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Summary

Multiple-input multiple-output technology can provide many benefits and has been

investigated for various digital communication systems. In this thesis, we explore reduced-

complexity detection and channel estimation techniques to facilitate high-speed and

high-quality data reception in two different systems with the multiple-input multiple-

output technology. In Part I of the thesis, we concentrate on the development of

reduced-complexity detection techniques to facilitate high-speed implementation of the

two-dimensional optical storage (TwoDOS) system, which is expected to play a critical

role in the development of the 4th generation optical storage system. Moreover, though

the techniques we develop are for the TwoDOS system in which the bit-cells are arranged

in a hexagonal structure, most of them are applicable to any multi-track data storage

system with square or rectangular bit-cells. In Part II of the thesis, we study channel

estimation techniques for multiple-input multiple-output systems where prior knowledge

of the channel is not available. These channel estimation techniques perform noise fil-

tering in the angle domain, where the channel model lends itself to a simple physical

interpretation. To the best of our knowledge, this is the first work to systematically

investigate these angle-domain channel estimation techniques. Though the techniques

in this part are developed for multiple-input multiple-output orthogonal frequency divi-

sion multiplexing (MIMO-OFDM) systems, they are applicable to other multiple-input

multiple-output wireless communication systems as well.

In Part I of the thesis, we first present a channel model for the TwoDOS system in

the presence of additive noise, domain bloom and transition jitter. We also propose a

computationally efficient technique based on the 1D Hankel transform to simulate the

channel model. Further, we develop an approximated model to simplify the signal gener-

ation process for the TwoDOS system with additive noise, domain bloom and transition

jitter. The two-dimensional (2D) Viterbi detector (VD), which is the optimal 2D detec-

tor in the presence of additive white Gaussian noise, serves as the benchmark in terms of

performance. Therefore, we develop techniques to reduce the complexity of the 2D VD

in the temporal dimension in Chapter 3 and in the spatial dimension in Chapter 4 and

vi



Chapter 5. We also develop a novel 2D target optimization technique and design several

suitable targets to compensate for the detection performance loss due to the complexity

reduction in both temporal and spatial dimensions.

In Part II of the thesis, we develop channel estimation techniques in the angle do-

main, where the channel model lends itself to a simple physical interpretation. All

the angle-domain techniques proposed are flexible in implementation. They can either

use conventional array-domain estimators as the coarse estimators and perform post-

processing in the angle domain, or use the specifically designed pilots for the direct

implementation. The applicability of these angle-domain techniques is highly dependent

on the channel stochastic information (e.g. channel power or correlation) available to the

receiver. For the situation where no channel stochastic information is available to the

receiver, we develop the angle-frequency domain most significant taps (MST) selection

technique, angle-time domain MST selection technique and angle-time domain approx-

imated minimum mean square error (AMMSE) technique. For the situation where the

channel power is known, we develop the angle-time domain channel power based AMMSE

technique. For the situation where the channel correlation is known to the receiver, we

develop the quasi one-dimensional (Q1D) linear minimum mean square error (LMMSE)

technique that can further improve the performance. Our simulation results show that

the Q1D LMMSE technique can perform similar to the 2D LMMSE technique yet with

significantly lower complexity.
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Chapter 1

Introduction

1.1 Motivation

Multiple-input multiple-output technology can provide many benefits and has been in-

vestigated for various digital communication systems. For example, multi-track optical

storage systems with parallel read-out can increase the data rate and storage density

relative to single-track systems [44,103,135,156]. Wireless communication systems with

multiple transmit and receive antennas can increase the data rate and link reliability

relative to systems with single transmit and receive antennas [13,68,175–177]. The main

challenge in multiple-input multiple-output technology is the high computational com-

plexity and the associated hardware complexity. Against this background, the scope of

our research work in this thesis is the development of reduced-complexity signal process-

ing techniques to facilitate high-speed and high-quality data reception in systems with

multiple-input multiple-output technology.

Fig. 1.1 shows the main functional blocks that constitute a system with multiple-input

multiple-output technology. The figure includes references to the chapters in this thesis

that are devoted to each of the building blocks of the system. The blocks before and after

the channel and additive noise form the transmitter and receiver, respectively. As shown,

the input signal is first converted in the source encoder block into an efficient digital rep-

resentation so as to facilitate transmission or storage. Then, redundant information is

added to the source-encoded signal for the purpose of improving the resilience to errors

1
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Figure 1.1: Block diagram of a system with multiple-input multiple-output technology.

caused by the channel. The modulator maps the channel-encoded signal into waveforms.

This mapping operation may be followed by the modulation by a high-frequency car-

rier waveform. The modulated signal is now ready to pass through the channel by the

use of multiple transmit antennas or a multi-track recording process. Throughout this

thesis, the channel, which can represent the wireless propagation environment or storage

medium, is considered as a link between the transmitted and received signals without ad-

ditive noise. Usually, the channel is characterized by a set of coefficients, which are called

channel coefficients. The additive noise is modeled as an additional component. Then,

the signal is received by the multiple receive antennas or a parallel read-out configuration.

At the receiver, the equalizer block acts to completely or partially undo the distortions

caused by the channel. The detector block serves to make decisions on the signal from

the equalizer output. Some of the channel distortions may also be accounted for in the

detector block. Usually, the equalizer and detector blocks require knowledge of channel

coefficients. These coefficients are estimated in the channel estimator block. Finally, the
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detected signal is passed through the channel decoder and source decoder to yield the

output signal.

Fig. 1.1 correctly suggests that the receiver is, in general, more complex than the

transmitter, both conceptually and in terms of hardware. Therefore, in this thesis, we

focus on the design of reduced-complexity receivers for multiple-input multiple-output

systems. In particular, we consider the detector and channel estimator block in which

low-complexity and high-performance detection and estimation techniques, respectively,

are developed. Detection and estimation techniques are two important topics in statis-

tical signal processing for multiple-input multiple-output systems. Detection techniques

serve to extract data embedded in noisy observations. As a prerequisite, they often re-

quire the estimation of unknown parameters (e.g. channel coefficients). On the other

hand, estimation techniques serve to estimate unknown parameters from noisy observa-

tions, and often assume that detection-based preprocessing has been performed. There

is, therefore, a close relationship between detection and estimation techniques. For this

reason, we are concerned with both techniques in this thesis.

The techniques developed in this thesis pertain to two different systems: optical

storage and wireless communication systems. Optical storage systems tend to have well

defined channel characteristics because these characteristics are mainly defined by the op-

tical light path and the employed storage medium, which are both manufactured within

tight tolerances. For this reason, the channel estimation is comparatively unimportant

and bit detection is the more challenging task. The application we consider is the two-

dimensional optical storage (TwoDOS) system, which is a system using multiple-input

multiple-output technology that is expected to increase the storage density with a fac-

tor of 2 and data rate with a factor of 10 [44] compared with the current blu-ray disc

based third generation optical storage systems. As a background and basis of reference,

we sketch in Section 1.2 the historic development of optical storage technology and the

current state of the art in detection techniques for optical storage. On the other hand, in

wireless communication systems, the channel characteristics are not known a priori, and
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can vary greatly because a system placed in different environments may experience com-

pletely different fading behaviors. In this sense, the estimation of channel coefficients is

highly important in wireless communication systems. Therefore, we focus on developing

channel estimation techniques for wireless communication systems. The application we

consider is the multiple-input multiple-output orthogonal frequency division multiplexing

(MIMO-OFDM) system, which has been exploited in the current Institute of Electrical

and Electronics Engineers (IEEE) 802.11n wireless local area network (WLAN) stan-

dardization activities aiming to support data rates up to 540 Mb/s. As a background

and basis of reference, we sketch in Section 1.3 the historic development of WLAN tech-

nology and the state of the art in channel estimation techniques for WLAN systems.

1.1.1 Challenges in TwoDOS Systems

In response to the increasing demand for storage capacity, three successive generations of

optical storage systems have been developed, viz. 1) compact disc (CD), 2) digital versa-

tile disc (DVD), and 3) blu-ray disc (BD) and high density DVD (HD DVD), currently

competing with each other for wide adoption as the preferred third generation optical

storage standard [43, 91, 143, 151]. Even though each new generation offers significant

improvement in storage capacity, the growth rate of storage density in optical storage

systems lags behind that of magnetic storage systems, largely due to the comparatively

slow pace at which the wavelength of laser diodes and numerical aperture of laser lenses

have improved. The relatively slow pace of physical improvements in optical storage

systems motivates the use of advanced signal processing techniques to achieve further in-

crease in recording density. One promising example is the recently introduced TwoDOS

system [44]. Compared with conventional one-dimensional (1D) optical storage systems,

the track pitch in TwoDOS is noticeably reduced and this makes it possible to record at

much higher track density. This higher track density is realized by grouping a number

of adjacent tracks together with no intertrack spacing, and by using a guard-band as a

boundary between groups of tracks as shown in Fig. 1.2. Further, the capacity of the disc

is maximized by adopting hexagonal bit-cells instead of traditional square/rectangular
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bit-cells (which were used in [76,186]). Moreover, a higher data rate can be achieved by

the use of parallel read-out. Therefore, TwoDOS is a good example of a system with

multiple-input multiple-output technology. Even though the presence of a guard-band

between groups of tracks prevents interferences from adjacent groups, the elimination

of spacing between the tracks within the group results in severe intertrack interference

(ITI) from bits in the neighboring tracks. In the TwoDOS system, this ITI is even more

significant than the intersymbol interference (ISI), which is the main interference in con-

ventional 1D optical storage systems. For example, in Fig. 1.2, the nearest six bit-cells

and second nearest six bit-cells of the bit-cell 0 are marked as bit-cell 1 and bit-cell 2,

respectively. As the magnitudes of ISI and ITI are determined by the distances relative

to the bit-cell 0, the interferences from each bit-cell 1 (or bit-cell 2) are equal. Further,

compared to bit-cells 2, bit-cells 1 are closer to the bit-cell 0 and thus cause larger ISI/ITI.

As shown, among all the twelve interferences from bit-cells 1 and 2, only two are due to

ISI and all the remaining ten are due to ITI. Thus, the overall impact due to ITI is much

more on bit-cell 0 compared to that due to ISI. Therefore, it becomes very important to

develop powerful two-dimensional (2D) signal processing techniques instead of 1D signal

processing techniques to deal with ITI as well as ISI. However, because of the 2D nature

of the system, the intrinsic complexity of high-quality receivers tends to be too high to

permit cost-effective implementation at high data rates. Therefore, the scope of our re-

search work in the TwoDOS system is the development of reduced-complexity 2D signal

processing techniques to facilitate high-quality data reception at high data rates.

Early work on 2D detectors for data storage systems focused on the 2D decision

feedback equalizer (DFE) [77, 186] due to its simple implementation. The 2D DFE uses

the past decisions to remove ISI and ITI and thus increases the signal margin against

noise. A similar detector called the pseudodecision-feedback equalizer [114] uses an iter-

ative procedure, and uses the estimated neighboring bits from past iterations to remove

interferences. Compared with the 2D Viterbi detector (VD), which is the optimal 2D

detector in the presence of additive white Gaussian noise, these detectors only lead to

small detection performance losses for systems with relatively small ITI. Note that in the
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Figure 1.2: The TwoDOS format. The nearest six bit-cells and second nearest six bit-cells

of the bit-cell 0 are indexed as 1 and 2, respectively.

decision process, unlike the 2D VD, the 2D DFE and the 2D pseudodecision-feedback

equalizer ignore the signal energy available in ISI and ITI. For this reason, they suffer

significant performance loss relative to the 2D VD for storage systems that exhibit se-

vere ISI and ITI such as the TwoDOS system. For this reason, a great deal of attention

has been paid to 2D Viterbi-like detectors due to their good detection performance even

in the presence of severe ISI and ITI [93, 108, 171]. However, since the complexity of

a full-fledged 2D VD grows exponentially with the channel memory and the number of

tracks per group, the implementation of the full-fledged 2D VD is impractical for systems

with large number of tracks per group. Some techniques [44,84,116] have been proposed

to reduce the complexity of the full-fledged 2D VD. Nevertheless, there is still great

potential to further reduce the complexity without incurring considerable performance

degradation. Therefore, most techniques proposed in Part I of the thesis aim at the

development of simple detectors with good detection performance. We also note that

some work investigated the iterative detection techniques that stem from Turbo or LDPC

coding [33, 169, 192] to achieve additional performance gains. However, in view of their

even higher computational and storage complexity, these techniques are not considered

in this thesis.
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1.1.2 Challenges in MIMO-OFDM Systems

OFDM technology can deal with ISI caused by severe multipath effects and achieve a

high spectral efficiency. It is adopted in current wireless local area network products,

which have achieved great commercial success. The continuous demand for even higher

data rates motivates the research into high-data-rate extensions for wireless local area

networks. In January 2004, the IEEE set up a new task group aiming to develop the IEEE

802.11n standard. This standard is expected to support a data rate of 540 Mb/s, which

is 10 times higher than that in current wireless local area network systems. Multiple-

input multiple-out technology is commonly referred to as MIMO technology in wireless

communications. As MIMO technology can be used to achieve two objectives: spatial

diversity and space-division multiplexing, the IEEE 802.11n standard adopts MIMO-

OFDM technology in order to achieve complementary benefits from both the MIMO

and OFDM technologies. Note that coherent demodulation, which requires and utilizes

the knowledge of channel coefficients, can achieve a 3 dB performance gain compared

with differential demodulation [154]. Coherent demodulation is quite commonly used in

MIMO-OFDM systems. Therefore, accurate and robust channel estimation that permits

the coherent demodulation is very important in order to ensure reliable data recovery.

Early MIMO-OFDM channel estimation techniques treated channels as spatially un-

correlated (e.g. [17,168,174]) possibly due to the fact that early MIMO studies assumed

the channels to be spatially uncorrelated (e.g. [68, 175]). However, in many realistic

scenarios, the MIMO-OFDM channel tends to be spatially correlated, for example, due

to antenna spacing constraints and limited scattering [132,166,167]. Prior knowledge of

this spatial correlation in addition to frequency correlation can be exploited by using the

linear minimum mean square error technique [59, 133, 200]. However, the complexity of

the 2D linear minimum mean square error technique, which fully utilizes prior knowl-

edge of both the channel spatial and frequency correlation, is quite high. Further, prior

knowledge of the channel spatial and frequency correlation is not always available to the

receiver. The least squares technique circumvents this problem but provides much poorer

performance. Therefore, it is important to develop reduced-complexity, approximate lin-
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ear minimum mean square error channel estimation techniques that allow good trade-off

among performance, complexity, and availability of channel stochastic information (e.g.

channel correlation or power) for MIMO-OFDM systems.

1.2 Optical Storage Systems

1.2.1 Historical Overview

Early Optical Discs

Optical recording dates back to the late 1920s. In 1927, J. L. Baird demonstrated a

Phonevision system using a wax disc and an optical scanner [27]. In 1961, M. Minsky

introduced a scanning microscope with a resolving power that is comparable to the stan-

dard microscope [134]. In the early 1960s, the first video-disc recorder that records video

information on a standard audio long play disc was developed for the 3M-company at

the Stanford Research Institute [157]. However, after a few years, this research work was

abandoned largely due to the bad signal quality. In August 1973, the video long play

(VLP) disc system [49] was demonstrated by Philips. In 1975, several companies (Philips,

Thomson, Music Corporation of America), later joined by Pioneer, united to establish

a standard for the VLP system. Further research on the optical video disc (which was

later called the “laser disc”) system focused on increasing recording density [29].

CD System

The first big commercial breakthrough of optical storage systems was the CD system,

which has a storage capacity of 650 MB and turns out to be simpler and more robust

than its video signal predecessor [151]. The CD standard was established in 1980 by

Philips and Sony. For a long period, the application of the CD system was restricted to

the digital audio domain. Though a read-only digital data storage system was defined

in 1985, the lack of an installed base of drives and the lack of sophisticated software to

retrieve the information from the disc in a meaningful and convenient fashion deferred
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its application as a useful computer peripheral, until about 8 to 10 years after the intro-

duction of the audio CD.

DVD System

The DVD system [91] has a storage capacity of 4.7 GB and was introduced in 1994.

Initially, there existed two competing formats: super disc and multimedia CD. For a

time, it seemed that the battle between these two formats would completely halt the

development of the DVD system. But the quickly developing market of video CD sped

up the cessation of the battle, and a single standard was finally agreed upon by both

camps. The DVD system offers 7 times higher capacity than the CD system. As a re-

sult, MPEG2 video information and super-audio signals can be recorded on this medium.

Because of the high-quality image and simple interactive functions, DVD-Video gained

very quick acceptance from customers.

BD and HD-DVD Systems

BD [43, 143] is the name of the optical storage system jointly developed by 13 leading

companies. The BD system has a storage capacity of 25 GB and was developed to enable

recording, rewriting and playback of high-definition television. BD is also expected to

create an expanded interactive environment as well as broadband content service func-

tions [117]. Compared to the DVD system, the main physical improvement in the BD

system lies in the use of a blue laser with wavelength 405 nm instead of a red laser with

wavelength 650 nm, and the use of a lens with high numerical aperture (NA=0.85 instead

of NA=0.60) [43]. The primary rival to BD is the high density DVD (HD DVD), which

also uses a blue laser with wavelength 405 nm. HD DVD has a lower theoretical stor-

age capacity (15 GB), but currently benefits from lower manufacturing costs. Though

BD and HD DVD are currently competing with each other for wide adoption as the

preferred third generation optical storage standard, it is clear that the third generation

optical storage standard will adopt the blue laser to replace the red laser, which is used
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in the second generation optical storage standard.

1.2.2 Detection in Optical Storage Systems

Because the interferences and distortions become more severe with increase in optical

recording density, more sophisticated and complicated detection techniques have been

developed to ensure reliable data recovery. In this subsection, various conventional de-

tection techniques for optical storage systems are reviewed, as a basis of reference for the

2D detection techniques developed in this thesis.

We start by introducing runlength-limited (RLL) codes, which are the most popularly

used channel codes in optical storage systems. These codes have played an important role

to facilitate the design of detection techniques. RLL codes emerged in the 1960s [20,71].

They are characterized by two parameters, (d + 1) and (k + 1), which characterize the

minimum and maximum number of channel bits, respectively, between consecutive tran-

sitions. The parameter d controls the minimum spacing between transitions on the

medium and thus can alleviate the linear and nonlinear interactions among the data bits

recorded on the optical medium. It also helps to reduce the complexity in detectors by

precluding certain states and transitions [25, 71]. The parameter k limits the maximum

transition spacing, which ensures that the control loops (e.g. timing, gain and equaliza-

tion) can update frequently enough so that the loops are maintained in good condition.

The parameter k also helps to reduce the path memory requirement as well as to avoid

certain catastrophic error events in Viterbi-like detectors [188]. The redundancy intro-

duced by the (d, k) constraints is measured by the code rate R = p/q, which specifies

that groups of p data bits at the encoder input are translated into groups of q data bits

at its output, with q ≥ p. The basis on which d and k values are chosen depends on

various factors such as the physical channel, desired data rate, electronics, and media

noise characteristics. In practical recording systems, d is restricted to 0, 1 or 2, and k

lies between 2 and 10. Current standards use the EFM code (R = 8/17, d = 2, k = 10),

EFMPlus code (R = 8/16, d = 2, k = 10) and 17PP code (R = 2/3, d = 1, k = 7) for
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CD, DVD and BD, respectively [101, 102, 143].

Bit Detectors

Bit detectors make bit decisions based on single samples of the received signal. They are

commonly used in CD and DVD largely due to their simple implementation and good

detection performance when combined with RLL codes [58, 79, 104, 131, 142, 153]. The

simplest bit detector is the threshold detector (TD) that only detects whether each sam-

ple of received signal crosses a threshold value. Intuitively, the full response equalization

technique, which shapes the channel into an equalized channel free of ISI through a suit-

able filter called the equalizer, would seem adequate for this detector design. However,

the full response equalizer causes the noise to be enhanced seriously in the frequency

regions where the channel frequency response is small [24]. Since optical recording chan-

nels do not pass high-frequency components, this technique is not commonly used. The

noise enhancement problem in the full response equalization technique can be largely

avoided by the partial response (PR) equalization technique, which shapes the channel

into a known target with controlled ISI [39]. A good match of the channel and tar-

get results in minimizing the noise enhancement. For uncoded channel input data, the

target will introduce destructive ISI that is undesirable for the TD. But for the RLL

coded data input with (d, k) constraints, if the target is symmetric with a length of

2d + 1 and has monotonically decreasing positive values on either side (sufficient but

not necessary condition), all the ISI induced by the target becomes constructive and can

be utilized to improve the detection performance of the TD [79]. However, when the

target length exceeds 2d+1, a part of the ISI induced by the target becomes destructive.

For this reason, Gopalaswamy et al. [79] utilized the TD and proposed a simple post-

processing technique to suppress the destructive ISI components for d = 2 modulated

optical recording channels. For d = 1 optical recording channels, a runlength detector

(RD) was proposed to detect and correct the dominant error event of the TD, i.e. the

d = 1 violations [58, 142]. Later, the missing-run detector (MRD) was proposed to also

detect double bit errors [153]. It is used in cascade to the RD since the double bit-error
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is the dominant error event of the RD. The latest bit-by-bit detector is the “maximum-

likelihood (ML) transition detector” [31]. The main idea behind this detector is using

ML detection in the cases where the TD/RD/MRD are likely to be in error, while using

threshold detection in the cases where the TD/RD/MRD are likely to be correct. It can

be used to replace the RD/MRD, or as an additional post-processor after the RD/MRD

to tackle the remaining error events.

Sequence Detectors

Unlike bit detectors whose bit decisions are each based on a single signal sample, sequence

detectors make each decision based on a sequence of signal samples. The Viterbi detector

(VD) belongs to the category of sequence detectors, and is widely used in magnetic stor-

age systems because of its good detection performance. However, due to its relatively

large complexity compared to bit-by-bit detectors, the VD was not a part of optical

data storage systems until recently. Since the ISI gets more severe as the recording den-

sity increases such that the bit detection is hardly viable, the VD begins to replace bit

detectors in the BD system and will be widely used in future optical storage systems [120].

In current magnetic and optical storage systems, the VD is used in combination with

the PR equalization technique [39]. As discussed earlier, PR equalization shapes the

channel into a known target with controlled ISI, which is left to be handled by a detector.

A good match of the channel and the PR target results in minimizing the noise enhance-

ment. After PR equalization, the noiseless input of the VD is d(n) =
∑Ng−1

i=0 gia(n − i),

where gi (i = 0, 1, · · · , Ng − 1) represent the coefficients of the PR target whose length

is Ng, and a(n) is the channel input bit at time index n. The VD is based on a concise

and convenient state transition diagram called the trellis diagram for the data detection

in the presence of controlled ISI [67]. For example, the trellis diagram corresponding

to a 1D system with target length Ng equal to 3 is shown in Fig. 1.3, where the ‘+’

and ‘−’ represent the bits ‘+1’ and ‘−1’, respectively. Here the trellis is assumed to

start at the node S0, and then becomes steady at instant n = 3 (i.e. n = Ng). The
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nodes in the diagram are called states. The directed transitions between the nodes are

called branches. Each branch corresponds to a particular state transition at a particular

time. A sequence of branches through the trellis diagram is referred to as a path. Each

possible path corresponds to one input sequence and vice versa. Further, the labels (e.g.

−−,−+,+−,++) of the states represent the channel memory that is associated with

the paths that pass through these states. At time index n, each state consists of Ng − 1

bits (i.e. {ă(n − 1), ă(n − 2), · · · , ă(n − Ng + 1)}). Thus, at each time index, the trellis

contains 2Ng−1 states. At time index n, each branch specifies the channel memory as-

sociated with the state that the branch originates from and the possible channel input

bit ă(n). Therefore, each branch corresponds to one possible noiseless detector input

d(n) =
∑Ng−1

i=0 giă(n − i). For the binary channel input bit, each state possesses two

incoming and two outgoing branches and thus there are totally 2Ng incoming branches

and 2Ng outgoing branches at each time index of the trellis.
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Figure 1.3: Trellis structure for a 1D channel with Ng = 3.

As shown in [24], searching the smallest Euclidian distance between the detector

input z(n) and the desired noiseless detector input d(n) is optimum in the ML sense

when the noise component of the detector input is white and Gaussian. Thus, we define

the Euclidian distance [z(n) − d(n)]2 as the branch metric for each branch, and the
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summation of the branch metrics associated with each path is called the path metric.

Since the VD performs ML detection based on a sequence of signal samples, it chooses

the path whose path metric is minimum as the most likely transmitted sequence. More

specifically, the VD operates recursively as follows [67]:

1. Initial condition: At the end of (n − 1)th step, each state of the trellis retains

one surviving data sequence called the survivor path.

2. Path extension: The survivor path of each state is extended by the branches

emanating from the state. Then, at the nth step, each state possesses at least one

incoming branch.

3. Path selection: After computing all path metrics for the extended paths, for each

state we select the incoming path that has the smallest path metric and discards all

the other paths associated with this state. These selected paths serve as surviving

paths for the next iteration.

The above recursive procedure continues until the final instant. Then, among the

total 2Ng survivor paths, the survivor path that is associated with the minimum survivor

metric is chosen as the detected sequence of channel input bits. However, for a long

sequence of bits, this technique may result in a prohibitively large path memory. In

practice, at any instant n, the survivor path corresponding to each state would converge

to a single path for time instants less than or equal to n − KNg for a sufficiently large

positive integer K. Therefore, it is common to modify the VD by making a bit decision

at time n for the bit at time n−KNg. More specifically, at a certain time instant n, the

“truncated” path memory stores the paths that consist of only the previous KNg bits.

The detector compares all the “truncated” path metrics for these 2Ng “truncated” paths,

and chooses the path that has the smallest path metrics. The bit associated with this

path at time index n−KNg is released as the detected bit for the time n−KNg, and will

not be stored in the path memory any more. Since the path memory is greatly truncated,

this modification is widely used in the practical implementation [119]. Usually, a value

of K in the order of 6 to 32 suffices.
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For multi-track data storage systems, 2D Viterbi-like detectors are needed to deal

with severe ISI and ITI [93,108,171]. However, the complexity of these detectors is very

high and must be reduced for a practical implementation. As the complexity of Viterbi-

like detectors mainly depends on the number of states, merging some states into one

superstate is a possible solution to reduce the complexity. This state merging technique

has been investigated in 1D Viterbi-like detectors [25,46,116]. However, it may not suffice

for 2D Viterbi-like detectors because of the even larger number of states. Therefore, in

this thesis, we develop novel techniques that are more effective to reduce the complexity

of 2D Viterbi-like detectors.

Some Viterbi-like detectors modify the branch metrics to outperform the tradi-

tional VD for the cases when the system has time-dependent and/or correlated in-

put [47, 109, 199]. However, in view of their even higher computational and storage

complexity, these techniques are not considered in this thesis.

1.3 Wireless Local Area Network Systems

A wireless local area network (WLAN) uses radio frequency (RF) technology or infrared

light to transmit data mainly in indoor environments. The WLAN provides all the

features and benefits of traditional wired local areal network (LAN) yet with greatly

increased freedom and flexibility. It is becoming more and more popular, especially

with the rapid emergence of portable devices such as personal digital assistants (PDAs)

and laptops. Currently, there exist three major types of WLAN standards: IEEE 802.11

standards [6], European Telecommunication Standard Institute (ETSI) high performance

radio local area network (HIPERLAN) standards [3], and Japanese multimedia mobile

access communication (MMAC) standards [9]. Because of the large similarities between

these standards, the latter two standards will not be discussed in this thesis.
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1.3.1 Historical Overview

900 MHz Band WLAN

Introduced in the early 1990s, the first generation wireless local area network (WLAN)

systems operated in the unlicensed 900 MHz to 928 MHz industrial scientific and med-

ical (ISM) band can support data rates up to 500 Kb/s. These systems can achieve

greatly increased freedom and flexibility compared to the LAN systems. However, the

900 MHz to 928 MHz ISM band is too crowded with other wireless communication sys-

tems. Therefore, the first generation WLAN systems does not perform well because of

strong interferences coming from other wireless communication systems.

2.4 GHz Band WLAN

Continuously increasing demand for higher bit rates spurred the development of WLAN

systems operating in the 2.40 GHz to 2.483 GHz ISM band. In 1997, the original IEEE

802.11 standard that supports data rates up to 2 Mb/s became available [5]. A weak-

ness of this original standard is that it offers so much flexibility that the compatibility

between products from different companies is hard to realize. Thus, this standard was

later supplemented into the IEEE 802.11b standard in 1999. This extended standard

can achieve data rates up to 11 Mb/s by the use of complementary code keying (CCK),

which enables the coded data to be reliably detected even in the presence of strong noise

and multipath interferences [7]. It is the first widely accepted WLAN standard that pro-

vides data rates comparable to wired LANs. Unlike the above two standards that utilize

spread spectrum modulation techniques, the IEEE 802.11g standard utilizes the OFDM

technology to achieve further enhanced data rates [8]. The IEEE 802.11g standard can

support data rates up to 54 Mb/s and is backward compatible with 802.11b WLAN

systems. However, 2.4 GHz band WLAN systems still suffer from many interferences

coming from microwave ovens, cordless telephones, Bluetooth devices, and other wireless

communication systems. For more information on these standards, we refer to [16] for a

general review.
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5 GHz Band WLAN

In 1997, the Federal Communications Commission (FCC) allocated unlicensed spectrum

in the ISM bands of 5.150 GHz to 5.350 GHz and 5.725 GHz to 5.825 GHz. Unlike the

bands employed by previous standards, these newly opened unlicensed national informa-

tion infrastructure (UNII) bands does not contain many potential unwanted interferences

to WLAN systems. The IEEE 802.11a standard with a maximum data rate of 54 Mb/s

operates in this band [6]. However, 5 GHz band WLAN systems are more suitable for

short-range transmission since signals at this higher carrier frequency band are attenu-

ated more during the transmission compared to the above two lower carrier frequency

bands.

1.3.2 Channel Estimation in WLAN Systems

As coherent demodulation, which requires and utilizes the knowledge of channel coefficients,

can achieve a 3 dB performance gain compared with differential demodulation [154], it is

quite commonly adopted in WLAN systems. Therefore, accurate and robust channel es-

timation that permits the realization of coherent demodulation is very important in order

to ensure reliable data recovery. In this subsection, we will give a brief overview of chan-

nel estimation techniques for OFDM systems because the current two most important

WLAN standards, viz. the IEEE 802.11a and 802.11g standards, are both OFDM-based.

The reason for choosing OFDM is its capability to deal with ISI caused by severe multi-

path effects, and the high spectral efficiency afforded by allowing overlapping subcarriers.

We will not cover channel estimation techniques for time-varying scenarios in this thesis

as WLAN systems are usually deployed in indoor environments where the channel can be

assumed to be time-invariant. The purpose of this subsection is to review various existing

channel estimation techniques for OFDM systems and provide a systematic summary of

research activities in this area.
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Pilot-Aided Channel Estimation

Known transmitted signals that are used for channel estimation are referred to as pilots in

this thesis. Channel estimation techniques that utilize these pilots and the corresponding

received signals are referred to as pilot-aided channel estimation techniques [48]. Gen-

erally speaking, pilot-aided channel estimation is based on either least squares (LS) [19]

or linear minimum mean square error (LMMSE) techniques [57, 124]. The essential dif-

ference between these two types of techniques is that the channel coefficients are treated

as deterministic but unknown constants in the former, and as random variables of a

stochastic process in the latter. Compared with LS-based techniques, LMMSE-based

techniques yield better performance because they additionally exploit (and hence re-

quire) prior knowledge of the channel correlation. However, the channel correlation is

sometimes not a priori known, which then makes LMMSE-based techniques infeasible.

Further, the complexity of LMMSE-based techniques is normally higher than that of

LS-based techniques.

In OFDM systems, we can divide the pilot-aided channel estimation techniques into

three categories: frequency-domain techniques, time-domain techniques, and discrete

Fourier transform (DFT)-based techniques.

• Frequency-domain techniques treat the frequency-domain channel coefficients as

the parameters to be estimated. They are the most straightforward techniques be-

cause the knowledge of frequency-domain channel coefficients is ultimately required

to permit coherent demodulation. However, the frequency-domain LS technique

gives the poorest performance, and the frequency-domain LMMSE technique has

the highest complexity, among all the pilot-aided techniques discussed here.

• Time-domain techniques treat the time-domain channel coefficients as the parame-

ters to be estimated and the estimated time-domain channel coefficients are finally

transformed into the frequency-domain ones.

– The time-domain LS-based technique is commonly referred to as the time-

domain maximum likelihood (ML) technique [52] and it always performs bet-
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ter than the frequency-domain LS technique. This is because a portion of noise

is implicitly ignored, resulting from the fact that fewer channel coefficients are

required to be estimated in the time domain.

