA→B.
(b) ∆ ; Γ `M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` 〈M,N〉 ∈ PA×B.
(c) ∆ ; ∆⊥, z⊥ : �A ` Q⊥ ∈ PA implies ∆ ; Γ ` fix z in box Q ∈ P�A

(P5) (a) ∆ v ∆′, Γ v Γ′, ∆′ ; Γ′ ` N ∈ PA, and ∆′ ; Γ′ ` M [N/x] ∈ PB imply ∆′ ; Γ′ `
(λx : A. M)N ∈ PB.

(b) ∆ ; Γ ` M ∈ PA and ∆ ; Γ ` N ∈ PB imply ∆ ; Γ ` π1(〈M,N〉) ∈ PA and
∆ ; Γ ` π2(〈M,N〉) ∈ PB.

(c) If ∆;Γ `M ∈ P�A and ∆, u : A;Γ ` N ∈ PC , and whenever M −→∗ fix z in box Q
then ∆ ; Γ ` N [Q[fix z in box Q/z]/u] ∈ PC , then ∆ ; Γ ` let box u⇐M in N ∈
PC .

10:36 G. A. Kavvos Vol. 16:3

These conditions ensure that the candidates JAK also have the following closure properties.

Theorem 4.20. If P = {PA} satisfies properties P0–P5, then

(1) If whenever Γ v Γ′, ∆ v ∆′ and ∆′ ; Γ′ ` N ∈ JAK we have ∆′ ; Γ′ ` M [N/x] ∈ JBK ,
then ∆ ; Γ ` λx : A. M ∈ JA→ BK.

(2) If ∆ ; Γ `M ∈ JAK and ∆ ; Γ ` N ∈ JBK then ∆ ; Γ ` 〈M,N〉 ∈ JA×BK.
(3) If ∆ ; Γ ` M ∈ J�AK, and whenever ∆ v ∆′ and ∆′ ; ∆′⊥, z⊥ : �A ` Q⊥ ∈ JAK then

∆′ ; Γ ` N [Q[fix z in box Q/z]/u] ∈ JCK , then ∆ ; Γ ` let box u⇐M in N ∈ JCK .

Proof. We only show (3). Write Q?
def
= Q[fix z in box Q/z].

First, we show that let box u ⇐ M in N ∈ PC , and we invoke (P5)(c) to do so. It
suffices to show that ∆ ; Γ ` M ∈ P�A, that ∆, u : A ; Γ ` N ∈ PC , and that whenever
M −→∗ fix z in box Q then ∆ ; Γ ` N [Q?/u] ∈ PC . The first of these is implied by the
assumption that ∆ ; Γ ` M ∈ JAK ⊆ PA. For the second, we infer by Lemma 4.16 and
Theorem 4.18 that ∆, u : A ; ∆⊥, u⊥ : A, z⊥ : A ` u⊥ ∈ JAK . Hence, as ∆ v ∆, u : A, we
have by the assumption that

∆, u : A ; Γ ` N ≡ N [u[fix z in box u/z]/u] ∈ JCK

The final desideratum also follows: if M −→∗ fix z in box Q then, by the definition of
J�AK , we have that ∆ ; ∆⊥, z⊥ : �A ` Q⊥ ∈ JAK and hence—by the assumption—that
∆ ; Γ ` N [Q?/u] ∈ JCK ⊆ PC .

For the rest, we note that let box u⇐M in N is simple, so we use (R2): it suffices to
show that whenever let box u⇐M in N −→∗ Q and Q is an intro term, then Q ∈ JCK . If
let box u⇐M in N is stubborn, then the desideratum is trivial. Otherwise, if let box u⇐
M in N −→∗ Q where Q is a intro term, then the reduction must be of the form

let box u⇐M in N −→∗ let box u⇐ fix z in box U in N ′

−→ N ′[U?/u]

−→∗ Q

where M −→∗ fix z in box U and N −→∗ N ′: otherwise the let construct would persist.
But, by assumption, ∆ ; Γ `M ∈ J�AK , so by multiple applications of (R1) we infer that
∆;Γ ` fix z in box U ∈ J�AK and hence that ∆;∆′, z⊥ : �A ` U⊥ ∈ JAK. By the assumption,
we get ∆ ; Γ ` N [U?/u] ∈ JCK. But N [U?/u] −→∗ N ′[U?/u] −→∗ Q, so Q ∈ JCK by repeated
applications of (R1).

The main theorem.

Definition 4.21 (Substitution).

(1) A substitution is a finite function σ : V ⇀ Λ from the set of all variables V to the set of
all possible untyped/raw terms Λ.

(2) A substitution σ is type-preserving from ∆′ ; Γ′ to ∆ ; Γ, written ∆′ ; Γ′
σ
=⇒ ∆ ; Γ, just if

(a) dom(σ) ⊆ Vars (∆) ∪Vars (Γ),
(b) (x : B) ∈ Γ implies ∆′ ; Γ′ ` σ(x) : B, and
(c) there exists z such that (u : B) ∈ ∆ implies ∆′ ; ∆′⊥, z⊥ : �B ` (σ(u))⊥ ∈ B.

We call the aforementioned z the diagonal variable of the substitution. We have that

Lemma 4.22. If ∆′ ; Γ′
σ
=⇒ ∆ ; Γ and ∆′ v ∆′′ and Γ′ v Γ′ then ∆′′ ; Γ′′

σ
=⇒ ∆ ; Γ.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:37

We write σ[x 7→ N] to mean the substitution defined by σ[x 7→ N](x)
def
= N , and

σ[x 7→ N](y)
def
= σ(y) if y 6≡ x. Furthermore, if ∆′ ; Γ′

σ
=⇒ ∆ ; Γ with diagonal variable z, we

define σ† by

σ†(y)
def
=

z⊥ if y ≡ z⊥

(σ(u))⊥ if y ≡ u⊥ ∈ Vars
(
∆⊥
)

σ(y) otherwise

The following technical fact is evident, but very convenient.

Lemma 4.23 (Modal Drop). If ∆′ ; Γ′
σ
=⇒ ∆ ; Γ with diagonal variable z, then

∆′ ; ∆′⊥, z⊥ : �A
σ†
=⇒ ∆ ; ∆⊥, z⊥ : �A

We extend the action of substitutions on terms in the usual capture-avoiding manner, e.g.

σ(fix z in box M)
def
= fix z in box σ(M)

Lemma 4.24. If ∆′ ; Γ′
σ
=⇒ ∆ ; Γ and ∆ ; Γ `M : C then ∆′ ; Γ′ ` σ(M) : C.

Proof. By induction on M . We only show the modal cases. That of let box u⇐M in N is
very similar to λ-abstraction. For fix z in box M , we have that ∆ ; ∆⊥, z⊥ : �A `M : A for
some A such that C ≡ �A. It follows by Lemma 4.23 that

∆′ ; ∆′⊥, z⊥ : �A
σ†
=⇒ ∆ ; ∆⊥, z⊥ : �A

Applying the IH then yields ∆′ ; ∆′⊥, z⊥ : �A ` σ†(M) : A. But notice that σ†(M) ≡
(σ(M))⊥, so a single use of (�IGL) suffices.

Theorem 4.25 (Candidats). Let P = {PA} be a family satisfying properties P1–P5. Let

∆ ; Γ `DGL M : A, and ∆′ ; Γ′
σ
=⇒ ∆ ; Γ be a substitution with diagonal variable z that respects

the candidates, i.e. such that

(1) (x : B) ∈ Γ implies ∆′ ; Γ′ ` σ(x) ∈ JBK , and
(2) (u : C) ∈ ∆ implies ∆′ ; ∆′⊥, z⊥ : �C ` (σ(u))⊥ ∈ JCK ,

Then ∆′ ; Γ′ ` σ(M) ∈ JAK .

Proof. By induction on M . We only prove the modal cases.

Case(fix z in box M).
Then ∆ ; ∆⊥, z⊥ : �A ` M : A. By Lemma 4.23, we have that ∆′ ; ∆′⊥, z⊥ :

�A
σ†
=⇒ ∆ ; ∆⊥, z⊥ : �A. Then, by the IH we have that ∆′ ; ∆′⊥, z⊥ : �A ` σ†(M) ≡

σ(M)⊥ ∈ JAK . So, by (P4)(c), fix z in box σ(M) ∈ P�A. It now suffices—by the
definition of J�AK —to show that

fix z in box σ(M) −→∗ fix z in box M ′

implies ∆′ ; ∆′⊥, z⊥ : �A `M ′ ∈ JAK . But then we must have σ(M) −→∗ M ′, so by
repeated applications of (R1) we have M ′ ∈ JAK .

Case(let box u⇐M in N).
We show the case for K. We have ∆ ; Γ `M : A and ∆, u : A ; Γ ` N : C. We use

Theorem 4.20(a): to show that

∆′ ; Γ′ ` σ(let box u⇐M in N) ≡ let box u⇐ σ(M) in σ(N) ∈ JCK

10:38 G. A. Kavvos Vol. 16:3

It suffices to show that ∆′ ; Γ′ ` σ(M) ∈ J�AK —which we have by the IH—and that
whenever ∆′′ w ∆′ and · ; ∆′′ ` Q ∈ JAK , then ∆′′ ; Γ′ ` σ(N)[Q/u] ∈ JCK .

Define
σ′

def
= σ[u 7→ Q]

Then, by weakening the modal context in σ, we have

∆′′, u : A ; Γ′
σ′
=⇒ ∆, u : A ; Γ

By the IH,
∆′′, u : A ; Γ′ ` σ′(N) ∈ JCK

But σ′(N) ≡ σ(N)[Q/u].

Corollary 4.26. If P = {PA} is a family satisfying properties P0–P5, then

PA = ΛA

Proof. By Theorem 4.25 we have that ∆ ; Γ ` M ∈ JAK for every ∆ ; Γ ` M : A. Hence
ΛA ⊆ JAK ⊆ PA ⊆ ΛA.

It is then reasonably straightforward to verify that the above properties hold of the
family SN . In carrying out the proof we shall often use induction on d(M), the depth of the
term M . We argue that this admissible as follows. First, we construct the reduction tree of
M , which consists of M and all its reducts, with an edge from reduct M1 to reduct M2 just if
M1 −→M2. As M has at most finite redexes, the reduction tree is finitely branching: there
can only be a finite number of terms Mi such that N −→Mi for any term N . Furthermore,
if M is strongly normalizing, then the reduction tree has no infinite paths. By König’s
Lemma, the tree is then finite, and d(M) is the depth of the reduction tree of M—i.e. the
longest path in the tree that is rooted at M . Because of this use of König’s Lemma, it is
not clear whether this proof is constructive. We once more only prove the modal cases.

(P4)(c): If fix z in box Q −→ P , then P ≡ fix z in box Q′ for some Q′ with Q −→ Q′.
Hence d(box M) ≤ d(M). But the last one is less than or equal to d(M⊥) by Lemma 4.1,
which is finite by assumption.

(P5)(c): First, we note that by substituting u for Q, the premise implies that N is strongly
normalizing, and thus that both d(M) and d(N) are finite.

We now proceed by induction on d(M) + d(N). If let box u ⇐ M in N −→ P , then
there are three possibilities:
– P ≡ let box u⇐M ′ in N and M −→M ′. Then

d(M ′) + d(N) < d(M) + d(N)

and so, by the IH, P is strongly normalizing.
– Likewise for N .
– M ≡ box Q and P ≡ N [Q/u]. Then, by assumption, P is strongly normalizing.
In all cases, if let box u⇐M in N −→ P , then P is strongly normalizing. We conclude
that the original term itself is strongly normalizing.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:39

5. Modal category theory

We will now introduce a modest amount of monoidal category theory that is necessary
for the formulation of a categorical semantics. This is needed because we will model the
modality by a strong monoidal endofunctor. In our case the monoidal product will always
be the cartesian product of a cartesian closed category. We will show that this coincides
with the notion of product-preserving endofunctor, and hence gives rise to the isomorphism
�(A×B) ∼= �A×�B, which is another way of stating the modal axiom K (§1.3).

