32 research outputs found

    Adaptive estimation and equalisation of the high frequency communications channel

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D94945 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Terahertz wireless communication through atmospheric atmospheric turbulence and rain

    Get PDF
    This dissertation focusses on terahertz (THz) wireless communication technology in different weather conditions. The performance of the communication links is mainly studied under propagation through atmospheric turbulence and rain. However, as real outdoor weather conditions are temporally and spatially varying, it is difficult to obtain reproducible atmospheric conditions to verify results of independent measurements making it a challenge to measure and analyze the impact of outdoor atmospheric weather on communication links. Consequently, dedicated indoor weather chambers are designed to produce controllable weather conditions to emulate the real outdoor weather as closely as possible. To emulate turbulent air conditions, an enclosed chamber is developed into which air with controllable airspeeds and temperatures are introduced to generate a variety of atmospheric turbulence for beam propagation. To emulate varying rain conditions, an enclosed chamber is built in which pressurized air forces drops of water through an array of 30 gauge needles. In order to study and compare propagation features of THz links with infrared (IR) links under identical weather conditions, a THz and IR communications lab setup with a maximum data rate of 2.5 Gb/s at 625 GHz carrier frequency and 1.5 μm wavelength, are developed. A usual non return-to-zero (NRZ) format is applied to modulate the IR channel but a duobinary coding technique is used for driving the multiplier chain-based 625 GHz source, which enables signaling at high data rate and higher output power. The power and bit-error rate (BER) on the receiver side are measured, which can be used to analyze the signal performance. To analyze the phase change in the turbulence chamber due to the refractive index change induced by turbulence, a Mach-Zehnder Interferometer with He-Ne laser at 632.8nm is developed. In the same weather conditions, the impact on THz in comparison with IR link is not equivalent due to the spectral dependence on atmospheric turbulence and rain. In the experiment, after THz (625 GHz) and IR (1.5 μm) beams propagate through the same condition, performance of both channels is analyzed and compared. Kolmogrov theory is employed to simulate the atmospheric turbulence which leads to attenuation of THz and IR signals. Mie scattering theory is employed to simulate the attenuation of THz and IR beams due to rain. Under identical turbulence conditions, THz links are superior to IR links. However, the performance of THz and IR links are comparable under identical rain conditions

    Signal processing techniques for mobile multimedia systems

    Get PDF
    Recent trends in wireless communication systems show a significant demand for the delivery of multimedia services and applications over mobile networks - mobile multimedia - like video telephony, multimedia messaging, mobile gaming, interactive and streaming video, etc. However, despite the ongoing development of key communication technologies that support these applications, the communication resources and bandwidth available to wireless/mobile radio systems are often severely limited. It is well known, that these bottlenecks are inherently due to the processing capabilities of mobile transmission systems, and the time-varying nature of wireless channel conditions and propagation environments. Therefore, new ways of processing and transmitting multimedia data over mobile radio channels have become essential which is the principal focus of this thesis. In this work, the performance and suitability of various signal processing techniques and transmission strategies in the application of multimedia data over wireless/mobile radio links are investigated. The proposed transmission systems for multimedia communication employ different data encoding schemes which include source coding in the wavelet domain, transmit diversity coding (space-time coding), and adaptive antenna beamforming (eigenbeamforming). By integrating these techniques into a robust communication system, the quality (SNR, etc) of multimedia signals received on mobile devices is maximised while mitigating the fast fading and multi-path effects of mobile channels. To support the transmission of high data-rate multimedia applications, a well known multi-carrier transmission technology known as Orthogonal Frequency Division Multiplexing (OFDM) has been implemented. As shown in this study, this results in significant performance gains when combined with other signal-processing techniques such as spa ce-time block coding (STBC). To optimise signal transmission, a novel unequal adaptive modulation scheme for the communication of multimedia data over MIMO-OFDM systems has been proposed. In this system, discrete wavelet transform/subband coding is used to compress data into their respective low-frequency and high-frequency components. Unlike traditional methods, however, data representing the low-frequency data are processed and modulated separately as they are more sensitive to the distortion effects of mobile radio channels. To make use of a desirable subchannel state, such that the quality (SNR) of the multimedia data recovered at the receiver is optimized, we employ a lookup matrix-adaptive bit and power allocation (LM-ABPA) algorithm. Apart from improving the spectral efficiency of OFDM, the modified LM-ABPA scheme, sorts and allocates subcarriers with the highest SNR to low-frequency data and the remaining to the least important data. To maintain a target system SNR, the LM-ABPA loading scheme assigns appropriate signal constella tion sizes and transmit power levels (modulation type) across all subcarriers and is adapted to the varying channel conditions such that the average system error-rate (SER/BER) is minimised. When configured for a constant data-rate load, simulation results show significant performance gains over non-adaptive systems. In addition to the above studies, the simulation framework developed in this work is applied to investigate the performance of other signal processing techniques for multimedia communication such as blind channel equalization, and to examine the effectiveness of a secure communication system based on a logistic chaotic generator (LCG) for chaos shift-keying (CSK)