– The time-domain LMMSE technique usually has much lower complexity com-

pared to the frequency-domain LMMSE technique because the number of

time-domain channel coefficients is usually much smaller than that of the

frequency-domain. Further, the time-domain LMMSE technique can achieve

the same performance as the frequency-domain LMMSE technique because

the channel correlations in the time domain and frequency domain are inter-

changeable.

A disadvantage of both the time-domain ML and LMMSE techniques is the re-

quirement of prior knowledge of the channel length.

• DFT-based techniques treat the frequency-domain channel coefficients as the pa-

rameters to be estimated. This is their main difference from time-domain tech-

niques. Unlike frequency-domain techniques that also treat the frequency-domain

channel coefficients as the parameters to be estimated, DFT-based techniques

transform the estimated channel coefficients from the frequency domain to the

time domain, where the noise filtering process is performed, and finally back to

the frequency domain by the use of inverse DFT (IDFT) and DFT operations,

respectively. By assuming that the temporal span of the channel is concentrated

over a small number of coefficients, the noise in the coefficients beyond the channel

length is removed in the time domain and this results in a performance improve-

ment. DFT-based techniques do not require prior knowledge of the channel length

(but estimate the channel length as a part of the estimation procedure), and have

been widely used in OFDM systems because of the good trade-off between perfor-

mance and complexity [19, 56].
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Decision-Directed Channel Estimation

A possible way to solve the spectral efficiency loss problem in pilot-aided techniques

involves the use of decision directed (DD) techniques [69]. The principle of these tech-

niques is to utilize the already detected channel input bits from a coarsely estimated

channel to update the channel estimation. The main drawback of DD techniques is the

widely known error prorogation problem whose effect will increase with the size of the

signal constellation. This problem can be alleviated by the use of detected data symbols

that are already corrected with the use of the error correction codes (ECC), at the cost

of introducing some delays in the updating process. In fact, the principles of DD tech-

niques and pilot-aided techniques are not distinctive since they both utilize the known

(or already detected) channel input bits to assist the channel estimation. In this sense,

we will not treat them separately in this thesis and both techniques are referred to as

pilot-aided channel estimation techniques.

Blind Channel Estimation

Blind channel estimation techniques [53,83] utilize the received signals and the stochastic

information (e.g. second order statistics) of transmitted and received signals, to estimate

the channel coefficients. Compared with pilot-aided techniques, blind techniques save on

the use of pilots and can thus increase the spectral efficiency. However, blind techniques

require prior knowledge of stochastic information of the transmitted and received signals.

Further, they always result in poorer performance compared with pilot-aided techniques.

The concept of “blind” estimation/equalization techniques was first introduced in the

seminal work of Sato [161] for the linear adaptive equalizer. Ever since, the blind equaliza-

tion problem has received great attention [22,23,75,107,152,181]. Initially, blind channel

estimation techniques were based on higher order statistics [54, 70, 74, 146, 165, 184] to

estimate single-input single-output (SISO) channels. These techniques require a large

number of data samples to estimate the higher order statistics and thus result in high

computational complexity. The recognition that phase information can be extracted
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based on the cyclostationary properties of single-input multiple-output (SIMO) [178] or

oversampled systems [179] motivates blind channel estimation techniques based on sec-

ond order statistics [127, 180]. In OFDM systems, the cyclostationarity introduced by

the cyclic prefix, which is a repeat of the end of the OFDM symbol at the beginning

of each symbol, can also be exploited to replace the cyclostationarity in SIMO or over-

sampled systems [85]. Note that blind techniques always identify the channel up to a

scalar ambiguity. Therefore, some pilots are exploited to remove this ambiguity. More-

over, pilots can be used to increase the convergence rate of blind channel estimation

techniques. The corresponding techniques are referred to as semi-blind techniques and

were originally proposed in [149]. In general, blind techniques in OFDM systems that

utilize the cyclostationarity either from SIMO/oversampled outputs or the cyclic prefix

can be divided into the following four categories.

• Noise Subspace Techniques: These techniques exploit the low-rank structure of the

autocorrelation of received signals by dividing the column space of the received

vectors into signal and noise subspaces [139]. Due to the orthogonality of signal

and noise subspaces, the channel coefficients can be estimated in a closed form by

minimizing a quadratic cost function with certain constraints on the channel. Noise

subspace techniques that utilize the cyclostationarity from SIMO/oversampled out-

puts can be found in [14,159], and those that utilize the cyclic prefix can be found

in [30,85,98,141]. The main advantage of the noise subspace techniques is the closed

form solution for channel estimation. However, they are relatively computationally

complex because they make use of eigenvalue decomposition.

• Cross-Relation based Techniques: Unlike noise subspace techniques, the cross-

relation based techniques do not require the stochastic information of channel in-

put signals and thus impose relaxed requirements on the channel input signals (e.g.

short input data sequences). They are based on the fact that for a noiseless SIMO

system, all the subchannel outputs can be matched pairwise so that Nr(Nr − 1)/2

zero outputs are obtained, where Nr is the number of receive antennas. Note that

these techniques cannot utilize the cyclostationarity introduced by the cyclic prefix

and are thus only applicable in SIMO/oversampled OFDM systems [189]. However
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the assumption of a noiseless SIMO system limits the application. Moreover, the

use of receiver diversity (or oversampling) increases the complexity of the receiver.

• Autocorrelation based Techniques: These techniques are based only on the au-

tocorrelation matrix of the received OFDM symbols [86, 140]. The “direct based

technique” that directly utilizes part of the first column of estimated autocorrela-

tion matrix is the simplest technique in this category [140]. Its performance can be

improved by the “Cholesky decomposition based technique” that exploits a larger

portion (i.e. one submatrix) of the estimated autocorrelation matrix [140]. To fur-

ther improve the performance, a “switch based technique” that performs average

processing in the submatrices of the estimated autocorrelation matrix is proposed

in [86]. Note that the AWGN only affects diagonal elements of the autocorrelation

matrix. As these diagonal elements are not utilized for estimation, the autocorre-

lation based techniques are robust to AWGN. However, the performance of these

techniques is highly dependent on the accuracy of the estimated autocorrelation

matrix. Further, the frequency-domain channel input signals are assumed to be

independent and identically distributed. Therefore, application of these autocorre-

lation based techniques is quite limited.

• Maximum Likelihood (ML) based Techniques: These techniques jointly detect the

channel input signals and estimate the channel [144]. The main advantage is the

ability to estimate the channel from only a single received symbol in the SISO-

OFDM system. However, the main problem of these techniques is the large com-

putational complexity required for the identification of both the channel input

signals and channel coefficients.

1.3.3 Angle-Domain MIMO Channels

The previous subsection has introduced existing channel estimation techniques for OFDM

systems. In this subsection, we introduce the angle domain, which motives the develop-

ment of our novel channel estimation techniques to be discussed in Part II of the thesis.

A typical MIMO channel is conceived as the unique link between the transmitted and
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Figure 1.4: A schematic angle-domain representation of MIMO channel with 4 transmit

and 4 receive antennas.

noiseless received signals, and referred to as the array-domain channel. Almost all the

previous channel estimation techniques are developed for estimating this array-domain

channel (e.g. [17, 168, 173]). However, the channel matrices defined in the array domain

may not be the right level of abstraction from the view of design and analysis of spatially

correlated MIMO systems. For example, the capacity of MIMO systems is assessed by

looking first at the rank, and then the condition number of channel matrices in the array

domain. However, this capacity assessment is not straightforward and one may want to

abstract the channel matrices into a high level in terms of spatially resolvable paths [182].

The angle-domain representation of MIMO channels is based on the this idea and uses

beamforming patterns with different main lobes to characterize the physical propagation

environment [162, 182]. For a MIMO system with Nt transmit and Nr receive anten-

nas, the beamforming patterns have Nt transmit lobes and Nr receive lobes. A pair

of transmit and receive lobes forms one angle-domain bin and thus the angle domain

is partitioned into (Nt × Nr) angle-domain bins. For example, as shown in Fig. 1.4,

the transmit lobe 0 together with receive lobe 0 corresponds to the angle-domain bin

(0, 0). Then, multiple unresolvable physical paths (e.g. path 1 and 2) that occur in the

angle-domain bin (0, 0) can be approximately aggregated into one resolvable path, and

the paths from other directions (e.g. path 3 and path 4) will have little effect on this
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resolvable path because they originate or end at other lobes. Consequently, different

physical paths approximately contribute to different angle-domain bins, and the channel

coefficients in different angle-domain bins can be assumed to be approximately spatially

uncorrelated. Further, when some angle-domain bins contain few physical paths due to

limited scattering, the corresponding channel coefficients should approach zero. Based

on these two special properties for the angle-domain channel coefficients, we focus on

developing several novel angle-domain channel estimation techniques for MIMO-OFDM

systems. To the best of our knowledge, this is the first work to systematically investigate

angle-domain channel estimation techniques.

1.4 Organization of the Thesis

This thesis is divided into two parts. In Part I, from Chapter 2 to Chapter 5, we concen-

trate on the TwoDOS system where the reduced-complexity detector design is the main

concern. In Part II, from Chapter 6 to Chapter 9, we focus on MIMO-OFDM systems

where the reduced-complexity channel estimator design is of particular interest. The

relationships within the two parts are indicated by filled arrows in Fig. 1.5. Though the

treatments in these two parts are self-contained, the parts are related, as indicated by

the hollow arrows. First, the TwoDOS system and MIMO-OFDM system share the same

block diagram as shown in Fig. 1.1. The source coder/decoder, channel coder/decoder,

equalizer, and detector blocks have similar functions in both systems. Thus, most of tech-

niques employed in one system are in principle applicable in the other system. Second,

between the detection and estimation techniques, there exists a symbiotic relationship as

discussed earlier. Further, as both the detection and estimation techniques belong to the

category of statistical signal processing techniques, they have many points in common.

For example, the mean square error is one of the most important performance measures

in both techniques.

Chapter 2 describes the modeling of the TwoDOS system. It develops an easily com-

putable 2D symbol response model by using the 1D Hankel transform technique in the
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Figure 1.5: Structure of the thesis.

presence of domain bloom and/or transition jitter. Finally, an approximate model for

the domain bloom and transition jitter is developed.

Chapter 3 presents prefiltering techniques to reduce the complexity of the 2D VD.

First, for a given target, we design a general 2D minimum mean square error (MMSE)

equalizer. Next, we jointly design the equalizer and target based on the MMSE tech-

nique. Then, we propose a novel technique which converts the 2D target design problem

into a 1D problem. Also, a computationally efficient analytical technique is developed

to evaluate the detection performance for different targets.

Chapter 4 introduces a new target that is constrained to have the causal ITI. Based

on this target, we develop a quasi-1D VD that can noticeably reduce the complexity of

full-fledged 2D VD. The performance of this newly proposed detector is simulated and

the factors that degrade its performance are also investigated.

Chapter 5 develops a new detector called FDTS/DF-VD. The full-fledged 2D VD

and quasi-1D VD are its special cases. Then, the reduced-complexity FDTS/DF-VD

(RFDTS/DF-VD) with negligible performance loss is presented. In addition, several

new targets suitable for the FDTS/DF-VD and RFDTS/DF-VD are proposed.
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Chapter 6 provides technical background on pilot-aided channel estimation tech-

niques for OFDM systems. It introduces the basic concepts of OFDM systems and gives

an overview of existing channel estimation techniques.

Chapter 7 represents MIMO-OFDM systems in the angle domain, which inspires our

work for the development of MIMO-OFDM channel estimation techniques. Additionally,

we address pilot design techniques that facilitate direct implementation of angle-domain

channel estimation techniques.

Chapter 8 proposes channel instantaneous power based angle-domain channel esti-

mation techniques that are applicable when the channel stochastic information is not

available to the receiver. Two types of techniques, viz. the most significant taps se-

lection and channel instantaneous power based approximated LMMSE techniques, are

described. A unified approach is also developed to analyze the performance of these

techniques.

Chapter 9 develops several reduced-complexity, suboptimal, approximated LMMSE-

based channel estimation techniques in the angle domain. Their performances and com-

plexity are also analyzed in this chapter.

Chapter 10 draws conclusions and points out relevant areas for future research.

1.5 Major Contributions of the Thesis

We explore reduced-complexity signal processing techniques for two different multiple-

input multiple-output systems in this thesis. In Part I of the thesis, we concentrate on

the development of reduced-complexity detection techniques for the TwoDOS system.

Though this work is of special interest to the TwoDOS system whose bit-cells are ar-

ranged in a hexagonal structure, most of our proposals can also be applied to data storage

systems with square or rectangular bit-cells. In Part II of the thesis, we focus on the
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design of reduced-complexity channel estimation techniques for MIMO-OFDM systems.

These techniques perform noise filtering in the angle domain, where the channel model

lends itself to a physical interpretation. The proposed angle-domain estimation tech-

niques are not restricted to MIMO-OFDM systems and are applicable to other MIMO

wireless communication systems as well.

In Part I of the thesis, we develop several novel techniques to ensure the high-speed

implementation of the TwoDOS system. The main contributions are as follows.

• We present a linear channel model which incorporates the linear pulse modulator

for the TwoDOS system. Though this linear channel model is constructed solely

from a signal processing point of view, it reflects physical reality since we show that

it is consistent with the linear part of the physical channel model constructed by

Coene [45] based on the scalar diffraction theory. Further, we modify the channel

model to include domain bloom and transition jitter.

• We use the 1D Hankel transform to develop a computationally simple technique

for generating received signals in the presence of additive noise, domain bloom and

transition jitter. The computational advantage resulting from the use of the Hankel

transform instead of the 2D Fourier transform is shown to be quite significant.

• We develop an approximated model for domain bloom and transition jitter to

simplify the received signal generation process for the TwoDOS system. This is

very important for doing simulation studies over a large number of data bits since

the channel matrix recomputation, which has a large computational complexity at

each time index, is avoided during the received signal generation process.

• We design a general 2D MMSE equalizer, for a given 2D target, for the TwoDOS

system. This equalizer is much more widely applicable than the one of [156] in

that it can deal with correlated data, colored additive noise, domain bloom, and

transition jitter.

• We propose a novel technique that can be used for any 2D target design by convert-

ing the 2D target design problem into a 1D problem. In particular, this technique
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can significantly reduce the computational complexity for the design of symmetric

constrained targets.

• We present a theoretical framework for the analysis of 2D equalizer, target and

VD for the TwoDOS system. Moreover, based on a reasonable approximation, we

noticeably reduce the computational complexity of the performance analysis.

• We develop a novel quasi-1D VD by constraining the target to have causal ITI. This

quasi-1D VD uses a computationally efficient technique whose complexity grows

only linearly with the number of tracks. We also analyze factors that degrade the

performance of this detector.

• We propose a generalized 2D VD called the FDTS/DF-VD. The conventional 2D

full-fledged VD, QR detector, and our proposed quasi-1D VD are all special cases of

this detector. The reduced-complexity FDTS/DF-VD, which results in negligible

performance loss relative to the full-complexity FDTS/DF-VD, is also developed.

Additionally, several novel targets that are specific for this type of detector are

addressed. Our simulation results indicate that by judiciously choosing the target

and number of tracks under consideration in the FDTS/DF-VD, we can develop

a reduced-complexity 2D Viterbi-like detector that facilitates the high-speed Two-

DOS implementation without paying a large penalty in detection performance.

In Part II of the thesis, to the best of our knowledge, we are the first to systematically

investigate channel estimation techniques in the angle domain. The proposed angle-

domain techniques can achieve significant complexity reduction compared to the 2D

LMMSE technique, which is seen as the optimum estimation technique in MIMO-OFDM

systems, while maintaining good estimation performance. The main contributions are

as follows:

• We develop channel instantaneous power based angle-domain channel estimation

techniques for MIMO-OFDM systems. In particular, we classify the angle domain

in MIMO-OFDM systems as the angle-time and angle-frequency domain. We in-
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vestigate estimation techniques for both these domains and find that the proposed

techniques perform especially well in the angle-time domain.

• We propose a unified approach to analyze the performance of channel instanta-

neous power based angle-domain channel estimation techniques in terms of mean

square error (MSE). Based on this approach, we develop a simple way to compare

the performances of different channel instantaneous power based angle-domain es-

timation techniques with the help of the first derivative test [11]. We show that

setting the threshold to be two times the noise variance suffices for the channel

instantaneous power based angle-domain channel estimation techniques to perform

better than the conventional LS technique at each signal-to-noise ratio (SNR) for

various IEEE 802.11 TGn channel models.

• We develop reduced-complexity LMMSE-based channel estimation techniques in

both the angle-time and angle-frequency domains for MIMO-OFDM systems. The

choice of LMMSE-based techniques is largely dependent on the amount of channel

stochastic information (e.g. channel correlation or power) available to the receiver.

• We analyze the performance and complexity of various channel estimation tech-

niques for MIMO-OFDM systems. Our simulation results show that the proposed

quasi one-dimensional (Q1D) LMMSE technique based on the angle-frequency do-

main correlation can achieve performance similar to the 2D LMMSE technique for

typical MIMO-OFDM channel models, yet has significantly lower complexity.

• We tailor pilots to facilitate direct implementation of angle-domain channel esti-

mation techniques. This makes all our proposed angle-domain channel estimation

techniques flexible in implementation. These estimation technique can either use

conventional array-domain estimators as the coarse estimators and perform post-

processing in the angle domain, or use the specifically designed pilots for direct

implementation.

The above contributions have resulted in 9 publications, which are listed on Author’s

Publications.
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In Part I of the thesis, we concentrate on developing detection techniques for multiple-

input multiple-output systems. As received signals of multiple-input multiple-output

systems may contain much more severe interferences compared to single-input single-

output systems, it becomes very important to develop advanced detection techniques for

reliable data recovery. On the other hand, the complexity of these detection techniques

should be kept as low as possible to permit high-speed implementation. In particular,

we focus on coherent detection techniques, which require and utilize the prior knowledge

of channel coefficients. Note that prior knowledge of these coefficients is assumed to be

available to the receiver in this part of the thesis. This assumption is realistic to optical

storage systems since channel characteristics in these systems are mainly defined by the

optical light path and the employed storage media, which are both manufactured within

tight tolerances.

The application we consider is the two-dimensional optical storage (TwoDOS) sys-

tem, which takes the form of a multiple-input multiple-output system and is expected

to increase the storage density with a factor of 2 and data rate with a factor of 10 [44]

compared with the current blu-ray disc based one-dimensional (1D) optical storage sys-

tems. The higher storage density mainly results from the use of smaller track pitch,

which makes it possible to record at much higher track density in the TwoDOS sys-

tem. This small track pitch is realized by grouping a number of adjacent tracks together

with no intertrack spacing, and by using a guard-band as a boundary between groups

of tracks. Due to the absence of intertrack spacing within one group in the TwoDOS

system, both the intersymbol interferences (ISI) and intertrack interferences (ITI) are

quite severe in the received signals. The 2D Viterbi detector (VD) seems ideally suited

for the TwoDOS system due to its good detection performance [93, 108, 171]. However,

since its complexity grows exponentially with the channel memory and number of tracks

per group, its implementation is impractical for systems with large numbers of tracks

per group. Therefore, the scope of this part of the thesis covers the development of

reduced-complexity 2D Viterbi-like detection techniques.
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The organization of this part is as follows. Chapter 2 introduces the TwoDOS system

with a detailed channel model in the presence of additive noise and nonlinear channel

distortions. This chapter states the main definitions and assumptions in Part I. The

channel model developed in this chapter serves as a platform to design and evaluate

various reduced-complexity detection techniques to be discussed in the subsequent chap-

ters in Part I. In general, the reduction of complexity of the 2D VD is realized in two

directions. The first is to reduce the channel memory, which will be discussed in Chapter

3. The other is to divide the full-fledged 2D VD into a set of sub-2D VDs, each dealing

with a smaller number of tracks. More specifically, Chapter 3 presents equalization and

target design techniques to reduce the channel memory. The results show that the newly

proposed “2D monic constraint” target can be used for the TwoDOS system to achieve

reliable detection performance. Then, another new target that is constrained to have

causal ITI is introduced in Chapter 4. With this new target, a quasi-1D VD is devel-

oped to significantly reduce the complexity of the full-fledged 2D VD. A more general

2D detector is proposed in Chapter 5. The full-fledged 2D VD and quasi-1D VD are its

special cases. This general detector has the flexibility to design systems with varying

performance and complexity. Further, it can also be seen as the generalized version of

the QR detector [51], which can be used in multiple-input multiple-output orthogonal

frequency division multiplexing (MIMO-OFDM) systems that will be discussed in Part II

of the thesis.



Chapter 2

TwoDOS Channel Model

2.1 Introduction

We start, in this chapter, with a description of two-dimensional optical storage (Two-

DOS) system for the purpose of stating the main definitions and assumptions relevant to

this work. The channel model developed in this chapter will be used in the simulations

done for evaluating the various techniques to be discussed in the remaining chapters of

Part I of the thesis. The linear two-dimensional (2D) channel model for TwoDOS was

first introduced in [135] by taking the 2D inverse Fourier transform of the 2D modulation

transfer function (MTF), resulting in 2D impulse response of the channel. However, this

channel model may not be accurate enough unless the recording density is sufficiently

high since this model does not account for the presence of the linear pulse modulator in

the write circuit. In this chapter, we present the linear channel model which incorporates

the 2D impulse response of the channel and the linear pulse modulator. The resulting

response of the channel is referred to as the 2D symbol response. More importantly,

we show that by exploiting the radial symmetry property of the 2D symbol response,

the 2D symbol response can be efficiently calculated by using a one-dimensional (1D)

Hankel transform approach [150]. We also develop the 2D symbol response model in the

presence of domain bloom and transition jitter, and show that the Hankel transform can

be used to develop a computationally simple approach for generating received signals in

the presence of domain bloom and/or transition jitter. Finally, an approximate model

for domain bloom and transition jitter is constructed to further simplify the signal gen-
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eration process for the TwoDOS system with such domain bloom and transition jitter.

This approximation is valid when the domain bloom and transition jitter are sufficiently

small and the recording (linear) density is sufficiently high.

This chapter is organized as follows. Section 2.2 introduces the linear channel model

for TwoDOS in the presence of additive white Gaussian noise. The linear channel model

is extended to include the nonlinear distortions, i.e. domain bloom and transition jitter,

in Section 2.3. An approximated model that can significantly reduce the complexity of

the received signal generation process is developed. Finally, Section 2.4 concludes this

chapter.

2.2 Linear Channel Model

2.2.1 Symbol Response for A Single Spot

In the TwoDOS system, we classify the signals and channels in two domains: the spatial-

temporal domain and spatial-frequency domain. Each domain contains two dimensions,

i.e. the spatial and temporal dimensions in the spatial-temporal domain and the spatial

and frequency dimensions in the spatial-frequency domain. These two domains are re-

lated by the 2D Fourier transform. In general, a multi-spot light beam is used for parallel

read-out in the TwoDOS system. For a linear read-out, each spot can be characterized

by the 2D modulation transfer function (MTF) given by the Braat-Hopkins formula [28]:

Fsf (φ, ρ) =











2
π

[

arccos( ρ
ρc

) − ( ρ
ρc

)
√

1 − ( ρ
ρc

)2
]

, when ρ ≤ ρc,

0, else,
(2.1)

represented in the 2D spatial-frequency domain, where ρ is the spatial angular frequency,

ρc = 2NA/λ is the angular cut-off frequency, λ is the wave length of laser diodes, NA is

the numerical aperture of lens, and φ is the azimuth angle in the 2D spatial-frequency

plane. The 2D linear pulse modulator is defined as

Cs(θ, r) =







1, when r ≤ R,

0, else,
(2.2)
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in the 2D spatial-temporal domain, where r and θ are radial and angular coordinates,

respectively, in the 2D spatial-temporal plane and R is the radius of the pit hole.

We use polar coordinates in deriving the 2D channel symbol response in view that the

MTF and linear pulse modulator are both radially symmetric. Let Csf(φ, ρ) represent

the linear pulse modulator in spatial frequency domain. By taking 2D Fourier transform

on both sides of (2.2), we obtain

Csf (φ, ρ) = 2πR
J1(ρR)

ρ
(2.3)

where J1(x) is the Bessel function of the first kind and first order. Then, the 2D symbol

response in the spatial-frequency domain is given by

Hsf (φ, ρ) = Csf (φ, ρ)Fsf (φ, ρ). (2.4)

Consequently, the 2D symbol response in the spatial-temporal domain, Hs(θ, r), can be

obtained by taking the 2D inverse Fourier transform of Hsf (φ, ρ) as

Hs(θ, r) =
1

(2π)2

∫ ρc

0

∫ 2π

0
ρHsf (φ, ρ) exp[jρr cos(θ − φ)]dφdρ. (2.5)

It should be noted that the above symbol response considers only linear intersymbol

interference (ISI) and intertrack interference (ITI) and it is developed purely from a

signal processing point of view. In the next section, we will modify this to include

nonlinear distortions also. A rigorous derivation of the channel model based on physical

generation of the signal, including linear and nonlinear ISI and ITI, can be found in [45].

However, as we show below, our model in (2.4) is consistent with the model in [45] when

only linear ISI is considered. Based on the general formulation in [45], we can write the

linear symbol response Hsc(x, y) in spatial-temporal domain as ((x, y) being Cartesian

coordinates)

Hsc(x, y) =

∫∫

|p(~x, ~y)|2 Cs(~x − x, ~y − y)d~xd~y (2.6)

where p(~x, ~y) is the spot function and Cs(~x − x, ~y − y) is the window function centered

at (x, y). Because Cs(x, y) is circularly symmetric in TwoDOS, Cs(~x − x, ~y − y) =
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Cs(x − ~x, y − ~y). Therefore, (2.6) implies that Hsc(x, y) is the 2D convolution between

|p(x, y)|2 and Cs(x, y). Since Fsf (φ, ρ) is the 2D Fourier transform of |p(x, y)|2, the signal

processing based model given in (2.4) is consistent with the physical model given in (2.6).

2.2.2 1D Hankel Transform Approach

While studying TwoDOS channels with time-varying characteristics (e.g. media noise

dominated channels), it may be necessary to recompute the channel symbol response

very often. In such situations, directly using the 2D Fourier transform approach may not

be preferable because of its computational complexity. We now show that the 2D Fourier

transform can be replaced by the 1D Hankel transform in TwoDOS, thus resulting in

significant computational savings in the calculation of Hs(θ, r).

From (2.1) and (2.3) we find that since Fsf (φ, ρ) and Csf (φ, ρ) are both radially

symmetric, the symbol response Hsf (φ, ρ) in the spatial-frequency domain is also radially

symmetric, i.e. Hsf (φ, ρ) = H̃sf (ρ). Then, (2.5) can be simplified as

Hs(θ, r) =
1

2π

∫ ρc

0
ρH̃sf (ρ)J0(ρr)dρ (2.7)

where J0(x) is the Bessel function of the first kind and zero order. Observe that Hs(θ, r) is

also radially symmetric, i.e. Hs(θ, r) = H̃s(r). Equation (2.7) shows that Hs(θ, r) is the

inverse Hankel transform of H̃sf (ρ) [150]. Thus, by taking advantage of the circular sym-

metry of the TwoDOS channel, the 2D Fourier transform can be reduced to a 1D Hankel

transform. This is important since, as we show below, the Hankel transform approach

is a computationally efficient means to compute Hs(θ, r), compared with 2D Fourier

transform. The fast Hankel transform can be computed with a complexity of about

O(Nslog2Ns), where Ns denotes the number of data points in each dimension [82, 115].

Compared to this, the complexities of traditional 2D discrete Fourier transform and 2D

fast Fourier transform are O(N 4
s ) and O(N 2

s log2Ns), respectively [55]. Thus, the fast

Hankel means of computing the channel symbol response is indeed a computationally

efficient approach.
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Note that the use of the Hankel transform to compute the symbol response for a

single spot requires radial symmetry in both the MTF and the linear pulse modulator.

However, some radial asymmetry might arise in practice due, for example, to radial wob-

ble resulting from the unbalance of the disc. In such cases, the radially asymmetric MTF

may be factorized into a radially symmetric component and a simple 2D transformation

matrix. A radially asymmetric linear pulse modulator can be factorized similarly. Then,

the Hankel transform is still applicable here to deal with these radially symmetric factors

of the MTF and the linear pulse modulator, and considerable complexity savings can still

be expected.

2.2.3 Discrete-Time Linear Channel Model

 

( 1)n −a ( )na ( 1)n +a

Figure 2.1: Arrangement of bit-cells in the TwoDOS system. Bit-cells with ‘circles’ inside

indicate ‘+1’ (i.e. pits) and the bit-cells without circles indicate ‘−1’ data bits.

Due to the hexagonal structure of bit-cells, it was shown in [44] that if the sampling

rate is larger than
√

3 (2NA/λ), the discrete-time sampled received signals in the optical

read-out provide sufficient statistics for optimum detection. Therefore, these discrete-

time received signals can be thought of as resulting from the recorded bits through

a discrete-time channel and noise. Such a discrete-time channel is simpler than the
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continuous-time channel discussed in the previous two subsections, and thus facilitates

mathematical analysis. Note that H̃s(r) characterizes a single spot only. The discrete-

time channel symbol response of the 2D system is given by H = [H0, H1, · · · , HNh−1]
T ,

where Nh is the temporal span of the channel, Hk is an Nr ×Nr matrix, and Nr denotes

the number of tracks forming one group. Fig. 2.1 shows the arrangement of bit-cells in

the TwoDOS system. The dashed slanted rectangular boxes indicate the array of bit-cells

onto which the parallel read-out laser beam is focused at each time instant. Considering

the hexagonal structure of each bit-cell, the (i, j)th element of Hk can be obtained as

Hk(i, j) = H̃s

(√

x2
ij,k + y2

ij T
)

, i, j = 1, 2, · · · , Nr (2.8)

where xij,k = (i − j) cos 60◦ + tk, yij = (j − i) sin 60◦, tk = (k − Nh+1
2 )T is the spatial

difference along the track (for odd Nh) and T is the center-to-center distance between

adjacent bits. In fact, Hk(i, j) can be considered as the interference of jth track to ith

track. The received signal vector resulting from the parallel read-out at time index ‘n’

is given by

z(n) =

Nh−1
∑

k=0

Hka(n − k) + θ(n) (2.9)

where z(n) = [z1(n), z2(n), · · ·, zNr(n)]T , a(n) = [a1(n), a2(n), · · ·, aNr(n)]T , θ(n) =

[θ1(n), θ2(n), · · ·, θNr(n)]T , zi(n) denotes the received signal component from the ith

track, ai(n) ∈ {−1, 1} denotes the channel input bit written on the ith track, and θi(n)

denotes the noise picked up from the ith track, for i = 1, 2, · · · , Nr.

Fig. 2.2 shows the discrete-time channel model of the TwoDOS system with the partial

response (PR) equalizer and Viterbi detector (VD). In the figure, Gk (k = 0, 1, · · · , Ng−1)

and Wk (k = 0, 1, · · · , Nw − 1) represent Nr × Nr coefficient matrices of the PR target

and equalizer, respectively, and m0 and D denote the delay (in number of bits) from the

channel input to the equalizer output and that from the detector input to the detector

output, respectively.
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Figure 2.2: Discrete-time channel model of the TwoDOS system with the PR equalization

and VD.

2.3 Channel Model with Nonlinear Distortions

2.3.1 Effect of Domain Bloom

It has been shown that choosing the radius of the pit hole R 1
2

√√
3

π T is well-suited

for differentiating received signals picked up from parallel read-out in the TwoDOS sys-

tem [103]. In practice, however, it is difficult to accurately control the size of the recorded

domain. For example, domain bloom, which is due to under- or over-etching during the

mastering process, causes pits to be systematically larger or smaller and it is one of the

major write imperfections. In this case, (2.3) becomes

Csf(φ, ρ) = 2π(1 + ∆b)R
J1(ρ(1 + ∆b)R)

ρ
(2.10)

where ∆b reflects the degree of bloom. A positive value of ∆b means that the recorded

pits are systematically larger than the nominal pits and vice versa when ∆b is negative.

The channel symbol response Hk (k = 0, 1, · · · , Nh − 1) should be computed by taking

this into account. Unlike the 1D system, where domain bloom manifests only when

pit-to-land or land-to-pit transitions occur, the transitions in TwoDOS occur whenever

bits corresponding to ‘+1’ are written. This is because every ‘+1’ is recorded as a pit of

radius R smaller than T/2 and thus there are two transition edges between consecutive

pits, instead of none in the 1D system.
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2.3.2 Effect of Transition Jitter

In this section, it has been implicitly assumed so far that the recorded domains have

infinitely steep vertical edges. In reality, however, the edges of recorded domains are

not always sharply defined and tend to exhibit random displacements from their ideal

positions. In read-only systems, this kind of transition jitter is typically the dominant

type of noise. Accounting for this jitter in (2.10), we get

Csf (φ, ρ) = 2π(1 + ∆b + ∆t)R
J1(ρ(1 + ∆b + ∆t)R)

ρ
(2.11)

where the normalized jitter ∆t is a zero-mean random variable that is statistically inde-

pendent of the channel input vector a(n). Due to the same reason as explained above,

transition jitter occurs whenever the channel input bit is ‘+1’. The difference between

the domain bloom and transition jitter is that the bloom parameter ∆b can be considered

to remain constant for all the bits in a given recording process, whereas the jitter ∆t

varies randomly for each bit.