We assume some familiarity with the relationship between λ-calculi and cartesian closed
categories (CCCs). A category C with finite products is a CCC whenever for each pair
A,B ∈ C there is an object BA ∈ C and a morphism evA,B : BA × A → B such that for

every f : C × A → B there is a unique λ(f) : C → BA such that evA,B ◦ (λ(f) × idA) =
f . For further background on CCCs and the typed λ-calculus, we refer the reader to
[LS88, Cro93, Awo10, AT11]. Some material on monoidal category theory is drawn from
the superbly lucid treatment by Melliès [Mel09, §5], which is specifically geared towards
categorical logic. Further material can be found in [Mac78, §XI.2].

5.1. Lax and strong monoidal functors. Let C and D be cartesian categories. We regard
them as monoidal categories (C,×,1) and (D,×,1) respectively.

Definition 5.1. A functor F : C −→ D between two cartesian categories is lax monoidal
just if it is equipped with a natural transformation m : F (−)× F (−)⇒ F (−×−) as well
as an arrow m0 : 1→ F (1) such that the following diagrams commute:

(FA× FB)× FC FA× (FB × FC)

F (A×B)× FC FA× F (B × C)

F ((A×B)× C) F (A× (B × C))

α

mA,B×idFC idFA×mB,C

mA×B,C mA,B×C

Fα

(5.1)

FA× 1 FA

FA× F1 F (A× 1)

ρA

idFA×m0

mA,1

FρA

1× FB FB

F1× FB F (1×B)

λB

m0×idFB

m1,B

FλB (5.2)

Definition 5.2. A strong monoidal functor between two cartesian categories is a lax
monoidal functor where the components mA,B : FA × FB → F (A × B) and the arrow
m0 : 1→ F1 are isomorphisms.

These natural transformations can be extended to arbitrary contexts. We write
n∏
i=1

An
def
= A1 × · · · ×An

10:40 G. A. Kavvos Vol. 16:3

where × associates to the left. Then, we define the following morphisms by induction:

m(0) def
= 1

m0−−→ F1

m(1) def
= FA1

idFA1−−−−→ FA1

m(n+1) def
=

n+1∏
i=1

FAi
m(n)×id−−−−−→ F

(
n∏
i=1

Ai

)
× FAn+1

m−→ F

(
n+1∏
i=1

Ai

)
Then the m(n) :

∏n
i=1 FAn → F (

∏n
i=1Ai)’s are a natural transformation, i.e.

m(n) ◦
n∏
i=1

Ffi = F

(
n∏
i=1

fi

)
◦m(n)

We also note that if F : C −→ C is a monoidal endofunctor, then so is F 2 def
= F ◦ F , with

nA,B
def
= F 2A× F 2B

mA,B−−−→ F (FA× FB)
FmA,B−−−−→ F 2(A×B)

and n0
def
= Fm0 ◦m0. See [Mel09, §5.9].

5.2. Product-Preserving Functors. Lax and strong monoidal functors are widely used
as morphisms between monoidal categories. However, our monoidal product will always be
the cartesian product, so it is worth examining how these notions adapt to this particular
setting. To begin, we should compare them to another kind of morphism between cartesian
categories that ‘plays well with products,’ namely that of product-preserving functors.

Definition 5.3. A product-preserving functor F : C −→ D between two cartesian categories
is a functor for which the canonical arrows

pA,B
def
= 〈Fπ1, Fπ2〉 : F (A×B)

∼=−→ FA× FB p0
def
= !F1 : F1

∼=−→ 1

are isomorphisms.

This definition appears to be much stronger. Indeed, product-preserving functors are
strong monoidal. To show that, all we need to do is show that the inverses

mA,B
def
= p−1

A,B : FA× FB
∼=−→ F (A×B) m0

def
= p−1

0 : 1
∼=−→ F1

satisfy the coherence conditions (5.1) and (5.2). Before we do that, we note two very useful
equations that product-preserving functors satisfy. The first is

Proposition 5.4. If F is product-preserving then mA,B ◦ 〈Ff, Fg〉 = F 〈f, g〉.

Proof. Calculate that pA,B ◦ F 〈f, g〉 = 〈Ff, Fg〉 and notice p−1
A,B = mA,B.

The second equation shows how mA,B may be used to relate projections.

Proposition 5.5. Let F : C −→ D be product-preserving, and let A
πA,B
1←−−− A× B

πA,B
2−−−→ B

and FA
πFA,FB
1←−−−−− FA× FB

πFA,FB
2−−−−−→ FB be product diagrams in C and D respectively. Then

FπA,Bi ◦mA,B = πFA,FBi

Proof. Calculate that πi ◦m−1
A,B = πi ◦ 〈Fπ1, Fπ2〉 = Fπi and notice p−1

A,B = mA,B.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:41

We will often write such equations as Fπ1 ◦m = π1 without further ado. Armed with these
facts, we see that the definitions of mA,B and m0 given above are natural, and that

Theorem 5.6. Any product-preserving functor is strong monoidal.

Rather strikingly, the converse holds as well.

Theorem 5.7. Any functor that is strong monoidal with respect to the cartesian structure
is product-preserving.

Proof. Note that m−1
0 : F1 −→ 1 is necessarily equal to the unique arrow !F1 : F1 −→ 1 to

the terminal object 1. Hence, it suffices to show that for any A,B ∈ C, m−1
A,B = 〈Fπ1, Fπ2〉.

We will first show a particular case, viz. that

m−1
A,1 = 〈Fπ1, Fπ2〉

from which the general case will follow. Remembering that ρA
def
= π1 : A × 1 → A, we

have that ρ−1
A = 〈idFA, !FA〉 : FA→ FA× 1. Hence, by reversing ρA and mA,1 in the first

diagram of (5.2) we obtain

m−1
A,1 = (idA ×m0) ◦ 〈idFA, !FA〉 ◦ Fπ1 = 〈Fπ1,m0 ◦ !F (A×1)〉 : F (A× 1)→ FA× F1

But, as m0 : 1
∼=−→ F1, F1 is also a terminal object, and any arrow into it is of the form

m0 ◦ !A : A→ F1. This applies to Fπ2 : F (A× 1)→ F1, so m−1
A,1 = 〈Fπ1, Fπ2〉.

Now for the general case. As mA,B is a natural isomorphism, its inverse is a natural

transformation with components m−1
A,B. The naturality square for (idA, !B) is

F (A×B) FA× FB

F (A× 1) FA× F1

m−1
A,B

F (idA×!B) idFA×F (!B)

m−1
A,1

Calculating down and across gives

m−1
A,1 ◦ F (idA × !B) = 〈Fπ1, Fπ2〉 ◦ F (idA × !B) = 〈Fπ1, F (!B ◦ π2)〉

whereas across and down gives

(idFA × F (!B)) ◦m−1
A,B = 〈π1 ◦m−1

A,B, F (!B) ◦ π2 ◦m−1
A,B〉

The first two components of these should be equal, therefore π1 ◦m−1
A,B = Fπ1. Similarly,

π2 ◦m−1
A,B = Fπ2, and hence m−1

A,B = 〈Fπ1, Fπ2〉.

5.3. Monoidal natural transformations. The standard notion of natural transformation
between lax monoidal functors is the following.

Definition 5.8. Let F,G : C −→ D be two lax monoidal functors between two cartesian
categories. A monoidal natural transformation between F and G is a natural transformation

10:42 G. A. Kavvos Vol. 16:3

α : F ⇒ G such that the following diagrams commute:

FA× FB GA×GB

F (A×B) G(A×B)

αA×αB

mA,B nA,B

αA×B

1

F1 G1

n0
m0

α1

Surprisingly, it is not hard to show that

Theorem 5.9. If F,G : C −→ D are product-preserving functors between two cartesian
categories, then any natural transformation α : F ⇒ G is a monoidal natural transformation.

Proof. We trivially have !G1 ◦α1 = !F1. But !G1 and !F1 are isomorphisms, so—by inverting
them—we obtain α1 ◦m0 = n0. Furthermore, we have the following naturality diagram:

F (A×B) FA

G(A×B) GA

Fπ1

αA×B αA

Gπ1

and a similar one for B. Hence, n−1
A,B ◦ αA×B

def
= 〈Gπ1, Gπ2〉 ◦ αA×B is equal to

〈Gπ1 ◦ αA×B, Gπ2 ◦ αA×B〉 = 〈αA ◦ Fπ1, αB ◦ Fπ2〉 = (αA × αB) ◦ 〈Fπ1, Fπ2〉
which is just (αA × αB) ◦m−1

A,B. It then suffices to invert mA,B and nA,B.

5.4. The categorical interpretation of modal rules. In this section we introduce the
main structures needed to produce categorical models for our calculi. We begin with the
basic two examples of Kripke categories (K), and Bierman–de Paiva categories (S4). These
are the most well-behaved, and most commonly encountered cases. We then discuss the
slightly more obscure cases of Kripke-4 categories (K4), Kripke-T categories (T), and finally
Gödel-Löb categories (GL).

5.4.1. Kripke categories. The combination of a CCC with a product-preserving endofunctor
is the quintessential structure in our development, so we give it a name.

Definition 5.10. A Kripke category (C,×,1, F) is a cartesian closed category C along with
a product-preserving endofunctor F : C −→ C.

Kripke categories are the minimal setting in which one can model Scott’s rule (see §1.5.2),
by defining an operation

(−)• : C

(
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
by

f :
n∏
i=1

Ai → B 7−→ f•
def
=

n∏
i=1

FAi
m(n)

−−−→ F

(
n∏
i=1

Ai

)
Ff−−→ FB

The operation (−)• satisfies the following distribution/naturality laws.

Proposition 5.11.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:43

(1) Let f :
∏n
i=1Bi → C and gi :

∏k
j=1Aj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)• = f• ◦
〈−→
g•i

〉
(2) For f :

∏n
i=1Ai → B and 〈 ~πj〉 :

∏n
i=1 FAi →

∏
j∈J FAj for J a list drawn from

{1, . . . , n},
(f ◦ 〈 ~πj〉)• = f• ◦ 〈 ~πj〉

As product-preserving endofunctors abound in the literature on category-theory, we do
not see any use in giving examples of Kripke categories. Rather, their omnipresence is an
attestation of the importance of our system as a candidate internal language.

5.4.2. Bierman-de Paiva categories. In order to model S4, we need a Kripke category whose
product-preserving functor is additionally a comonad.

Definition 5.12. A comonad (F, ε, δ) consists of an endofunctor F : C −→ C, and two
natural transformations

ε : F ⇒ Id, δ : F ⇒ F 2

such that the following diagrams commute:

FA F 2A

F 2A F 3A

δA

δA δFA

FδA

FA F 2A

F 2A FA

δA

δA
idFA εFA

FεA

In particular, we will require that the comonad used is monoidal, in that it satisfies some
additional coherence conditions with respect to the monoidality.