    Constant Envelope Precoding for Large Antenna Arrays

    Get PDF
    5G, the new generation of mobile communications, is expected to provide huge improvements in spectral efficiency and energy efficiency. Specifically, it has been proven that the adoption of large antenna arrays is an efficient means to improve the system performance in both of these efficiency measures. For these reasons, the deployment of base stations with large amount of antennas has attracted a substantial amount of research interest over the recent years. However, when pure digital beamforming is pursued in large array system context, a large number of transmitter and receiver chains must also be implemented, increasing the complexity and costs of the deployment. In general, power consumption of the cellular network is recognized as a major concern. Radio transmitters tend to be really power hungry, especially because of the potential energy inefficiency of their power amplifiers. Due to the characteristics of the current and future waveforms utilized in wireless communications, power amplifiers need to work in a relatively linear regime in order not to distort the signal, making the energy efficiency of such highly linear amplifiers to be rather low. If power amplifiers were capable of working in the nonlinear regime without degrading system performance, their energy efficiency could be notably increased, resulting in considerable savings in energy, costs and system complexity. In this Thesis, the development and evaluation of a constant envelope spatial precoder is being addressed. The precoder is capable of generating a symbol-rate constant envelope signal, which despite pulse-shape filtering yields substantial robustness against the nonlinearities of power amplifiers. This facilitates pushing power amplifiers into heavily nonlinear regime, with the consequent increase in their energy efficiency. At the same time, the precoder is able to perform spatial beamforming processing in order to mitigate the multi-user interference due to spatial multiplexing. It is assumed that the number of antennas in the base station is much larger than the number of simultaneously scheduled users, implying that large-scale MU-MIMO scenarios are considered, which allows us to exploit the additional degrees of freedom to perform waveform shaping. For the sake of evaluating the proposed precoder performance, different metrics such as PAPR, BER, multi-user interference and beamforming gain are compared to those of currently used precoding techniques. The obtained results indicate that the studied constant-envelope precoder can facilitate running the PA units of the large-array system in heavily nonlinear region, without inducing substantial nonlinear distortion, while also simultaneously providing good spatial multiplexing and beamforming characteristics. These, in turn, then facilitate larger received SINRs for the scheduled users, and therefore larger system throughputs and a more efficient utilization of the power amplifiers

    Enhanced coding, clock recovery and detection for a magnetic credit card

    Get PDF
    Merged with duplicate record 10026.1/2299 on 03.04.2017 by CS (TIS)This thesis describes the background, investigation and construction of a system for storing data on the magnetic stripe of a standard three-inch plastic credit in: inch card. Investigation shows that the information storage limit within a 3.375 in by 0.11 in rectangle of the stripe is bounded to about 20 kBytes. Practical issues limit the data storage to around 300 Bytes with a low raw error rate: a four-fold density increase over the standard. Removal of the timing jitter (that is prob-' ably caused by the magnetic medium particle size) would increase the limit to 1500 Bytes with no other system changes. This is enough capacity for either a small digital passport photograph or a digitized signature: making it possible to remove printed versions from the surface of the card. To achieve even these modest gains has required the development of a new variable rate code that is more resilient to timing errors than other codes in its efficiency class. The tabulation of the effects of timing errors required the construction of a new code metric and self-recovering decoders. In addition, a new method of timing recovery, based on the signal 'snatches' has been invented to increase the rapidity with which a Bayesian decoder can track the changing velocity of a hand-swiped card. The timing recovery and Bayesian detector have been integrated into one computation (software) unit that is self-contained and can decode a general class of (d, k) constrained codes. Additionally, the unit has a signal truncation mechanism to alleviate some of the effects of non-linear distortion that are present when a magnetic card is read with a magneto-resistive magnetic sensor that has been driven beyond its bias magnetization. While the storage density is low and the total storage capacity is meagre in comparison with contemporary storage devices, the high density card may still have a niche role to play in society. Nevertheless, in the face of the Smart card its long term outlook is uncertain. However, several areas of coding and detection under short-duration extreme conditions have brought new decoding methods to light. The scope of these methods is not limited just to the credit card

    Proceedings of the Mobile Satellite Conference

    Get PDF
    A satellite-based mobile communications system provides voice and data communications to mobile users over a vast geographic area. The technical and service characteristics of mobile satellite systems (MSSs) are presented and form an in-depth view of the current MSS status at the system and subsystem levels. Major emphasis is placed on developments, current and future, in the following critical MSS technology areas: vehicle antennas, networking, modulation and coding, speech compression, channel characterization, space segment technology and MSS experiments. Also, the mobile satellite communications needs of government agencies are addressed, as is the MSS potential to fulfill them

    High speed energy efficient incoherent optical wireless communications

    Get PDF
    The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM

    Research Laboratory of Electronics quarterly progress report no. 84

    Get PDF
    Reports of research in general physics, plasma dynamics, and communication
    corecore