2.3.3 Discrete-Time Channel Model with Nonlinear Distortions

In the presence of nonlinear distortions, i.e. domain bloom and transition jitter, it is easy

to see that the channel becomes time-varying since the symbol response tends to differ

from one bit to another. As a result, the received signal takes the form (see Fig. 2.2)

z(n) =

Nh−1
∑

k=0

Hk,na(n − k) + θ(n) (2.12)

where the channel matrices Hk,n are now also dependent on the time index ‘n’. The

elements Hk,n(i, j) (i, j = 1, 2, · · · , Nr) of Hk,n can be computed using (2.8), (2.7) and

(2.4) after replacing the Csf (φ, ρ) in (2.4) with the time-varying form given in (2.10) or

(2.11). Thus, to compute z(n) for each ‘n’, we need to recompute Hk,n for all k, which

is a very computationally demanding task. A simple table look-up can be used to save

computational complexity by storing pre-computed channel responses for quantized val-

ues of pit sizes. On the other hand, since the time-varying symbol response still satisfies

the radial symmetry condition in spatial frequency domain, we can use the fast Hankel
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transform approach to compute the individual symbol responses. This approach results

in significant savings in computational complexity and memory requirements compared

with the 2D Fourier transform approach and the table look-up approach, respectively.

This is very important for doing simulation studies over very a large number of data bits.

The Fourier transform of the channel symbol response in the presence of domain

bloom and transition jitter is given by (using (2.11) and (2.4))

Hsf, t(φ, ρ) = 2π(1 + ∆b + ∆t)R
J1(ρ(1 + ∆b + ∆t)R)

ρ
Fsf (φ, ρ) (2.13)

where ∆b and ∆t are the normalized domain bloom and random jitter, respectively,

with respect to R for the bit under consideration. If ∆b and ∆t are sufficiently small

and the recording density (linear) is sufficiently high, the above transfer function can be

approximated as [122]

Hsf, t(φ, ρ) ≈ 2π(1 + ∆b + ∆t)R
J1(ρR)

ρ
Fsf (φ, ρ) = (1 + ∆b + ∆t)Hsf (φ, ρ) (2.14)

where Hsf (φ, ρ) is the time-invariant symbol response given in (2.4). Using this approx-

imation, we can write (2.12) as

z(n) =

Nh−1
∑

k=0

Hkã(n − k) + θ(n) (2.15)

where Hk (k = 0, 1, · · · , Nh − 1) corresponds to the time-invariant symbol response

matrices, ã(n) = [ã1(n), ã2(n), · · ·, ãNr(n)]T is the modified channel input vector,

ãi(n) =







(1 + ∆i(n))ai(n), if ai(n) = +1,

ai(n), if ai(n) = −1,
(2.16)

for i = 1, 2, · · ·, Nr, and ∆i(n) corresponds to the sum of domain bloom and random jit-

ter experienced by the bit ai(n). Compared with (2.15) and (2.12), it is clear that during

the received signal generation process, the time-dependent component, originally coming

from the channel matrix as shown in (2.12), is now merged with the input bit vector as

shown in (2.15). This is indeed important for doing simulation studies over a very large

number of data bits since the channel matrix recomputation, which requires much more

computational complexity compared to the simple channel input vector modification, is
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Figure 2.3: Approximated additive discrete-time channel model of TwoDOS for the

domain bloom and transition jitter.

avoided during the received signal generation process.

The resulting approximated additive discrete-time channel model of the TwoDOS

system for domain bloom and transition jitter is shown in Fig. 2.3. In this figure, the

additive disturbance b(n) that accounts for domain bloom and transition jitter is given

by b(n) = [b1(n), b2(n), · · ·, bNr(n)]T where

bi(n) =







∆i(n), if ai(n) = +1,

0, if ai(n) = −1,

for i = 1, 2, · · ·, Nr. Then, the modified channel input vector is given by

ã(n) = a(n) + b(n). (2.17)

2.4 Conclusions

In this chapter, we have first presented a linear channel model that incorporates the

linear pulse modulator. More importantly, we have shown that by exploiting the radial

symmetry property of the symbol response, the 2D symbol response can be efficiently

calculated by using the 1D Hankel transform. We have also indicated that the 1D Hankel

transform may still be applicable in cases with modest radial asymmetry. In addition,

We have extended this 2D symbol response model to include the domain bloom and

transition jitter. Finally, we have introduced a discrete-time additive model to approx-

imate the domain bloom and transition jitter. This additive model further significantly
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simplifies the received signal generation process in the presence of the domain bloom and

transition jitter for the TwoDOS system.

The channel models developed in this chapter are used to design and evaluate different

signal processing techniques that ensure reliable data recovery for the received signals,

which suffer severe ISI and ITI, from the parallel read-out of the TwoDOS system. These

techniques are explored in the remaining chapters of Part I.



Chapter 3

2D Equalization and Target

Design

3.1 Introduction

Because of the presence of serious intersymbol interference (ISI) and intertrack inter-

ference (ITI) in the received signals of the two-dimensional optical storage (TwoDOS)

system, the two-dimensional (2D) Viterbi detector (VD) seems ideal for bit detection.

However, as the complexity of the 2D VD grows exponentially with both the channel

memory and number of tracks per group, for the TwoDOS channel that has very large

channel memory, this complexity becomes unmanageable. Therefore, this chapter de-

scribes two prefiltering techniques to shorten the channel memory and thus reduce the

complexity of 2D VD. In the first technique, for a given target, we design a general

2D minimum mean square error (MMSE) equalizer, which can be used to deal with

correlated data, colored additive noise, domain bloom and jitter noise. In the second

technique, we jointly design the equalizer and target based on minimizing the mean

square error (MSE) to improve the performance of 2D VD. However, to avoid the trivial

solution, we need to impose a suitable constraint on the 2D partial response (PR) target.

Since doing constrained minimization in 2D is not easy, we propose a novel technique

which converts the 2D target design problem into a one-dimensional (1D) problem. To

evaluate different targets, a theoretical platform is constructed to analyze the perfor-

44
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mance of 2D VD with different targets. Since the complexity of exhaustive search over

all possible channel input data patterns to compute the theoretical performance is pro-

hibitively high, we make a reasonable approximation which results in significant savings

in computational complexity with an affordable performance loss. We also develop an ap-

propriate target constraint that results in good bit detection performance for the 2D VD.

This chapter is organized as follows. Section 3.2 presents the design of a general

2D MMSE equalizer that can deal with correlated data, colored additive noise, domain

bloom and jitter noise. Section 3.3 investigates the theoretical performance of 2D VD in

the additive noise, domain bloom and jitter noise. This analysis suggests the criterion

to jointly optimize the target and equalizer. Based on this criterion, a novel 2D target

design technique that converts the 2D target design problem into a 1D problem is also

proposed in this section. The investigation of different target constraints along with

performance comparison through bit error rate simulations are presented in Section 3.4.

Finally, Section 3.5 concludes the chapter.

3.2 2D MMSE Equalizer Design

3.2.1 Generalized 2D MMSE Equalizer

The 2D MMSE equalizer design for TwoDOS was first proposed in [156]. However, the

derivation in [156] assumes the channel input vector a(n) as uncoded and the channel

noise θ(n) as 2D white. In this chapter, we present a generalized equalizer, which is

applicable even when the channel contains domain bloom and jitter noise.

In this section, we assume the channel symbol response Hk (k = 0, 1, · · · , Nh − 1) is

linear and time-invariant, and the PR target Gk is known. From Fig. 2.2, we get the

error vector ε(n) as

ε(n) = x(n) − d(n) =

Nw−1
∑

k=0

Wkz(n − k) −
Ng−1
∑

k=0

Gka(n − k − m0)

= WT z(n) −GT a(n − m0) (3.1)
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where G = [G0, G1, · · ·, GNg−1]
T , a(n) = [aT (n), aT (n− 1), · · ·, aT (n− Ng + 1)]T , W

= [W0, W1, · · ·, WNw−1]
T and z(n) = [zT (n), zT (n− 1), · · ·, zT (n −Nw + 1)]T . Then,

the total MSE at the equalizer output can be expressed as

J(W) = E[εT (n)ε(n)] = trace
(

WTRzW − 2WTRzaG + GT RaaG
)

(3.2)

where Raa = E[a(n−m0)a
T (n−m0)], Rza = E[z(n)aT (n−m0)] and Rz = E[z(n)zT (n)].

By minimizing the MSE, the optimum equalizer matrices are obtained as

Wopt = R−1
z RzaG (3.3)

and the MMSE is given by

Jmin(Wopt) = trace
[

GT RaaG− (RzaG)TR−T
z (RzaG)

]

. (3.4)

We now derive the expressions for Rz , Rza and Raa. Here, Rz is an NwNr × NwNr

autocorrelation matrix of the channel output vector and its (k, l)th sub-matrix (k, l =

0, 1, · · · , Nw − 1) is given by Rz
kl = E[z(n− k)zT (n− l)]. Since θ(n) is of zero mean and

uncorrelated with a(n), using (2.9) we get

Rz
kl = HTRa

klH + Rθ
kl (3.5)

where Ra
kl = E[ă(n − k)ăT (n − l)] is an NhNr × NhNr autocorrelation matrix of the

channel input data, ă(n) = [aT (n), aT (n − 1), · · ·, aT (n − Nh + 1)]T , and Rθ
kl =

E
[

θ(n − k)θT (n − l)
]

is an Nr × Nr autocorrelation matrix of the noise. The (k ′, l′)th

sub-matrix of Ra
kl is given by

Ra
kl,k′l′ = E

[

a(n − k − k′)aT (n − l − l′)
]

, k′, l′ = 0, 1, · · · , Nh − 1 (3.6)

and the (i, j)th elements of Ra
kl,k′l′ and Rθ

kl are given by

Ra
kl,k′l′(i, j) = E

[

ai(n − k − k′)aj(n − l − l′)
]

, (3.7)

Rθ
kl(i, j) = E [θi(n − k)θj(n − l)] , (3.8)

respectively, for i, j = 1, 2, · · · , Nr.
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The matrix Rza is an NwNr × NgNr cross-correlation matrix between the channel

output and input vectors, and its (k, l)th (k = 0, 1, · · · , Nw − 1; l = 0, 1, · · · , Nh − 1) sub-

matrix is given by Rza
kl = E

[

z(n − k)aT (n − m0 − l)
]

. Then, as before, we get

Rza
kl = HT R̃

a
kl (3.9)

where R̃
a
kl = E[ă(n − k)aT (n − m0 − l)] is an NhNr × Nr autocorrelation matrix of the

channel input data. Its (k′)th Nr × Nr sub-matrix is given by

R̃
a
kl,k′ = E

[

a(n − k − k′)aT (n − m0 − l)
]

, k′ = 0, 1, · · · , Nh − 1 (3.10)

and the (i, j)th element of R̃
a
kl,k′ is given by

R̃
a
kl,k′(i, j) = E

[

ai(n − k − k′)aj(n − m0 − l)
]

, i, j = 1, 2, · · · , Nr. (3.11)

Finally, Raa is an NgNr ×NgNr autocorrelation matrix of channel input vectors. As

before, its (k, l)th (k, l = 0, 1, · · · , Ng − 1) sub-matrix is given by Raa
kl = E[a(n − m0 −

k)a(n − m0 − l)], and the (i, j)th element of Raa
kl is given by

Raa
kl (i, j) = E [ai(n − m0 − k)aj(n − m0 − l)] , i, j = 1, 2, · · · , Nr. (3.12)

3.2.2 Special Cases

(1) Channel input data and noise are 2D wide-sense stationary.

In this case, (3.7), (3.8), (3.11) and (3.12) can be simplified as

Ra
kl,k′l′(i, j) = ra(l − k + l′ − k′)(i − j), (3.13)

Rθ
kl(i, j) = rθ(l − k)(i − j), (3.14)

R̃
a
kl,k′(i, j) = ra(l − k − k′ + m0)(i − j), (3.15)

Raa
kl (i, j) = ra(l − k)(i − j), (3.16)

respectively, where ra(k)(i) and rθ(k)(i) are defined as E[ai+j(n+k)aj(n)] and E[θi+j(n+

k)θj(n)], respectively, for any n and j.
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(2) Noise is 2D white with variance σ2, and channel input bits are uncoded.

This is the simplest case. In this case, (3.7), (3.8), (3.11) and (3.12) can be simplified as

Ra
kl,k′l′(i, j) = δl−k+l′−k′ δi−j , (3.17)

Rθ
kl(i, j) = σ2δl−k δi−j , (3.18)

R̃
a
kl,k′(i, j) = δl−k−k′+m0

δi−j , (3.19)

Raa
kl (i, j) = δl−k δi−j , (3.20)

respectively, where δk = 1 when k = 0 and δk = 0 when k 6= 0. Substituting (3.17) and

(3.18) in (3.5), we get

Rz
kl =







(H ∗ HT
−)l−k + σ2INr if k = l

(H ∗ HT
−)l−k else

(3.21)

where H− is the mirror filter of H, i.e. (H−)k = H−k, INr is the Nr × Nr identity

matrix, and ‘∗’ refers to 2D convolution given by (A ∗ B)k =
∑

n AnBk−n. Using (3.9),

we get the kth sub-matrix of RzaG as

(RzaG)k =

Nh−1
∑

k′=0

Ng−1
∑

l=0

Hk′R̃
a
kl,k′GT

l . (3.22)

Substituting (3.19) in (3.22) and letting l = k + k ′ − m0, we obtain

RzaG =

Nh−1
∑

k′=0



















Hk′GT
k′−m0

Hk′GT
k′−m0+1

...

Hk′GT
k′−m0+Nw−1



















=



















(H− ∗GT )−m0

(H− ∗ GT )1−m0

...

(H− ∗GT )Nw−1−m0



















. (3.23)

We can compute the optimum equalizer matrices by using (3.21) and (3.23) in (3.3).

Since Raa is an NgNr × NgNr identity matrix in this simplest case, by using (3.4), we

get the corresponding MMSE as

Jmin(W) = trace
[

GTG− (RzaG)T R−T
z (RzaG)

]

. (3.24)

The expressions (3.21)-(3.24) corresponding to the simplest case can be found in [156].
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(3) Channel contains domain bloom and transition jitter.

From (2.17) and Fig. 2.3, it is easy to see that Case (1) discussed above (i.e. wide-sense

stationary data and noise) can be used to design the optimum equalizer for the case when

the channel contains domain bloom and transition jitter since the modified data ãk(n)

and white additive noise θk(n) are mutually uncorrelated and wide-sense stationary. In

this case, (3.7), (3.8), (3.11) and (3.12) can be simplified as

Ra
kl,k′l′(i, j) = rã(l − k + l′ − k′)(i − j), (3.25)

Rθ
kl(i, j) = rθ(l − k)(i − j), (3.26)

R̃
a
kl,k′(i, j) = rã(l − k − k′ + m0)(i − j), (3.27)

Raa
kl (i, j) = rã(l − k)(i − j), (3.28)

respectively, where rã(k)(i) and rθ(k)(i) are defined as E[ãi+j(n+k)ãj(n)] and E[θi+j(n+

k)θj(n)], respectively, for any n and j. Let ∆t
j(n) represent the random jitter experienced

by the bit aj(n). Noting that ∆t
j(n) is statistically independent of aj(n) and a(n) is of

zero mean, it can be shown that

rã(k)(i) = (1 + ∆b) ra(k)(i) +
[1 + ra(k)(i)]

[

∆2
b + r∆t(k)(i)

]

4
(3.29)

where ra(k)(i) and r∆t(k)(i) are defined as E[ai+j(n+k)aj(n)] and E[∆t
i+j(n+k)∆t

j(n)],

respectively, for any n and j. If ∆b = 0, the noise is 2D white with variance σ2 and the

channel input bits are uncoded, then the expressions of correlations given in (3.7), (3.8),

(3.11) and (3.12) can be simplified for this case as

Ra
kl,k′l′(i, j) =

(

1 + σ2
t /2
)

δl−k+l′−k′ δi−j , (3.30)

Rθ
kl(i, j) = σ2δl−k δi−j , (3.31)

R̃
a
kl,k′(i, j) =

(

1 + σ2
t /2
)

δl−k−k′+m0
δi−j , (3.32)

Raa
kl (i, j) =

(

1 + σ2
t /2
)

δl−k δi−j , (3.33)

respectively, where σ2
t is the variance of ∆t. The factor 1/2 accounts for the probability

of pit bit ‘+1’ where the transition jitter occurs.
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3.3 Target Design for TwoDOS

3.3.1 Theoretical Platform for Target Evaluation

To deal with serious ISI and ITI present in the TwoDOS received signals, powerful detec-

tors such as the 2D VD become necessary to ensure reliable data recovery [103]. The bit

error rate (BER) performance of 2D VD may be used as a criterion to evaluate different

PR targets. Even though a BER expression for the 2D VD has been reported in [156],

the variables used in the expression correspond to the 1D VD. In this section, we briefly

give the derivation of BER of the 2D VD using the 2D definitions and notations of error

event, target etc.

As a starting point for determining the BER, we define a 2D error event vector e.

Let â(n) denote the detected data vector corresponding to a(n). Further, define e(n) =

(a(n) − â(n))/2, a = [aT (n), aT (n + 1), · · ·, aT (n + Ne − 1)]T , â = [âT (n), âT (n + 1),

· · ·, âT (n + Ne − 1)]T and e = [eT (n), eT (n + 1), · · ·, eT (n + Ne − 1)]T . Then, e is a 2D

error event of length Ne if

1. e(n) 6= 0 and e(n + Ne − 1) 6= 0,

2. the length of strings of zero vectors in e does not exceed Ng − 1, and

3. â(n + i) = a(n + i) for −Nf ≤ i < 0 and Ne ≤ i ≤ Ne + Nf − 1.

Here Nf is called the “error-free interval” and Nf ≥ Ng − 1, where Ng is the target

length. Let W (e) be the number of error bits in the error event e. Then, the BER of

2D VD is given by

BER =
∑

e∈Es

∑

a∈Se

W (e) Pr(a) Pr(error|a) (3.34)

where Es is the set of all possible error events, Se is the set of all possible data patterns

that support the error event e, and Pr(error|a) is the conditional probability that the

2D VD detects â as the recorded data when the true recorded data is a.

According to the principle of 2D VD, Pr(error|a) can be upper-bounded by the

probability that the metric corresponding to path â is smaller than that corresponding
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to path a. That is

Ne+Ng−2
∑

i=0

[x(n + i) − (G ∗ â)n+i]
T [x(n + i) − (G ∗ â)n+i]

<

Ne+Ng−2
∑

i=0

[x(n + i) − (G ∗ a)n+i]
T [x(n + i) − (G ∗ a)n+i] (3.35)

where x(n) is the equalizer output which can be expressed as (see Fig. 2.2)

x(n) =

Nw−1
∑

i=0

Wiz(n − i) = [(G + M) ∗ a]n + (W ∗ θ)n (3.36)

where M0, M1, · · ·, MNh+Nw−2 represent the matrices of the 2D residual ISI channel,

i.e. Mn = (W ∗ H)n −Gn, and θ(n) is a 2D additive white Gaussian noise vector with

variance σ2. Using (3.36), we can express (3.35) as

d2(e) +

Ne+Ng−2
∑

i=0

ẽT (n + i)[(M ∗ a)n+i + (W ∗ θ)n+i] < 0 (3.37)

where d2(e) =
∑Ne+Ng−2

i=0 [(G ∗ e)T
n+i(G ∗ e)n+i] and ẽ(n) = (G ∗ e)n. For given a and e,

the left hand side of the inequality in (3.37) is a Gaussian random variable with mean

mu = d2(e) +

Ne+Ng−2
∑

i=−(Ne+Ng−2)

(

MT
− ∗ ẽ

)T

n+i
a(n + i) (3.38)

and variance

σ2
u = σ2

Ne+Ng−2
∑

i=−(Nw−1)

(

WT
− ∗ ẽ

)T

n+i

(

WT
− ∗ ẽ

)

n+i
. (3.39)

Thus, we get

Pr(error|a) ≤ Q

(

mu

σu

)

(3.40)

where Q(α) = 1√
2π

∫∞
α e−x2/2dx is the tail probability of Gaussian distribution. By

substituting (3.40) into (3.34), we get the BER of 2D VD as

BER ≤
∑

e∈Es

∑

a∈Se

W (e) Pr(a)Q

(

mu

σu

)

. (3.41)
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Based on the BER expression given above, we may define an effective signal-to-noise

ratio (SNReff) for a given error event e and target G as

SNReff =





d2(e) +
∑

n

(

MT
− ∗ ẽ

)T

n
a(n)

σ
√

∑

n

(

WT
− ∗ ẽ

)T

n

(

WT
− ∗ ẽ

)

n





2

. (3.42)

The error event ed that minimizes SNReff for a given target G is called the dominant

error event since this error event has the highest probability of occurrence. Consequently,

we could use SNReff as a criterion to determine the target since it is closely related to

BER and can be computed very easily compared to BER. The optimum target should

maximize the SNReff corresponding to the dominant error event. In other words, the

design of optimum target is a max-min optimization problem:

Gopt = arg
{

maxG mine SNReff
}

. (3.43)

As seen from (3.42), the effect of noise correlation on the detection performance can be

inferred by examining the denominator of SNReff. Further, the presence of 2D residual

ISI makes this optimization data-dependent in nature, and the complexity of exhaustive

search of all possible channel input data patterns to compute the theoretical performance

is prohibitively large. Therefore, the usual practice is to assume that the 2D residual ISI

is very small and to add it as part of the Gaussian noise (W ∗ θ)n [137]. In this section,

however, we will introduce a practical approach with significantly lower complexity to

analyze the systems that suffer from severe 2D residual ISI. As shown in (3.42), each

element of a(n) corresponds to one unique element in (MT
− ∗ ẽ)Tn . Consequently, we could

only consider the bit positions whose corresponding elements in (MT
− ∗ ẽ)Tn are beyond a

prescribed value. The remaining bits are ignored since they have much less effect on the

mean mu (and thus the BER of the 2D VD). Then, we exhaustively search over all the

possible data patterns of the bit positions under consideration to approximately compute

the BER. Intuitively, the choice of the threshold is a trade-off between the complexity and

performance. Our simulation research results show that this technique is able to evaluate

different targets with acceptable computational complexity with a suitable threshold as

illustrated in Fig. 3.1. For the purpose of assessing the suitability of this approximated

theoretical platform, let us assume that the three targets shown in Fig. 3.1 are already
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known. Details of designing these targets will be explained in the following two sub-

sections. As illustrated, the approximated theoretical BER performance is asymptotic

to the simulation BER performance, thus indicating that the approximation described

above is suitable to evaluate different targets for the TwoDOS system.
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Figure 3.1: Comparison between approximated theoretical and simulation BER perfor-

mance for different targets.

For the case when the channel contains domain bloom and transition jitter, (3.37) is

revised as

Ne+Ng−2
∑

i=0

ẽT (n + i) [(M ∗ a)n+i + (W ∗ θ)n+i]

< −d2(e) −
Ne+Ng−2
∑

i=0

ẽT (n + i)[G̃ ∗ (ã− a)]n+i (3.44)

where ã(n) is the modified channel input vector defined in (2.16) and G̃n = Gn + Mn.

Under the assumption that the transition jitter and noise θn are uncorrelated and jointly

Gaussian distributed, the left hand side of the inequality in (3.44) is still Gaussian with
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mean

mur = d2(e) +
∑

i

(

MT
− ∗ ẽ

)T

n+i
a(n + i) +

∑

i

∆b

(

G̃T
− ∗ ẽ

)T

n+i
u(n + i) (3.45)

and variance

σ2
ur = σ2

∑

i

(

WT
− ∗ ẽ

)T

n+i

(

WT
− ∗ ẽ

)

n+i
+ σ2

t

∑

i

[p̃(n + i)]T [p̃(n + i))] (3.46)

where p̃(n) =
(

G̃T
− ∗ ẽ

)

n
• u(n), ∆b reflects the degree of domain bloom, σ2

t is the

variance of the transition jitter, u(n) = (1 + a(n)) /2, and ‘•’ indicates element-wise

multiplication of vectors. Then, (3.42) becomes

SNReff =

(

mur

σur

)2

. (3.47)

From (3.47), it can be seen that the presence of transition jitter will degrade the perfor-

mance since it increases the denominator of (3.47). However, its destructive effect may

be reduced if we consider it in the target design that will be covered in the following two

subsections.

3.3.2 Novel Target Design Technique

Several techniques have been reported in literature for designing the PR target for 1D

data storage systems [64, 118, 137]. For the sake of convenience, the criterion used for

the design is to minimize the MSE (at equalizer output) rather than to maximize the

SNReff given in (3.42). The design of equalizer and target by minimizing MSE subject

to the monic constraint (i.e. the first tap of the target is set to unity) has been reported

to result in near-optimum performance in 1D data storage systems [137]. Usually, a

constraint is needed for each target to avoid trivial all-zero solutions for the equalizer

and target. Further, the choice of target constraints is quite important since the con-

straint will greatly affect the performance of the 2D VD. Therefore, in this subsection, in

addition to developing the 2D target design technique, we also investigate the common

constraints that are applicable to different 2D targets. Then, in the next subsection, we

will study several specific target constraints. Since the PR target is in the form of a

sequence of matrices in the 2D case (as compared to a target vector in 1D case), solving
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the constrained minimization is quite difficult. Therefore, we introduce a novel tech-

nique which transforms the 2D target design problem from 2D into 1D form. Using this

technique, targets with different constraints can be designed with relatively less effort as

in the 1D case.

Without any loss of generality, we define a vector g which transforms the target

G = [G0, G1, · · ·, GNg−1]
T into a 1D vector target g = [g0, g1, · · ·, gNv−1]

T where

gi (i = 0, 1, · · · , Nv − 1) are the distinct non-zero elements in G. It should be noted

that imposing some symmetry constraints on the coefficients of targets can decrease the

number of parameters to be optimized and thus reduce the complexity of target design

process. Replacing G with g in (3.2), the MSE for the 2D case becomes

J(W) = trace
[

WTRzW − 2(WT )
′

(Rza)
′

g + gT (Raa)
′

g
]

(3.48)

where (Rza)
′

, (WT )
′

and (Raa)
′

represent rearranged forms of Rza, WT and Raa, re-

spectively. More specifically, (WT )
′

is a vector given by

(WT )
′

=
[

1st row of WT · · · (Nr)
th row of WT

]

. (3.49)

Then, we can obtain (Rza)
′

as

(Rza)
′

=

























1st column of R
′

za,g0

...

Nr
th column of R

′

za,g0













· · ·













1st column of R
′

za,gNv−1

...

Nr
th column of R

′

za,gNv−1

























(3.50)

where trace(WTRzaG) = (WT )
′

(Rza)
′

g and R
′

za,gk
is the matrix associated with the

coefficient gk such that

RzaG = R
′

za,g0
g0 + R

′

za,g1
g1 + · · · + R

′

za,gNv−1
gNv−1. (3.51)

Similarly, (Raa)
′

is an Nv×Nv matrix that can be obtained such that trace(GTRaaG) =

gT (Raa)
′

g.

To obtain the solutions subject to different constraints, we formulate a cost function

using the Lagrange multiplier method [24]:

J(W,g) = trace
[

WT RzW − 2(WT )
′

(Rza)
′

g + gT (Raa)
′

g
]

− λc(g) (3.52)
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where c(g) represents the constraint function and λ is the Lagrange multiplier. Taking

the gradient of J(W,g) with respect to g, we get

∇gJ(W,g) = −2[(Rza)
′

]T [(WT )
′

]T + 2(Raa)
′

g − λ∇gc(g). (3.53)

Comparing (3.48) and (3.52), it is clear that the expressions for the optimum equalizer

should be the same, with or without the constraint. Therefore, from (3.3) and (3.51),

the optimum equalizer matrices can be expressed as

Wopt = R−1
z

(

R
′

za,g0
g0 + R

′

za,g1
g1 + · · · + R

′

za,gNv−1
gNv−1

)

. (3.54)

Then, the rearranged optimum equalizer matrices can be written as

[(WT
opt)

′

]T = (R−1
z R

′

za)
′

g (3.55)

where (R−1
z R

′

za)
′

can be obtained as

(R−1
z R

′

za)
′

=

























1st column of R−1
z R

′

za,g0

...

Nr
th column of R−1

z R
′

za,g0













· · ·













1st column of R−1
z R

′

za,gNv−1

...

Nr
th column of R−1

z R
′

za,gNv−1

























.(3.56)

Substituting (3.55) in (3.53), we get

∇gJ(W,g) = −2[(Rza)
′

]T (R−1
z R

′

za)
′

g + 2(Raa)
′

g − λ∇gc(g). (3.57)

Thus, the crux of this novel technique is the appropriate rearrangement of matrices.

An example is given below to illustrate the technique for Ng = 3 and Nr = 3. In view

of the hexagonal bit-cells and the radially symmetric symbol response, we may choose a

target that is also symmetric, i.e. the cross interferences to the nearest spots are equal

for all the tracks per group. Further, we assume the interferences from beyond adjacent

bits to be zero. Then, the target can be written as

G0 =













g0 0 0

g0 g0 0

0 g0 g0













,G1 =













g1 g0 0

g0 g1 g0

0 g0 g1













,G2 =













g0 g0 0

0 g0 g0

0 0 g0













, (3.58)
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and the 1D form of the target matrix becomes g = [g0 g1]
T , where g0 is value of the cross

interference to the nearest spot, and g1 is value of the self interference of the central spot.

Let 1stRza represent the first column of Rza and similar representations are applied to

2ndRza, 3
rdRza, · · ·. Then,

R
′

za,g0
=













[

1stRza + 5thRza + 7thRza + 8thRza

]T

[

1stRza + 2ndRza + 4thRza + 6thRza + 8thRza + 9thRza

]T

[

2ndRza + 3rdRza + 5thRza + 9thRza

]T













T

,(3.59)

R
′

za,g1
=













[

4thRza

]T

[

5thRza

]T

[

6thRza

]T













T

. (3.60)

The rearranged equalizer matrices in this case are given as

(WT )
′

=
[

1st row of WT 2nd row of WT 3rd row of WT
]

, (3.61)

(RzaG)
′

=













1st column of RzaG

2nd column of RzaG

3rd column of RzaG













. (3.62)

Then, we obtain (Rza)
′

as

(Rza)
′

=

























1st column of R
′

za,g0

2nd column of R
′

za,g0

3rd column of R
′

za,g0

























1st column of R
′

za,g1

2nd column of R
′

za,g1

3rd column of R
′

za,g1

























. (3.63)

When the channel input bits are uncorrelated, trace(GT RaaG) = 14g2
0 +3g2

1 . Therefore,

we get (Raa)
′

=





14 0

0 3



. Finally,

(R−1
z R

′

za)
′

=

























1st column of R−1
z R

′

za,g0

2nd column of R−1
z R

′

za,g0

3rd column of R−1
z R

′

za,g0

























1st column of R−1
z R

′

za,g1

2nd column of R−1
z R

′

za,g1

3rd column of R−1
z R

′

za,g1

























.(3.64)
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3.3.3 2D Target Constraints

In view of the hexagonal bit-cells and the radially symmetric symbol response, as men-

tioned in the previous subsection, we may choose a target that is also symmetric, i.e.

we assume that the cross interferences to the nearest spot are equal for all the tracks

per group. Further, we assume the interferences from beyond adjacent bits to be zero.

Then, the target can be written as (Ng = 3, Nr = 5)

G0 =

























g0 0 0 0 0

g0 g0 0 0 0

0 g0 g0 0 0

0 0 g0 g0 0

0 0 0 g0 g0

























,

G1 =

























g1 g0 0 0 0

g0 g1 g0 0 0

0 g0 g1 g0 0

0 0 g0 g1 g0

0 0 0 g0 g1

























, (3.65)

G2 =

























g0 g0 0 0 0

0 g0 g0 0 0

0 0 g0 g0 0

0 0 0 g0 g0

0 0 0 0 g0

























,

and the 1D form of the target matrix becomes g = [g0 g1]
T , where g0 is the value of the

cross interference to the nearest spot, and g1 is the value of the self interference of the

central spot. Even though we are considering symmetric targets here for illustration, the

technique that converts the 2D target design problem into a 1D problem is applicable

for any general target. For example, the technique can also be used to design the non-

symmetric “casual ITI” constrained target to be discussed in the next chapter.

In this subsection, we design the targets for three different constraints. The first

constraint used is g0 = 1, which we call the “1D monic constraint”. This constraint
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is widely used in 1D systems and is known to have good noise-whitening properties.