Definition 5.13. A monoidal comonad on a cartesian category C is a comonad (F, ε, δ) such
that F : C −→ C is a lax monoidal functor, and ε : F ⇒ Id and δ : F ⇒ F 2 are monoidal
natural transformations. Concretely, this amounts to the commutation of

FA× FB A×B

F (A×B) A×B

εA×εB

mA,B

εA×B

1

F1 1

m0

ε1

(5.3)

FA× FB F 2A× F 2B

F (FA× FB)

F (A×B) F 2(A×B)

δA×δB

mA,B

mFA,FB

FmA,B

δA×B

1

F1

F1 F 21

m0

m0

Fm0

δ1

(5.4)

However, since the functors that we use are product-preserving, or strong monoidal, it follows
automatically by Theorem 5.9 that

Corollary 5.14. If (F, ε, δ) is a comonad whose functor F is product-preserving, then it is
a monoidal comonad.

10:44 G. A. Kavvos Vol. 16:3

We shall not hence explicitly worry about monoidality, neither in this section nor in
later ones, and we will use the above equations without further ado.

Definition 5.15. A Bierman-de Paiva category (C,×,1, F, ε, δ) consists of a Kripke category
(C,×,1, F) whose functor F : C −→ C is part of a comonad (F, ε, δ).

Bierman-de Paiva categories (abbrv. BdP categories) are the minimal setting in which both
the Four and Veridicality rules can be modelled. The Four rule is modelled by something
already well-known in category theory, namely the co-Kleisli lifting :

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)
which is defined as follows:

f :
n∏
i=1

FAi → B

f∗
def
=

n∏
i=1

FAi

∏n
i=1 δAi−−−−−−→

n∏
i=1

F 2Ai
m(n)

−−−→ F

(
n∏
i=1

FAi

)
Ff−−→ FB

This operation interacts in a useful manner with the transformations δ and ε.

Proposition 5.16.

(1) Let f :
∏n
i=1 FAi → B. Then δB ◦ f∗ = (f∗)∗.

(2) Let f :
∏n
i=1 FAi → B. Then εB ◦ f∗ = f .

The co-Kleisli extension also satisfies a handful of very useful naturality/distribution laws.

Proposition 5.17.

(1) id∗FA = δFA
(2) ε∗A = idFA
(3) Let f :

∏n
i=1Bi → C and gi :

∏k
j=1 FAj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)∗ = f• ◦
〈−→
g∗i

〉
(4) For ki :

∏m
j=1 FAj → Bj and l :

∏n
i=1 FBi → C,(

l ◦
〈−→
k∗i

〉)∗
= l∗ ◦

〈−→
k∗i

〉
(5) For f :

∏n
i=1 FAi → B and 〈 ~πj〉 :

∏n
i=1 FAi →

∏
j∈J FAj for J a list with elements

from {1, . . . , n},
(f ◦ 〈 ~πj〉)∗ = f∗ ◦ 〈 ~πj〉

Proof. (1) and (2) are standard comonad equations. (3) is a straightforward calculation,

similar to Proposition 5.11(1). (4) follows from (3), Proposition 5.16(1), and f∗
def
= f• ◦

∏
δ.

(5) is a corollary of (3), once we notice that π∗i = δAi ◦ πi, and use f∗
def
= f• ◦

∏
δ.

Product-preserving comonads are also often encountered in the category-theoretic
literature, so we refrain from sketching any examples of Bierman-de Paiva categories.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:45

Idempotence. It is interesting to separately consider those BdP categories for which the
comonad (F, ε, δ) is idempotent, i.e. those for which δ : F ⇒ F 2 is an isomorphism. There
are many equivalent ways to define idempotence: see [Bor94, §4.3.2]. One of them is that
δFA ◦ εFA = idF 2A for each object A. Here, we will use the equation FεA = εFA for each
object A. Restated in our notation, it becomes

ε•A = εFA : F 2A→ FA

Proposition 5.18. If (F, ε, δ) is idempotent, then for f :
∏n
i=1 FAi → FB we have

(εB ◦ f)∗ = f

Proof. By Proposition 5.17(3) and 5.16(2), (ε ◦ f)∗ = ε• ◦ f∗ = ε ◦ f∗ = f

This situation creates an additional sort of naturality for (−)∗, essentially by making
Proposition 5.17(4) universally applicable.

Proposition 5.19. For any f :
∏m
j=1 FBj → FC, and any kj :

∏n
i=1 FAi → FBj, we have(

f ◦
〈−→
ki

〉)∗
= f∗ ◦

〈−→
ki

〉
Proof. Using Propositions 5.18 and 5.17(4),(

f ◦
〈−→
kj

〉)∗
=

(
f ◦
〈−−−−−−−→(
εBj ◦ kj

)∗〉)∗
= f∗ ◦

〈−−−−−−−→(
εBj ◦ kj

)∗〉
= f∗ ◦

〈−→
kj

〉
Thus, we have the following characterisation.

Theorem 5.20 (Idempotence). (F, ε, δ) is idempotent if and only if the map

(−)∗ : C

(
n∏
i=1

FAi, B

)
→ C

(
n∏
i=1

FAi, FB

)
is an isomorphism, natural with respect to precomposition of any k :

∏n
j=1 FDj →

∏n
i=1 FAi.

Proof. For the backwards direction, the inverse of (−)∗ is εB ◦−. It is a left and right inverse
by Propositions 5.16(2) and 5.18. Naturality follows by Proposition 5.19 once we write

k =
〈−−−→
πi ◦ k

〉
. For the forwards direction, we calculate

δFA ◦ εFA = id∗FA ◦ εFA = (idFA ◦ εFA)∗ = ε∗FA = idF 2A

by Prop. 5.17(1), naturality for εFA : F 2A→ FA, and Prop. 5.17(2).

Comparison with Bierman & de Paiva. Those familiar with previous literature on the
categorical semantics of S4 modalities will no doubt ask about the relationship of BdP
categories with the models discussed by Bierman and de Paiva [BdP00, §7]. At their core,
the models of the system with delayed substitutions that we discussed in §2.1 also consist of
a monoidal comonad. However, the natural transformation m : F (−)× F (−)⇒ F (−×−)
is not required to be invertible, and so F is only lax monoidal. As a result, one must
also explicitly require the coherence equations (5.3) and (5.4), which—as we mentioned
above—hold automatically whenever F preserves products.

In the penultimate section of their paper, Bierman and de Paiva [BdP00, §10] briefly
discuss a slightly stronger notion of model, which they attribute to Schalk. Therein the
morphisms 〈idFA, idFA〉 : FA→ FA× FA and !FA : FA→ 1 are homomorphisms for the

10:46 G. A. Kavvos Vol. 16:3

coalgebras δA : FA→ F 2A and m ◦ (δA × δA) : FA× FA→ F 2A× F 2A→ F (FA× FA).
These equations allow one to prove the soundness of two additional commuting conversions,
which embody certain structural rules for the delayed substitutions: they allow one to
weaken by ‘garbage collecting’ a delayed substitution for a variable that does not occur, and
to contract two identical delayed substitutions. Indeed, these requirements also reappear in
models of linear logic known as linear categories [Mel09, §7.4].

Curiously, our notion of model is even stronger: it is easy to calculate (using monoidality
and naturality of δ, product preservation, and the invertibility of Fm) that the aforementioned
morphisms are automatically coalgebra morphisms in the product-preserving setting. Indeed,
two commuting conversions similar to the ones mentioned above, here called (commweak)
and (commcontr), will be necessary to prove completeness.

5.4.3. Kripke-4 categories. Kripke-4 categories model K4. They are essentially ‘half a
comonad,’ and only come with a comultiplication δ. We still require that one of the
comonadic equations, viz. the one that only refers to δ, holds.

Definition 5.21. A Kripke-4 category (C,×,1, F, δ) is a Kripke category (C,×,1, F) along
with a natural transformation δ : F ⇒ F 2 such that the following diagram commutes:

FA F 2A

F 2A F 3A

δA

δA δFA

FδA

We know by Theorem 5.9 that δ : F ⇒ F 2 is a monoidal natural transformation.
We can model the general version of Four rule (1.5.2) in Kripke-4 categories, but in a

way that is slightly more involved than the simple co-Kleisli lifting of Bierman–de Paiva
categories. To see this, let (C,×,1, F, δ) be a Kripke-4 category, and write

n∏
i=1

Ai ×l
m∏
j=1

Bj

to mean the left-associating product A1 × · · · ×An ×B1 × · · · ×Bm. Also, write

〈
−→
fi ,
−→gi ,
−→
hj〉

to mean the left-associating mediating morphism 〈f1, . . . , fn, g1, . . . , gm, h1, . . . , gp〉. With
this notation we can now define a map of hom-sets

(−)# : C

(
n∏
i=1

FAi ×l
n∏
i=1

Ai, B

)
→ C

(
n∏
i=1

FAi, FB

)
as follows:

f :

n∏
i=1

FAi ×l
n∏
i=1

Ai → B

f# def
=

n∏
i=1

FAi
〈
−−−→
δAi

πi,
−→πi〉−−−−−−→

n∏
i=1

F 2Ai ×l
∏
i=1

Ai
m(2n)

−−−→ F

(
n∏
i=1

FAi ×l
n∏
i=1

Ai

)
Ff−−→ B

Even though it might seem slightly contrived at first sight, we can show that the (−)#

operation satisfies some naturality equations similar to the ones encountered before.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:47

Proposition 5.22.

(1) Let f :
∏n
i=1Bi → C and gi :

∏k
j=1 FAj ×l

∏k
j=1Aj → Bi for i = 1, . . . , n. Then

(f ◦ 〈−→gi 〉)#
= f• ◦

〈−→
g#
i

〉
(2) Let J be a list with elements from {1, . . . , n}. Then we have

(f ◦ 〈−−→πFj ,−→πj〉)#
= f# ◦ 〈−→πj〉

where 〈−−→πFj ,−→πj〉 :
∏n
i=1 FAi ×l

∏n
i=1Ai →

∏
j∈J FAj ×l

∏
j∈J Aj is the projection that

‘follows J in both contexts’
∏n
i=1 FAi and

∏n
i=1Ai.

(3) For k :
∏n
i=1 FAi ×l

∏n
i=1Ai → B and l : FB → C, then

(l ◦ k#)∗ = l∗ ◦ k#

Proof. Straightforward calculations, similar to Propositions 5.11 and 5.17.

Proposition 5.23. Let f :
∏n
i=1 FAi ×l

∏n
i=1Ai → B. Then

δB ◦ f# =
(
f#
)∗

When the morphism of type
∏n
i=1 FAi ×l

∏n
i=1Ai → B does not depend on the Ai,

then the operation (−)# can be reduced to (−)∗.

Proposition 5.24. Let f :
∏n
i=1 FAi → B. Then, writing π :

∏n
i=1 FAi ×l

∏n
i=1Ai →∏n

i=1 FAi for the projection,

(f ◦ π)# = f∗

Proof. Straightforward calculation using Propositions 5.4 and 5.5.

And, finally, we prove another crucial distribution property of (−)#. Namely, if we substitute
‘the same thing’ for both contexts, the hash distributes as such:

Proposition 5.25. Let f :
∏n
i=1 FBi ×

∏n
i=1Bi → B, and gi :

∏n
i=1 FAi ×

∏n
i=1Ai → Bi.

Then, writing π :
∏n
i=1 FAi ×

∏n
i=1Ai →

∏n
i=1 FAi for the projection,(

f ◦ 〈
−−−−→
g#
i ◦ π,

−→gi 〉
)#

= f# ◦
〈−→
g#
i

〉
Proof. Using Propositions 5.22(1), 5.24, and 5.23, we calculate(
f ◦
〈−−−−→
g#
i ◦ π,

−→gi
〉)#

= f• ◦

〈−−−−−−−→(
g#
i ◦ π

)#
,
−→
g#
i

〉
= f• ◦

〈−−−−→(
g#
i

)∗
,
−→
g#
i

〉
= f• ◦

〈−−−→
δ ◦ g#

i ,
−→
g#
i

〉

Example 5.26 (The topos of bifurcating trees, part 1). The topos of trees [BMSS12] is the

category Psh (ω) of presheaves over ω
def
= 1 < 2 < Concretely, each object X of Psh (ω)

is a diagram of sets and functions

X0
r0←− X1

r1←− X2
r2←− . . .

The idea is that X is a set that is computed over time: Xi+1 contains the elements that can
be emitted after computing for i+ 1 steps, and ri : Xi+1 → Xi trims such elements to what
they were at i steps. The topos of trees is a synthetic model of step-indexed computation, as

10:48 G. A. Kavvos Vol. 16:3

it provides a principled way of reasoning about infinite behaviours without ever constructing
‘completed’ objects: the latter only appear as global sections x : 1⇒ X of an object X, i.e.
families (xi ∈ Xi)i compatible under trimming.

A variation on this idea is the following. Let (B∗,v) be the prefix order on words

over booleans B def
= {0, 1}. We can then construct the topos of bifurcating trees, namely the

presheaf topos Psh (B∗) over the prefix order. Its objects are diagrams

Xε

X0

X1

X00

X01

X10

X11

. . .

. . .

. . .

. . .

lε

rε

l0

r0

l1

r1

Intuitively, each element of xw ∈ Xw might, in one time step, evolve in two ways: to an
element xw0 ∈ Xw0, or to an element xw1 ∈ Xw1, such that xw = lw(xw0) = rw(xw1). This
encodes a certain degree of nondeterminism: a global section x : 1⇒ X now represents an
infinite computation that may make a nondeterminsitic choice at every tick of the clock.

We may then perform the following construction: given a presheaf X over B∗, we
construct a presheaf �X by letting

(�X)w
def
=
∏
v@w

Xv

where @ is the strict order associated to the partial order v. Thus, (�X)w consists of
families {xv}v@w of an element for each word v that is a strict prefix of w. Whether
those families are matching, i.e. whether for example lv(xv0) = xv whenever v0 @ w is
immaterial: the constructions sketched here work whether we read

∏
as a categorical limit

or as a dependent product. This may prove to be yet another way in which we may obtain
‘intensional’ models of modal logic. The restriction maps lw :

∏
v@w1Xv →

∏
v@wXv and

rw :
∏
v@w1Xv →

∏
v@wXv are defined by restricting the domain of

∏
.

Furthermore, for each natural transformation f : X → Y we define �f : �X → �Y by

(�f)w :
∏
v@w

Xv →
∏
v@w

Yv

p 7→ λv. fv(p(v))

Psh (B∗) is a Kripke-4 category: we may define a δ : �⇒ �2 at each X by

δX,w :
∏
v@w

Xv →
∏
v@w

∏
z@v

Yz

p 7→ λv. λz. p(z)

This is well-typed, as @ is transitive and hence z @ w. This bears a strong likeness to Kripke
semantics: the transitivity of the ‘Kripke site’ (B∗,v) leads to a proof-relevant witness of
the 4 axiom! In contrast, the ‘non-reflexive’ flavour of � means that there is no way natural
εX : �X → X: for each w ∈ B∗, the component εX,w would have type

∏
v@wXv → Xw, and

there in general no way to produce an element of Xw given an element for each prefix of w.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:49

5.4.4. Kripke-T categories. The following structure will be used to interpret axiom T.

Definition 5.27. A Kripke-T category (C,×,1, F, ε) consists of a Kripke category (C,×,1, F)
along with a natural transformation

ε : F ⇒ Id

Using Theorem 5.9 again we see ε : F ⇒ Id is a monoidal natural transformation. Mod-
elling veridicality rule (§1.5.2) amounts to precomposition with the product of a bunch of
components of ε : F ⇒ Id. This operation interacts nicely with Scott’s rule:

Proposition 5.28. Let f :
∏n
i=1Ai → B. Then εB ◦ f• = f ◦

∏n
i=1 εAi.

5.4.5. Gödel-Löb categories. We are looking for a setting where Löb’s rule can be modelled.
This is not as natural as the previous ones: it is closely modelled after the syntax of our
calculus, and its definition will involve all of the operations (−)•, (−)#, and (−)∗.

We begin by defining the following central notion.

Definition 5.29 (Modal Fixed Point). Let (C,×,1, F, δ) be a Kripke-4 category.

(1) A modal fixed point of f :
∏n
i=1 FBi ×

∏n
i=1Bi × FA→ A is an arrow

f † :
n∏
i=1

FBi → FA

such that the following diagram commutes:∏n
i=1 FBi F (

∏n
i=1 FBi ×

∏n
i=1Bi)× F 2A

FA

〈id#,(f†)
∗〉

f†

f•

(2) An object A ∈ C has modal fixed points just if for any Bi ∈ C there is a homset map

(−)†−→
B

: C

(
n∏
i=1

FBi ×
n∏
i=1

Bi × FA,A

)
→ C

(
n∏
i=1

FBi, FA

)
such that f †−→

B
is a modal fixed point of each f :

∏n
i=1 FBi ×

∏n
i=1Bi × FA→ A.

We will often write f † for the modal fixed point of f , dropping the subscript entirely.
This is an external specification of modal fixed points, in the sense that they are given as
a map on the homsets of the Kripke-4 category. We might instead consider an internal
specification, i.e. through an appropriate notion of a modal fixed point combinator. This
will—unsurprisingly—be an arrow F (AFA)→ FA, which is the type of the Gödel-Löb axiom
�(�A→ A)→ �A. This kind of combinator comes in two varieties.

Definition 5.30. Let (C,×,1, F, δ) be a Kripke-4 category.

(1) A strong modal fixed point combinator at A ∈ C is an arrow

YA : F (AFA)→ FA

10:50 G. A. Kavvos Vol. 16:3

such that the following diagram commutes:

F (AFA) F (AFA)× F 2A

FA

〈id,Y ∗A〉

YA
ev•

(2) A weak modal fixed point combinator at A ∈ C is an arrow

YA : F (AFA)→ FA

such that for each B and f :
∏n
i=1 FBi ×

∏n
i=1Bi × FA→ A, the composite

n∏
i=1

FBi
(λ(f))#−−−−−→ F (AFA)

YA−−→ FA

is a modal fixed point of f .

We can prove that having a modal fixed point combinator at A is equivalent to having
modal fixed points at A. But to do so we will need a lemma concerning cartesian closure.

Lemma 5.31. If f :
∏n
i=1 FAi ×

∏n
i=1Ai × FB → B and a :

∏n
i=1 FAi → F 2A, then

ev• ◦ 〈(λf)# , a〉 = f• ◦ 〈id#, a〉

Theorem 5.32. Let (C,×,1, F, δ) be a Kripke-4 category. The following are equivalent:

(1) There is a strong modal fixed point combinator at A.
(2) There is a weak modal fixed point combinator at A.
(3) The object A ∈ C has modal fixed points.

Proof. To prove (1)⇒ (2), if we are given such a Y we calculate

Y ◦ λf#

= { definition of strong mfpc, naturality of product morphism }
ev• ◦ 〈λf#, Y ∗ ◦ λf#〉

= {Proposition 5.22(3) }
ev• ◦ 〈λf#, (Y ◦ λf#)∗〉

= {Proposition 5.31 }
f• ◦ 〈id#, (Y ◦ λf#)∗〉

so Y yields modal fixed points. (2)⇒ (3) is trivial, so it remains to show (3)⇒ (1). Let

g
def
= F (AFA)×AFA × FA 〈π2,π3〉−−−−→ AFA × FA ev−→ A

We show that g† : F (AFA)→ FA is a strong modal fixed point combinator at A. Indeed, it
is not very hard to calculate that

g† = ev• ◦ 〈id,
(
g†
)∗
〉

We formulate the following naturality property of modal fixed points, which is partly
reminiscent of the ones of Simpson and Plotkin [SP00], but also resembles Proposition 5.25.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:51

Proposition 5.33. If we define (−)†B by a weak modal fixed point combinator, then the
resulting modal fixed points are natural, in the sense that for any f :

∏n
i=1 FAi ×

∏n
i=1Ai ×

A→ A and any gi :
∏m
j=1 FBj ×

∏m
j=1Bj → Bi, then, writing π :

∏m
j=1 FBi ×

∏m
j=1Aj →∏m

j=1 FBi for the projection,(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

))†
= f † ◦

〈−→
g#
i

〉
Proof. Recall that f †

def
= Y ◦ (λ(f))#. The LHS is equal to

Y ◦
(
λ

(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

)))#

which, using naturality of λ(−) and Proposition 5.25, is equal to Y ◦ (λ(f))# ◦
〈−→
g#
i

〉
.

We are finally in a position to define the notion of model used for GL.

Definition 5.34. A Gödel-Löb category
(
C,×,1, F, δ, (−)†

)
is a Kripke-4 category (C,×,1, F, δ)

that has modal fixed points at all objects A, given by maps

(−)†−→
B,A

: C

(
n∏
i=1

FBi ×
n∏
i=1

Bi × FA,A

)
→ C

(
n∏
i=1

FBi, FA

)
which, moreover, are natural, in the sense that for any f :

∏n
i=1 FBi ×

∏n
i=1Bi × A → A

and gi :
∏m
j=1 FCj ×

∏m
j=1Cj → Bi,(
f ◦
(〈−−−−→

g#
i ◦ π,

−→
g#
i

〉
× idA

))†
−→
C ,A

= f †−→
B,A
◦
〈−→
g#
i

〉
Combining the preceding theorem and proposition assures us that, we see that it does

not matter how modal fixed points are given, as we can always turn them into a standard
Gödel-Löb category.

We also show that, whenever the modal fixed point has no ‘diagonal’ occurences, it
deteriorates to the (−)# operation.

Proposition 5.35. If f :
∏n
i=1 FAi ×

∏n
i=1Ai → B and π :

∏n
i=1 FAi ×

∏n
i=1Ai × A →∏n

i=1 FAi ×
∏n
i=1Ai is the obvious projection, then

(f ◦ π)† = f#

Proof. Writing g
def
= (f ◦ π)†, we have

g = (f ◦ π)• ◦
〈
id#, g∗

〉
= f• ◦ π ◦

〈
id#, g∗

〉
= f• ◦ id# = (f ◦ id)# = f#

by the definition of modal fixed point, and Prop. 5.11(2), 5.22(1).

Example 5.36 (The topos of bifurcating trees, part 2). Recall Example 5.26. The topos
of trees is a model of guarded recursion. Define the functor I : Psh (ω) → Psh (ω) by

having it ‘delay’ a computation by one time step, i.e. by mapping X1
r1←− X2

r2←− . . . to

1
!←− X1

r1←− This admits a natural transformation nextX : X → IX which ‘delays’ a

10:52 G. A. Kavvos Vol. 16:3

computation by trimming xn+1 ∈ Xn+1 to rn(xn+1) ∈ Xn = (IX)n+1. We may perform
guarded recursion: given f : IX ⇒ X, we define a global section x : 1⇒ X by

x1
def
= f1(∗) : X1 xn+1

def
= fn+1(xn) : Xn+1

Essentially f : IX → X provides both a ‘seed’ value f1(∗) as well as a ‘coinductive step
function’ fn+1 : Xn → Xn+1 at each tick of the clock. We thus have guarded fixed points, in
that x = f ◦nextX ◦x. This can be done internally, so it defines a map fixX : (IA→ A)→ A
corresponding to the strong Gödel-Löb logic axiom of the logic SL.