Secondly, we use the “energy constraint”. The rationale behind this constraint is as

follows. For a single-bit error event Ie = [1 0 · · · 0]T of length Ne = 1, neglecting noise

coloration and channel misequalization, the resulting minimum SNReff is given by

SNReff =

∑

k (GkIe)
T (GkIe)

σ2
min

=
4g2

0 + g2
1

σ2
min

(3.66)

where σ2
min is the MMSE at the equalizer output. The “energy constraint” mentioned

above refers to setting 4g2
0 + g2

1 = 1 so that minimizing the MSE results in maximizing

the SNReff. A similar argument for choosing a similar energy constraint in 1D data

storage systems was made in [118]. The third constraint used is g1 = 1, which we call

the “2D monic constraint”. The rationale behind this target constraint is as follows.

Let the target response for a single spot in the spatial frequency domain be radially

symmetric, i.e. Gsf (φ, ρ) = G̃sf (ρ). Then, for the noise to be 2D white, |G̃sf (ρ)|2 should

be ideally of the form µ|H̃sf (ρ)|2 , where µ is some constant of proportionality. Of all

the targets with the same magnitude characteristics of |G̃sf (ρ)|, the one with the energy

optimally concentrated near g1 has the largest possible amplitude g1. Equivalently, for

a constrained value g1 = 1, the target with the energy optimally concentrated near g1

will yield the smallest possible µ and therefore the smallest possible noise enhancement.

Since the target is symmetric as given in (3.65), the target has its energy almost concen-

trated near g1. Consequently, making the target with the energy optimally concentrated

near g1 will not burden the finite length equalizer much. So setting g1 = 1 is a reasonable

target constraint.

For the 1D monic constraint, the constraint function is c(g) = 2(iTg − 1), where

i = [1 0]T . Then, the optimum target can be obtained as (using (3.57))

g = λ
[

(Raa)
′ − [(Rza)

′

]T (R−1
z R

′

za)
′

]−1
i (3.67)

where

λ =
1

iT
[

(Raa)
′ − [(Rza)

′ ]T (R−1
z R

′

za)
′
]−1

i
. (3.68)

And it can be shown that the MMSE is equal to the Lagrange multiplier λ.
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For the energy constraint, we have c(g) = gT (Rec)
′

g − 1, where (Rec)
′

is such that
∑

k (GkIe)
T (GkIe) = gT (Rec)

′

g. Using this in (3.57) and setting the gradients zero, we

obtain

{

[(Rec)
′

]−1/2(Raza)
′

[(Rec)
′

]−1/2
}

[(Rec)
′

]1/2g = λ[(Rec)
′

]1/2g (3.69)

where [(Rec)
′

]1/2 is such that {[(Rec)
′

]1/2}T [(Rec)
′

]1/2 = (Rec)
′

and (Raza)
′

= [(Raa)
′ −

[(Rza)
′

]T (R−1
z R

′

za)
′

]. It can be shown that the MMSE is given by the minimum eigen-

value of the matrix {[(Rec)
′

]−1/2(Raza)
′

[(Rec)
′

]−1/2} and [(Rec)
′

]1/2g is the correspond-

ing eigenvector.

For the 2D monic constraint, the solutions are identical to the 1D monic constraint

case except for i = [0 1]T .

3.4 Performance Comparison of Different Targets

Computer simulations are carried out for the TwoDOS system shown in Fig. 2.2 with

the channel length Nh = 41, equalizer length Nw = 31, target length Ng = 3, and

Nr = 5 tracks per group. The target matrix G is set up using the symmetry constraint,

and the coefficients are given by (3.65). The normalized optical cutoff frequency with

respect to the inverse of the center-to-center distance between adjacent bits is set to

1/
√

3, which corresponds to the worst case where the largest allowable ISI and ITI occur

in the TwoDOS system [44, 103]. The signal-to-noise ratio (SNR) is defined as

SNR = 10log10

(

∑

x,y H̆2
s (x, y)

σ2

)

(3.70)

where
∑

x,y H̆2
s (x, y) is the energy for a single spot with H̆s(x, y) being the symbol re-

sponse in Cartesian coordinates, and σ2 is the variance of the additive white Gaussian

noise (AWGN) on each individual track (i.e. E[θ2
i (n)] = σ2, i = 1, 2, · · · , Nr). In ad-

dition to AWGN, we also consider domain bloom and transition jitter for performance

evaluation. We use four different PR targets for performance comparison: fixed PR tar-

get (g0 = 1, g1 = 2), 1D monic constrained target (g0 = 1), energy constrained target
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(4g2
0 + g2

1 = 1) and 2D monic constrained target (g1 = 1). BER is used as the perfor-

mance measure. The equalizer and target are designed with the approaches described in

Sections 3.2 and 3.3 for each SNR.
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Figure 3.2: BER performance of 2D VD for different target constraints.

Fig. 3.2 shows the performance of 2D VD for the four different targets. Observe

that the 1D monic constrained target performs worse than all the other targets when

SNR is smaller than 33 dB, whereas the fixed PR [1 2] target becomes the worst for

SNR < 33 dB. At high SNRs, residual ISI dominates the MSE. Hence, jointly designing

the target and equalizer, rather than fixed target approach, is preferable at higher SNRs

since noise is not significant at these SNRs. For this reason, for SNR > 33 dB, the 1D

monic constrained target outperforms the fixed PR target. Fig. 3.2 also shows that the

energy constraint is a reasonable target constraint. More importantly, the target with 2D

monic constraint performs best among the four targets at all the SNRs, thus indicating

that concentrating the energy around g1 is a good choice for symmetric targets (e.g. see

(3.65)).
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Table 3.1: Noise correlation at equalizer output for different targets.

SNR Spatial difference along the track 0 1 2 3 4

Fixed PR target 1 0.2811 -0.1390 0.0548 -0.0083

32 dB 1D monic constrained target 1 0.2903 -0.1446 0.0492 -0.0038

2D monic constrained target 1 0.2320 -0.1059 0.0714 -0.0266

Energy constrained target 1 0.2607 -0.1259 0.0639 -0.0169

Fixed PR target 1 0.2595 -0.1365 0.0655 -0.0061

34 dB 1D monic constrained target 1 0.2545 -0.1306 0.0684 -0.0100

2D monic constrained target 1 0.2094 -0.0811 0.0773 -0.0329

Energy constrained target 1 0.2312 -0.1043 0.0761 -0.0239

To further understand the performance trends observed in Fig. 3.2, we examine the

noise correlation at the 2D VD input for different targets, since the performance of 2D

VD is known to be influenced significantly by noise correlation. Moreover, the 2D equal-

izer could result in significant noise correlation. This problem becomes even more severe

for shorter targets (e.g. Ng = 3), in addition to the fact that the MMSE design approach

focuses on minimizing the total noise power, not the noise correlation. The normalized

noise correlation along the third track is shown in Table 3.1 for the four different targets

at SNR = 32 dB and SNR = 34 dB. Similar trends in the correlation are observed for

other tracks as well as in the cross-track direction. Of all the targets, we see that the

2D monic constrained target results in least noise correlation at both SNRs, which is

consistent with its best BER performance among the four targets. Further, comparing

the noise correlation produced by the fixed PR target with the 1D monic constrained

target at SNR = 32 dB and SNR = 34 dB, we can roughly understand why the BER

curves for these two targets cross each other around SNR = 33 dB in Fig. 3.2. Finally,

the relative noise correlation obtained for the energy constraint target with respect to

the other targets is consistent with the BER performance observed in Fig. 3.2.

Table 3.2 shows the values of g1 (normalized by g0) for the four targets at different
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Table 3.2: Normalized g1 with respect to g0 for different target constraints.

SNR 32 33 34 35

Fixed PR Target 2 2 2 2

1D monic constrained target 1.9468 1.9901 2.0310 2.0696

2D monic constrained target 2.2784 2.2828 2.2901 2.2997

Energy constrained target 2.1150 2.1411 2.1668 2.1919

SNRs. Comparing Table 3.2 with Fig. 3.2, it can be concluded that the target that has

the smallest normalized g1 results in the worst BER performance and vice versa. This

observation reconfirms that the 2D monic constraint is a reasonable target constraint

since it causes the energy to be concentrated near g1, thus resulting in the largest nor-

malized g1 compared with the other targets. The 1D monic constraint can be considered

as causing the target with the energy to be concentrated near g0 and as a result it min-

imizes the normalized g1. For this reason, the 1D monic constraint is not a good target

constraint for 2D channels.

We did further investigations to see if the BER performance can be further improved

(beyond that in Fig. 3.2) by removing the symmetry constraint on the target. This

addresses the situation where the channel matrices are track dependent in the TwoDOS

system. Since the 2D monic constraint resulted in the best BER performance in Fig. 3.2,

we designed asymmetric targets under the constraint g1 = 1. We considered two kinds of

asymmetry. First, we broke the assumption that the values of cross interferences to the

adjacent bits are constant. Therefore, we used six different values to represent the values

of cross interference from the six adjacent bits. Secondly, we broke the assumption that

the target responses for different tracks are the same. Therefore, we used 26 different

values to represent the values of cross interferences from the adjacent bits and for five

tracks. Simulations showed that the BER performances (not shown here) of these two

asymmetric targets are similar to that of the 2D monic constraint target in Fig. 3.2.

This further reconfirms the effectiveness of the simple 2D monic constraint. Note that
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here we consider the TwoDOS case where the largest allowable ISI and ITI occur. In

other TwoDOS cases where ISI and ITI are smaller, the channel matrices become less

track dependent. Then, applying the symmetry constraint and the subsequent 2D monic

constraint target is more desirable in such cases.
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Figure 3.3: BER performance for different target constraints with -3% domain bloom.

Fig. 3.3 and Fig. 3.4 compare the performance of different targets as a function of

SNR in the presence of domain bloom. The equalizers and targets used are the same

as that in Fig. 3.2 and information of domain bloom is not used in the detector. This

is a practical consideration since in many cases we may not know the degree of domain

bloom. As illustrated, the 2D monic constrained target still outperforms all the other

targets for both the under- and over-etching cases. Further, the BER curves in these

figures indicate that the influence of the value of normalized g1 on BER in the presence

of domain bloom remain the same as that in the absence of domain bloom, i.e. larger g1

results in better performance and vice versa.

Fig. 3.5 shows the performance of the different targets in the presence of transition
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Figure 3.4: BER performance for different target constraints with 3% domain bloom.
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Figure 3.5: BER performance for different target constraints in the presence of transition

jitter when SNR=31 dB. The transition jitter is normalized with respect to the radius

of the pit hole R.
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jitter whose probability density function is Gaussian with zero mean and variance σ2
t ,

where σt is specified as a percentage of the radius of the pit hole R. In this case, the

equalizer and target are designed using the modified correlation matrices given by (3.30)–

(3.33). Observe that the 2D monic constrained target still outperforms other targets. In

conclusion, the 2D monic constraint is a suitable target constraint in TwoDOS with or

without domain bloom and transition jitter.

3.5 Conclusions

In this chapter, we have introduced two techniques to reduce the complexity of 2D VD

by means of prefiltering. One technique is to design the 2D MMSE equalizer for a given

2D PR target. This technique does account for domain bloom, transition jitter, as well as

correlated data and additive noise. The other technique is to jointly design the equalizer

and target based on the MMSE approach to improve the performance of the 2D VD. In-

stead of directly imposing a constraint on the 2D PR target to avoid the trivial solution,

we have proposed a novel technique which converts the 2D target design problem into a

1D problem. Also, we have introduced a computationally efficient analytic approach to

evaluate different targets. By concentrating energy near the central bit, we have devel-

oped an appropriate target constraint called “2D monic constraint” that results in good

bit detection performance for the 2D VD.

As TwoDOS demands a large number of tracks in a group to achieve high track den-

sity, prefiltering techniques may not sufficiently decrease the complexity of the 2D VD.

In the next chapter, we will introduce the “quasi-1D VD”, which uses the cross-track

decisions to further reduce the complexity of the 2D VD.



Chapter 4

Quasi-1D Viterbi Detector

4.1 Introduction

The perpetual push for higher track density necessitates the two-dimensional optical

storage (TwoDOS) systems to have large number of tracks in a single group. In the cur-

rent stage, the number of tracks is chosen to be 11 within the group [103]. As mentioned

in the previous chapter, the complexity of two-dimensional (2D) Viterbi detector (VD)

grows exponentially with both the target length Ng and number of tracks Nr in a single

group. Hence, truncating the channel memory by means of prefiltering techniques does

not sufficiently reduce the complexity of 2D VD for the current TwoDOS system. For

example, in the last chapter, though we have shortened the channel memory by setting

Ng = 3, it is by far impractical because the number of states for the full-fledged 2D VD

will reach 222 for Nr = 11. For this reason, in this chapter, we develop a quasi-one-

dimensional (quasi-1D) VD, which exploits the cross-track decisions as the feedback to

facilitate the implementation of reduced-complexity 2D Viterbi-like detectors for systems

with large number of tracks per group. A brief review of prior work in detectors with

sequence feedback is first given here for the purpose of stating the main definitions and

assumptions relevant to this work as well as for the sake of clarifying the notation.

This chapter is organized as follows. Section 4.2 briefly reviews the prior work on

detectors with sequence feedback. Then, Section 4.3 develops a computationally efficient

detector called the quasi-1D VD for TwoDOS by the use of proposed causal ITI con-

67
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strained target. The performance of the quasi-1D VD is evaluated in Section 4.4 by

simulation. Finally, Section 4.5 concludes this chapter.

4.2 Review of Detection Techniques with Sequence Feed-

back

4.2.1 Decision Feedback Equalization

Decision feedback equalization is a nonlinear detection technique that is quite popular

in digital communication systems [15,21]. Fig. 4.1 shows the block digram of a discrete-

time decision feedback equalizer (DFE). In the figure, hk is the discrete-time channel

symbol response, θ(n) is the additive white Gaussian noise (AWGN) with variance σ2,

and wk and fk represent the taps of the forward and feedback equalizer, respectively. The

forward equalizer shapes the channel into a prescribed target gk, which is constrained to

be causal and the first tap g0 is constrained to be one. Feedback equalizer has a strictly

causal impulse response fk that should match gk for all k ≥ 1 in order to cancel the

causal intersymbol interference (ISI), i.e. the ISI due to the symbols that have already

been detected. By removing the causal ISI, the DFE uses the threshold comparator to

make the bit decision based on the input of the slicer. Though the DFE is the optimum

detector that has no detection delay [24], its performance lags behind that of the VD

because of the following two main reasons.

• Error propagation: Any decision errors at the output of the slicer will cause a

corrupted estimation of the causal ISI, which is to be generated by the feedback

equalizer. The result is that a single error causes the detector to be less tolerant of

the noise for a number of future decisions. This phenomenon is referred to as the

error propagation and degrades the performance of the detector.

• Energy reduction: Even in the absence of error propagation, the DFE is still

suboptimum compared to the VD in terms of performance. This is because in

the decision process, the DFE subtracts the causal ISI and thus ignores the signal
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energy embedded in this causal ISI component. In other words, some signal energy

that is beneficial for the optimum detection is neglected. The adverse effect on

the detection performance is referred to as the energy reduction. To minimize the

energy reduction effect due to neglecting the energy of causal ISI, the target is

designed to have minimum-phase characteristics, i.e. the energy of the target is

optimally concentrated near the time origin.
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Figure 4.1: Block diagram of a discrete-time decision feedback equalizer.

4.2.2 Fixed-Delay Tree Search

Unlike the DFE that makes the bit decision instantly, the fixed-delay tree search (FDTS)

detection technique makes the bit decision after a delay of D [10]. In this technique, the

bit decision is based on a sequence of D + 1 input samples before the detector and uses

the maximum-likelihood (ML) decision rule for the bit decision with a delay of D. The

ML decision exploits partly or all of the signal energy embedded in the causal ISI com-

ponents, and thus reduces the energy reduction effect compared to the DFE. The choice

of parameter D, is limited by the compromise between performance and complexity. If

D+1 is smaller than the target length Ng, the FDTS is referred to as the fixed delay tree

search with decision feedback (FDTS/DF) [136]. In fact, the FDTS can be considered as

a generalization of the DFE since the FDTS is essentially equivalent to the DFE when

D = 0.
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Figure 4.2: Tree representation with depth D = 2 for the uncoded binary channel input

data.

Similar to the DFE, the FDTS first uses the forward equalizer to shape the channel

into a known target. Then, the noiseless input of the detector is d(n) =
∑Ng−1

i=0 gia(n−i),

where gi (i = 0, 1, · · · , Ng − 1) represent the coefficients of the target whose length is

Ng, and a(n) is the channel input bit at time index n. The FDTS uses a fixed-depth

ML decision rule implemented as a tree search algorithm. The tree representation with

depth D = 2 is shown in Fig. 4.2 for illustration. Each branch corresponds to one input

bit at a particular time. A sequence of branches through the tree diagram is referred to

as a path. Each possible path corresponds to one input sequence and vice versa. At time

index n, the tree diagram consists of D + 1 bits. Thus, at each time index, the trellis

contains 2D+1 paths that represent all the possible 2D+1 input sequences.

As mentioned in Chapter 1, detection based on the smallest Euclidian distance be-

tween the detector input z(n) and the desired noiseless detector input d(n) is optimum

in the ML sense when the noise component of the detector input is white and Gaussian.
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Thus, similar to the trellis diagram that corresponds to the VD, the Euclidian distance

[z(n) − d(n)]2 is defined as the branch metric for each branch, and the summation of

the branch metrics associated with each path is called the path metric. Since the FDTS

performs ML detection based on a sequence of samples, it chooses the path whose path

metric is minimum as the most likely transmitted sequence and releases the first bit

associated with this path as the detected bit. More specifically, the FDTS operates

recursively as follows [136]:

1. Initial condition: At the end of (n− 1)th step, the tree structure has a depth of

D − 1. Each path retains the path metric obtained from the previous iteration.

2. Path extension: At the nth step, the tree structure is extended such that the

depth is increased to D. The new input sample z(n) is used to compute the branch

metric [z(n)−d(n)]2 for each extended branch. To compute d(n) for each extended

branch, the possible channel input bit sequence consists of the preceding Ng − 1

input bits lying on the path leading to that extended branch. If the channel memory

Ng − 1 exceeds the detection delay D, the already detected bits are also used to

compute d(n).

3. Path selection: After computing all the path metrics for the extended paths, the

first bit of the path that has the smallest path metric is selected and released as the

detected bit. Then, half of the total paths that are incompatible with the detected

bit are discarded. As a result, the tree structure that remains has a depth of D−1.

As time progresses, the root node moves along the ML path and a fixed-size identical

tree structure is maintained at each time index. Therefore, the complexity of the FDTS

is kept constant for each time index. Similar to the VD, the ML decision rule makes the

FDTS unduly complicated if D is large. An efficient and simple realization of the FDTS

for systems using runlength-limited (RLL) (1, k) codes can be found in [111, 130].
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4.2.3 Sequence Detection with Local Feedback

Many detection techniques with sequence feedback, such as the DFE and FDTS/DF, use

the detected bits as the input of the feedback equalizer, resulting in the error propagation

problem. Nevertheless, this problem can be reduced by resorting to local feedback [63,81].

The local feedback is based on the trellis structure that is introduced in Chapter 1, and

uses the path memory associated with the current state instead of the past decisions to

estimate the causal ISI. The local feedback guarantees that the branch metric of the cor-

rect path is the ML metric, as long as it is discarded in favor of some incorrect path [63].

As a result, it improves the performance of those detectors with sequence feedback at

the price of requiring a large memory to store paths associated with each state.

4.3 Quasi-1D Viterbi Detector

4.3.1 Complexity of 2D VD

In Chapter 3, we used 2D PR equalization to shape the 2D channel into a known 2D

target with controlled ISI and intertrack interference (ITI). These controlled ISI and ITI

are left to be handled by the 2D VD. The noiseless input of the 2D VD is given by

d(n) =
∑Ng−1

i=0 Gia(n − i), where Gi (i = 0, 1, · · · , Ng − 1) is the target matrix whose

length is Ng, and a(n) is the channel input vector at time index n. As indicated earlier,

the complexity of 2D VD grows exponentially with both the target length Ng and number

of tracks Nr in a single group. For a better understanding, the trellis structure for the

case of target length Ng = 3 and number of tracks per group Nr = 2 is shown in Fig. 4.3.

In this figure, the ‘+’ and ‘−’ represent the bits ‘+1’ and ‘−1’, respectively. The trellis is

assumed to start at the node S0, and then becomes steady at instant n = 3 (i.e. n = Ng).

Here, the labels of states represent the channel memory and number of tracks per groups

associated with the paths that pass through these states. At time index n, each state

consists of Nr (Ng −1) bits (i.e. {ă(n − 1), ă(n − 2), · · · , ă(n − Ng + 1)}). Thus, at each

time index, the trellis contains 2Nr(Ng−1) states. At time index n, each branch specifies

the channel memory associated with the state that the branch originates from and the
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Figure 4.3: Trellis structure for a channel with Ng = 3 and Nr = 2.
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possible channel input vector ă(n). Therefore, each branch corresponds to one possible

noiseless detector input d(n) =
∑Ng−1

i=0 Giă(n − i). For the binary channel input bit,

each state possesses 2Nr incoming and 2Nr outgoing branches and thus there are totally

2NrNg incoming and 2NrNg of outgoing branches for each time index of the trellis.

Comparing Fig. 4.3 and Fig. 1.3, it is clear that even in this simple 2D case, the

trellis of 2D case is much more complicated than the one-dimensional (1D) case though

the target length is the same. Thus, the practical implementation of the 2D Viterbi-like

detector for large Nr also requires the significant reduction of the complexity arising from

the cross-track direction. In [84], a technique using the Viterbi detector track-by-track,

as well as the decision feedback to estimate the ITI between tracks was proposed. We

call this detector the DFE-VD. It uses a set of sub-2D VDs, each corresponding to one

track. In the bit decision process for a given track, the known bits just above (or below)

the current track are used as the feedback to calculate part of the ITI. These known bits

can be previously detected bits, or can be zeros if the upper (or lower) track is the guard-

band. The branch metric is then computed by subtracting the effect of these known bits.

However, in this track-by-track technique, the ITI from either only the upper track(s) or

only the lower track(s) estimated, and the remaining ITI estimations are still dependent

on the trellis states. As a result, the number of states should be larger than that of 1D

VD with the same target length. Moreover, this redundant complexity will not benefit

performance much since the detector makes the detection based still only on the input

samples from the current single track. An improved detector is the stripe-wise Viterbi

detector (SWVD) [44] [103]. This detector consists of a set of sub-2D VDs, each dealing

with one stripe that consists of a limited number of tracks. The number of stripes is equal

to that of tracks in a single group. The preliminary decisions from one sub-2D VD is

used for estimating the ITI in the next sub-2D VD, which is shifted up (or down) by one

track. This procedure is continued for all the stripes and the full procedure from bottom

to top (or top to bottom) of the group is considered to be one iteration. Note that at

least two iterations are required in order to estimate the ITI from both upper and lower

tracks. Unlike the DFE-VD that resorts to the trellis states to estimate the ITI from
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the lower (or upper) track(s), the SWVD uses the preliminary decisions from the pre-

vious iteration to estimate the ITI from the lower (or upper) track(s). This additional

decision feedback not only reduces the complexity but also improves the performance

compared with the DFE-VD since its decisions exploit the input information from both

upper and lower track(s) as well as that from current. However, the use of iterations

increases complexity as well as latency. Our new proposal, whereas, is a non-iterative

reduced-complexity detector that is applicable to any 2D system.

4.3.2 Causal ITI Target

In this subsection, we introduce the causal ITI target as a starting point for the devel-

opment of our reduced-complexity 2D Viterbi-like detectors. Conventionally, the causal

and anticausal ISI are referred to as the ISI from the past and future bit decisions, re-

spectively [24]. Similarly, we refer to the causal and anticausal ITI as the ITI resulting

from the lower and upper tracks, respectively. The concept of causal ITI was first used

in the multichannel DFE [78]. Similar as shown in Fig. 4.1, this multichannel DFE

consists of a multichannel forward filter, a multichannel feedback filter, and a decision

block. The multichannel forward filter is designed to constrain the channel to be causal

ISI and ITI. The multichannel feedback filter is designed to remove the causal ISI based

on the previous bit decisions. The causal ITI is left to be handled by the decision block.

Motivated by this, we propose the causal ITI target such that the 2D target matrices

are constrained to be the right triangular matrices. It should be noted that this target

is the basis for the development of our reduced-complexity 2D Viterbi-like detectors.

As a starting point for our development, we first examine the suitability of the causal

ITI target in TwoDOS. Fig. 4.4 shows the performance of full-fledged 2D VD for four

different targets when Nr is five and target length Ng is three. In the figure, the diagonal

elements of G0 in the causal ITI target are constrained to be 1s to avoid trivial solutions

of the target and equalizer. We use a fixed 2D target with elements [1 2] and 2D monic

constrained target, which are reasonable targets described in the last chapter for Two-
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Figure 4.4: BER performance for different target constraints.

DOS, as reference targets. Note that we impose a symmetry constraint, which constrains

all the tracks within the same group to suffer the same amount of ITI, in the design of

the 2D monic constrained target. In other words, after the finite length equalizer, all

the tracks within the same group ideally suffer the same amount of ITI. However, due to

the presence of guard-bands serving as boundaries of the group, before the finite length

equalizer, not all the tracks suffer the same amount of ITI. In addition, the 2D monic

constrained target only allows ITI from adjacent tracks. Therefore, the symmetry con-

straint will burden the design of finite length equalizer and result in residual ISI and ITI.

Note that the causal ITI target does not have this symmetry constraint, and allows ITI

not only from the adjacent tracks. Therefore, compared with the 2D monic constrained

target, the causal ITI target burdens the finite length equalizer less and is expected to

achieve better performance. From Fig. 4.4, it is shown that the causal ITI target out-

performs all the targets at every SNR. This result indicates that it is reasonable to use

the causal ITI target for TwoDOS. More importantly, based on this target, we propose

some reduced-complexity 2D Viterbi-like detectors that are quite different from DFE-

VD and SWVD since the latter two detectors suffer ITI from both lower and upper tracks.



Chapter 4. Quasi-1D Viterbi Detector 77

4.3.3 Principle of Quasi-1D VD
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Figure 4.5: Principle of the quasi-1D VD. The solid lines represent the input and output

of sub-VDs, the dashed lines represent the feedback coming from the output of the

previous sub-VDs.

Since the causal ITI target contains ITI only from the lower tracks, the bits in the

upper tracks will not affect the desired output. Based on this idea, a set of 1D VDs

are used to detect the bits, each deals with one track. More specifically, as shown in

Fig. 4.5, the first 1D VD that deals with the lowest track is processed with no delay and

the bits are detected after a delay D. The second 1D VD that deals with the second

lowest track is processed with the delay D in order to use the detected bits from the

lowest track to estimate all the ITI in the second lowest track. The third 1D VD that

deals with the third lowest track is processed with a delay D after the second 1D VD,

and the detected bits from the lowest two tracks are used to estimate the ITI in the third

lowest track. This procedure continues for all the tracks. Since the bits detection does

not need to consider the interference from the upper tracks, this detector is distinct from

the DFE-VD and SWVD. Compared with the DFE-VD, this detector has less computa-

tional complexity since fewer states are needed for bit detection. More importantly, the

quasi-1D VD has better BER performance since it uses all, while DFE-VD uses part,

of the input information that is needed in the cross-track direction. As illustrated in

Fig. 4.6, the quasi-1D VD outperforms the DFE-VD significantly no matter what target
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is chosen for the DFE-VD. Compared with the SWVD, as mentioned previously, it has

much lower complexity since it has no iterative procedures.
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Figure 4.6: Performance comparison of different detection techniques.

• Link with QR Detector

Our quasi-1D VD is developed for the TwoDOS system, which is a multiple-input

multiple-output system having a large temporal span of the channel. Obviously,

this quasi-1D VD is applicable to multiple-input multiple-output systems having an

arbitrary temporal span of the channel. In many wireless communication systems,

the multiple-input multiple-output channel is assumed to be flat-fading [68, 175],

i.e. the temporal span Nh = 1. In such systems, the channel is characterized by a

matrix, instead of a sequence of matrices in the TwoDOS system. Let N1 and N2

represent the number of transmit and receive antennas, respectively, in multiple-

input multiple-output wireless communication systems. Then, the channel output

vector at a given time is given by

z = Ha (4.1)
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where z and a are the (N2 × 1) channel output vector, and (N1 × 1) channel input

vector, respectively, H is the (N2 ×N1) flat-fading channel matrix. For the sake of

simplicity, the time index is ignored here. Then, QR decomposition of the channel

matrix yields H = QR, where Q is an (N2 ×N1) orthonormal matrix constructed

to make the (N1×N1) matrix R right triangular [129]. Premultiplying the channel

output vector z with QH , the resulting vector ẑ is given by

ẑ = QHz = Ra. (4.2)

Note that if the noise in z is additive white Gaussian noise (AWGN), the noise in ẑ

remains AWGN since QHQ is an (N1×N1) identity matrix. Comparing R with the

causal ITI target discussed in the previous subsection, we find that R can be seen

as a special case of causal ITI targets. Then, like the quasi-1D VD, the first element

from the bottom of the channel input vector a is first detected. The detected ele-

ment is used to estimate interferences for the detection of the second element from

the bottom of a. This procedure continues until all the elements in a are detected.

This detector is commonly referred to as the QR detector and has been investi-

gated in multiple-input multiple-output flat-fading channels [51,193,200]. The QR

detector is also applicable in multiple-input multiple-output orthogonal frequency

division multiplexing (MIMO-OFDM) systems [123, 194], which will be discussed

in Part II of the thesis, since the channel at each subcarrier of MIMO-OFDM sys-

tems is considered as a multiple-input multiple-output flat-fading channel. Note

that our proposed quasi-1D VD is suitable for any multiple-input multiple-output

channel with arbitrary positive Nh, while the QR detector is only applicable for

multiple-input multiple-output flat-fading channel, i.e. Nh = 1. Therefore, the QR

detector is considered as a special case of our proposed quasi-1D VD.

4.4 Performance of Quasi-1D VD

As shown in Fig. 4.5, though the quasi-1D has much lower complexity than the DFE-VD

and SWVD, it causes significant detraction from optimality. We consider three factors
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Figure 4.7: BER performance of quasi-1D VD with different target lengths.

that affect the performance of quasi-1D VD: target length, error propagation and energy

reduction. In Fig. 4.7, “L4” and “L5” represent that the lengths of targets are four and

five, respectively. Otherwise, the length of target is three. “No EP” means detectors

without suffering error propagation. In simulation, “No EP” is achieved by use of correct

input bits to estimate ITI. The length of the equalizer is 31 in all the simulations. As

illustrated in Fig. 4.7, the BER performance is not significantly improved by increasing

the target length. Further investigation shows that all the elements in target matrices

G3 and G4 approach zero, therefore confirming that there is no need to increase the

channel memory beyond two. Fig. 4.7 also shows that the error propagation degrades

performance by 1 dB for BER is 10−4. Thus, the energy reduction should be the domi-

nant factor that degrades the performance.
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4.5 Conclusions

In this chapter, we have first briefly reviewed prior work on the detectors with sequence

feedback. Then, by constraining the target with causal ITI, we have developed a quasi-

1D VD, which uses a computationally efficient technique whose complexity grows only

linearly with the number of tracks. This is a significant complexity reduction compared

to the conventional 2D VD whose complexity grows exponentially with the number of

tracks. We have shown that the quasi-1D VD improves over the DFE-VD and SWVD

in terms of complexity. Further, we have shown that the widely known QR detector is

a special case of our proposed quasi-1D VD. However, we have found that the quasi-1D

VD still causes significant detraction from optimality in the TwoDOS system. Therefore,

effective compensation techniques are needed to ensure reliable data recovery. To achieve

this goal, we have investigated the factors that might degrade the performance. Our

simulation results implied that the energy reduction is the dominant factor that degrades

the performance of the quasi-1D VD. Therefore, in the next chapter, we develop some

effective techniques to reduce the effect of this energy reduction problem. In addition, the

effect of error propagation still needs to be minimized since it degrades the performance

by roughly 1 dB when BER is 10−4. However, increasing the target length beyond three

is of no practical value for the TwoDOS system since it hardly improves the performance

while introducing excessive complexity.
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Generalized 2D Viterbi Detector

5.1 Introduction

In the two-dimensional optical storage (TwoDOS) system, due to the absence of guard-

bands between tracks and the hexagonal arrangement of bit-cells, the received signals

contain severe intertrack interference (ITI) and intersymbol interference (ISI). As a re-

sult, the traditional threshold-like detector that is widely used in the current optical

storage systems cannot be used in the TwoDOS system. We choose the two-dimensional

(2D) Viterbi-like detector because of its superior detection performance in the presence

of severe ITI and ISI. However, a full-fledged 2D Viterbi detector (VD) is by far im-

practical for the current TwoDOS system (with large number of tracks per group) since

its complexity grows exponentially with the channel memory and number of tracks per

group. Unfortunately, further simplifications of the 2D VD always result in performance

degradation. For example, in the previous chapter, the quasi-one-dimensional (quasi-1D)

VD significantly reduces the complexity of a full-fledged 2D VD but suffers a considerable

performance loss. Thus, the main objective in this chapter is to reduce the complexity of

the 2D Viterbi-like detector without paying a large penalty in terms of performance. The

detector proposed here can be regarded as a generalized 2D VD since the conventional

full-fledged 2D VD, QR detector, and our proposed quasi-1D VD are special cases of

this detector. We also address some novel techniques that provide this generalized 2D

VD with more flexibility to deal with its focal problem, i.e. the balance between the

performance and complexity.

82
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This chapter is organized as follows. Section 5.2 proposes a generalized 2D VD

called FDTS-DF/VD. Then, Section 5.3 provides a theoretical platform to evaluate the

performance of the FDTS-DF/VD. Section 5.4 develops the RFDTS-DF/VD to fur-

ther reduce the complexity of the FDTS-DF/VD. Some novel targets specifically for the

FDTS-DF/VD and RFDTS-DF/VD are presented in Section 5.5. Finally, Section 5.6

concludes this chapter.

5.2 Principle of Generalized 2D VD

 

 

 

track1 

track2 

track3 

track4 

track5 

 2nd Sub- 

2D VD 

3rd Sub- 

2D VD 

1st Sub- 

2D VD 

Figure 5.1: Principle of FDTS/DF-VD with Nsr = 3 and Nr = 5. The solid lines

represent the input and output of sub-2D VDs, the dashed lines represent the feedback

coming from the output of the previous sub-2D VDs.

The basic idea of this novel detector is to divide the full-fledged 2D VD, which deals

with Nr (i.e. number of tracks per group) tracks simultaneously, into a set of sub-2D

VDs. This detector is based on the casual ITI target introduced in the previous chapter.

Each sub-2D VD deals with a subgroup of Nsr tracks, and the detected bits from lower

tracks are used to estimate all the causal ITI in the current subgroup. More specifically,

we use the first sub-2D VD to deal with the lowest Nsr tracks and the detected bits in

the lowest track are the final decisions with a delay of D. The second sub-2D VD deals
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with Nsr tracks that are shifted up by one track and starts after the first sub-2D VD

with the delay D. Its outputs are the final decisions in the second lowest track. This

procedure continues until all the bits are detected. It should be noted that the output of

each sub-2D VD is limited to the bottom track of its corresponding subgroup except for

the last sub-2D VD, whose outputs correspond to all the Nsr tracks of its corresponding

subgroup (see Fig. 5.1). Since in the cross-track direction we essentially use the fixed

delay tree search with decision feedback (FDTS/DF) [136], we call this detector the

FDTS/DF-VD. Clearly, the conventional 2D full-fledged VD (Nsr = Nr) and the quasi-

1D VD (Nsr = 1) are special cases of this generalized 2D VD. Further, as mentioned

in the previous chapter, the QR detector is the special case of the quasi-1D VD. Thus,

the QR detector is also a special case of the FDTS/DF. The flexibility introduced by

the parameter Nsr allows us to design systems with varying performance and complexity.
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Figure 5.2: BER performance comparison of different 2D bit detectors.

As shown in the previous chapter, the quasi-1D VD, which is the simplest FDTSDF-

VD, provides a rather poor performance. The main reason for the considerable perfor-

mance degradation is that the quasi-1D VD ignores the signal energy embedded in the
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causal ITI components, which are rather large for TwoDOS due to the absence of guard-

band between tracks. Therefore, we can increase Nsr to achieve better performance.

Fig. 5.2 compares the bit error rate (BER) performances of different 2D bit detectors

and shows that setting Nsr = 3 is sufficient enough to yield good performance. Note that

here we consider the TwoDOS case where the largest allowable ISI and ITI occur. In

other TwoDOS cases where ISI and ITI are smaller, the performance loss of different 2D

bit detectors compared with the full-fledged 2D VD would become less. Thus, using Nsr

smaller than 3 might still suffice to achieve good performance. From the above, setting

Nsr = 3 is sufficient enough to yield good performance for all the TwoDOS cases when

Nr = 5.

5.3 Performance Analysis of FDTS/DF-VD

The exact performance of the FDTS/DF-VD is difficult to analyze because of the decision

feedback. However, as mentioned in the previous section, error propagation degrades the

performance with 1 dB when BER is 10−4. Therefore, we first investigate the FDTS/DF-

VD that is free of error propagation. The effect of error propagation can be assessed

through simulations.

Recalling (2.9), the channel output vector resulting from the parallel read-out at time

index n is given by

z(n) =

Nh−1
∑

k=0

Hka(n − k) + θ(n) (5.1)

where z(n) = [z1(n), z2(n), · · ·, zNr (n)]T , zk(n) denotes the received signal component

from the kth track, a(n) = [a1(n), a2(n), · · ·, aNr(n)]T , ak(n) ∈ {−1, 1} denotes the data

bit written on the kth track, θ(n) = [θ1(n), θ2(n), · · ·, θNr(n)]T and θk(n) denotes the

noise picked up from the kth track, for k = 1, 2, · · · , Nr. Further, let Gk (k = 0, 1, · · ·,

Ng−1) and Wk (k = 0, 1, · · ·, Nw−1) represent Nr×Nr coefficient matrices of partial re-

sponse (PR) target and equalizer, respectively. We assume that the channel response Hk

(k = 0, 1, · · · , Nh−1) is time-invariant, and the PR target Gk is known in this subsection.
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For notation convenience, define a = [aT (n), aT (n + 1), · · ·, aT (n + Ne − 1)]T , â =

[âT (n), âT (n + 1), · · · , âT (n + Ne − 1)]T , where â(n) denotes the detected channel input

vector corresponding to a(n). Further, we define a 2D error event vector e = [eT (n),

eT (n + 1), · · ·, eT (n + Ne − 1)]T with e(n) = (a(n) − â(n))/2. Then, e is a 2D error

event of length Ne if

1. e(n) 6= 0 and e(n + Ne − 1) 6= 0,

2. the length of strings of zero vectors in e does not exceed Ng − 1, and

3. â(n + i) = a(n + i) for −Nf ≤ i < 0 and Ne ≤ i ≤ Ne + Nf − 1.

Here Nf is called the “error-free interval” and Nf ≥ Ng − 1, where Ng is the target

length. It should be noted that in the absence of error propagation, only the bits from

the (k + 1)th to the (k + Nsr)th track affect the performance of the (k + 1)th sub-2D

VD, and the elements of e(n) that correspond to other tracks should be zero. Let W (e)

be the number of error bits in the corresponding output track(s) of a sub-2D VD for the

error event e. Then, the BER of the kth sub-2D VD is given by

BERk =
∑

e∈Es

∑

a∈Se

W (e) Pr(a) Pr(error|a) (5.2)

where Es is the set of all possible error events, Se is the set of all possible data patterns

that support the error event e, Pr(a) is the probability that the true recorded data is

a, and Pr(error|a) is the conditional probability that the sub-2D VD detects â as the

recorded data when the true recorded data is a.

Let aj(n) and (A∗B)n,j denote the jth element of vector an and (A∗B)n, respectively,

and ‘∗’ refers to 2D convolution given by (A ∗ B)k =
∑

n AnBk−n unless otherwise

specified. According to the principle of VD, Pr(error|a) can be upper-bounded by the

probability that the metric corresponding to path â is smaller than that corresponding

to path a. That is

Ne+Ng−2
∑

i=0

Nsr+k
∑

j=1+k

[xj(n + i) − (G ∗ â)n+i,j]
2
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<

Ne+Ng−2
∑

i=0

Nsr+k
∑

j=1+k

[xj(n + i) − (G ∗ a)n+i,j]
2 (5.3)

where k + 1 is the index of the sub-2D VD, and xj(n) is the equalizer output in the jth

track

xj(n) =

[

Nw−1
∑

i=0

Wiz(n − i)

]

j

=
{

[(G + M) ∗ a]n + (W ∗ θ)n

}

j
(5.4)

where M0, M1, · · ·, MNh+Nw−2 represent the matrices of the 2D residual ISI channel,

i.e. Mn = (W ∗H)n −Gn, and θ(n) is a 2D white Gaussian noise vector with variance

σ2. Using (5.4), we can express (5.3) as

d2(e) +

Ne+Ng−2
∑

i=0

Nsr+k
∑

j=1+k

ẽj(n + i)[(M ∗ a)n+i,j + (W ∗ θ)n+i,j] < 0 (5.5)

where d2(e) =
∑Ne+Ng−2

i=0

∑Nsr+k
j=1+k(G ∗ e)2n+i,j and ẽ(n) = (G ∗ e)n. For given a and e,

the left hand side of the inequality in (5.5) is a Gaussian random variable with mean

mu = d2(e) + mme (5.6)

where

mme =

Ne+Ng−2
∑

i=−(Nh+Nw−2)

Nsr+k
∑

j=1+k

(

MT
− ∗ ẽ

)

n+i,j
aj(n + i) (5.7)

and variance

σ2
u = σ2

Ne+Ng−2
∑

i=−(Nw−1)

Nsr+k
∑

j=1+k

(

WT
− ∗ ẽ

)2

n+i,j
. (5.8)

Thus, we get

Pr(error|a) ≤ Q

(

mu

σu

)

(5.9)

where Q(α) = 1√
2π

∫∞
α e−x2/2dx is the tail probability of Gaussian distribution. By

substituting (5.9) into (5.2), we get the BER of the (k + 1)th sub-2D VD as

BERk+1 ≤
∑

e∈Es

∑

a∈Se

W (e) Pr(a)Q

(

mu

σu

)

. (5.10)

Based on the BER expression for the sub-2D VD given above, the overall BER of

the FDTS/DF-VD in the absence of the error propagation is upper bounded by the
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summation of the BER of all the sub-2D VDs. In Figure 5.3, the analysis performance

for FDTS/DF-VD with no error propagation is realized by the use of the above upper

bound. Also, we only use limited number of the channel input data patterns to realize the

theoretical performance analysis for the FDTS/DF-VD with no error propagation (see

Subsection 3.3.1 for details). As illustrated, the theoretical BER performance is asymp-

totic to the simulation BER performance, thus indicating that the theoretical approach

described above is suitable to analyze the FDTS/DF-VD without error propagation.

Further, Figure 5.3 shows that the error propagation degrades performance by 1 dB for

BER is 10−4. Compared with Fig. 4.7, it seems that, unlike the energy reduction effect,

the error propagation effect is independent of Nsr.
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Figure 5.3: Theoretical and simulation BER performance for FDTS/DF-VD.

5.4 Reduced-Complexity FDTS/DF-VD

For the FDTS/DF-VD, adjacent two sub-2D VDs have Nsr − 1 tracks in common. How-

ever, it is hard to tell which sub-2D VD is more reliable in detecting the bits of these
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1st Sub- 
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Figure 5.4: Principle of reduced-complexity FDTS/DF-VD with Nsr = 3 and Nr = 5.

The solid lines represent the input and output of sub-2D VDs, the dashed lines represent

the feedback coming from the output of the previous sub-2D VDs. The last sub-2D VD

only deals with two tracks.

tracks. For this reason and in order to further reduce the complexity, we make each

track correspond to one unique sub-2D VD. More specifically, the first sub-2D VD deals

with the lowest Nsr tracks and detected bits from these tracks are all final decisions,

the second sub-2D VD deals with the subgroup that is shifted up by Nsr tracks and de-

tects all the bits in this subgroup. Same procedures are applied to the third sub-2D VD

and above. Note that the last sub-2D VD only deals with Nmsr (Nmsr=Nr modulo Nsr)

tracks, as illustrated in Fig. 5.4. We call this detector the reduced-complexity FDTS/DF-

VD (RFDTS/DF-VD) since it uses less number of sub-2D VDs. From Fig. 5.2, we find

that for the same Nsr, RFDTS/DF-VD and FDTS/DF-VD perform almost comparably.

Note that here we consider the TwoDOS case where the largest allowable ISI and ITI

occur. In other TwoDOS cases where ISI and ITI are smaller, the two detectors would

perform more similarly. In view that RFDTS/DF-VD can further reduce the complexity

compared to FDTS/DF-VD, it is an attractive reduced-complexity detector for all the

TwoDOS cases when Nr = 5.
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Table 5.1: Complexity of different 2D detectors.

2D Detectors Complexity (General) Complexity (Example)

Full-fledged 2D VD O(2Nr(Ng−1)) O(210)

FDTS/DF-VD (Nr − Nsr + 1)O(2Nsr(Ng−1)) 3O(26)

RFDTS/DF-VD dNr/NsreO(2Nsr(Ng−1)) 2O(26)

Quasi-1D VD NrO(2(Ng−1)) 5O(22)

Table 5.1 lists the complexity of different 2D detectors. In the column ‘Complex-

ity (Example)’, we set Nr = 5, Nsr = 3, and Ng = 3 to compute the corresponding

complexity for different detectors. This setting is typically used in our simulation. The

function dαe in the table is the ceiling function that returns the smallest integer not less

than α. From the table, it is clear that all the detectors developed in this and previ-

ous chapter (i.e. FDTS/DF-VD, RFDTS/DF-VD, and quasi-1D VD) require much less

computational complexity compared with the conventional full-fledged 2D VD.

5.5 Target Design for FDTS/DF-VD

As discussed in Section 5.2, better performance of the FDTS/DF-VD can be achieved

by increasing Nsr. However, the computational complexity of the FDTS/DF-VD is dra-

matically increased with the increase of Nsr since the complexity of the detector grows

exponentially with Nsr. For this reason, the practical FDTS/DF-VD should constrain

Nsr to a certain value (e.g. three). But this constraint may sometimes not meet the

stringent performance requirement1. Recalling that a suitable target can improve the

detection performance without leading to the increase of detection complexity, in this

section, we propose several new targets that improve over conventional causal ITI target

in terms of detection performance or target design complexity. It should be noted that

these targets are specific for the FDTS/DF-VD and RFDTS/DF-VD, not for the full-

1Even though Nsr can increase with the advances of circuits and processors, maintaining the strin-

gent performance requirement will become harder with the increase of storage capacity. Therefore, the

continuous demand for increased storage capacity will always impose a constraint on Nsr.
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fledged 2D VD. Consequently, these targets may even degrade the performance of the

full-fledged 2D VD.

5.5.1 Truncated Causal ITI Target

For a conventional causal ITI target, all of its 2D target matrices are the right triangular

matrices and the diagonal elements of G0 are constrained to be 1s. This target causes

a given track to suffer the ITI only from the tracks below it. However, not all tracks

below contributes equal interference to the current track. For the TwoDOS case where

the largest ISI and ITI occur, we still found that only the two nearest tracks below the

track cause significant ITI. Therefore, in the target matrices, we only take the elements

that correspond to the two nearest lower tracks into account. All the remaining causal

ITI terms are constrained to be zero. For example, if the target length Ng is three and

number of tracks per group Nr is five, the target matrices can be written as,

G0 =

























1 × × 0 0

0 1 × × 0

0 0 1 × ×

0 0 0 1 ×

0 0 0 0 1

























, (5.11)

G1 =

























× × × 0 0

0 × × × 0

0 0 × × ×

0 0 0 × ×

0 0 0 0 ×

























, (5.12)

G2 =

























× × × 0 0

0 × × × 0

0 0 × × ×

0 0 0 × ×

0 0 0 0 ×

























(5.13)
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where ‘×’ represents the elements that need to be optimized under a given criterion

(e.g. minimum mean square error). We call this target truncated causal ITI target since

it is essentially a causal ITI target with truncated channel memory across the track.

This truncation leads to performance degradation of the full-fledge 2D VD. Neverthe-

less, it makes the FDTS/DF-VD suffer less error propagation effect since it prevents

the error propagation from the lower tracks whose separation between the current track

is beyond two tracks. In a word, this target benefits FDTS/DF-VD by reducing error

propagation effect at the price of introducing the performance loss due to the truncation.

5.5.2 Symmetric Truncated Causal ITI Target

As shown in Section 3.4, a target with the symmetry constraint results in trivial perfor-

mance loss. Thereupon, we conduct an investigation on the symmetric truncated causal

ITI target, i.e. we assume that ITI is track independent. For example, if the target

length Ng is three and number of tracks per group Nr is five, the target matrices can be

written as,

G0 =

























1 g0 g1 0 0

0 1 g0 g1 0

0 0 1 g0 g1

0 0 0 1 g0

0 0 0 0 1

























, (5.14)

G1 =

























g2 g3 g4 0 0

0 g2 g3 g4 0

0 0 g2 g3 g4

0 0 0 g2 g3

0 0 0 0 g2

























, (5.15)
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G2 =

























g5 g6 g7 0 0

0 g5 g6 g7 0

0 0 g5 g6 g7

0 0 0 g5 g6

0 0 0 0 g5

























. (5.16)

In this case, the 1D vector target g = [g0, g1, · · ·, g7]
T , where gi (i = 0, 1, · · ·, 7) are

the distinct non-zero elements in the target matrices. This target has two advantages:

First, it reduces the complexity of target design process shown in Section 3.3 since the

target vector has only eight elements while the traditional causal ITI target has seventy-

eight elements when the number of tracks per group Nr = 5 and target length Ng = 3.

Second, it ensures that all the sub-2D VDs have equal noiseless output for a given state.

Therefore, all the sub-2D VDs can share the same architecture to yield the noiseless

output and this can be realized by a simple table look-up operation, e.g. by means of

a random-access memory. However, since the channel response is not symmetric for dif-

ferent tracks, this predefined “symmetric” target additionally burdens the finite length

equalizer and leads to detection performance degradation.

5.5.3 Simulation Results

As illustrated in Figure 5.5, both new targets degrade the performance of the 2D VD

because of the truncation loss, and symmetric truncated causal ITI target results in

worst performance for the 2D VD since its symmetry property additionally burdens the

finite-length equalizer. Figure 5.5 also shows that these two new targets do not lead

to better performance of the FDTS/DF than the conventional causal ITI target. The

main reason is that the performance loss due to truncation counteracts the gains of error

propagation compensations. Thus, these two targets can not manifest its superiority in

reducing the error propagation in the simulations. Nevertheless, both targets can result

in reduction in the latency due to the error propagation. Furthermore, they lead to

lower complexity in the implementation of FDTS/DF-VD as well as the process of tar-

get design. In view that the symmetric truncated causal ITI target results in the lowest
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Figure 5.5: BER performance for 2D VD and FDTS/DF-VD with different targets.

complexity while still maintaining good detection performance, we may choose it for the

FDTS/DF. Therefore, by judiciously choosing the target and number of tracks under

consideration in the FDTS/DF-VD, we can develop a reduced-complexity 2D Viterbi-

like detector that facilitates the high-speed TwoDOS implementation without paying a

large penalty in detection performance.

5.6 Conclusions

In this chapter, we have proposed a generalized 2D VD called FDTS-DF/VD. The con-

ventional full-fledged 2D VD, QR detector, and our proposed quasi-1D VD can all seen

be viewed as special cases of this detector. The detector breaks up the full-fledged 2D

VD into a set of sub-2D VDs, each of which deals with a subgroup of tracks (with

number Nsr). By constraining the target to have causal ITI, all the ITI outside the

current subgroup can be estimated and removed by the detected bits from the lower

tracks. The flexibility introduced by the parameter Nsr allows us to design detectors
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with varying performance and complexity. We have provided a theoretical platform to

evaluate the performance of FDTS-DF/VD that is free of error propagation. Addition-

ally, we have introduced the RFDTS-DF/VD to further reduce the complexity of the

FDTS-DF/VD. We have also presented several other novel targets specifically for the

FDTS-DF/VD and RFDTS-DF/VD. Our simulation results indicate that by judiciously

choosing the target and number of tracks under consideration in the FDTS/DF-VD, we

can develop a reduced-complexity 2D Viterbi-like detector that facilitates the high-speed

TwoDOS implementation while incurring only a minor penalty in detection performance.
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MIMO-OFDM Systems
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In Part I of the thesis, we have concentrated on developing reduced-complexity and

high-performance detectors for multiple-input multiple-output systems and have shown

that they are effective in the two-dimensional optical storage (TwoDOS) system. In

Part I, we have assumed that the knowledge of channel coefficients is available to the

receiver. This assumption is realistic to optical storage systems such as TwoDOS but

may not hold for wireless communication systems because a system placed in different

environments may experience completely different fading behaviors. Therefore, channel

estimation is quite important in multiple-input multiple-output wireless communication

systems and is the focus of Part II of this thesis.

In the field of wireless communication, multiple-input multiple-output technology is

usually referred to as MIMO technology, which has emerged as one of the most significant

technical breakthroughs in modern communications after the theoretical work by Fos-

chini [68] and Teletar [175]. Generally, MIMO technology can be used to achieve two

objectives: spatial diversity and space-division multiplexing. Spatial diversity, which

provides the receiver with several (ideally independent) replicas of the transmitted sig-

nals, may rely on the use of space-time coding [13,176,177] to improve the link reliability

by transmitting different representations of the same data stream on different trans-

mit antennas. Space-division multiplexing, by comparison, achieves a higher data rate

by transmitting independent data streams on different transmit antennas simultane-

ously [68]. It is believed that MIMO technology is the one of the most likely technologies

to achieve data rates in excess of 1 Gb/s [106].

Orthogonal frequency division multiplexing (OFDM) is an attractive multicarrier

technology for data transmission over frequency-selective fading channels [190]. This

technology was first introduced in 1966 [32], and has been used in various wireless com-

munication systems such as the digital audio broadcasting (DAB) [2, 191], digital video

broadcasting (DVB) [1,155,160], and wireless local area networks (WLAN) [3,6]. OFDM

technology divides a frequency-selective (wideband) channel into a number of flat fading

(narrowband) subchannels, each of which having a distinct subcarrier. This renders the
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equalizer design particularly simple since only a constant has to be inverted for each flat

fading subchannel. In addition, the use of overlapping subcarriers allows the realization

of high spectral efficiency.

The complementary benefits of MIMO and OFDM technologies motivate the in-

vestigation of systems that combine both technologies [12, 163, 173]. Such systems are

referred to as MIMO-OFDM systems and they serve as a potential candidate for the

next generation wireless communication systems operating in frequency-selective fading

channels [100,173,198]. One particular application of MIMO-OFDM systems is the next

generation wireless local area network (WLAN) system. This system is mainly deployed

in richly scattered multipath indoor environments, which are ideal for achieving high

capacities [68,73]. Aiming to define a standard for MIMO-OFDM based WLAN systems

named IEEE 802.11n, the IEEE set up a new task group in January 2004. Till now,

several proposals that support data rates up to 108 Mb/s have been submitted for the

IEEE802.11n standard. Further, a data rate of 540 Mb/s is envisaged as an optional

part of the IEEE 802.11n standard by 2007 [105].

Channel estimation for MIMO-OFDM systems is particularly challenging because of

the large number of channel coefficients to be estimated. Early MIMO-OFDM chan-

nel estimation techniques treat channels as spatially uncorrelated. However, in many

situations, MIMO-OFDM channels tend to be spatially correlated, for example, due to

limited scattering. Prior knowledge of this channel spatial correlation and the channel

frequency correlation can be exploited by using the linear minimum mean square error

(LMMSE) technique. However, the complexity of the full-fledged LMMSE technique,

which utilizes both the channel spatial and frequency correlation, is quite high. Further,

prior knowledge of channel spatial and frequency correlation is not always available to the

receiver. The least squares (LS) technique circumvents these problems but gives much

poorer performance. Therefore, it is important to develop reduced-complexity, subop-

timal, approximate LMMSE channel estimation techniques that allow a good trade-off

between the performance, complexity, and availability of channel stochastic information
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(e.g. channel correlation or power) for MIMO-OFDM systems. This is the focus of

Part II of the thesis.

The organization of Part II is as follows. Chapter 6 provides a overview of channel

estimation techniques for conventional OFDM systems with single transmit and receive

antennas. This chapter serves as the technical basis on channel estimation techniques for

MIMO-OFDM systems. Then, Chapter 7 describes MIMO-OFDM systems in the angle

domain, where the channel model lends itself to a physical interpretation. This physically

oriented angle-domain channel representation inspires our work for MIMO-OFDM chan-

nel estimation techniques. Chapter 8 proposes several channel instantaneous power based

angle-domain channel estimation techniques for the case where the channel stochastic in-

formation is not available to the receiver. Finally, Chapter 9 develops LMMSE-based

angle-domain channel estimation techniques for the case where the channel stochastic

information is known to the receiver.



Chapter 6

Channel Estimation for OFDM

Systems

6.1 Introduction

As coherent demodulation that requires and utilizes the knowledge of channel coefficients

can achieve a 3 dB performance gain compared with differential demodulation [154], it

is quite commonly adopted in orthogonal frequency division multiplexing (OFDM) sys-

tems. Therefore, accurate and robust channel estimation that permits the realization

of coherent demodulation is very important in order to ensure reliable data recovery.

Channel estimation can be realized either by pilot-aided or blind techniques. Pilot-aided

channel estimation techniques [48] utilize the received signals and specific known trans-

mitted signals, while blind channel estimation techniques [53,83] use the received signals

and the stochastic information (e.g. second order statistics) of transmitted and received

signals, to estimate the channel coefficients. Compared with pilot-aided techniques,

blind techniques save on the use of pilots and can thus increase the spectral efficiency.

However, blind techniques require the prior knowledge of stochastic information of the

transmitted and received signals. Further, they always result in poorer performance com-

pared with pilot-aided techniques. Therefore, although blind techniques achieve spectral

efficiency, in our work, we still focus on pilot-aided techniques given additionally the

fact that preamble-based OFDM systems have been widely used in many applications

100
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and standards. This chapter provides the technical background of pilot-aided channel

estimation techniques for single-input single-output (SISO)-OFDM systems and serves

as the basis for the channel estimation techniques for multiple-input multiple-output

(MIMO)-OFDM systems.

This chapter is organized as follows. Section 6.2 briefly illustrates OFDM systems.

Then, Section 6.3 introduces typical pilot arrangements in OFDM systems. Section 6.4

describes conventional pilot-aided channel estimation techniques for OFDM systems. Fi-

nally, Section 6.5 concludes this chapter.

6.2 OFDM Systems

The basic idea of OFDM technology is to use a number of carriers (i.e. Nd) to divide the

frequency-selective fading channels into Nd parallel and ideally independent flat-fading

subchannels. These carriers are referred to as subcarriers and made orthogonal to each

other by appropriately choosing the frequency spacing between them. Thus, OFDM

technology is a kind of multicarrier technology. OFDM technology has several appeal-

ing advantages. First, it can easily handle intersymbol interference (ISI) in frequency-

selective fading channels. In such channels, the single carrier technology has to use a

multiple-tapped time-domain equalizer [119,154] to suppress ISI. OFDM technology can

avoid this by only using a simple one-tap frequency-domain equalizer for each subcar-

rier. Second, OFDM technology is robust to impulsive interferences in the time domain.

This is because the energy of short time-domain interferences will spread over the entire

frequency bandwidth and thus detrimental effects resulting from impulsive interferences

are significantly reduced for each subcarrier. In addition, OFDM technology achieves

higher spectral efficiency compared to the conventional frequency division multiplexing

technique, which disallows the spectral overlap between the subcarriers.

In a typical OFDM system, the high rate signals to be transmitted are first grouped

into blocks of Nd data signals at the transmitter. These blocks are called frequency-
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Figure 6.1: Block diagram of a typical OFDM channel.

domain OFDM symbols and the nth group is represented by the vector x(n) = [x0(n),

· · ·, xk(n), · · ·, xNd−1(n)]T as shown in Fig. 6.1, where k and n denote the indices of the

subcarrier and OFDM symbol, respectively. Next, an inverse discrete Fourier transform

(IDFT) is applied to each OFDM symbol. The IDFT at the transmitter and discrete

Fourier transform (DFT) at the receiver, respectively, serve to modulate and demodulate

the data on the orthogonal subcarriers. At the IDFT output (i.e. the time domain), a

CP of length Ng that is a copy of the last part of the symbol, is inserted at the beginning

of each symbol to prevent ISI and its length is assumed to be not shorter than the channel

length. The resulting nth time-domain OFDM symbol is represented by s(n) = [s0(n),

s1(n), · · ·, sNd+Ng−1(n)]T , where

sm(n) =
1

Nd

Nd−1
∑

k=0

xk(n)ej2πk(m−Ng)/Nd (6.1)

for m = 0, 1, · · · , Nd + Ng − 1.

The samples {sm(n)} are sent through a frequency-selective fading channel, which

can be represented by an equivalent discrete-time linear finite duration channel impulse

response (CIR) given by c(n) = [c0(n), c1(n), · · ·, cNh−1(n)]T , where Nh is the length

of the time-domain channel. By performing an Nd-point DFT on the received OFDM

symbols after removing the CP from each OFDM symbol at the receiver, we get the
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corresponding frequency-domain symbols. The resulting frequency-domain data sample

at the kth subcarrier in the nth OFDM symbol is given by

yk(n) = hk(n)xk(n) + ϑk(n) (6.2)

where hk(n) is the kth sample of the Nd-point DFT of c(n), and the noise ϑk(n) is

assumed to be additive white Gaussian (AWGN). In a compact notation, the received

block of consecutive Nc OFDM symbols in the frequency domain can be written as

y = X h + ϑ (6.3)

where y = [y(n), y(n+1), · · ·, y(n+Nc−1)]T with y(n) = [y0(n), y1(n), · · ·, yNd−1(n)]T ,

ϑ = [ϑ(n),ϑ(n + 1), · · · ,ϑ(n + Nc − 1)]T with ϑ(n) = [ϑ0(n), ϑ1(n), · · · , ϑNd−1(n)]T ,

h = [h0, h1, · · · , hNd−1]
T is the channel transfer function (CTF), and X = [X(n),X(n +

1), · · · ,X(n + Nc − 1)]T with X(n) = diag[x0(n), x1(n), · · ·, xNd−1(n)]. The index n is

omitted from the CTF h because we assume that the channel remains time-invariant

over Nc symbols. This assumption is satisfied, for example, in IEEE 802.11a systems for

Nc=2.

6.3 Pilot Arrangements in OFDM systems

In the literature, there exist two types of frequency-domain pilot arrangements in OFDM

systems for the implementation of pilot-aided channel estimation techniques: block-type

and comb-type pilot arrangements. The first type (see Fig. 6.2) is realized by insert-

ing pilots into all of the subcarriers within a periodical time interval and the estimated

channel coefficients obtained from one period are used for further signal processing (e.g.

equalization, detection etc.) until the next period of pilots is received. This type of

pilot arrangement is especially suitable for slowly fading channels. The second type

(see Fig. 6.3) is performed by inserting pilots into a certain number of subcarriers of

each OFDM symbol and use the estimated channel coefficients at these pilot subcarriers

to interpolate channel coefficients at the remaining subcarriers (i.e. data subcarriers).

Compared with the first type, this type is more suitable for rapidly time-varying channels
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Time
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Figure 6.2: Block-type pilot arrangement. The solid and hollow squares represent the

pilot symbols and data symbols, respectively.

in that it can track time variation within each OFDM symbol. However, it may suffer

an irreducible estimation error floor due to the interpolation.

Interpolation techniques for the comb-type pilot arrangements can be realized in the

following ways:

• Piecewise-Constant Interpolation:

The piecewise-constant interpolation technique is the simplest technique in which

the estimated channel coefficient at a single pilot subcarrier fp is used for all the

data subcarriers that are near the pilot subcarrier fp. This technique uses the

assumption that the fading on pilot subcarriers and data subcarriers are totally

correlated [42]. This assumption requires the separation between pilot subcar-

riers and data subcarriers to be sufficiently small to maintain high correlation.

Consequently, a relatively large number of pilot subcarriers is required for reliable

estimation, but this requirement is undesirable to achieve a high spectral efficiency.
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Figure 6.3: Comb-type pilot arrangement. The solid and hollow squares represent the

pilot symbols and data symbols, respectively.

• Piecewise-Linear Interpolation:

The piecewise-linear interpolation technique uses the estimated channel coefficients

at two consecutive pilot subcarriers to determine channel coefficients at data sub-

carriers that are between the two pilot subcarriers. Let fp and fp+1 denote the

index of two pilot subcarriers, respectively, the estimated channel coefficient h̃k at

the kth subcarrier that is between the adjacent two pilots subcarriers is given by

h̃k =

(

h̃fp+1
− h̃fp

fp+1 − fp

)

(k − fp) + hfp (6.4)

where h̃fp and h̃fp+1
are the estimated channel coefficients at two pilot subcarriers,

respectively.