A similar construction can be carried out for the topos of bifurcating trees. We can
define a natural transformation erstwhileX : X → �X by

erstwhileX,w : Xw →
∏
v@w

Xv

xw 7→ λv. xw|v
where (−)|v is the obvious presheaf action Xw → Xv that trims an element at ‘stage’ w to
an element at ‘stage’ v for any v @ w. A natural transformation f : �X ⇒ X is a collection
of maps fw :

∏
v@wXv → Xw. In short, f witnesses a proof-relevant strong induction

hypothesis: when given witnesses of X at each stage that strictly precedes w, it returns a
witness of X at stage w. We can use this witness to define x : 1⇒ X by

xw
def
= fw(λv @ w. xv)

This definition is admissible precisely because fw only depends on xv for a strict prefix v,
and because the prefix order is well-founded [HJ99, §14.1]. This closely mirrors the situation
from the classical Kripke semantics of GL, which is sound and complete for transitive frames
for which the converse of the accessibility relation is well-founded [Boo94, §4]. We have
x = f ◦ erstwhileX ◦ x.

By slightly generalising this construction we can show that it furnishes something
stronger than the Gödel-Löb axiom: like the topos of trees, it is a proof-relevant model of
SL, i.e. a guarded fixpoint category in the sense of Milius and Litak [ML13]:

Definition 5.37 (Guarded Fixpoint Category). A guarded fixpoint category (C,I, p, (−)�)
consists of a category C with finite products, an endofunctor I : C → C, a natural transfor-
mation p : Id⇒ I, and a map of homsets

(−)�B,A : C(B ×IA,A)→ C(B,A)

such that for each f : B ×IA→ A, the morphism f�B,A : B → A is a guarded fixpoint of f ,
i.e. a morphism for which the following diagram commutes:

B A

B ×A B ×IA

f�

〈id,f�〉

id×pA

f

Indeed, Milius and Litak mention that any presheaf topos over any well-founded order
forms a guarded fixpoint category [ML13, Example 2.4(5)]. In fact, any such category is
also a Gödel-Löb category.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:53

Theorem 5.38. Let (C, F, p, (−)�) be a guarded fixpoint category, where F preserves finite
products. Then (C,×,1, F, Fp) is a Kripke-4 category, which may be equipped with the
structure of a Gödel-Löb strategy by defining the modal fixed point of each f :

∏n
i=1 FBi ×∏n

i=1Bi × FA→ A to be

f †
def
=
(
f�
)#

:
n∏
i=1

FBi → FA

Proof. A quick calculation shows that Fp : F ⇒ F 2 satisfies Definition 5.21. That f † is a
modal fixed point is a straightforward calculation using Props. 5.22(1) and 5.23.

We still do not know whether there are any interesting Gödel-Löb categories that do
not arise from guarded fixpoint categories via the above.

6. Categorical semantics

In this section we use the modal category theory developed in §5 to formulate a categorical
semantics for our dual-context calculi. This completes the circle in terms of the Curry-
Howard-Lambek correspondence by establishing the following associations:

CK ←→ DK ←→ Kripke categories
CK4 ←→ DK4 ←→ Kripke-4 categories
CGL ←→ DGL ←→ Gödel-Löb categories
CT ←→ DT ←→ Kripke-T categories
CS4 ←→ DS4 ←→ Bierman-de Paiva categories

where the first bi-implication refers to provability, and the second to soundness and com-
pleteness of the dual-context calculus with respect to the categorical model on the right.

We begin by endowing our calculi with an equational theory. We then propose a
categorical interpretation, and show that it is sound. Finally, we discuss completeness.

6.1. Equational theory. Our equational theory of modal proofs should at the very least
contain the reductions used in §4. It should also come with η rules, which we did not include
in §4 due to their usual problematic behaviour under reduction.

A fragment of the equational theory may be found in Figure 6. To generate the theory
for, say, DGL, we take the first three rules (β/η for function types, η for modal types), as
well as the appropriate β rule for each system—in this case, (�βGL). To these we must not
forget to include (a) rules that ensure that equality is an equivalence relation, and (b) the
usual congruence rules for all term formers. The congruence rules for box (−) must be typed
with care. For example, the congruence rule for DK4 should be

∆ ; ∆⊥ `M⊥ = N⊥ : A

∆ ; Γ ` box M = box N : �A

We need not include substitution rules:

Theorem 6.1. Structural rules of weakening, exchange and contraction for contexts are
admissible in the equational theory. Furthermore, the following rules are derivable:

(1) Substitution:
∆ ; Γ, x : A `M = N : C ∆ ; Γ ` P = Q : A

∆ ; Γ `M [P/x] = N [Q/x] : C

10:54 G. A. Kavvos Vol. 16:3

∆ ; Γ, x : A `M : B ∆ ; Γ ` N : A
(→ β)

∆ ; Γ ` (λx : A.M)N = M [N/x] : B

∆ ; Γ `M : A→ B x 6∈ Fv (M)
(→ η)

∆ ; Γ `M = λx : A.Mx : A→ B

∆ ; Γ `M : �A
(�η)

∆ ; Γ ` let box u⇐M in box u = M : �A

· ; ∆ `M : A ∆, u : A ; Γ ` N : C
(�βK)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; ∆⊥ `M⊥ : A ∆, u : A ; Γ ` N : C
(�βK4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

∆ ; ∆⊥, z⊥ : �A `M⊥ : A ∆, u : A ; Γ ` N : C
(�βGL)

∆ ; Γ ` let box u⇐ fix z in box M in N = N [M [fix z in box M/z] /u] : C

∆ ; · `M : A ∆, u : A ; Γ ` N : C
(�βS4)

∆ ; Γ ` let box u⇐ box M in N = N [M/x] : C

Figure 6: Equational theory

∆ ; Γ ` N : C ∆ ; Γ `M : �A u 6∈ Fv (N)
(commweak)

∆ ; Γ ` let box u⇐M in N = N : C

(commcontr):

∆ ; Γ `M : �A ∆, u : A, v : A ; Γ ` N : C u, v 6∈ Fv (M)

∆ ; Γ ` let box u⇐M in let box v ⇐M in N = let box w ⇐M in N [w,w/u, v] = N : C

∆ ; Γ ` C[let box u⇐M in N] : C C[−] is non-modal, does not bind u
(commlet)

∆ ; Γ ` let box u⇐M in C[N] = C[let box u⇐M in N] : C

Figure 7: Commuting conversions

(2) Modal Substitution: for example, in the case of DK:

∆, u : A ; Γ `M = N : C · ;∆ ` P = Q : �A

∆ ; Γ `M [P/u] = N [Q/u] : C

Commuting Conversions. The most interesting rules are the unavoidable commuting
conversions that we need if we want our categorical semantics to be complete. To state these
we will need the notion of term contexts, i.e. terms with a single hole.

Definition 6.2 (Term Contexts).

(1) Term contexts are generated by the grammar

C[−] ::= [−] | λx : A. C[−] | C[−] M |M C[−] | 〈C[−],M〉 | 〈M,C[−]〉 | πi(C[−])

| box C[−] | let box u⇐ C[−] in M | let box u⇐M in C[−]

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:55

(2) A term context C[−] is non-modal just if it is generated without the clause box C[−].
(3) C[−] does not bind u just if its generation uses neither let box u ⇐ C[−] in M nor

λu : A.C[−].

We write C[M] for the term that results from capture-insensitive substitution of the term
M for the hole [−] of the term context C[−].

Our systems share the same set of commuting conversions, which may be found in
Figure 7. The rule (commweak) is a ‘weakening,’ or ‘garbage collection’ rule that disposes
of a delayed substitution that binds a non-occurring variable. This rule has never been
considered in the study of dual-context systems, for DILL [Bar96] was a linear system, and
Davies and Pfenning [PD01] did not study reduction, equality, or categorical semantics.
However, a similar rule was proposed by Goubault-Larrecq [GL96] in his study of Bierman
and de Paiva’s calculus for S4. This rule was later included in [BdP00].

Similarly, (commcontr) is a ‘contraction’ rule. This is also unfamiliar in dual-context
calculi—essentially for the same reasons as (commweak)—but is also well-known in Bierman–
de Paiva style calculi as a ‘garbage collection’ rule: see [GL96], [BdP00] and [Kak07].

‘Exchange’ is treated as part of the much more general rule (commlet), which makes
‘let’ constructs commute with all term formers except box (−). The equality is

C[let box u⇐M in N] = let box u⇐M in C[N]

for any context C that does not bind u, and whose hole [−] is not included within a box (−).
Read in one direction, (commlet) allows one to ‘pull’ a delayed substitution to an outermost
position, as long as nothing extra is bound in the process. In the other direction, it allows one
to ‘push’ a delayed substitution as deeply as one can without creating any free occurrences.
A variant of this rule for DILL was considered by [Bar96], and is also mentioned by [Kak07].

The η rule. As is usual with positive type formers, of which � is an example, there are
two ways to express the η rule. The first is the straightforward way, viz. that introduction
is post-inverse to elimination: for any term ∆ ; Γ `M : �A,

∆ ; Γ `M = let box u⇐M in box u : �A

The second version of that is an extended η-rule, which allows us to η-expand a term of
modal type, no matter where it is found in a well-typed term:

∆ ; Γ `M : �A ∆ ; Γ, x : �A ` N : B

∆ ; Γ ` N [M/x] = let box v ⇐M in N [box v/x] : B

In fact,

Theorem 6.3. The η rule and the extended η-rule for the modal type are equivalent in the
presence of commuting conversions.

Proof. Certainly the η rule is a special case of the extended η-rule. In the opposite direction,
we proceed by induction on the derivation of the term N . Most cases are simple. For

10:56 G. A. Kavvos Vol. 16:3

products we have that

〈N1, N2〉[M/x]

≡ { substitution }
〈N1[M/x], N2[M/x]〉

= { IH, twice }
〈let box u⇐M in N1[box u/x], let box v ⇐M in N2[box v/x]〉

= { (commlet), twice }
let box u⇐M in let box v ⇐M in 〈N1[box u/x], N2[box v/x]〉

= { (commcontr) }
let box w ⇐M in 〈N1[box w/x], N2[box w/x]〉

≡ { substitution }
let box w ⇐M in N [box w/x]

A similar ‘collapsing step’ is also needed in the case of let. The case for box M is simple, as in
all of our type theories x does not occur in M ; the result hence follows by (commweak).

Idempotence in DS4. The (commlet) rule avoided instances of commutation between a
let and a box. If such commutations were allowed we would have for example the following
equality in DS4:

∆ ; Γ ` box (let box u⇐M in N) = let box u⇐M in box N : C

for ∆ ; · `M : �A and ∆, u : A ; · ` N : C. We will later show that these rules are sound for
the categorical semantics of DS4 if and only if the comonad used to interpret � is idempotent.

There are three equivalent ways to present idempotence in DS4. The first two roughly
say that box (−) and let commute. The third is a strong form of the extended η-rule, which
this time applies to modal variables. Variants of this rule are sometimes known as crisp
induction [Shu18, §5].