Compared to the piecewise-constant interpolation technique, this technique looses

the stringent requirement that pilot subcarriers and data subcarriers should be to-

tally correlated and thus the separation between pilot subcarriers and data subcar-

riers can be made larger. Consequently, fewer pilots are required and the spectral

efficiency can be increased. Further, this technique may yield considerable perfor-
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mance improvement because more estimated channel coefficients at pilot subcarri-

ers are utilized during the interpolation [158]. However, the first-order interpolation

does not always reflect the actual channel characteristics since most of the practical

channel transfer functions between adjacent pilot subcarriers are not line segments

and thus will result in an irreducible estimation error floor.

• Second-Order Interpolation:

The second-order interpolation technique uses the estimated channel coefficients at

three consecutive pilot subcarriers to determine channel coefficients at data sub-

carriers that are between the pilot subcarriers. Let fp−1,fp and fp+1 denote the

index of these three pilot subcarriers, respectively. Then, the estimated channel

coefficient h̃k at the kth subcarrier that is between the f th
p and f th

p+1 pilots subcar-

riers is given by [92]

h̃k = β1h̃fp−1
+ β0h̃fp + β−1h̃fp+1

(6.5)

where






















β1 = α(α + 1)/2,

β0 = −(α − 1)(α + 1),

β−1 = α(α − 1)/2,

and α = (k − fp)/Nd.

The second-order interpolation technique usually performs better than the piecewise-

linear interpolation technique since the former fits the channel transfer function

better and exploits more estimated channel coefficients at pilot subcarriers for in-

terpolation.

• Transformed-Domain Based Interpolation:

The transformed-domain based interpolation technique utilizes the estimated chan-

nel coefficients at all the pilot subcarriers for interpolation. Let Np denote the

number of pilots in a single OFDM symbol. Then, an Np-point DFT is performed

to transform the estimated channel coefficients at pilot subcarriers from the fre-

quency domain into one transformed domain. The resulting transformed channel
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coefficients corresponding to those at pilot subcarriers for the nth OFDM symbol

is given by

Gm(n) =

Np−1
∑

k′=0

h̃k′(n) e−j2πml/Np (6.6)

for m = 0, 1, · · · , Np−1, where m is the index of samples in the transformed domain.

After applying a low-pass filter whose cutoff frequency is pc, the resulting channel

coefficients in the transformed domain become

G̃m(n) =







Gm(n), if 0 ≤ m ≤ pc or Np − pc ≤ m ≤ Np − 1,

0, otherwise.
(6.7)

After this low-pass filtering operation, only 2(Pc + 1)/Np of the noise remains.

Then, padding Nd − Np zeros at the high-frequency region of the transformed

domain [202]:

Ĝm(n) =























G̃m(n), if 0 ≤ m ≤ pc,

0, if pc < m < N − pc,

G̃m−Nd+Np(n), if Nd − pc ≤ m ≤ Nd − 1.

(6.8)

Performing an Nd-point IDFT to the zero-padded channel coefficients, the esti-

mated channel coefficients at all the data and pilot subcarriers are obtained. In

fact, if we change the order of DFT and IDFT operations, the transformed domain

becomes the time domain. This interpolation technique is also applicable in OFDM

systems [48].

Since both the low-pass filtering operation in the transformed domain and the

use of all the estimated channel coefficients at pilot subcarriers for interpolation

can reduce the noise effect, the transformed-domain based interpolation technique

could yield better performance than the above mentioned techniques at the price of

higher complexity [202]. However, the performance of this technique is limited at

higher SNRs if the low-pass filtering operation discards some channel information.

Furthermore, this technique cannot be considered a pure interpolation technique

because after the IFFT operation, the estimated channel coefficients at pilot sub-

carriers may not be the same as those before the DFT operation.

• Low-Pass Interpolation:
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The low-pass interpolation technique is another technique that utilizes estimated

channel coefficients at all the pilot subcarriers. In this technique, zeros are inserted

between each pair of adjacent estimated channel coefficients at pilot subcarriers

to form the input vector so that the number of input vector reaches Nd, which

is the number of the total pilot and data subcarriers. This operation creates a

higher-rate signal whose spectrum is the same as the original over the original

bandwidth, but has images of the original spectrum centered on multiples of the

original sampling rate. Then, a low-pass finite impulse response (FIR) filter is

applied to eliminate the images as well as some high-frequency region according

to the cutoff frequency, and the ideal values of the interpolated points (i.e. the

channel coefficients at data subcarriers) are obtained. Finally, the interpolation is

performed such that the original estimated channel coefficients at pilot subcarriers

remain unchanged and the mean square error (MSE) between the interpolated and

ideal values is minimized. This minimum MSE (MMSE) based technique makes

the low-pass interpolation technique perform better than the transformed-domain

based technique, as verified by simulation in [48].

• Windowed DFT Based Interpolation:

The transformed-domain based and low-pass interpolation techniques exploit the

fact that the channel power is concentrated on a limited number of channel coefficients

in the transformed domain. Then, a low-pass filter (LPF) is used to filter the noise

outside these channel coefficients. However, for non-sample-spaced channels, i.e.

when not all the multipath time delays are located at integer multiples of the sam-

pling time, it is widely known that transforming the channel coefficients from the

frequency domain into the transformed domain by the use of DFT or IDFT oper-

ations will result in aliasing effects [195]. In other words, the channel power is not

concentrated in a limited number of channel coefficients but leaks into all the other

channel coefficients. This will cause a portion of the channel power to be lost by

the LPF operation and thus result in an irreducible channel estimation error floor.

For this reason, a frequency-domain windowing operation can be used to reduce

the aliasing effects [195]. As illustrated in Fig. 6.4, a window such as the Hanning
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window is applied to the estimated channel coefficients at pilot subcarriers in order

to keep the channel power concentrated as much as possible in a few number of

channel coefficients in the transformed domain. Then, after the Nd-point IDFT,

a linear transformation such as Wiener filtering is used to suppress the noise in

the transformed domain. Later, zeros are padded similarly as shown in (6.8) so

that the number of processed samples increases to Nd. Finally, an Nd-point DFT

is used and the estimated frequency-domain channel coefficients are obtained by

removing the effects of data windowing. In [195], it was shown that this windowed

DFT based interpolation technique can achieve much better performance than the

transformed-domain based technique for non-sample-spaced channels.
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Figure 6.4: Block diagram of the windowed-DFT based interpolation.

• DCT Based Interpolation:

The above transformed-domain based interpolation, low-pass interpolation, and

windowed DFT based interpolation techniques can all be considered as DFT based

interpolation techniques. Recently, a discrete cosine transform (DCT) based inter-

polation technique is introduced to deal with power leakage in non-sample-spaced
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channels [196, 197]. This technique is motivated by the fact that the performance

of DFT based interpolation techniques will be degraded when there are abrupt

variations between the estimated channel coefficients at the first and last pilot sub-

carriers. This is because the discontinuance in periodical boundaries before the

IDFT or DFT operations will result in high-frequency components in the trans-

formed domain. These high-frequency components will generate significant aliasing

effects especially in the non-sample-spaced channels. Though this undesirable dis-

continuous edge effect can be alleviated by the windowed DFT based interpolation

technique, the effect cannot be eliminated. To deal with this problem, a DCT based

interpolation technique was proposed in [196, 197] by exploiting the fact that the

operation of an Nd-point DCT is equivalent to extending the original Nd points to

2Nd points by mirror extension, followed by a 2Nd-point DFT of the extended data

with some magnitude and phase compensations. As a result, the waveform of the

2Nd points will be smoother and more continuous in the boundary between consec-

utive periods. Therefore, the DCT based interpolation technique can eliminate the

discontinuous edge effect and thus lead to less power leakage in the non-sample-

spaced channels compared with the DFT based interpolation techniques.

The DCT based interpolation technique can be summarized as follows. First, the

estimated channel coefficients at pilot subcarriers are transformed from the fre-

quency domain to the transformed domain by an Np-point DCT operation. Note

that the DCT operation will introduce an index dependent phase shift in the trans-

formed domain compared with the DFT operation. Then, the linear transformation

(e.g. LPF or Wiener filter) and zero-padding are applied in the transformed do-

main. Finally, the Nd-point extendible inverse DCT (EIDCT) is used instead of

conventional inverse DCT (IDCT) to compensate for the phase shift in the trans-

formed domain, and the estimated channel coefficients at data subcarriers are thus

obtained in the frequency domain [196]. Clearly, the DCT based interpolation tech-

nique improves over DFT based interpolation techniques in terms of performance

for non-sample-spaced OFDM channels. However, the use of EIDCT results in

relatively high complexity. One simplified DCT based interpolation technique is
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also introduced in [197] by defining a 2Np vector based on the estimated channel

coefficients at pilot subcarriers for the compatibility with the fast DCT and IDCT.

However, the main disadvantage of this simplified technique is that the estimated

channel coefficients at the data subcarriers that are beyond the last pilot subcarrier

will go down to zero.

In addition to the 1D pilot arrangements, there also exist 2D pilot arrangements

where pilots are placed in both the time and frequency domains [87, 88, 147, 183]. The

minimum pilot spacings in time and frequency domains are determined by the Doppler

frequency and delay spread, respectively. The 2D pilot arrangements can significantly

reduce the number of pilots and thus achieve spectral efficiency. However, they require

2D interpolation techniques, whose complexity is always quite high, and thus have limited

application. For example, the 2D pilot arrangements are not typically used in wireless

local area networks (WLANs) because of two reasons. First, the interpolation is not

required in the time domain because the transmission duration for a packet is short

enough such that the channel is usually assumed to be constant during each packet

transmission. Second, the interpolation in the time domain makes the channel estimation

not real-time, which will ultimately decrease the data rates of WLANs. Therefore, the

2D pilot arrangements will not be considered in this thesis.

6.4 Pilot-Aided Channel Estimation Techniques

The previous section discussed pilot arrangements and reviewed interpolation techniques

in comb-type pilot arrangements by assuming that the estimated channel coefficients at

pilot subcarriers are already available. In this section, we start to introduce techniques

that are used to estimate these channel coefficients at pilot subcarriers. These pilot-aided

channel estimation techniques are applicable in both block-type and comb-type pilot ar-

rangements. For the sake of simplicity, we focus on the block-type pilot arrangement

where the number of channel coefficients to be estimated is equal to the number of total

subcarriers (i.e. Nd). The estimation techniques can be easily extended to comb-type

pilot arrangements, but this will not be covered in this section.
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Generally speaking, pilot-aided channel estimation is based on either the least squares

(LS) [19] or the linear minimum mean square error (LMMSE) technique [57,124]. The es-

sential difference between these two types of techniques is that the channel coefficients are

treated as deterministic but unknown constants in the former, and as random variables of

a stochastic process in the latter. Compared with LS-based techniques, LMMSE-based

techniques yield better performance because they additionally exploit and require the

prior knowledge of channel correlation. However, the channel correlation is sometimes

not a priori known, which makes LMMSE-based techniques infeasible.

As discussed in Chapter 1, the pilot-aided channel estimation techniques for OFDM

systems can be divided into three categories: frequency-domain techniques, time-domain

techniques, and DFT-based techniques. Frequency-domain techniques treat the frequency-

domain channel coefficients as the parameters to be estimated. Time-domain techniques

treat the time-domain channel coefficients as the parameters to be estimated. The esti-

mated time-domain channel coefficients are then transformed into the frequency-domain

ones. DFT-based techniques also treat the frequency-domain channel coefficients as the

parameters to be estimated. But unlike the frequency-domain techniques, they trans-

form the estimated channel coefficients from the frequency domain into the time domain,

where the noise filtering process is performed, and finally back to the frequency domain

by the use of IDFT and DFT operations.

In this section, we treat the LS-based and LMMSE-based channel estimation tech-

niques in different subsections. Within each subsection, we treat frequency-domain

and DFT-based techniques separately. The relation of time-domain techniques with

frequency-domain and DFT-based techniques will also be treated within each subsection.
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6.4.1 LS Estimation Techniques

LS estimation techniques treat channel coefficients as deterministic but unknown con-

stants. For the assumed signals that are determined by the pilots and unknown channel

coefficients, and the given signals that are observations of the assumed signals corrupted

by the noise and inaccuracies due to the mismatch between the estimated and actual

channel coefficients, LS techniques choose coefficients that minimizes the square error

between the assumed signals and given signals as the estimated channel coefficients [110].

• Frequency-Domain LS Channel Estimation

Recall from (6.3) that the received block of consecutive Nc OFDM symbols in the

frequency domain is given by

y = X h + ϑ. (6.9)

Then, according to the principle of LS estimation techniques, the square error

JLS(h) between the assumed signals and given signals is defined as

JLS(h) =
(

y −X h
)H (

y −X h
)

. (6.10)

Taking the partial derivative of JLS(h) with respect to h and setting it to zero, the

estimated frequency-domain channel coefficients based on this frequency-domain

LS channel estimation technique are given by

hLS =
(

XHX
)−1

XHy (6.11)

where the superscripts ‘H’ and ‘−1’ denote the Hermitian and inverse operation,

respectively, and (XHX)−1XH is the Moore-Penrose inverse of X. Further, the

MSE between the estimated and actual channel coefficient per subcarrier for a

given set of pilots or detected data X is given by

MSELS|X =
1

Nd
E
[

||hLS − h||2
]

=
1

Nd
E

{

[

(

XHX
)−1

XHϑ
]H [

(

XHX
)−1

XHϑ
]

}

=
σ2

f

Nd
trace

[

(

XHX
)−1
]

(6.12)



Chapter 6. Channel Estimation for OFDM Systems 114

where σ2
f is the variance of the AWGN. Furthermore, if we replace (XHX)−1

with E[(XHX)−1], the average MSE between the estimated and actual channel

coefficient per subcarrier is given by

MSELS =
β

NcSNR
(6.13)

where β = E(|xk(n)|2)E(1/|xk(n)|2), Nc is the number of consecutive OFDM sym-

bols and SNR = E(|xk(n)|2)/σ2
f . Since Nc is in the denominator of MSELS as shown

in (6.13), it can be easily seen that the performance of the frequency-domain LS

channel estimation technique can be improved by using more consecutive OFDM

symbols at the price of higher complexity.

The main advantage of the frequency-domain LS channel estimation technique is

its low complexity since X in (6.11) is a diagonal matrix such that the inverse

(XHX)−1 will not result in high complexity. However, its performance is always

poorer than the DFT-based LS channel estimation, which will be discussed next.

• DFT-Based LS Channel Estimation

Usually, the length of the CIR c(n) is relatively small compared with the length of

an OFDM symbol. The DFT-based LS channel estimation technique utilizes this by

assuming that the temporal span of the channel is concentrated over a small number

of coefficients, and thus the noise in the coefficients beyond the channel length can

be removed in the time domain. This noise removal results in a performance

improvement compared to the frequency-domain LS channel estimation technique.

Defining the Nd × Nd unitary FFT matrix as

F =
1√
Nd

























1 1 · · · 1 1

1 e−j2π/Nd · · · e−j2π(Nd−2)/Nd e−j2π(Nd−1)/Nd

...
...

. . .
...

...

1 e−j2π(Nd−2)/Nd · · · e−j2π(Nd−2)(Nd−2)/Nd e−j2π(Nd−2)(Nd−1)/Nd

1 e−j2π(Nd−1)/Nd · · · e−j2π(Nd−1)(Nd−2)/Nd e−j2π(Nd−1)(Nd−1)/Nd

























(6.14)

and the unitary IFFF matrix as FH or F−1, the estimated channel coefficients

based on the DFT-based LS channel estimation technique are given by [52]

hDFT-LS = F1F
H
1 hLS (6.15)
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where F1 contains the first Ñh columns of the unitary FFT matrix F and Ñh is

the estimated channel length. From (6.15), it is clear that the estimated channel

coefficients using the frequency-domain LS technique are first transformed from

the frequency domain to the time domain via the IDFT operation. The resulting

estimated CIR has the length of Ñh, the remaining Nd−Ñh taps of the CIR are set

to zero and the noise in these taps is accordingly removed. Then, the DFT operation

is performed and the estimated frequency-domain channel coefficients are finally

obtained. When all the channel power is maintained during the noise removal

process, the average MSE between the estimated and actual channel coefficient per

subcarrier is given by

MSELS =
Ñhβ

NdNcSNR
. (6.16)

Comparing (6.13) with (6.16), we find that the DFT-based LS channel estimation

technique improves over the frequency-domain LS channel estimation technique

when all the channel power is maintained during the noise removal process since

Ñh is always smaller than Nd. The DFT-based LS channel estimation technique

is well suited for sample-spaced channels. However, its performance will be de-

teriorated for non-sample-spaced channels where the channel power will not be

concentrated on a small number of coefficients [19, 56]. Further, this technique

has higher complexity compared to the frequency-domain LS channel estimation

technique due to the use of DFT and IDFT operations.

– Link with Time-Domain and DFT-Based LS Channel Estimation

The time-domain LS technique is commonly referred to as the time-domain

maximum likelihood (ML) technique. This technique treats the time-domain

channel coefficients as the parameters to be estimated [19, 52, 138]. The esti-

mated time-domain channel coefficients are then transformed to the estimated

channel coefficients at pilot subcarriers by the use of DFT operation. Let F11

and F12 contain the first Np and remaining rows of PHF1. Then, using the

time-domain ML technique, the estimated channel coefficients at pilot sub-
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carriers are given by [52]

hTML = F2F
H
2 hLS (6.17)

where F2 contains the first Nh columns of the unitary FFT matrix F. Com-

paring (6.15) with (6.17), it is clearly that the time-domain and DFT-based

LS channel estimation techniques are equivalent when Nh = Ñh. This is ex-

pected as both techniques consider the temporal span of the channel to be

concentrated over a small number of coefficients such that the noise in the

coefficients beyond the channel length can be removed.

6.4.2 LMMSE Estimation Techniques

LMMSE estimation techniques treat channel coefficients as random variables of a stochas-

tic process. Though they are more complex to implement compared with LS estimation

techniques and require the prior knowledge of channel correlation, they can achieve better

performance [19]. Therefore, LMMSE estimation techniques are used in many systems

where performance is a primary concern. For example, LMMSE estimation techniques

are quite commonly used when pilots are arranged in a comb-type fashion since the

precision of estimated channel coefficients at pilot subcarriers highly determines the per-

formance of channel interpolation at data subcarriers. However, the channel correlation

may not always be available to the receiver in practice.

• Frequency-Domain LMMSE Channel Estimation:

Denoting a linear transformation of the received signals at pilot subcarriers as A,

the estimated channel coefficients using linear techniques are given by

hlinear = Ay. (6.18)

Based on the principle of LMMSE, we need to find the optimum Ao such that the

MSE

Jlinear(A) = E[||hlinear − h||2] (6.19)
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is minimized. The estimated channel coefficients based on the LMMSE channel

estimation technique are then given by

hLMMSE = Aoy. (6.20)

To find the optimum Ao, substituting (6.18) and (6.9) into (6.19) yields

JLMMSE(A) = trace

[

A
(

σ2
fINd×Nc + XRXH

)

AH + R −AXR−RXHAH

]

(6.21)

where R = E[hhH ] is the channel correlation matrix of h, and INd
is an (Nd×Nc)×

(Nd × Nc) identity matrix. Differentiating JLMMSE with respect to AH and setting

the result to zero, we get the optimum Ao and estimated channel coefficients as

Ao = RXH(σ2
f INd×Nc + XRXH)−1 (6.22)

and

hLMMSE = R
[

R + σ2
f

(

XHX
)−1
]−1

hLS, (6.23)

respectively. Equation (6.23) clearly shows that the estimated channel coefficients

based on the frequency-domain LMMSE technique can be obtained from estimated

channel coefficients based on the frequency-domain LS technique through a linear

transformation Bt given by

Bt = R
[

R + σ2
f

(

XHX
)−1
]−1

. (6.24)

This transformation uses the prior knowledge of R and σ2
f , and hence makes the

frequency-domain LMMSE technique improve over the frequency-domain LS tech-

nique in terms of performance at the cost of higher computational complexity. In

addition, the MSE per subcarrier for a given set of pilots or detected data X is

given by

MSELMMSE|X =
1

Nd
trace

{

R
[

R + σ2
f

(

XHX
)−1
]−1

σ2
f

(

XHX
)−1
}

. (6.25)

By using the singular value decomposition (SVD) of R, we obtain

R = UΛUH (6.26)
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where U is a unitary matrix containing the eigenvectors, and Λ is a diagonal

matrix containing the eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λNd−1 on its diagonal. Then,

the average MSE per subcarrier is given by

MSELMMSE =
β

NcNdSNR

Nd−1
∑

k=0

λk

λk + β

NcSNR

. (6.27)

– Link with Time-Domain and Frequency-Domain LMMSE Channel Estimation

As the time-domain and frequency-domain channel correlation is interchange-

able in OFDM systems, the time-domain and Frequency-Domain LMMSE

technique achieve the same performance. Thus, we will not separately cover

the time-domain LMMSE channel estimation technique in this section.

• DFT-Based LMMSE Channel Estimation

Similar to the LS channel estimation technique, the estimator channel coefficients

based on the DFT-based LMMSE channel estimation technique are given by [56]

hDFT-LMMSE = F1Rc̃

[

Rc̃ + σ2
f

(

FH
1 XHXF1

)−1
]−1

(

FH
1 F1

)−1
FH

1 hLS (6.28)

where Rc̃ = E[c̃c̃H ] is the channel correlation matrix of c̃ and c̃ is the CIR with

the estimated channel length Ñh. Similar to the DFT-based LS channel estimation

technique, the DFT-based LMMSE channel estimation technique also assumes that

the temporal span of the channel is concentrated over a small number of coefficients,

and thus the noise in the coefficients beyond the channel length is removed in the

time domain. When all the channel power is maintained during the noise removing

process, the average MSE between the estimated and actual channel coefficient per

subcarrier is given by

MSEDFT-LMMSE =
β

NcNdSNR

Ñh−1
∑

k=0

λk

λk + β

NcSNR

. (6.29)

If Ñh is smaller than Nh, there exists an MSE error floor given by

MSEDFT-LMMSE, floor =
1

NcNd

Nh−1
∑

l=Ñh

γl (6.30)

where γl is the diagonal elements of R in decreasing order with l being the index.
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Comparing (6.29) with (6.16), we see that the DFT-based LMMSE technique im-

proves over the DFT-based LS technique since
∑Ñh−1

k=0 λk/(λk + β/NcSNR) is al-

ways smaller than Ñh. Like the DFT-based LMMSE channel estimation technique,

the DFT-based LMMSE channel estimation technique is well suited for sample-

spaced channels. Its performance will be deteriorated for non-sample-spaced chan-

nels where the channel power will not be concentrated within a small number of

coefficients [19, 56]. Compared to the frequency-domain LMMSE technique, the

complexity of the DFT-based LMMSE technique is reduced because the size of the

matrix (FH
1 XHXF1)

−1]−1(FH
1 F1), which is required to be inverted, is reduced.

In addition, the DFT-based LMMSE technique can achieve the same performance

as the frequency-domain LMMSE technique when Ñh = Nh because the channel

correlation in both cases are interchangeable. However, the performance of the

DFT-based LMMSE technique will be degraded when Ñh is smaller than Nh as

part of the channel correlation is ignored. Therefore, the main advantage of the

DFT-based LMMSE technique is its flexibility in the trade-off between performance

and complexity by the choice of estimated channel length Ñh.

• SVD based Channel Estimation

The SVD based channel estimation technique is the low-rank approximation of the

LMMSE technique [57]. This technique first reduces the complexity of the LMMSE

technique by replacing (XHX)−1 with its expectation E[(XHX)−1] in (6.23) such

that the matrix inversion is not needed every time. Then, the estimated channel

coefficients based on this simplified LMMSE channel estimation technique are given

by

hSLMMSE = R

(

R +
β

NcSNR
INd

)−1

hLS. (6.31)

Applying SVD on R by substituting (6.26) into (6.31) yields

hSLMMSE = UΛ

(

Λ +
β

NcSNR
INd

)−1

UHhLS. (6.32)

Then, if we retain the largest Ñh eigenvalues and ignore all the remaining ones, the

resulting estimated channel coefficients are given by

ĥSVD = U1Λ
′
(

Λ′ +
β

NcSNR
IÑh

)−1

UH
1 hLS (6.33)
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where U1 contains the first Ñh columns of U, Λ′ contains the upper left Ñh × Ñh

corner of Λ and IÑh
is an Ñh × Ñh identity matrix. This low-rank technique is

referred to as the SVD based channel estimation technique. It first transforms

the estimated channel coefficients based on the frequency-domain LS channel es-

timation technique from the frequency domain into a transformed domain. Then,

Wiener filtering is performed on this transformed domain under the assumption

that the channel power is concentrated within its first Ñh coefficients. The result-

ing estimated channel coefficients are finally transformed back to the frequency

domain. It is clear from (6.33) that this SVD based channel estimation technique

results in low computational complexity since the matrices in its inversion oper-

ation are diagonal and the size is reduced to Ñh × Ñh. The average MSE per

subcarrier based on the SVD channel estimation technique is given by [57]:

MSESVD =
1

Nd

Ñh−1
∑

k=0

[

λk(κk − 1)2 +
β

NcSNR
κ2

k

]

(6.34)

when Ñh − 1 is chosen such that λk = 0 (k ≥ Ñh), where

κk =







λk/(λk + β/NcSNR), if k ∈ [0, Ñh − 1],

0, otherwise.
(6.35)

If Ñh is smaller than Nh, the resulting MSE error floor is given by

MSESVD, floor =
1

NcNd

Nd−1
∑

l=Ñh

λl. (6.36)

– Link Between DFT and SVD Based Channel Estimation

The DFT and SVD based channel estimations are closely related because they

both linearly transform the estimated channel coefficients from the frequency

domain into another domain. It is obvious that if the channel correlation

matrix can be expressed as

R = FΛfF
H (6.37)

where Λf is a diagonal matrix, the DFT and SVD based channel estimation

techniques are equivalent. Obviously, sample-spaced channels satisfy the con-

dition indicated in (6.37). Further, it is easy to show that (6.29) is equivalent
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to (6.34) if the channel power is concentrated within the first Ñh coefficients

in the time domain as well as in the SVD-transformed domain. Therefore, in

such cases, the DFT and SVD based channel estimation techniques achieve

the same performance. However, if part of the channel power is leaked into

other coefficients, it is seen from (6.36) and (6.30) that the MSE error floors

of these two techniques are not the same: MSESVD, floor is always smaller than

MSEDFT-LMMSE, floor since the channel power in the SVD-transformed domain

is maximized in its first Ñh coefficients. This result indicates that the per-

formance of the SVD based channel estimation technique will not be worse

than that of the DFT-based channel estimation technique. Furthermore, the

matrix that requires the inversion operation is diagonal in (6.33) but that in

(6.28) may not be diagonal. This observation suggests that the SVD based

channel estimation technique is more efficient to implement when the channel

correlation R is constant, which is easily satisfied, e.g. in indoor environments.

6.5 Conclusions

We have reviewed some recent developments in pilot-aided channel estimation techniques

for OFDM systems in this chapter. Because of the broad application of OFDM systems,

it is hard to tell in general which technique is the best. However, the advantages and

disadvantages for each technique have been provided so that we can choose techniques for

a specific OFDM application. In order to meet various requirements of MIMO-OFDM

systems, both the LS and LMMSE techniques will be covered in this thesis. Before we

start to describe these techniques, we first introduce the angle-domain MIMO-OFDM

systems in the next chapter. Both the current and next chapter serve as the basis for

the development of our reduced-complexity angle-domain channel estimation techniques

for MIMO-OFDM systems.



Chapter 7

Angle-Domain MIMO-OFDM

Systems

7.1 Introduction

Chapter 6 has introduces orthogonal frequency division multiplexing (OFDM) systems

and the associated channel estimation techniques. Recent research trends have shown

that combining the multiple-input multiple-output (MIMO) technology with orthogonal

frequency division multiplexing (OFDM) can help to achieve spatial diversity and/or

space-division multiplexing gain [12, 163, 173, 198]. In this chapter, we start to describe

MIMO-OFDM systems in the angle domain, which motives the development of our novel

channel estimation techniques to be discussed in the following two chapters.

A typical MIMO-OFDM channel is conceived as the unique link between the trans-

mitted and noiseless received signals. The corresponding model is referred to as the

array-domain channel model. The array-domain channel is treated as spatially uncor-

related in most of previous pilot-aided channel estimation techniques for MIMO-OFDM

systems (e.g. [17, 168, 173]) possibly due to the fact that early MIMO studies assume

the array-domain channel to be spatially uncorrelated (e.g. [68, 175]). We call these

techniques least squares (LS)-based techniques in the array domain. However, in many

realistic scenarios, the MIMO-OFDM channel tends to be spatially correlated, for exam-

122
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ple, due to antenna spacing constraints and limited scattering [132, 166, 167]. For these

spatially correlated MIMO-OFDM systems, the LMMSE-based techniques in the array

domain, which exploit and require the prior knowledge of channel spatial correlation,

yield better performance than LS-based techniques in the array domain [59, 133, 200].

But when the channel spatial correlation is not a priori known, these techniques are not

applicable. In such cases, to improve the performance of conventional LS-based tech-

niques in the array domain, we investigate techniques in the angle domain, where the

channel model lends itself to a simple physical interpretation.

As introduced in Chapter 1, the angle domain is used to characterize the MIMO

channel in a physically oriented fashion. The angle-domain representation of MIMO

channels uses antenna beamforming patterns with different main lobes to characterize

the physical propagation environment [162, 182]. For a MIMO system with Nt transmit

and Nr receive antennas, the angle domain is partitioned into (Nt × Nr) angle-domain

bins. Each angle-domain bin corresponds to the cross-section of one transmit lobe and

one receive lobe from the beamforming pattern. Then, multiple unresolvable physical

paths that occur in the angle-domain bin can be approximately aggregated into one re-

solvable path, and the paths from other directions will have little effect on this resolvable

path because they originate or end at other lobes. Consequently, different physical paths

approximately contribute to different angle-domain bins, and the channel coefficients

in different angle-domain bins can be assumed to be approximately spatially uncorre-

lated. Further, as indicated in [182], when some angle-domain bins contain few physical

paths due to limited scattering, the corresponding channel coefficients should approach

zero. Based on these two special properties for the angle-domain channel coefficients,

we develop several novel channel estimation techniques for MIMO-OFDM systems in the

following two chapters.

Note that in MIMO-OFDM systems, we classify the signals and channels in two do-

main types. The first type is represented by either array or angle domain, the latter

one is represented by either time or frequency domain. Hereinafter, we will explicitly
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state which representation is used for each domain type unless indicated otherwise. For

example, the angle-time domain means that the angle and time representations are used

for the above two domain types, respectively. When we state the representation for

only one domain type, we mean that both representations for the other domain type are

applicable unless indicated otherwise. For example, the angle domain refers to either

the angle-time or angle-frequency domain. Further, the group of angle-time domain bins

that correspond to the identical angular lobes (but with different time indices) is called

the angle-time domain beam. Similarly, the group of angle-frequency domain bins that

correspond to the identical angular lobes (but with different subcarrier indices) is called

the angle-frequency domain beam.

This section is organized as follows. Section 7.2 describes the conventional array-

domain representation of MIMO-OFDM systems. Then, Section 7.3 describes the angle-

domain representation of MIMO-OFDM systems. Finally, Section 7.4 discusses the pilot

design for the ease of the direct implementation of angle-domain channel estimation tech-

niques to be discussed in the following two chapters.

7.2 MIMO-OFDM Systems

For the sake of convenience and convention, we refer to the time-domain and frequency-

domain as the array-time domain and array-frequency domain, respectively, in this sec-

tion. In a typical MIMO-OFDM system with Nt transmit and Nr receive antennas as

shown in Fig. 7.1, the high rate symbols to be transmitted are first grouped into blocks of

Nd data symbols at the transmitter. These groups are called frequency-domain OFDM

symbols and the nth group at the (it)th transmitter is represented by the vector xit(n) =

[xit(0, n), xit(1, n), · · ·, xit(Nd − 1, n)]T , where it and n denote the indices of the trans-

mitter, and OFDM symbol, respectively. Next, an inverse discrete Fourier transform

(IDFT) block is applied to each OFDM symbol at each transmitter. The IDFT block at

the transmitter and the discrete Fourier transform (DFT) block at the receiver serve to

modulate and demodulate the data on the orthogonal subcarriers, respectively. At the
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Figure 7.1: Block diagram of a typical MIMO-OFDM system with Nt transmit and Nr

receive antennas.



Chapter 7. Angle-Domain MIMO-OFDM Systems 126

IDFT output (i.e. in the time domain), a cyclic prefix (CP) of length Ng as a copy of

the last part of the current OFDM symbol, is inserted at the beginning of each symbol

to avoid ISI, and its length Ng is assumed to be not shorter than the channel length.

The resulting nth time-domain OFDM symbol at the (it)th transmitter is represented

by sit(n) = [sit(0, n), sit(1, n), · · ·, sit(Nd +Ng − 1, n)]T , where the m th sample is given

by

sit(m,n) =
1

Nd

Nd−1
∑

l=0

xit(l, n)ej2πl(m−Ng)/Nd (7.1)

for m = 0, 1, · · · , Nd + Ng − 1.