Theorem 6.4. The following rules are equivalent

(1)
∆ ; · `M : �A ∆, u : A ; · ` N : B

∆ ; Γ ` box (let box u⇐M in N) = let box u⇐M in box N : �B
(2)

∆ ; Γ ` C[let box u⇐M in N] : B C[−] does not bind u

∆ ; Γ ` let box u⇐M in C[N] = C[let box u⇐M in N] : B

(3)
∆ ; · `M : �A ∆, u : �A ; Γ ` N : B

∆ ; Γ ` N [M/u] = let box v ⇐M in N [box v/u] : B

Proof. (1) is a special case of (2). To prove (2) from (1), we proceed by induction on C: use
the commuting conversion (commlet) for the non-modal cases, and then (1) for the modal

case C[−]
def
= box C ′[−]. If we have the premises of (1), we can show that, by (3),

(box (let box u⇐ v in N)) [M/v] : �B

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:57

is equal to
let box w ⇐M in (box (let box u⇐ v in N)) [box w/v] : �B

The first expression simplifies to box (let box u⇐M in N), and the second to

let box w ⇐M in (box (let box u⇐ box v in N))

which, by one step of β-reduction and α-conversion is equal to let box u⇐M in box N . We
can show (3) from (1) by induction on the derivation of N as before, but using (1) for the
crucial case of box N ′.

6.2. Categorical interpretation. We are now fully equipped to define the categorical
semantics of our dual-context systems. For background on the categorical semantics of simply-
typed λ-calculus in cartesian closed categories, we refer the reader to [LS88, Cro93, AT11].

We start by interpreting types and contexts. Given any Kripke category (C,×,1, F),
and a map I(−) associating each base type pi with an object I(pi) ∈ C, we define an object
JAK ∈ C for every type A by induction:

JpiK
def
= I(pi) JA×BK def

= JAK× JBK

JA→ BK def
= JBKJAK J�AK def

= F JAK

Then, given a context ∆ ; Γ where ∆ = u1 : B1, . . . un : Bn and Γ = x1 : A1, . . . , xm : Am,
we let

J∆ ; ΓK def
= FB1 × · · · × FBn ×A1 × · · · ×Am

where the product is, as ever, left-associating. We then extend J−K to associate an arrow

J∆ ; Γ `M : AK : J∆ ; ΓK → JAK

of the category C to each derivation ∆ ; Γ `M : A. The definition for rules common to all
calculi are the same for all logics, but we use each of the maps defined in §5 to interpret
the different introduction rules for the modality. To do that we need the corresponding
structure we introduced in §5, e.g. for K4 we need a Kripke-4 category, and so on.

The full definition is given in Figure 8. The morphism π∆;Γ
∆ : J∆ ; ΓK → J∆ ; ·K is the

obvious projection. Moreover, the notation 〈−→π∆, f,
−→πΓ〉 stands for

〈−→π∆, f,
−→πΓ〉

def
= 〈π1, . . . , πn, f, πn+1, . . . , πn+m〉

6.3. Soundness. The main tools used in proving soundness are lemmas giving the categori-
cal interpretation of various admissible rules, and a fundamental result relating substitution
of terms to composition in the category. In the sequel we often use informal vector notation

for contexts: for example, we write ~u : ~B for the context u1 : B1, . . . , um : Bm. We also

write [~N/~u] for the simultaneous capture-avoiding substitution [N1/u1, . . . , Nm/um].
First, we interpret weakening and exchange.

Lemma 6.5 (Semantics of Weakening).

(1) Let ∆ ; Γ, x : C,Γ′ `M : A with x 6∈ Fv (M). Then
q
∆ ; Γ, x : C,Γ′ `M : A

y
=

q
∆ ; Γ,Γ′ `M : A

y
◦ π

where π : J∆ ; Γ, x : C,Γ′K → J∆ ; Γ,Γ′K is the obvious projection.

10:58 G. A. Kavvos Vol. 16:3

Definitions for all calculi

q
∆ ; Γ, x:A,Γ′ ` x : A

y def
= π :

q
∆ ; Γ, x:A,Γ′

y
−→ JAK

J∆ ; Γ ` 〈M,N〉 : A×BK def
= 〈J∆ ; Γ `M : AK , J∆ ; Γ ` N : BK 〉

J∆ ; Γ ` πi(M) : AiK
def
= πi ◦ J∆ ; Γ `M : A1 ×A2K

J∆ ; Γ ` λx : A. M : A→ BK def
= λ (J∆ ; Γ, x : A `M : BK)

J∆ ; Γ `MN : BK def
= ev ◦ 〈J∆ ; Γ `M : A→ BK , J∆ ; Γ ` N : AK 〉

J∆ ; Γ ` let box u⇐M in N : CK def
= J∆, u : A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ `M : �AK ,−→πΓ〉

Definitions for various modalities

q
∆, u : A,∆′ ; Γ ` u : A

y
L

def
= εJAK ◦ π :

q
∆, u : A,∆′ ; Γ

y
→ JAK (for L ∈ {T, S4})

J∆ ; Γ ` box M : �AK L
def
= J· ; ∆ `M : AK• ◦ π∆;Γ

∆ (for L ∈ {K,T})

J∆ ; Γ ` box M : �AK K4
def
=

r
∆ ; ∆⊥ `M⊥ : A

z#
◦ π∆;Γ

∆

J∆ ; Γ ` fix z in box M : �AK GL
def
=

r
∆ ; ∆⊥, z⊥ : �A `M⊥ : A

z†
◦ π∆;Γ

∆

J∆ ; Γ ` box M : �AK S4
def
= J∆ ; · `M : AK∗ ◦ π∆;Γ

∆

Figure 8: Categorical Semantics

(2) Let ∆, u : B,∆′ ; Γ `M : A with u 6∈ Fv (M). Then
q
∆, u : B,∆′ ; Γ `M : A

y
=

q
∆,∆′ ; Γ `M : A

y
◦ π

where π : J∆, u : B,∆′ ; ΓK → J∆,∆′ ; ΓK is the obvious projection.

Proof. By induction on the two derivations. All cases are straightforward. The modal one
uses Propositions 5.11(2), 5.17(5), 5.22(2), and 5.33.

Lemma 6.6 (Semantics of Exchange).

(1) Let ∆ ; Γ, x : C, y : D,Γ′ `M : A. Then
q
∆ ; Γ, x : C, y : D,Γ′ `M : A

y
=

q
∆ ; Γ, y : D,x : C,Γ′ `M : A

y
◦ (∼=)

where (∼=) : J∆ ; Γ, x : C, y : D,Γ′K
∼=−→ J∆ ; Γ, y : D,x : C,Γ′K is the obvious isomor-

phism.
(2) Let ∆, u : C, v : D,∆′ ; Γ `M : A. Then

q
∆, u : C, v : D,∆′ ; Γ `M : A

y
=

q
∆, v : D,u : C,∆′ ; Γ `M : A

y
◦ (∼=)

where (∼=) : J∆, u : C, v : D ; ΓK
∼=−→ J∆, v : D,u : C ; ΓK is the obvious isomorphism.

Proof. By induction on the two derivations. All cases are straightforward.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:59

Then, we move on to something particular to the cases of T and S4, namely the interpretation
of the Modal Dereliction rule—see Theorem 3.9.

Lemma 6.7 (Semantics of Dereliction). Let ∆ ; Γ,Γ′ `DL M : A where L ∈ {T,S4} and

Γ = ~z : ~C. Then
q
∆,Γ ; Γ′ `M : A

y
L =

q
∆ ; Γ,Γ′ `M : A

y
L ◦
(−−→
id∆ ×−→εCi ×

−−→
idΓ′

)
Proof. By induction on the derivation of ∆ ; Γ,Γ′ `DL M : A. All cases are straightforward.
The case for (�E) depends on the semantics of exchange lemma.

We also need to know that ‘boxing’ a variable results in the obvious projection. This depends
essentially on the fact our functors are product-preserving (and not just lax monoidal).

Lemma 6.8 (Identity Lemma). For (ui : Bi) ∈ ∆, and L ∈ {K,K4,T,S4},

J∆ ; Γ ` box ui : �BiK L = π∆;Γ
�Bi

We aim to show that substitution in the syntax corresponds to composition in the
semantics. To make this result work, we need to introduce a box (−) construct for GL. We
write

box M
def
= fix w in box M

with w,w⊥ fresh. It is then not hard to see that the introduction rule of K4 is admissible for
GL when M has no occurrences of w⊥: we simply use weakening followed by the introduction
rule for GL. This derived operation is reflected in the semantics by the equation

Proposition 6.9. J∆ ; Γ `DGL box M : �AK =
q
∆ ; ∆⊥ `DGL M

⊥ : A
y# ◦ π∆;Γ

∆

Proof. By the semantics of weakening and Proposition 5.35.

In short: when the variable that is being ‘diagonalised over’ does not occur freely, the
interpretation degenerates to that of K4.

Lemma 6.10 (Semantics of Substitution). Suppose that ~u : ~B ; ~x : ~A `DL P : C. Let
∆ ; Γ `DL Mi : Ai for i = 1, . . . , n, and let

αi
def
= J∆ ; Γ `Mi : AiK L

If either

(1) L ∈ {K,T} and · ; ∆ ` Nj : Bj for j = 1, . . . ,m, or

(2) L ∈ {K4,GL} and ∆ ; ∆⊥ ` N⊥j : Bj for j = 1, . . . ,m, or

(3) L = S4 and ∆ ; · ` Nj : Bj for j = 1, . . . ,m,

then, letting βj
def
= J∆ ; Γ ` box Nj : �BjK L for j ∈ {1, . . . ,m}, we have that

r
∆ ; Γ ` P [~N/~u, ~M/~x] : C

z
L =

r
~u : ~B ; ~x : ~A ` P : C

z
L ◦ 〈β1, . . . , βm, α1, . . . , αn〉

Proof. By induction on the derivation of ~u : ~B ;~x : ~A ` P : C. Most cases are straightforward,
and use a combination of standard equations that hold in cartesian closed categories in order
to perform calculations very close the ones detailed in [AT11, §1.6.5]. Because of the precise
definitions we have used, we also need to make use of Lemma 6.5 to interpret weakening
whenever variables in the context do not occur freely in the term. For the modal rules we
use many of the equations we showed in §5, e.g in Propositions 5.11, 5.17, 5.22, and so on.

10:60 G. A. Kavvos Vol. 16:3

Theorem 6.11 (Soundness). If ∆ ; Γ `DL M = N : A, then we have that

J∆ ; Γ `M : AK L = J∆ ; Γ ` N : AK L

Proof. By induction on the derivation of ∆ ; Γ `DL M = N : A. The congruence cases are
clear, as are the majority of the ordinary clauses—see [Cro93] and [AT11]. The rules that
remain are (�η), the many variants of (�β), and the commuting conversions.

First, we prove the modal β and η cases by direct calculation. To do so, we use Lemma
6.8, so product preservation is essential even to prove the soundness of (�β).

Let ∆ = ~u : ~B and Γ = ~x : ~A. We then calculate:

J∆ ; Γ ` let box u⇐ box M in N : CK
= { definition }

J∆, u : A ; Γ ` N : CK ◦ 〈−→π∆, J∆ ; Γ ` box M : �AK ,−→πΓ〉
= {Lemma 6.8 }

J∆, u : A ; Γ ` N : CK ◦ 〈
−−−−−−−−−−−−−−−−→
J∆ ; Γ ` box ui : �BiK , J∆ ; Γ ` box M : �AK ,

−−−−−−−−−−−→
J∆ ; Γ ` xi : AiK 〉

= {Lemma 6.10 }
J∆ ; Γ ` N [~ui/~ui,M/u, ~xi/~xi] : CK

This covers all cases save GL. For that, it suffices to show that

J∆ ; Γ ` fix z in box M : �AK = J∆ ; Γ ` box M [fix z in box M/z] : �AK

and then surreptitiously swap the first expression with the second in the above calculation
just before using the substitution lemma.

The case of η is even simpler, as it follows immediately from Lemma 6.8.
The commuting conversions for weakening and contraction are straightforward. (commlet)

requires a nested induction on contexts C[−], which follows from the naturality of the various
operations of the CCC.