The samples {sit(m,n)} are sent through a frequency-selective fading channel, which

can be represented by an equivalent discrete-time linear finite duration channel impulse

response (CIR) given by a sequence of channel matrices C(l) for l = 0, 1, · · · , Nh − 1,

where Nh is the temporal span of the MIMO channel and C(l) is an Nr × Nt matrix

whose (ir, it)th element cir ,it(l) represents the channel coefficients from the (it)th trans-

mit antenna to the (ir)th receive antenna at delay l, i.e.

C(l) =



















c0,0(l) c0,1(l) · · · c0,Nt−1(l)

c1,0(l) c1,1(l) · · · c1,Nt−1(l)

...
...

. . .
...

cNr−1,0(l) cNr−1,1(l) · · · cNr−1,Nt−1(l)



















. (7.2)

For the sake of simple description, C(l) represents the channel matrix at each integer

time index. This representation is obvious for the sample-spaced channels. For the non-

sample-spaced channels, C(l) can be obtained via the interpolation as shown in [19].

Here the index ‘n’ is omitted from C(l) as we assume that the channel remains time-

invariant. When the transmitter and receiver are perfectly synchronized, the received

OFDM symbols become free of ISI when the CP is removed from each symbol at all the

Nr receivers. By performing an Nd-point DFT on the resulting symbols at each receiver,

we get the corresponding frequency-domain symbols. The resulting frequency-domain

data sample at the kth subcarrier and (ir)th receiver in the nth OFDM symbol is given
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by

yir(k, n) =

Nt−1
∑

it=0

hir ,it(k)xit(k, n) + ϑir(k, n) (7.3)

where hir ,it(k) is the channel coefficient at the kth subcarrier from the (it)th transmitter

to the (ir)th receiver, and the noise ϑir(k, n) is assumed to be additive white Gaussian

(AWGN) with variance σ2
f . In a compact notation, the received block of the nth OFDM

symbols at the kth subcarrier can be written as

y(k, n) = H(k) x(k, n) + ϑ(k, n) (7.4)

where y(k, n) = [y0(k, n), y1(k, n), · · ·, yNr−1(k, n)]T , x(k, n) = [x0(k, n), x1(k, n), · · ·,

xNt−1(k, n)]T , ϑ(k, n) = [ϑ0(k, n), ϑ1(k, n), · · ·, ϑNr−1(k, n)]T and

H(k) =



















h0,0(k) h0,1(k) · · · h0,Nt−1(k)

h1,0(k) h1,1(k) · · · h1,Nt−1(k)

...
...

. . .
...

hNr−1,0(k) hNr−1,1(k) · · · hNr−1,Nt−1(k)



















(7.5)

is the channel transfer function (CTF) matrix at the kth subcarrier. Further, the received

nth OFDM symbol in the time domain is given by

z(l, n) =

Nh−1
∑

m=0

C(m)s(l − m,n) + u(l, n) (7.6)

where s(l, n) = [s0(l, n), s1(l, n), · · ·, sNt−1(l, n)]T , z(l, n) = [z0(l, n), z1(l, n), · · ·, zNr−1(l, n)]T ,

and u(l, n) = [u0(l, n), u1(l, n), · · ·, uNr−1(l, n)]T are the transmitted, received, and noise

vectors, respectively, at the lth sample of the nth OFDM symbol, sit(l, n), zir(l, n) and

uir(l, n) represent the time-domain transmitted signal at the (it)th transmitter, the re-

ceived signal at the (ir)th receiver, and the additive white Gaussian noise (AWGN) with

variance σ2
f at the (ir)th receiver, respectively, at the lth sample of the nth OFDM

symbol. If the columns of C(l) and H(k) are stacked into the vectors c(l) and h(k),

respectively, the time- and frequency-domain variables are related by

y(n) = (F⊗ INr)z(n), (7.7)

x(n) = (F⊗ INt)s(n), (7.8)

h = (F⊗ INr×Nt)c, (7.9)

c = (FH ⊗ INr×Nt)h (7.10)
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where y(n) = [yT (0, n), yT (1, n), · · ·, yT (Nd − 1, n)]T , z(n) = [zT (0, n), zT (1, n), · · ·,

zT (Nd−1, n)]T , x(n) = [xT (0, n), xT (1, n), · · ·, xT (Nd−1, n)]T , s(n) = [sT (0, n), sT (1, n),

· · ·, sT (Nd − 1, n)]T , h = [hT (0), hT (1), · · ·, hT (Nd − 1)]T , c = [cT (0), cT (1), · · ·,

cT (Nh − 1),0T
1×[(Nd−Nh)NtNr ], ⊗ and H denote the Kronecker product and Hermitian

transpose, respectively, F, IN and 0N1×N2
are the Nd × Nd unitary Fourier matrix,

N × N identity matrix and N1 × N2 zero matrix, respectively. Note that (7.10) is ob-

tained from (7.9) since (F⊗ INr×Nt)
−1 = (F−1 ⊗ INr×Nt) = (FH ⊗ INr×Nt).

7.3 Angle-Domain MIMO-OFDM Systems

In this section, we start to represent MIMO-OFDM systems in the angle domain. Af-

ter establishing the angle-domain representation of MIMO-OFDM systems, we design

suitable pilots in the next section for the purpose of direct implementation of our angle-

domain channel estimation techniques. This section is an extension of the work in [182]

for MIMO flat-fading systems.

7.3.1 Angle-Time Domain MIMO-OFDM Systems

As the channel models for MIMO-OFDM systems are commonly introduced in the array-

time domain [36,61], we start to represent the corresponding angle-time domain MIMO-

OFDM systems from (7.6). Later, we will also introduce the angle-frequency domain

MIMO-OFDM systems. Suppose there is an arbitrary number of physical paths between

the transmit and receive antennas at time l; the ith path has an attenuation of ai with

an angle φt
i (Ωt

i := sinφt
i) and φr

i (Ωr
i := sinφr

i ) for the transmit and receive antennas,

respectively. Then, C(l) is given by

C(l) =
∑

i

ab
ier(Ω

r
i )e

H
t (Ωt

i) (7.11)

where

ab
i := ai

√

NtNrexp

(

j2πdi

λc

)

, (7.12)
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er(Ω
r
i ) :=

1√
Nr



















1

exp [j(2π∆rΩ
r
i )]

...

exp [j(Nr − 1)(2π∆rΩ
r
i )]



















, (7.13)

et(Ω
t
i) :=

1√
Nt



















1

exp
[

j(2π∆tΩ
t
i)
]

...

exp
[

j(Nt − 1)(2π∆tΩ
t
i)
]



















, (7.14)

where the superscript ‘H’ denotes the Hermitian transpose, {Nt, ∆t, et(Ω
t
i)} and {Nr,

∆r, er(Ω
r
i )} are the number of antennas, the separation between adjacent antennas nor-

malized by λc, and the array response vectors1, respectively, for the transmit and receive

antennas, respectively, λc is the wavelength of the center frequency in the whole signal

bandwidth, and di is the distance between the last transmit and receive antennas along

path i. For notational convenience, we ignore the time index l in these three variables.

We also assume that the fractional bandwidth is small such that λc, er(Ω
r
i ), and et(Ω

t
i)

are approximated to be unchanged over the whole signal bandwidth. Note that there

exist three implicit assumptions when the array response vectors are defined in (7.13)

and (7.14). First, all the transmit and receive antennas have the same polarization and

radiation patterns, and the geometry of the antenna array is the uniform linear array.

Second, the spacing between the antennas at the transmitter or receiver is much smaller

than the distances between the scatterers and antenna arrays so that the paths from

a given scatterer to all the transmit or receive antennas are approximated to be paral-

lel. This is a typical assumption for the analysis of MIMO-OFDM systems [62, 80, 182].

Third, the mutual couplings between adjacent antennas, and those between the antenna

and its surroundings, are ignorable.

As from [182], the orthonormal bases for the angle-time transmitted and received

1In literature, the array response vector has been also alternatively called the array vector, the array

steering vector, the array propagation vector and the array manifold vector.



Chapter 7. Angle-Domain MIMO-OFDM Systems 130

signals are given by

ξt :=

{

et(0), et

(

1

Lt

)

, · · · , et

(

Nt − 1

Lt

)}

, (7.15)

and

ξr :=

{

er(0), er

(

1

Lr

)

, · · · , er

(

Nr − 1

Lr

)}

, (7.16)

respectively, where Lt = Nt∆t and Lr = Nr∆r are the normalized antenna array lengths

of the transmitter and receiver, respectively. Let Ut, Ur be the unitary matrices whose

columns are the basis vectors in (7.15) and (7.16), respectively. They are unitary FFT

matrices when the geometry of the antenna array is assumed to be the uniform linear

array as described in [182]. Then, we can transform the lth samples of the nth transmitted

and received OFDM symbol from the array-time domain into the angle-time domain by

sa(l, n) := UH
t s(l, n) (7.17)

and

za(l, n) := UH
r z(l, n), (7.18)

respectively, where the superscript ‘a’ denotes the angle-domain variables. From (7.6),

we obtain the angle-time domain MIMO-OFDM system equation as

za(l, n) =

Nh−1
∑

m=0

Ca(m)sa(l − m,n) + ua(l, n) (7.19)

where

Ca(l) :=



















ca0,0(l) ca0,1(l) · · · ca0,Nt−1(l)

ca1,0(l) ca1,0(l) · · · ca1,Nt−1(l)

...
...

. . .
...

caNr−1,0(l) caNr−1,1(l) · · · caNr−1,Nt−1(l)



















= UH
r C(l)Ut (7.20)

is the angle-time domain channel matrix and

ua(l, n) = UH
r u(l, n) (7.21)
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is the angle-time domain noise vector that still has an independent and identically dis-

tributed (i.i.d.) multivariate complex normal distribution. As explained in [182], due to

the finite number of antennas, multiple unresolvable physical paths can be appropriately

aggregated into one resolvable path with gain cakr,kt
(l). This gain uniquely corresponds

to the channel coefficient for the (kr, kt) angle domain bin at delay l. Hence, different

physical paths (approximately) contribute to different elements of Ca(l). This means

that the angle-time domain channel matrix Ca(l) lends itself to a physical interpreta-

tion. For example, in Fig. 1.4, both path 1 and 2 contribute to the element ca0,0(l). Path

3 and 4 contribute to the elements ca3,3(l) and ca1,2(l), respectively. All the other elements

of Ca(l) approach zero because no paths contribute to these elements.

7.3.2 Angle-Frequency Domain MIMO-OFDM Systems

By analogy to the angle-time domain case, from (7.4), we obtain the angle-frequency

domain MIMO-OFDM system equation at the kth subcarrier as

ya(k, n) = Ha(k) xa(k, n) + ϑa(k, n) (7.22)

where

xa(k, n) := UH
t x(k, n), (7.23)

ya(k, n) := UH
r y(k, n), (7.24)

ϑa(k, n) := UH
r ϑ(k, n), (7.25)

Ha(k) := UH
r H(k)Ut. (7.26)

7.4 Pilot Design

Angle-domain channel estimation techniques can use conventional array-domain estima-

tors as the coarse estimators and perform post-processing in the angle domain. This

follows three steps: first, performing the coarse channel estimation (e.g. the LS tech-

nique) in the array domain; then, in the post-processor, transforming the estimated

channel from the array domain into the angle-time or angle-frequency domain where
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our proposed angle-domain channel estimation techniques are performed to refine the

coarse channel estimation; finally, transforming back the refined estimated channel into

the array-frequency domain. But the materialization as a post-processor is not a re-

quirement for the angle-domain techniques. They can be also directly implemented in

the angle domain by first transforming the transmitted and received signals from the

array domain into the angle domain. In this section, we introduce the design of suitable

pilots to facilitate the direct implementation of angle-domain techniques. The idea of

pilot design is to exploit the property of Fourier transform and incorporate the DFT as

an integral part of the estimation structure.

For the direct implementation of angle-domain techniques, we may first represent the

transmitted and received signals from the array domain into the angle domain. Then,

using the angle-domain transmitted and received signals to directly estimate the angle-

domain channel coefficients. In such a manner, we could pretransform the transmitted

signals with Ut and received signals with UH
r either before or after FFT/IFFT block so

that all the transmitted signals and received signals are represented in the angle domain.

For this reason, we may add a block to perform transformation UH
r in the estimation

block of the receiver. However, the transformation block may not be required in the

transmitter because of two reasons. First, adding a block requires the adaptation of the

existing transmitter architecture and the increase of hardware requirements. Second,

this block might not be used in a data transmission period if the channel is unknown at

the transmitter. To have a better understanding of the second statement, consider the

case in which some of the angle-time domain beams contain no scatterers. Then, the

transmitted data signals in this beam will be completely lost, which is undesirable when

the spatial multiplexing gain is of the utmost concern2. On the other hand, when this

pretransformation block is not incorporated, transmitted signals are spread across all the

angle-time domain beams. Then, at least part of the information for each transmitted

data signal is retained.

2Spatial interleaving may be used to reduce this effect but will further increase the complexity of code

design.



Chapter 7. Angle-Domain MIMO-OFDM Systems 133

From the above, instead of incorporating the pretransformation block Ut in the trans-

mitter, we may directly design the pilots in the angle domain. This can be achieved by

pretransforming the arbitrary existing array-frequency domain pilots (e.g. [17]) with the

use of (7.23) at each subcarrier. Then, the obtained new pilots are in the angle-frequency

domain and can be directly used for transmission. In this case, after transforming the

received signals with the UH
r block at each subcarrier as shown in (7.24), we may directly

estimate the channel coefficients in the angle domain.

Angle-time domain pilots of this type have three advantages. First, the complexity of

angle-domain channel estimation techniques is reduced because we can directly estimate

the angle-domain channel coefficients without the use of the transformation Ut. Sec-

ond, this complexity reduction will not result in a performance degradation. Third, the

architecture in the transmitter is not affected. This is desirable to apply the proposed

angle-domain techniques in current MIMO-OFDM systems.

7.5 Assumptions List

In this section, we list the assumptions made in our angle-domain channel estimation

techniques. These techniques will be discussed in the following two chapters. Please

note that we do not intend to limit the application of our techniques by using these

assumptions. Instead, we want to introduce the techniques more clearly by considering

them in a well defined scenario.

Recall that in MIMO-OFDM systems, we classify the signals and channels in two

domain types. The first type is represented by either array or angle domain, and the latter

one is represented by either time or frequency domain. The assumptions corresponding

to the first domain type are as follows:

• All the transmit and receive antennas have the same polarization and radiation

patterns, and the geometry of the antenna array is the uniform linear array.
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• The spacing between the antennas at the transmitter or receiver is much smaller

than the distances between the scatterers and antenna arrays so that the paths

from a given scatterer to all the transmit or receive antennas are approximated to

be parallel.

• The mutual couplings between adjacent antennas, and those between the antenna

and its surroundings, are ignorable.

When some or all of these assumptions are not satisfied, the array response vectors

defined in (7.13) and (7.14) should be revised. Then, for our proposed angle-domain

channel estimation techniques, only the unitary transformation matrices (i.e. Ut and

Ur) are to be modified due to the change of the array response vectors. The assumptions

corresponding to the second domain type are as follows:

• The channel is assumed to be linear and time-invariant over a given training period

as our main concern is the indoor propagation environment [170, 174].

• The transmitter and receiver are perfectly synchronized. The distortion and phase

noise in the analog and radio frequency (RF) parts of the transmitter and receiver

are ignorable.

• The length of the cyclic prefix (CP) is shorter than the temporal span of the

channel.

When some or all of these assumptions are not satisfied, our angle-domain channel es-

timation techniques will suffer a performance degradation. Note that to deal with such

situations, many techniques have been developed for the SISO-OFDM and array-domain

MIMO-OFDM systems in the literature (e.g. [18,95,113]). These techniques are directly

applicable for our angle-domain channel estimation techniques to compensate for the

performance degradation in the second domain type, as our techniques are developed to

improve the estimation performance in the first domain type, which is independent of

the second domain type.
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7.6 Conclusions

MIMO-OFDM systems have been shown to achieve spatial diversity and/or space-division

multiplexing gain. In this chapter, we have first introduce the conventional MIMO-

OFDM system in the array domain. Then, we have represented MIMO-OFDM systems

in the angle domain, where the channel model is shown to to lend itself to a simple

physical interpretation. The angle-domain represented MIMO-OFDM systems motivate

the development of our novel channel estimation techniques to be discussed in the next

two chapters. Further, we have designed suitable pilots that facilitate the direct imple-

mentation of our proposed angle-domain channel estimation techniques. Finally, we have

listed the assumptions to be made in the following two chapters.



Chapter 8

Channel Instantaneous Power

Based Angle-Domain Channel

Estimation

8.1 Introduction

The previous two chapters describe the pilot-aided channel estimation techniques and

angle-domain multiple-input multiple-output orthogonal frequency division multiplexing

(MIMO-OFDM) systems, respectively. In this and the next chapters, we start to investi-

gate angle-domain pilot-aided channel estimation techniques for MIMO-OFDM systems.

Generally speaking, pilot-aided channel estimation is based on either least squares

(LS) [19] or linear minimum mean square error (LMMSE) technique [57,124]. The essen-

tial difference between these two types of techniques is that the channel coefficients are

treated as deterministic but unknown constants in the former, and as random variables of

a stochastic process in the latter. Compared with LS-based techniques, LMMSE-based

techniques yield better performance because they additionally exploit and require the

prior knowledge of channel correlation. However, the channel correlation is sometimes

not a priori known, which makes LMMSE-based techniques infeasible. Therefore, in this

chapter, we focus on techniques when the prior knowledge of channel correlation is not

136



Chapter 8. Channel Instantaneous Power Based Angle-Domain Channel Estimation137

available to the receiver. Then, In the next chapter, we focus on techniques when the

channel correlation or channel power is known to the receiver.

As mentioned in the previous chapter, we classify the signals and channels in two

domain types in MIMO-OFDM systems. The first type is represented by either array

or angle domain, the latter one is represented by either time or frequency domain. In

this chapter, we investigate channel estimation techniques in both the angle-frequency

and angle-time domains. In the angle-frequency domain, when some angle-frequency

domain bins contain few physical paths due to limited scattering, the corresponding

channel coefficients should approach zero. This allows us to choose a suitable thresh-

old for ignoring the small-valued channel taps and retaining only the most significant

taps (MST) to reduce the effect of noise on the estimated channel coefficients, thereby

improving the performance of channel estimation. We call this technique of retaining

channel coefficients of sufficiently large power the MST selection technique. In the angle-

time domain, we can also use the MST selection technique. Furthermore, the channel

coefficients in the angle-time domain are approximately uncorrelated. Thus, we may

use the channel power instead of the channel correlation to approximately perform the

angle-time domain LMMSE technique when the signal-to-noise ratio (SNR) is known or

reliably estimated. We call the resulting technique the approximated LMMSE (AMMSE)

technique. Note that we refer to the channel power as the channel average power in this

chapter. When the channel power is not available, we can use the channel instantaneous

power (i.e. the instantaneous power of estimated channel coefficients) to estimate the

channel power. In such cases, to maintain the estimated channel power positive and

estimation reliable, a threshold is required to ignore coefficients with low instantaneous

power. Further, we will not consider the AMMSE technique in the angle-frequency do-

main because the channel correlation in the frequency domain might be too high to be

reasonably replaced by the channel power1.

1For example, when the temporal span of the channel is concentrated over a small number of taps and

the number of subcarriers is quite large, the channel coefficients at different subcarriers become strongly

correlated in the second domain type.
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To the best of our knowledge, we are the first to systematically study angle-domain

channel estimation techniques for MIMO-OFDM systems [97]. We note that one angle-

domain channel estimation technique has been investigated for single-input multiple-

output (SIMO)-OFDM systems [128]. In this technique, the angle-time domain bins that

correspond to the identical angular lobes (but with different time indices) are grouped

into one angle-time domain beam. Examining all the estimated channel coefficients in

one beam, only the beams that contain significant peak values along the time axis are

identified as the signal beams and thus retained. All the remaining beams are considered

as noise (or interference) beams and are ignored. This technique was shown to be effec-

tive when the channel power is concentrated in a few beams. However, when the channel

power is distributed over all the beams (e.g. the channel model E in [61]), this technique

may hardly improve the performance. To overcome this problem and investigate the

techniques for MIMO-OFDM systems, we do not group the angle-time domain bins into

beams. Instead, we filter the noise independently in each angle-time domain bin, based

on the fact that the multipath components are approximately disjoint in the angle-time

domain. Then, as introduced, we use either MST selection or AMMSE techniques to

estimate channels in the angle-time domain. Further, we also investigate the MST selec-

tion technique in the angle-frequency domain.

The three angle-domain channel estimation techniques proposed in this chapter have

two main advantages. First, the achieved performance gain over the conventional LS

technique does not require the prior knowledge of the channel correlation or even the

channel power. Therefore, the techniques are applicable to various propagation environ-

ments. Second, they are flexible in implementation. They can either use conventional

array-domain estimators as the coarse estimators and perform post-processing in the

angle domain, or use the specifically designed pilots introduced in the previous chapter

for the direct implementation.

The major contributions and results of this chapter are as follows:

1. We systematically develop the channel estimation techniques in both the angle-



Chapter 8. Channel Instantaneous Power Based Angle-Domain Channel Estimation139

time and angle-frequency domains for MIMO-OFDM systems. We find that the

proposed techniques perform especially well in the angle-time domain.

2. We develop a unified approach to analyze the performance of MST selection and

AMMSE channel estimation techniques in terms of mean square error. Based

on this approach, we also develop a simple way to compare the performances of

different angle-domain techniques with the help of the first derivative test [11].

3. The performances of all the angle-domain techniques are dependent on the respec-

tive thresholds. Nevertheless, we find that setting the threshold to be two times the

noise variance is sufficient for the angle-time domain MST selection and AMMSE

techniques to yield better performance than the conventional LS technique at all

the SNRs for various IEEE 802.11 TGn channel models [61].

4. Of all the proposed angle-domain techniques, both our theoretical analysis and

simulation results demonstrate that the angle-time domain AMMSE technique re-

sults in the best performance and achieves up to 8 dB performance gain when the

mean square error is 10−2 compared to the conventional LS technique.

This chapter is organized as follows. Section 8.2 develops three angle-domain tech-

niques to estimate MIMO-OFDM channels. Then, these three techniques are analyzed

in Section 8.3. The performances of these techniques are also evaluated by simulation for

typical IEEE 802.11 TGn channel models in Section 8.4. Finally, Section 8.5 concludes

this chapter.

8.2 Angle-Domain Channel Estimation

As discussed, the physical path within one angle-domain beam has most of its energy

within this beam. Thus, the elements within one angle-time domain channel matrix Ca(l)

defined in (7.20) at a given time delay l, or angle-frequency domain channel matrix Ha(k)
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defined in (7.26) at the given kth subcarrier, maintain low spatial correlation2. Further-

more, various elements in the angle-domain channel matrices tend to approach zero due

to limited scattering. Therefore, we may perform noise filtering independently in each

angle-time or angle-frequency domain bin to improve the estimation performance. These

channel estimation techniques are flexible in implementation. They can either use con-

ventional array-domain estimators as the coarse estimators and perform post-processing

in the angle domain, or use the specifically designed pilots introduced in Chapter 7 for the

direct implementation. For the sake of a simple description, we concentrate on describing

the angle-domain channel estimation techniques in the framework of a post-processor.

The direct implementation of angle-domain techniques is straightforwardly extendable,

and thus will not be covered in this chapter.

In typical MIMO-OFDM systems, only one transmit antenna sends pilot symbols

in a given time or frequency position [17, 174, 198]. This technique can lead to very

simple MIMO-OFDM channel estimation because the received signal at a given time

or frequency position corresponds to one unique channel coefficient from a given trans-

mit antenna to a given receive antenna. In such cases, the channel estimation for a

MIMO-OFDM system with Nt transmit and Nr received antennas becomes the channel

estimation for the total Nt×Nr single input single output (SISO)-OFDM systems. Thus,

the well-developed SISO-OFDM channel estimation techniques (e.g. [19,57,95,138]) are

directly applicable to the estimation of MIMO-OFDM channels. In this chapter, we

use the conventional array-frequency domain LS technique [19] to coarsely estimate the

array-frequency domain hir ,it(k) because the knowledge of channel correlation is assumed

to be not available. For the sake of a simple description, we assume that pilots from dif-

ferent transmit antennas are time orthogonal to each other, and thus only one transmit

antenna is used to transmit pilots in each OFDM training symbol period as introduced

in [198]. The proposed techniques can be easily extended to other pilot transmission

2In the angle domain, there exists an overlapping area between adjacent angle-domain beams. When

the paths fall in this overlapping area, there appears spatial correlation between these two beams. How-

ever, this situation can be approximately ignored and the angle-domain beams can be approximated as

spatially uncorrelated since the overlapping area occupies only a small percentage of total angles.
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schemes (e.g. [174]), but will not be covered in this chapter.

8.2.1 Angle-Frequency Domain Technique

Recalling from (7.4), the received block of the nth OFDM symbols at the kth subcarrier

can be written as

y(k, n) = H(k) x(k, n) + ϑ(k, n) (8.1)

where y(k, n) = [y0(k, n), y1(k, n), · · ·, yNr−1(k, n)]T , x(k, n) = [x0(k, n), x1(k, n), · · ·,

xNt−1(k, n)]T , ϑ(k, n) = [ϑ0(k, n), ϑ1(k, n), · · ·, ϑNr−1(k, n)]T , xit(k, n), yir(k, n) and

ϑir(k, n) represent the frequency-array domain transmitted data sample at the (it)th

transmitter, the received data sample at the (ir)th receiver, and the additive white

Gaussian noise (AWGN) with variance σ2
f at the (ir)th receiver, respectively, at the

kth subcarrier in the nth OFDM symbol, H(k) defined in (7.5) is the channel transfer

function (CTF) matrix at the kth subcarrier, Nt and Nr are the numbers of the transmit

and receive antennas, respectively. As defined in (7.2), the channel matrix C(l) for

l = 0, 1, · · · , Nh − 1 is an Nr × Nt matrix, where Nh is the temporal span of the MIMO

channel. Then, if the columns of C(l) and H(k) are stacked into the vectors c(l) and

h(k), respectively, recalling from (7.10), we have

h = (F ⊗ INr×Nt)c (8.2)

where h = [hT (0), hT (1), · · ·, hT (Nd−1)]T , c = [cT (0), cT (1), · · ·, cT (Nh−1),01×(Nd−Nh)]
T ,

⊗ denotes the Kronecker product, F, IN and 0N1×N2
are the Nd × Nd unitary Fourier

matrix, N × N identity matrix and N1 × N2 zero matrix, respectively, Nd and Nh are

the number of total subcarriers, and the temporal span of the channel in the array-time

domain, respectively. Then, using the assumption that the pilots from different transmit

antennas are time orthogonal to each other, we obtain

Y = X h + ϑ (8.3)

where Y = [Ÿ
T
(n), Ÿ

T
(n + Nt), · · ·, Ÿ

T
(n + (Nc − 1)Nt)]

T with Ÿ(n) = [yT (0, n),

yT (0, n + 1), · · ·, yT (0, n + Nt − 1), yT (1, n), · · ·, yT (1, n + Nt − 1), · · ·, yT (Nd − 1, n +
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Nt − 1)]T , X = [Ẍ(n), Ẍ(n + Nt), · · · , Ẍ(n + (Nc − 1)Nt)]
T with Ẍ(n) = diag[xT (0, n),

xT (0, n+1), · · ·, xT (0, n+Nt−1), xT (1, n), · · ·, xT (1, n+Nt−1), · · ·, xT (Nd−1, n+Nt−1)],

and ϑ = [ϑ̈
T
(n), ϑ̈

T
(n+Nt), · · · , ϑ̈

T
(n+(Nc−1)Nt)]

T with ϑ̈
T
(n) = [ϑT (0, n), ϑT (0, n+

1), · · ·, ϑT (0, n+Nt−1), ϑT (1, n), · · ·, ϑT (1, n+Nt−1), · · ·, ϑT (Nd−1, n+Nt−1)]T are

the received signal vector, transmitted signal matrix, and noise vector, respectively, and

Nc is the number of pilots used for each channel coefficient in the LS channel estimation.

Note that X is a block diagonal matrix. Then, the array-frequency domain LS estimator

is given by

h
LS

=
(

XHX
)−1

XHY. (8.4)

By rearranging the vector form h
LS

into its matrix form, in this first step, we get the

coarsely estimated array-frequency domain channel matrix H̃(k) for k = 0, 1, · · ·, Nd−1.

In the second step, we transform the estimated array-frequency domain channel ma-

trix from the array-frequency domain H̃(k) into the angle-frequency domain H̃a(k) by the

use of (7.26) for all the subcarriers under consideration. Let h̃a
ir ,it(k) denote the (ir, it)th

element of H̃a(k). Then, the filtered angle-frequency domain channel coefficient is given

by comparing the power of h̃a
ir ,it(k) with a threshold η as follows

h̃a
ir ,it,MST

(k) =







h̃a
ir ,it

(k), if |h̃a
ir ,it

(k)|2 ≥ η,

0, otherwise.
(8.5)

Finally, from (7.26), we have

H(k) = UrH
a(k)UH

t (8.6)

where Ut, Ur are the unitary matrices whose columns are the basis vectors in (7.15)

and (7.16), respectively. Then, the filtered angle-frequency domain channel matrices are

transformed back to the array-frequency domain via (8.6). We call this technique the

angle-frequency domain MST selection technique.
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To make a fair complexity comparison among all the techniques, we assume that LS

estimated array-frequency domain channel coefficients are available beforehand. Then,

from (7.26), obtaining the angle-frequency domain H̃a(k) from the array-frequency do-

main H̃(k) requires Nt+Nr complex multiplications for each channel coefficient. Further,

transforming the estimated angle-frequency domain into the array-frequency domain also

requires Nt +Nr complex multiplications for each channel coefficient. Therefore, the to-

tal required number of complex multiplications for each channel coefficient is 2(Nt +Nr).

8.2.2 Angle-Time Domain Techniques

In many cases, such as the non-line-of-sight (NLOS) scenario, the mean angle of depar-

ture (AoD) and angle of arrival (AoA) of the clusters of multipath components tend to

be uniformly distributed over all angles [36, 172]. Thus, when the number of clusters is

relatively large (e.g. the channel model E in [61]), the above angle-frequency domain

channel estimation technique may hardly improve over the conventional array-frequency

domain LS technique because nearly all the elements of angle-frequency domain channel

matrices may not approach zero. As the clusters of multipath components are disjoint

in the angle-time domain, we may perform the noise filtering in this domain instead

of the angle-frequency domain. For the implementation of angle-time domain channel

estimation techniques, we first transform the estimated channel coefficients from the

array-frequency domain into the array-time domain by the use of discrete Fourier trans-

form (DFT) [95]. Then, we transform the channel matrices into the angle-time domain

by using (7.20). In the angle-time domain, we can select the MST in channel matrices

to reduce the effect of noise on the estimates. Now the estimated angle-time domain

channel coefficient becomes

c̃air ,it,MST
(l) =







c̃air ,it
(l), if |c̃air ,it

(l)|2 ≥ η,

0, otherwise,
(8.7)

where c̃air ,it(l) is the coarsely estimated angle-time domain channel coefficient.

Note that we presume that the channel spatial correlation is not available to the
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receiver in this chapter. Therefore, the conventional LMMSE technique that utilizes

the channel spatial correlation is not applicable here. But as discussed, the channel

coefficients in the angle-time domain at a given time are approximately spatially un-

correlated. Therefore, we may use the channel instantaneous power to approximate the

channel correlation (Here the channel power is also assumed to be not available). As the

approximated channel correlation matrix is a diagonal matrix, the LMMSE technique

that jointly filters all the channel coefficients becomes the independent spatial filtering

for each channel coefficient. Further, the channel coefficient is uncorrelated with the

noise. Therefore, we may estimate the channel instantaneous power for each coefficient

as |c̃a(l)|2 − σ2
f
3. Then, the angle-time domain AMMSE technique is realized as

c̃air ,it,AMMSE(l)

=











|c̃air,it
(l)|2−σ2

f

|c̃air,it
(l)|2 c̃air ,it(l), if |c̃air ,it(l)|2 ≥ η,

0, otherwise.

(8.8)

Here the threshold η is usually chosen to be smaller than σ2
f . Otherwise, the approxi-

mated channel power (|c̃air ,it(l)|2 − σ2
f ) becomes negative. In comparison with the MST

selection technique, the difference is the use of a dynamic multiplication factor instead

of a constant one. The factor turns out to be crucial in improving the performance of

channel estimation as shown in the following two sections.

After the noise filtering in the angle-time domain, we transform back the estimated

channel into the array-time domain, and then into the array-frequency domain. Note

that the angle-time domain estimation is well-suited for the sample-spaced channels.