Idempotence. If the comonad (F, ε, δ) provided as part of a Bierman-de Paiva category is
idempotent, then more equations are sound. We have shown the equivalence between three
such equations in §6.1, so it suffices to prove soundness for only one of them:

J∆ ; Γ ` box (let box u⇐M in N) : �BK
= { definitions }

(J∆, u : A ; · ` N : BK ◦ 〈id, J∆ ; · `M : �AK 〉)∗

= { Proposition Theorem 5.19 }
J∆, u : A ; · ` N : BK∗ ◦ 〈id, J∆ ; · `M : �AK 〉

= { definitions }
J∆ ; Γ ` let box u⇐M in box N : �BK

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:61

6.4. A note on completeness. It is possible to prove that the categorical semantics given
in this section are complete in the Lindenbaum-Tarski sense. For example, we can prove that if
J∆ ; Γ `DK M : AK = J∆ ; Γ `DK N : AK in every Kripke category, then ∆;Γ `DK M = N : A
is provable in the equational theory. To do so we must construct a Kripke category by
quotienting the syntax of the λ-calculus; if the equation is satisfied in all models, it is
satisfied in this one in particular, which implies equality in the theory.

Indeed, we have shown this for all our calculi, as documented in the conference version
of this article and its associated technical report [Kav17]. However, this result is of limited
interest from the point-of-view of categorical logic: it merely shows that the correspondence
between inference rules and axioms (e.g. between Scott’s rule and the K axiom) extends
to the categorical level, e.g. to a correspondence between the operation (−)• and the
product-preserving structure of a Kripke category.

A more important result is to show that the model constructed through quotienting
syntax is initial in the category of all such models. Unfortunately, it does not seem that the
constructions used in the conference version of this paper yield initial models. We leave the
solution of this problem to future work.

7. Conclusion & further directions

We have extended the full Curry-Howard-Lambek correspondence to a handful of normal
modal logics, spanning the logical aspect (Hilbert systems and provability), the computational
aspect (modal λ-calculi), and the categorical aspect (proof-relevant semantics).

In order to achieve the connection at the first junction, i.e. that between logic and
computation, we have employed a systematic pattern based on translating sequent calculus
rules to introduction rules for dual-context systems. This worked remarkably well: not only
did it lead to already known systems, like that for S4, but also to a number of new ones,
including one for GL. One would hope that there is a deeper aspect to this pattern—perhaps
even a theorem to the effect that rules of cut-free sequent calculi rule can be immediately
turned into well-behaved dual-context systems. Of course, this is quite a long way from our
current grasp, but we believe it is worth investigating.

The second junction, i.e. the one between modal λ-calculi and their categorical models,
is achieved by focusing on product-preserving functors and their extensions. This deviates
from previous approaches—such as that of Bierman and de Paiva which concentrated on lax
monoidal endofunctors—yet supports numerous models of interest. We sketched in some
detail the topos of bifurcating trees as a motivating example of a model with a product-
preserving modality which does not extend to a comonad. The assumption of product
preservation seeps deep into our proofs: it is in fact used even in proving soundness of
β-convertibility.

The resulting dual-context calculi sport a simpler syntax, which—as we argued in
the introduction—makes them particularly suited to computational applications. It is
also our hope that this work will help elucidate the computational behaviour of necessity
modalities. In fact, the author believes that modalities can be used to control the ‘flow
of data’ in a programming language, in the sense that they create regions of the language
whose intercommunication is restricted. For example, one can handwavingly argue that S4
guarantees that ‘only modal variables flow into terms of modal type,’ whereas K additionally
ensures that no modal data flows into a term of non-modal type. A first result of this
type is the free variables theorem (Theorem 3.5), but it is rather weak. The author has

10:62 G. A. Kavvos Vol. 16:3

recently used the second junction—namely that between computation and categories—to
prove noninterference theorems for modal λ-calculi [Kav19]. These theorems show that
modal type systems indeed effect certain restrictions on information flow. Amongst other
things, the present article is meant to lay a foundation that enables the further study of
categorical semantics of similar calculi.

Acknowledgments

I gratefully acknowledge many interesting discussions with Daniel Gratzer, Dan Licata,
Kristina Sojakova, Mitchell Riley, and Ed Morehouse. Thanks are also due to Sam Staton
and Luke Ong for their encouragement, Samson Abramsky for his advice, and Geraint Jones
for his Eindhoven-style calculation macros.

The lion’s share of this work was done during the author’s time as a doctoral student
at Oxford, where he was supported by the EPSRC (award reference 1354534). It was then
revised at Wesleyan University, as part of work supported by the Air Force Office of Scientific
Research under award number FA9550-16-1-0292. Any opinions, finding, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Air Force. Its completion was supported in part by a
research grant (12386, Guarded Homotopy Type Theory) from the VILLUM Foundation.

References

[AB04] Steven Awodey and Andrej Bauer. Propositions as [Types]. Journal of Logic and Computation,
14(4):447–471, aug 2004.

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G Riecke. A core calculus of dependency.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’99, pages 147–160, New York, New York, USA, 1999. ACM Press.

[AM13] Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. ACM
SIGPLAN Notices, 48(9):197–208, nov 2013.

[And92] Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

[AT11] Samson Abramsky and Nikos Tzevelekos. Introduction to Categories and Categorical Logic. In
Bob Coecke, editor, New Structures for Physics, pages 3–94. Springer-Verlag, 2011.

[Awo10] Steve Awodey. Category Theory. Oxford Logic Guides. Oxford University Press, 2010.
[Bar96] Andrew Graham Barber. Dual Intuitionistic Linear Logic. Technical report, ECS-LFCS-96-347,

Laboratory for Foundations of Computer Science, University of Edinburgh, 1996.
[BBdP98] Nick Benton, Gavin M. Bierman, and Valeria de Paiva. Computational types from a logical

perspective. Journal of Functional Programming, 8(2):177–193, 1998.
[BBdPH93] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. A term calculus for

Intuitionistic Linear Logic. In Marc Bezem and Jan Friso Groote, editors, Typed Lambda Calculi
and Applications, pages 75–90, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[BdP92] Gavin M. Bierman and Valeria de Paiva. Intuitionistic Necessity Revisited. In Proceedings of the
Logic at Work Conference, 1992.

[BdP96] Gavin M. Bierman and Valeria de Paiva. Intuitionistic Necessity Revisited. Technical report,
University of Birmingham, 1996.

[BdP00] Gavin M. Bierman and Valeria de Paiva. On an Intuitionistic Modal Logic. Studia Logica,
65(3):383–416, 2000.

[BdPR01] Gianluigi Bellin, Valeria de Paiva, and Eike Ritter. Extended Curry-Howard correspondence for
a basic constructive modal logic. In Proceedings of Methods for Modalities, 2001.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge University
Press, 2001.

[Bel85] Gianluigi Bellin. A system of natural deduction for GL. Theoria, 51(2):89–114, 1985.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:63

[BGM19] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg. Simply RaTT: a fitch-
style modal calculus for reactive programming without space leaks. Proceedings of the ACM on
Programming Languages, 3(ICFP):1–27, 2019.

[BM13] Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional Type Theory with Guarded Recursive
Types qua Fixed Points on Universes. In 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 213–222. IEEE, jun 2013.

[BMSS12] Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps
in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in
Computer Science, 8(4), oct 2012.

[Boo94] George S. Boolos. The Logic of Provability. Cambridge University Press, Cambridge, feb 1994.
[Bor94] Francis Borceux. Handbook of Categorical Algebra. Cambridge University Press, Cambridge,

1994.
[CBBB16] Ranald Clouston, Alěs Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. The guarded lambda

calculus: Programming and reasoning with guarded recursion for coinductive types. Logical
Methods in Computer Science, 12(3):1–39, 2016.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic. Studies in Logic and the Foundation of
Mathematics. North-Holland, 1958.

[CFMM16] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. A theory of effects and
resources: adjunction models and polarised calculi. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL 2016, pages
44–56, New York, New York, USA, 2016. ACM Press.

[Clo18] Ranald Clouston. Fitch-style modal lambda calculi. In Christel Baier and Ugo Dal Lago, editors,
Foundations of Software Science and Computation Structures, pages 258–275, Cham, 2018.
Springer International Publishing.

[Cro93] Roy L. Crole. Categories for Types. Cambridge University Press, 1993.
[Cur52] Haskell B. Curry. The elimination theorem when modality is present. The Journal of Symbolic

Logic, 17(04):249–265, dec 1952.
[Dav17] Rowan Davies. A Temporal Logic Approach to Binding-Time Analysis. Journal of the ACM,

64(1):1–45, mar 2017.
[dG02] Philippe de Groote. On the Strong Normalisation of Intuitionistic Natural Deduction with

Permutation-Conversions. Information and Computation, 178(2):441–464, 2002.
[DJ03] Vincent Danos and Jean Baptiste Joinet. Linear logic and elementary time. Information and

Computation, 183(1):123–137, 2003.
[DP01] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. Journal of the

ACM, 48(3):555–604, 2001.
[dPR11] Valeria de Paiva and Eike Ritter. Basic Constructive Modality. In Jean-Yves Beziau and Marcelo

Coniglio, editors, Logic without frontiers - Festschrift for Walter Alexandre Carnielli on the
occasion of his 60th birthday, pages 411–428. College Publications, London, 2011.

[Fit93] Melvin Fitting. Basic Modal Logic, pages 368–448. Oxford University Press, Inc., USA, 1993.
[Gal90] Jean Gallier. On Girard’s ”Candidats de Reductibilite”. In Piergiorgio Odifreddi, editor, Logic

and Computer Science, pages 123–203. Academic Press, 1990.
[Gal93] Jean Gallier. Constructive logics Part I: A tutorial on proof systems and typed λ-calculi.

Theoretical Computer Science, 110(2):249–339, 1993.
[Gal95] Jean Gallier. On the Correspondence Between Proofs and Lambda Terms. In Philippe de Groote,

editor, The Curry-Howard Isomorphism, pages 55–138. Academia, Louvain-la-Neuve, 1995.
[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift,

39(1):176–210, 1935.
[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathematische Zeitschrift,

39(1):405–431, 1935.
[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique

d’ordre supérieur. PhD thesis, Université Paris VII, 1972.
[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59(3):201–217, feb

1993.

10:64 G. A. Kavvos Vol. 16:3

[GL96] Jean Goubault-Larrecq. On Computational Interpretations of the Modal Logic S4 - I. Cut
Elimination. Technical report, 1996-35. Institut für Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe, 1996.

[GLN+17] Jacob A Gross, Daniel R Licata, Max S New, Jennifer Paykin, Mitchell Riley, Michael Shulman,
and Felix Wellen. Differential Cohesive Type Theory (Extended Abstract). In Extended abstracts
for the Workshop ”Homotopy Type Theory and Univalent Foundations”, 2017.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press,
1989.

[GR12] Rajeev Goré and Revantha Ramanayke. Valentini’s Cut-Elimination for Provability Logic
Resolved. The Review of Symbolic Logic, 5(02):212–238, 2012.

[Gua18] Adrien Guatto. A Generalized Modality for Recursion. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 482–491, New York,
NY, USA, 2018. Association for Computing Machinery.

[HC96] G. E. Hughes and M. J. Creswell. A New Introduction to Modal Logic. Routledge, 1996.
[HJ99] K Hrbacek and T Jech. Introduction to Set Theory, Third Edition, Revised and Expanded.

Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1999.
[HN12] Raul Hakli and Sara Negri. Does the deduction theorem fail for modal logic? Synthese, 187(3):849–

867, 2012.
[Hof99a] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proceedings. 14th

Symposium on Logic in Computer Science (Cat. No. PR00158), pages 204–213. IEEE Comput.
Soc, 1999.

[Hof99b] Martin Hofmann. Type Systems for Polynomial-Time Computation. Habilitation thesis, Technis-
chen Universität Darmstadt, 1999.

[Kak07] Yoshihiko Kakutani. Calculi for Intuitionistic Normal Modal Logic. In Proceedings of Programming
and Programming Languages (PPL) 2007, 2007.

[Kav16] G. A. Kavvos. The Many Worlds of Modal Lambda Calculi: I. Curry-Howard for Necessity,
Possibility and Time. CoRR, 2016.

[Kav17] G. A. Kavvos. Dual-context calculi for modal logic. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE, 2017.

[Kav19] G. A. Kavvos. Modalities, Cohesion, and Information Flow. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL), 2019.

[KB11a] Neelakantan R. Krishnaswami and Nick Benton. A semantic model for graphical user interfaces.
ACM SIGPLAN Notices, 46(9):45, sep 2011.

[KB11b] Neelakantan R. Krishnaswami and Nick Benton. Ultrametric Semantics of Reactive Programs.
In 2011 IEEE 26th Annual Symposium on Logic in Computer Science, pages 257–266. IEEE,
jun 2011.

[Kol85] George Koletsos. Church-Rosser theorem for typed functional systems. The Journal of Symbolic
Logic, 50(03):782–790, 1985.

[Kri63] Saul A. Kripke. Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9(5-6):67–96, 1963.

[Kri13] Neelakantan R. Krishnaswami. Higher-order functional reactive programming without space-
time leaks. In Proceedings of the 18th ACM SIGPLAN international conference on Functional
programming - ICFP ’13, page 221, New York, New York, USA, 2013. ACM, ACM Press.

[Lei81] Daniel Leivant. On the proof theory of the modal logic for arithmetic provability. The Journal
of Symbolic Logic, 46(03):531–538, sep 1981.

[Lit14] Tadeusz Litak. Constructive Modalities with Provability Smack. In G. Bezhanishvili, editor, Leo
Esakia on Duality in Modal and Intuitionistic Logics, volume 4 of Outstanding Contributions to
Logic, pages 187–216. Springer, Dordrecht, 2014.

[LOPS18] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal Universes in Models
of Homotopy Type Theory. In H. Kirchner, editor, 3rd International Conference on Formal
Structures for Computation and Deduction (FSCD 2018), Leibniz International Proceedings in
Informatics (LIPIcs), pages 22:1–22:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[LS88] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categorical Logic. Cambridge
University Press, 1988.

Vol. 16:3 DUAL-CONTEXT CALCULI FOR MODAL LOGIC 10:65

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in
Mathematics. Springer New York, New York, NY, 1978.

[MCHP04] T. Murphy, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal lambda calculus
for distributed computing. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, 2004., pages 286–295. IEEE, 2004.

[Mel09] Paul-André Melliès. Categorical Semantics of Linear Logic. In Pierre-Louis Curien, Hugo Herbelin,
Jean-Louis Krivine, and Paul-André Melliès, editors, Panoramas et synthèses 27: Interactive
models of computation and program behaviour. Société Mathématique de France, 2009.

[ML13] Stefan Milius and Tadeusz Litak. Guard Your Daggers and Traces: On The Equational Properties
of Guarded (Co-)recursion. Electronic Proceedings in Theoretical Computer Science, 126(Infor-
matik 8):72–86, aug 2013.

[MM96] Simone Martini and Andrea Masini. A Computational Interpretation of Modal Proofs. In Proof
Theory of Modal Logic, Applied Logic Series, pages 213–241. Springer Netherlands, 1996.

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,
1991.

[Nak00] Hiroshi Nakano. A modality for recursion. Proceedings Fifteenth Annual IEEE Symposium on
Logic in Computer Science (Cat. No.99CB36332), 2000.

[ND18] Andreas Nuyts and Dominique Devriese. Degrees of Relatedness. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18, pages 779–788, New
York, New York, USA, 2018. ACM Press.

[Neg11] Sara Negri. Proof Theory for Modal Logic. Philosophy Compass, 6(8):523–538, 2011.
[NVD17] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent

type theory. Proceedings of the ACM on Programming Languages, 1(ICFP), 2017.
[OH06] Yo Ohta and Masahito Hasegawa. A Terminating and Confluent Linear Lambda Calculus. In

Frank Pfenning, editor, Term Rewriting and Applications. RTA 2006, volume 4098 of Lecture
Notes in Computer Science, pages 166–180. Springer, Berlin, Heidelberg, 2006.

[OM57] Masao Ohnisi and Kazuo Matsumoto. Gentzen method in modal calculi. Osaka Journal of
Mathematics, 11(2):113–130, 1957.

[OM59] Masao Ohnisi and Kazuo Matsumoto. Gentzen method in modal calculi. II. Osaka Journal of
Mathematics, 11(2):115–120, 1959.

[Ono98] Hiroakira Ono. Proof-theoretic methods in nonclassical logic–an introduction. In Masako Taka-
hashi, Mitsuhiro Okada, and Marangiola Dezani-Ciancaglini, editors, Theories of Types and
Proofs, MSJ Memoirs, pages 207–254. The Mathematical Society of Japan, Tokyo, 1998.

[Orc14] Dominic Orchard. Programming contextual computations. PhD thesis, University of Cambridge,
2014.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511–540, 2001.

[Pfe01] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory.
Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS 2001),
2001.

[Pfe10] Frank Pfenning. Lecture Notes on Combinatory Modal Logic, 2010.
[Pfe13] Frank Pfenning. Weather Report, 2013.
[Pfe15] Frank Pfenning. Decomposing Modalities. Logical Frameworks and Meta-Languages: Theory and

Practice (LFMTP’15), 2015.
[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,

5(3):223–255, 1977.
[Plo93] Gordon D. Plotkin. Type theory and recursion. In Proceedings Eighth Annual IEEE Symposium

on Logic in Computer Science, page 374. IEEE Comput. Soc. Press, 1993.
[Pra65] Dag Prawitz. Natural Deduction: a proof-theoretical study. Almquist and Wiksell, 1965.
[Pra71] Dag Prawitz. Ideas and Results in Proof Theory. In J. E. Fenstad, editor, Proceedings of the

Second Scandinavian Logic Symposium, volume 63 of Studies in logic and the foundations of
mathematics. North-Holland, Amsterdam, 1971.

[RSS20] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical
Methods in Computer Science, 16(1):2:1–2:79, 2020.

10:66 G. A. Kavvos Vol. 16:3

[Sch17] Gabriel Scherer. Deciding equivalence with sums and the empty type. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages - POPL 2017, pages
374–386, New York, New York, USA, 2017. ACM Press.

[SDP01] Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primitive recursion for higher-order
abstract syntax. Theoretical Computer Science, 266(1-2):1–57, 2001.

[SdV12] Paula G. Severi and Fer-Jan J. de Vries. Pure type systems with corecursion on streams. ACM
SIGPLAN Notices, 47(9):141, 2012.

[SH84] Peter Schroeder-Heister. A natural extension of natural deduction. The Journal of Symbolic
Logic, 49(04):1284–1300, 1984.

[Sha14] D. S. Shamkanov. Circular proofs for the Gödel-Löb provability logic. Mathematical Notes,
96(3-4):575–585, sep 2014.

[Shu18] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Mathe-
matical Structures in Computer Science, 28(6):856–941, 2018.

[SI08] Naokata Shikuma and Atsushi Igarashi. Proving Noninterference by a Fully Complete Translation
to the Simply Typed lambda-calculus. Logical Methods in Computer Science, 4(3):10, 2008.

[Sim94] Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
The University of Edinburgh, 1994.

[SP00] Alex K. Simpson and Gordon D. Plotkin. Complete axioms for categorical fixed-point operators.
In Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS 2000),
pages 30–41. IEEE Comput. Soc, 2000.

[SS14] Urs Schreiber and Michael Shulman. Quantum Gauge Field Theory in Cohesive Homotopy Type
Theory. Electronic Proceedings in Theoretical Computer Science, 158:109–126, 2014.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Elsevier, 2006.

[SV80] G. Sambin and S. Valentini. A modal sequent calculus for a fragment of arithmetic. Studia
Logica, 39(2-3):245–256, 1980.

[SV82] Giovanni Sambin and Silvio Valentini. The modal logic of provability. The sequential approach.
Journal of Philosophical Logic, 11(3):311–342, 1982.

[Tak95] M. Takahashi. Parallel Reductions in λ-Calculus. Information and Computation, 118(1):120–127,
apr 1995.

[TI10] Takeshi Tsukada and Atsushi Igarashi. A logical foundation for environment classifiers. Logical
Methods in Computer Science, 6(4):1–43, 2010.

[Val82] Silvio Valentini. Cut-elimination in a modal sequent calculus for K. Bolletino dell’Unione
Mathematica Italiana, 1B:119–130, 1982.

[Val83] Silvio Valentini. The Modal Logic of Provability: Cut-Elimination. Journal of Philosophical
Logic, 12(4):471–476, 1983.

[Wad93] Philip Wadler. A taste of linear logic. In Andrzej M Borzyszkowski and Stefan Soko lowski,
editors, Mathematical Foundations of Computer Science 1993, pages 185–210, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

[Wad94] Philip Wadler. A syntax for linear logic. In S. Brookes, M. Main, A. Melton, M. Mislove, and
D. Schmidt, editors, Mathematical Foundations of Programming Semantics: 9th International
Conference, New Orleans, LA, USA, April 7 - 10, 1993. Proceedings, pages 513–529. Springer-
Verlag Berlin Heidelberg, 1994.

[Wan02] Heinrich Wansing. Sequent Systems for Modal Logics. In Handbook of Philosophical Logic, pages
61–145. Springer Netherlands, Dordrecht, 2002.

[Wel17] Felix Wellen. Formalizing Cartan Geometry in Modal Homotopy Type Theory. Phd thesis,
Karlsruher Instituts für Technologie, 2017.

[Wij90] Duminda Wijesekera. Constructive modal logics I. Annals of Pure and Applied Logic, 50(3):271–
301, dec 1990.

[WLP98] Philip Wickline, Peter Lee, and Frank Pfenning. Run-Time Code Generation and Modal-ML.
In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI ’98, pages 224–235, New York, NY, USA, 1998. Association for Computing
Machinery.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	Introduction
	A road map
	The case of Gödel and Löb
	Related work on dual contexts
	Related work on modal proof theory

	1. The Logics in Question
	1.1. Constructive modal logics
	1.2. Preliminaries
	1.3. Axioms
	1.4. Hilbert systems
	1.5. Metatheory of Hilbert systems

	2. From sequent calculi to dual contexts
	2.1. The perennial issues
	Dual contexts
	2.2. Deriving dual-context calculi

	3. Types, terms, and metatheory
	3.1. Complementary variables
	3.2. Free variables: boxed and unboxed
	3.3. Structural theorems
	3.4. Equivalence between Hilbert and dual systems

	4. Reduction
	4.1. The reduction
	4.2. Subformula property
	4.3. Confluence
	4.4. Strong normalization
	4.5. The case of GL

	5. Modal category theory
	5.1. Lax and strong monoidal functors
	5.2. Product-Preserving Functors
	5.3. Monoidal natural transformations
	5.4. The categorical interpretation of modal rules

	6. Categorical semantics
	6.1. Equational theory
	6.2. Categorical interpretation
	6.3. Soundness
	6.4. A note on completeness

	7. Conclusion & further directions
	Acknowledgments
	References