The performance will be degraded for the non-sample-spaced channels due to the power

leakage [19]. Nevertheless, our results show that the angle-time domain techniques still

outperform the array-frequency domain LS technique for typical IEEE 802.11 TGn chan-

nel models.

Similar to the angle-frequency domain MST technique, we assume that LS estimated

3The noise variance σ2
f is assumed to be known here. In practice, it can be estimated during periods

when no transmitted signal is detected, or at virtual carriers where no data is transmitted.
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array-frequency domain channel coefficients are available beforehand to make a fair com-

plexity comparison. Then, from (7.20), we know that the transformations between the

array-time domain and angle-time domain require totally 2(Nt +Nr) complex multiplica-

tions for each channel coefficient. In addition, the angle-time domain techniques require

the transformations between the array-frequency domain and array-time domain. This

requires totally 2Nd complex multiplications for each channel coefficient. Typically, Nd

is a power of 2. Then, using the FFT and IFFT [187] for transformations between the

array-time and array-frequency domain, the total complex multiplications required for

each channel coefficient is reduced to log2 Nd complex multiplications for each channel

coefficient. From the above, the total required complex multiplications for each channel

coefficient in the angle-time domain MST selection technique is 2(Nt + Nr) + log2 Nd.

For the angle-time domain AMMSE technique, an additional complex multiplication is

needed. Therefore, the total required complex multiplications for each channel coefficient

in the angle-time domain AMMSE technique is 2(Nt +Nr)+1+log2 Nd. Compared with

the angle-frequency domain MST technique, these angle-time domain techniques always

have higher complexity. Nevertheless, our results show that these angle-time domain

techniques always outperform the angle-frequency domain MST technique for all the

channel models under consideration.

Note that the angle-time domain MST selection and AMMSE techniques are well-

suited for the sample-spaced channels. The performance will be degraded for the non-

sample-spaced channels due to the power leakage [19]. Nevertheless, our results show

that the angle-time domain techniques still outperform the array-frequency domain LS

technique for all the channel models under consideration.

8.3 Performance Analysis

For channel estimation techniques, one of the most important performance measures is

the mean square error (MSE), which measures the average mean squared deviation of

the estimator from the true value [110]. In this section, we present a unified approach
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to computing the MSE of the angle-domain (i.e. either angle-time or angle-frequency

domain) MST selection and AMMSE techniques. Note that the array-time or array-

frequency domain is related by an unitary transformation. Thus, of a given estimation

technique, the MSE represented in either the array-time or array-frequency domain yields

the same result, and is given by

MSE =
1

NdNtNr
E
[

||h̃ − ~h||2
]

(8.9)

where ~h is either h or c, and h̃ is the estimated ~h.

Here we use the array-frequency domain LS technique to perform the coarse channel

estimation. Then, the resulting MSE of the coarse estimation is given by

MSELS =
1

NdNtNr
E
[

‖h
LS

− h‖2
]

=
σ2

f

NdNtNr
trace

{

E
[

(

XHX
)−1
]}

. (8.10)

In many cases, such as in the IEEE 802.11a standard [6], the powers of all pilots are

unity. Therefore, we also assume that E[(XHX)−1] is the identity matrix. Then, since

X is diagonal, (8.10) becomes

MSELS = σ2
f . (8.11)

Let ha represent the stacked angle domain channel vector. Then, from (7.26), we

obtain

ha = B~h (8.12)

where

B = INd
⊗UT

t ⊗UH
r (8.13)

is an (NtNrNd × NtNrNd) matrix, and the superscript ‘T ’ denotes the transpose. It is

easily verified that the matrix B is unitary, i.e.

BHB = INt×Nr×Nd
. (8.14)
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Then, the angle domain MST selection or AMMSE technique is given by

h̃
a

= Mha
LS (8.15)

where M is an (NdNtNr × NdNtNr) diagonal matrix that represents either the MST

selection or the AMMSE process, and ha
LS is the stacked LS estimated channel vector in

the angle domain. Note that the ith diagonal element of M (denoted as mi) is dependent

on both the channel coefficient and noise. Denote r̂i as the instantaneous power of ith

element of ha
LS. In the MST selection techniques, we have

mi =







1, if r̂i ≥ η,

0, otherwise.
(8.16)

In the AMMSE technique, from (8.8), we have

mi =







r̂i−σ2
f

r̂i
, if r̂i ≥ η,

0, otherwise,
(8.17)

where the threshold η is chosen not to be smaller than σ2
f .

From (8.9), the MSE of angle-domain techniques is given by

MSE =
1

NdNtNr
E
[

||BHMB~hLS − ~h||2
]

(8.18)

where ~hLS is the LS estimated ~h. Since M is diagonal and real, using (8.14), we obtain

MSE =
1

NdNtNr
trace

{

E[Mha(ha)HMH + ha(ha)H

−2Mha(ha)H + Mva(va)HMH ]
}

(8.19)

where va is the angle-domain noise vector. Denoting ĥi, v̂i as the instantaneous power

of ith element of ha and va, respectively, we rewrite (8.19) as

MSE =
1

NdNtNr

NdNtNr
∑

i=1

E
[

(mi − 1)2ĥi + m2
i v̂i

]

. (8.20)

More specifically,

E
[

(mi − 1)2ĥi

]

=

∫ ∞

0
ĥiPh(ĥi)

∫ ∞

η
(mi − 1)2Pr|h(r̂i|ĥi)dr̂idĥi

+

∫ ∞

0
ĥiPh(ĥi)

∫ η

0
Pr|h(r̂i|ĥi)dr̂idĥi (8.21)
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is the MSE part due to the filtered instantaneous power of the ith channel coefficient,

and

E
[

m2
i v̂i

]

=

∫ ∞

0
v̂iPv(v̂i)

∫ ∞

η
m2

i Pr|v(r̂i|v̂i)dr̂idv̂i, (8.22)

is the MSE part due to the unfiltered noise components in the ith estimated channel

coefficient, where Ph(ĥi), Pv(v̂i), Pr|h(r̂i|ĥi), and Pr|v(r̂i|v̂i) are the probability density

functions of ĥi, v̂i, conditional probability density functions of r̂i conditioned on ĥi and v̂i,

respectively. Both the channel and noise have the complex normal distributions. Thus,

Ph(ĥi) and Pv(v̂i) have the exponential distributions, and Pr|h(r̂i|ĥi) and Pr|v(r̂i|v̂i) have

the noncentral chi-square distributions [11].

Let σ2
i denote the channel power of the ith element of ha.

1. When σ2
i is not equal to zero, the MSE of the ith estimated channel coefficient is

given by

MSEi = E
[

m2
i v̂i

]

=

∫ ∞

η
m2

i

v̂i

σ2
f

e
− v̂i

σ2
f dv̂i (8.23)

where

E
[

(mi − 1)2ĥi

]

=

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ ∞

η
(mi − 1)2

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi

+

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ η

0

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi, (8.24)

and

E
[

m2
i v̂i

]

=

∫ ∞

0

v̂i

σ2
f

e
− v̂i

σ2
f

∫ ∞

η
m2

i

e
− r̂i+v̂i

σ2
i

σ2
i

J0

(

2
√

r̂iv̂i

σ2
i

)

dr̂idv̂i, (8.25)

and J0(z) is the modified Bessel function of the first kind and zero order.

2. When σ2
i is equal to zero, ĥi = 0 and r̂i = v̂i, then E[(mi −1)2ĥi] = 0 and the MSE

of the ith estimated channel coefficient is simplified as

MSEi = E
[

m2
i v̂i

]

=

∫ ∞

η
m2

i

v̂i

σ2
f

e
− v̂i

σ2
f dv̂i. (8.26)
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8.3.1 Performance of MST Selection Techniques

In this subsection, we analyze the performance of MST selection techniques and show

that the optimal strategy to minimize the MSE for the MST selection techniques is

to ignore all the array-frequency domain LS estimated channel coefficients whose corre-

sponding channel powers are smaller than the noise variance, and retain all the remaining

estimated channel coefficients.

When σ2
i is not equal to zero

From (8.24) and (8.25), the MSE of the ith estimated channel coefficient is given by

MSEi = E
[

(mi − 1)2ĥi

]

+ E
[

m2
i v̂i

]

= σ2
f +

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ η

0

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi

−
∫ ∞

0

v̂i

σ2
f

e
− v̂i

σ2
f

∫ η

0

e
− r̂i+v̂i

σ2
i

σ2
i

J0

(

2
√

r̂iv̂i

σ2
i

)

dr̂idv̂i. (8.27)

Differentiating MSEi with respect to η, we obtain

∂MSEi

∂η
=

(σ2
i − σ2

f )e
− η

σ2
i
+σ2

f η

(σ2
i + σ2

f )2
. (8.28)

From (8.28), we find that although the MSE is difficult to calculate analytically, its

gradient is surprisingly simple.

• When σ2
i = σ2

f , the last two terms in (8.27) become identical. This is reasonable

since setting the estimated channel coefficient as zero or retaining the original coarse

estimate yields the same MSE. Therefore, MSEi will always be σ2
f no matter what

the threshold is chosen. This result can also be verified from (8.28) where ∂MSEi

∂η

is always zero for all the η.

• When σ2
i > σ2

f , from (8.28) and the first derivative test [11], we conclude that

MSEi reaches its extremum when η = 0 or η = ∞4. Since (8.28) is always positive,

MSEi is monotonically increasing and reaches its minimum σ2
f at η = 0. This

4For σ2
i = σ2

f , ∂MSEi

∂η
is always zero, hence indicating that the MSE is constant as claimed earlier.
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result indicates that the LS estimated channel coefficient should be retained when

the corresponding channel power is larger than the noise variance. It is reasonable

since when we ignore the estimated channel coefficient, the resulting performance

loss due to the ignorance of instantaneous power will be larger than the performance

gain due to the removal of noise.

• When σ2
i < σ2

f , (8.28) is always negative. Thus, MSEi reaches its minimum σ2
i at

η = ∞. This result indicates that the LS estimated channel coefficient is required

to be ignored when the corresponding channel power is smaller than the noise vari-

ance. It is reasonable as the performance gain surpasses the performance loss when

the corresponding estimated coefficient is ignored.

When σ2
i is equal to zero

In this case, (8.26) becomes

MSEi =

∫ ∞

η

v̂i

σ2
f

e
− v̂i

σ2
f dv̂i = e

− η

σ2
f (η + σ2

f ). (8.29)

Differentiating MSEi with respect to η, we obtain

∂MSEi

∂η
= −ηe

− η

σ2
f

σ2
f

≤ 0. (8.30)

Similar to the discussion above, we find that MSEi reaches its minimum at η = ∞. This

result indicates that the LS estimated channel coefficient is required to be ignored when

the corresponding channel power is smaller than the noise variance. It is reasonable since

the corresponding estimated channel coefficient only contains the noise, and ignoring this

estimated coefficient will result in no performance loss.

From the discussion above, we conclude that the choice of threshold η is dependent

on σ2
i and σ2

f as shown in Table. 8.1 because we need to balance the performance gain

and loss when we ignore the estimated channel coefficients. Thus, the optimum thresh-

old should be obtained for each channel coefficient. Since the channel is independent of

noise, the average power of the LS estimated channel coefficient is the sum of the channel
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Table 8.1: Maximum and minimum MSEi and the corresponding thresholds for the MST

selection techniques.

σ2
i > σ2

f σ2
i < σ2

f σ2
i = σ2

f

Maximum MSEi σ2
i σ2

f σ2
f

Minimum MSEi σ2
f σ2

i σ2
f

Threshold for Minimum MSEi 0 ∞ arbitrary

power and noise variance (i.e. σ2
i + σ2

f ). For this reason, we may set the threshold η

to be 2σ2
f . When the average power of the ith LS estimated channel coefficient exceeds

this threshold 2σ2
f , it means σ2

i > σ2
f . Therefore, we set mi to be 1 (see (8.16)) to retain

the ith LS estimated channel coefficient. This is optimum to minimize the MSEi as we

discussed above. Similarly, this threshold is optimum to the minimization of MSEi for

the case when σ2
i < σ2

f . Therefore, when the average power of the LS estimated channel

coefficient is available, we can still obtain the corresponding optimal threshold.

As σ2
i is assumed to be not available in this chapter, the average power of the corre-

sponding LS estimated channel coefficient may also not be available. Then, we may use

the channel instantaneous power (i.e. the instantaneous power of the estimated channel

coefficient) to approximate the average power of the LS estimated channel coefficient.

Due to the monotone property of MSEi with the increase of η, Table. 8.1 implies that for

the given threshold η = 2σ2
f , MSEi is always smaller than σ2

f when σ2
i < σ2

f , and larger

than σ2
f when σ2

i < σ2
f . Therefore, the overall performance of MST selection techniques

is dependent on the portion5 of number of channel coefficients, whose average powers are

below the σ2
f , to the total number of channel coefficients. When a majority of channel

coefficients whose average powers are below σ2
f (such as in the angle-time domain), the

MST selection technique can improve over the array-frequency domain LS technique.

This is also verified in our simulation results presented in the next section.

5η = 2σ2
f may not be the optimum choice but reasonable when no prior information of σ2

i is available

to the receiver. When additional information (e.g. the portion) is available, we may moderately adjust

the threshold to improve the estimation performance as shown in the simulation results section.
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8.3.2 Performance of AMMSE Technique

As mi is dependent on the channel instantaneous power, directly analyzing the perfor-

mance of AMMSE technique results in high computational complexity. Therefore, in this

subsection, we only compare the AMMSE technique with the MST selection technique

to provide some general understandings on the performance trends.

When σ2
i is not equal to zero

From (8.24) and (8.25), the MSE due to the ith estimated channel coefficient is given by

MSEi =

∫ ∞

0

v̂i

σ2
f

e
− v̂i

σ2
f

∫ ∞

η

(r̂i − σ2
f )2

r̂2
i

e
− r̂i+v̂i

σ2
i

σ2
i

J0

(

2
√

r̂iv̂i

σ2
i

)

dr̂idv̂i

+

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ η

0

σ4
f

r̂2
i

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi

+

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ η

0

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi. (8.31)

Compared to (8.27), the difference of MSEi, which is contributed by the ith channel

coefficient, between the AMMSE technique and MST selection technique is given by

DIFi =

∫ ∞

0

v̂i

σ2
f

e
− v̂i

σ2
f

∫ ∞

η

σ4
f

r̂2
i

e
− r̂i+v̂i

σ2
i

σ2
i

J0

(

2
√

r̂iv̂i

σ2
i

)

dr̂idv̂i

+

∫ ∞

0

ĥi

σ2
i

e
− ĥi

σ2
i

∫ ∞

η

σ4
f

r̂2
i

e
− r̂i+ĥi

σ2
f

σ2
f

J0

(

2
√

r̂iĥi

σ2
f

)

dr̂idĥi

−2

∫ ∞

0

v̂i

σ2
f

e
− v̂i

σ2
f

∫ ∞

η

σ2
f

r̂i

e
− r̂i+v̂i

σ2
i

σ2
i

J0

(

2
√

r̂iv̂i

σ2
i

)

dr̂idv̂i. (8.32)

Differentiating DIFi with respect to η, we obtain

∂DIFi

∂η
=

σ4
fe

− η

σ2
i
+σ2

f f(σ2
i , σ

2
f , η)

(σ2
i + σ2

f )3η2
(8.33)

where

f(σ2
i , σ

2
f , η) = 2σ2

fη2 + (σ4
i + 2σ2

i σ
2
f − σ4

f )η − 2σ2
i σ

2
f (σ2

i + σ2
f )
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= 2σ2
f

(

η −
σ4

f − 2σ2
fσ2

i − σ4
i

4σ2
f

)2

− 2σ2
i σ

2
f (σ2

i + σ2
f )

−

(

σ4
f − 2σ2

fσ2
i − σ4

i

)2

8σ2
f

. (8.34)

As the threshold η is not smaller than σ2
f , which is larger than (σ4

f − 2σ2
fσ2

i −σ4
i )/(4σ

2
f ),

(8.34) reaches its minimum 0 when the threshold η is equal to σ2
f . Therefore, when the

threshold η is larger than σ2
f , (8.34) is larger than 0 (i.e. positive) and so does (8.33).

Therefore, DIFi is monotonically increasing with the increase of η and reaches its max-

imum 0 when η = ∞. Consequently, DIFi is always negative, which implies that the

AMMSE technique performs better than the MST selection technique when σ2
i is not

equal to zero.

When σ2
i is equal to zero

In this case, (8.26) becomes

MSEi =

∫ ∞

η
m2

i

v̂i

σ2
f

e
− v̂i

σ2
f dv̂i <

∫ ∞

η

v̂i

σ2
f

e
− v̂i

σ2
f dv̂i (8.35)

because mi is always smaller than one. This implies that the AMMSE technique per-

forms better than the MST selection technique when σ2
i is equal to zero.

Therefore, we conclude that the AMMSE technique always performs better than the

MST selection technique. Since the angle-time domain MST selection technique yields

better performance than the array-frequency domain LS technique when the threshold is

2σ2
f as discussed in the previous subsection, the angle-time domain AMMSE technique

should achieve further performance gain.

8.4 Simulation Results

Computer simulations are carried out for the IEEE 802.11 TGn channel models [61,112].

In the simulation, pilots from different transmit antennas are time orthogonal to each
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Figure 8.1: Relation of the clustered model and the angle-domain representation.

other, and thus only one transmit antenna is used to transmit pilots in each OFDM train-

ing symbol period. Further, Nc pilots are inserted at each subcarrier during the training

period. Then, the total number of pilots used is NcNtNrNd. For simplicity, we assign

the values of +1 and −1 to pilot symbols. We evaluated different channel estimation

techniques for the five IEEE 802.11 TGn channel models that represent various indoor

environments, such as residential homes and small offices. Model A corresponds to the

MIMO flat-fading channel with a single cluster. This simple model serves as the basis to

investigate the characteristics of cluster-based channel models in the angle domain. Here

{AoDm, ASt} and {AoAm, ASr} refer to the mean angle of clusters, and angular spread

of clusters, respectively, for the transmit and receive antennas, respectively, as illustrated

in Fig. 8.1. All these four parameters are physically determined for a given propagation

scenario and will affect the relative average power for each angle-time domain beam.

In the simulation, we assign different values to these parameters for the model A to

represent various propagation environments. This model is usually used for stressing

the detection performance. It occurs only a small percentage of time in reality for the

systems under consideration [61]. The models B, C, D and E correspond to 15ns, 30ns,

50ns and 100ns root-mean-square (rms) delay spread, respectively. All these four models

represent non-sample-spaced channels. As we find that the performance trends in differ-

ent channel estimation techniques are similar in all these four models, we only present



Chapter 8. Channel Instantaneous Power Based Angle-Domain Channel Estimation155

the results for model B and model E because of their minimum and maximum degrees

of freedom, respectively. In the simulations, we assign the values indicated in appendix

C of [61] to {AoDm, ASt} and {AoAm, ASr} to represent typical small environments.

We also assume Nc = 2, Nd = 64, Nt = Nr = 4, and the normalized separation between

adjacent antennas ∆t = ∆r = 0.5. Further, we assume that the channel power for each

link between one transmit and one receive antennas is normalized to one throughout

the simulations. Note that both the line-of-sight (LOS) and NLOS scenarios have been

considered in the IEEE 802.11 TGn channel models [61, 112]. Compared to the NLOS

scenario, the LOS scenario has an additional fixed LOS signal component. This compo-

nent can be seen as a cluster with zero ASt and ASr, and should have similar effect on the

performance of angle-domain channel estimation techniques compared with the model A

with very small ASt and ASr. Therefore, it is unnecessary to separately investigate this

LOS component. From the above, we only provide the results for the NLOS scenario in

this section as similar conclusions can be drawn from the LOS and NLOS scenarios.

8.4.1 Channel Model A

As discussed, we assign various values to the {AoDm, ASt} and {AoAm, ASr} in channel

model A to investigate the performance of angle-domain channel estimation techniques

in the presence of a single cluster. As the angular spread is usually not smaller than 40◦

for typical IEEE 802.11 TGn channel models [61], we consider 40◦ for both ASt and ASr

as the worst case in performing angle-domain channel estimations. We also consider the

angular spread to be 2◦, which is valid for outdoor environments, for both ASt and ASr

as the best case. Further, the energy of multipath components from 45◦ leaks into more

than one angle-time domain beam, which is undesirable in the angle-domain channel

estimations. Thus, we consider 45◦ to be the AoDm and AoAm of the cluster for the

worse-case consideration. We also consider 0◦, from which most of energy of multipath

components concentrate on one angle-time domain beam, to be the AoDm and AoAm.

In the following figures that represent the channel power for each angle-time domain

beam (see Fig. 8.2 and Fig. 8.4), the areas of square and circle are proportional to the
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angle- and array-domain normalized average power, respectively, with respect to the cor-

responding maximum average power in the angle domain.
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Figure 8.2: The normalized channel power for each angle-time domain beam of model A

with AoAm = 0◦, ASt = 2◦, AoAm = 0◦, and ASt = 2◦.

Fig. 8.2 corresponds to the best case where the angular spread is 2◦. As expected, we

see that angle-domain channel power is concentrated in the (1,1)th angle-time domain

beam while the array-domain channel power is uniformly distributed over all the array-

time domain beams. These observations indicate the effectiveness of the MST selection

and AMMSE techniques. From Fig. 8.3, it is clear that all the angle-domain techniques

improve over the array-frequency domain LS technique at all the SNRs under consider-

ation. We also find that the angle-time domain AMMSE technique improves over the

angle-time domain MST selection technique by around 3.5 dB because the former is

more like a LMMSE technique. Although the MST selection is a nonlinear process, it is

interesting to find that the performances of angle-domain techniques are proportional to

that of the array-frequency domain LS technique in Fig. 8.3 because the ignored channel

instantaneous power is not significant.
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Figure 8.3: Performances of different channel estimation techniques for model A with

AoAm = 0◦, ASt = 2◦, AoAm = 0◦, and ASt = 2◦.

We consider the worst case where the angular spread is 40◦ in Fig. 8.4 and Fig. 8.5.

Compared to Fig. 8.2, the angle-domain channel power tends to leak into other angle-

time domain beams. Therefore, the channel powers in all angle-time domain beams

are relatively high. From Fig. 8.5, we find that all the angle-time domain techniques

still outperform the array-frequency domain LS technique for all the SNRs. However,

the angle-frequency domain MST selection technique does not perform well because the

number of channel coefficients whose channel powers are above the noise variance is rel-

atively large. We also observe that the angle-time domain AMMSE technique achieves

the best performance as expected.

8.4.2 Typical Channel Model

We consider typical non-sample-spaced indoor channels in Fig. 8.6 and Fig. 8.7. In such

cases, the AoDm and AoAm of clusters of multipath components tend to be uniformly
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Figure 8.4: The normalized channel power of model A for each angle-time domain beam

with AoAm = 45◦, ASt = 40◦, AoAm = 45◦, and ASt = 40◦.
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Figure 8.5: Performances of different channel estimation techniques for model A with

AoAm = 45◦, ASt = 40◦, AoAm = 45◦, and ASt = 40◦.
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distributed over all the angles. Then, the technique proposed in [128] will be the same as

the array-frequency LS technique because all the angle-time domain beams are identified

as signal beams. For this reason, its simulation results are not presented here. Compared

with Fig. 8.3 and Fig. 8.5, we find that unlike in channel A, the achieved performance

gain of angle-domain techniques over the array-frequency domain LS technique is not

significant at high SNRs in model B and model E. This is because the ignored channel

instantaneous powers are always larger in the non-sample-spaced channels. Nevertheless,

the angle-time domain AMMSE technique still achieves the best performance for both

model B and model E. Therefore, we can choose the angle-time domain AMMSE tech-

nique to perform channel estimation in the IEEE 802.11 TGn MIMO-OFDM systems

because of its superior performance as well as its robustness.
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Figure 8.6: Performances of different channel estimation techniques for model B.

As the channel power tends to be concentrated over a short temporal span in the

angle-time domain6, the number of channel coefficients whose corresponding channel

6The temporal spans for different angle-time domain beams are not likely to be the same because the

first paths falling in each beam may arrive asynchronously.
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Figure 8.7: Performances of different channel estimation techniques for model E.

powers are below the noise variance is relatively large. For such channel coefficients, the

optimum threshold should be infinite as discussed in Section 8.3. Intuitively, increas-

ing the threshold will improve the estimation performance for these channel coefficients.

However, this will result in adverse effect on the estimation performance for the chan-

nel coefficients whose channel powers exceed σ2
f . As the number of channel coefficients

whose channel powers are below σ2
f is larger compared to that of the remaining chan-

nel coefficients, it should be interesting to investigate the overall performances of the

angle-time domain techniques when the threshold is increased. Fig. 8.8 shows that both

the angle-time MST selection and AMMSE techniques are improved in terms of perfor-

mance when the threshold is increased to 3σ2
f at nearly all the SNRs. Note that the

selection of threshold is a trade-off between the performance loss due to the ignorance

of channel instantaneous power and the performance gain due to the removal of noise.

Therefore, we find that further increasing the threshold to 6σ2
f degrades the perfor-

mance at high SNRs because the performance loss will dominate. Note that when the

threshold is relatively high, we only retain the channel coefficients whose corresponding

[|c̃air ,it
(l)|2 − σ2

f ]/[|c̃air ,it
(l)|2] shown in (8.8) approaches one. This implies that the per-
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formance of the angle-time domain MST selection technique should gradually approach

that of the angle-time domain AMMSE technique with the increase of thresholds. This

implication is verified in Fig. 8.8. Therefore, we may use the angle-time domain MST se-

lection technique when the threshold is relatively high for typical MIMO-OFDM systems.
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Figure 8.8: Performances of angle-domain channel estimation techniques with different

thresholds for model B. The number α shown in the bracket indicates that the threshold

is set to ασ2
f . Otherwise, the threshold is set to 2σ2

f .

Note that the noise variance σ2
f is required to be priorly known in order to decide

the threshold in the above simulations. However, the exact knowledge of σ2
f may not

always be available. Therefore, for a robust estimator design, we should fix the thresh-

old for a target range of SNRs. As illustrated in Fig. 8.8, increasing the threshold will

even improve the performance of angle-time domain techniques especially at low SNRs.

Therefore, for a given target SNR range, we may use 2σ2
f at the lowest SNR (because

of the largest σ2
f ) as the fixed threshold. In Fig. 8.9, we divide the whole SNR range

into five disjoint groups. Each corresponds to one target SNR range, within which the

threshold is fixed. As Fig. 8.8 indicates that the threshold should be smaller (or at
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Figure 8.9: Performances of angle-domain channel estimation techniques for model B.

Fixed in the bracket indicates that the threshold is fixed for a given SNR range.

most slightly larger) than the corresponding 6σ2
f at low SNRs, and smaller than the

corresponding 3σ2
f at high SNRs. These results imply that we could choose larger α

(thus more elements for each group) at low SNRs than at high SNRs. From Fig. 8.9, we

observe that the performances of angle-time domain estimation techniques are always

better than that of the array-frequency domain LS technique. Furthermore, we find that

the performance of the angle-time domain MST selection technique is close to that of the

angle-time domain AMMSE technique at the highest SNR in each target range (see the

points when SNR = 10 dB, 15 dB, 19 dB, 22 dB and 25 dB in Fig. 8.9). These results

are consistent with the observations in Fig. 8.8, which shows that increasing the thresh-

old makes the performance of the angle-time domain MST selection technique approach

that of the angle-time domain AMMSE technique. However, the angle-frequency domain

MST selection technique may not perform well at the highest SNR for each target range

because of the relatively large performance loss due to the channel instantaneous power

ignorance. As the angle-time domain AMMSE technique performs best at all the SNRs

under consideration, we may conclude that the angle-time domain AMMSE technique is

suitable for the typical IEEE 802.11 TGn MIMO-OFDM systems when the target range
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of SNRs is available.

Note that at higher SNRs, the threshold η approaches zero and thus almost all the

channel coefficients will not be filtered. Therefore, the angle-time domain MST selec-

tion and angle-frequency domain MST selection techniques will perform more similarly

to the array-frequency domain LS technique as SNR increases. In addition, the angle-

time AMMSE technique will also perform more similarly to the angle-time domain MST

selection technique as SNR increases because the multiplication factor shown in (8.8)

approaches to one for each angle-time domain channel coefficient. In summary, all the

channel estimation techniques will converge at a relatively high SNR as implied in all

the figures shown in this subsection. Thus, the angle-time domain AMMSE technique

is more preferable at lower SNRs than at higher SNRs because of the larger achievable

performance gain.

8.5 Conclusions

In this chapter, we have proposed the angle-frequency domain MST selection technique,

angle-time domain MST selection technique and angle-time domain AMMSE technique

for MIMO-OFDM systems. These three techniques do not require the prior knowledge

of channel correlation and were shown to be effective when the angular spread of clusters

of multipath components is small. More importantly, the angle-time domain techniques

can improve over the array-frequency domain LS technique in all the cases considered

even when the angular spread is relatively large. Further, both our theoretical analysis

and simulation results indicate that the angle-time domain AMMSE technique achieves

the best performance and is robust to the choice of threshold and mismatch of operating

SNR. Thus, when only the target SNR range is available to the receiver, the angle-time

domain AMMSE technique is suitable for the typical IEEE 802.11 TGn MIMO-OFDM

systems. In addition, we have also found that with a suitable threshold and known oper-

ating SNR, the angle-time domain MST selection technique results in little performance

degradation compared to the angle-time domain AMMSE technique. Therefore, in such
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cases, the angle-time domain MST selection technique may be a potential candidate for

the IEEE 802.11 TGn MIMO-OFDM systems because of its lower computational com-

plexity.



Chapter 9

LMMSE-Based Angle-Domain

Channel Estimation

9.1 Introduction

Chapter 8 has systematically developed channel instantaneous power based angle-domain

channel estimation techniques under the assumption that the channel correlation is not

available to the receiver. This chapter investigates angle-domain channel estimation

techniques for the situation when the channel correlation or channel power is known to

the receiver. Further, various channel estimation techniques for multiple-input multiple-

output orthogonal frequency division multiplexing (MIMO-OFDM) systems are com-

pared in terms of performance and complexity in this chapter.

As before, we classify the signals and channels in two domain types. The first type is

represented by either the array or angle domain, the latter one is represented by either

the time or frequency domain. The channel correlations in the two domain types are

referred to as the channel spatial correlation and channel frequency correlation, respec-

tively. Additionally, we use the term channel correlation for both the channel spatial and

frequency correlation. Prior knowledge of these channel correlations can be exploited in

channel estimation. As prior knowledge of the channel frequency correlation is equivalent

to prior knowledge of the channel power delay profile, we will not consider prior knowl-

165
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edge of the channel power delay proile separately in channel estimation. Hereinafter,

we will explicitly state which representation is used for each domain type. For example,

the designation angle-time domain means that the angle and time representations are

used for the above two domain types, respectively. In this chapter, the group of angle-

time domain bins that correspond to the identical angular lobes (but with different time

indices) is called the angle-time domain beam. Similarly, the group of angle-frequency

domain bins that correspond to the identical angular lobes (but with different subcar-

rier indices) is called the angle-frequency domain beam. Note that when we state the

representation for only one domain type, we mean that both representations are ap-

plicable for the other domain type unless indicated otherwise. For example, we refer

to the angle domain as either the angle-time or angle-frequency domain. Similarly, we

refer to the angle-domain beam as either the angle-time or angle-frequency domain beam.

In this chapter, we focus on channel estimation techniques in both the angle-time

and angle-frequency domain. Note that we ultimately need the knowledge of array-

frequency domain channel coefficients to realize the coherent demodulation. Thus, the

estimated channel coefficients in the angle domain will finally be transformed back to

the array-frequency domain.

• Techniques in the angle-frequency domain: As the channel coefficients in different

angle-frequency domain beams are approximately spatially uncorrelated, we can

divide the 2D channel correlation matrix with the size (NtNrNd × NtNrNd) into

(NtNr) one-dimensional (1D) channel correlation submatrices each having the size

(Nd × Nd), where Nt and Nd are the number of transmit and receive antennas,

respectively, Nd is the number of subcarriers. Each channel correlation submatrix

corresponds to one angle-frequency domain beam. Thus, we can use 1D LMMSE

channel estimation techniques for each angle-frequency domain beam. We call this

technique the quasi 1D (Q1D) LMMSE technique. This division of the 2D channel

correlation matrix into a set of 1D channel correlation submatrices will greatly

reduce the complexity in channel estimation. More importantly, our simulation

results show that this complexity reduction will result in negligible performance
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degradation for typical channel models. Since the angle-time and angle-frequency

domains are related by a unitary transformation, the 2D channel correlation in

the angle-time and angle-frequency is interchangeable. Then, the performances

of 2D LMMSE based on either angle-time and angle-frequency domain channel

correlation are equivalent. Further, the 1D angle-time and angle-frequency channel

correlation within the same angle-domain beam is also interchangeable. Then,

the performances of Q1D LMMSE based on either angle-time and angle-frequency

domain channel correlation are also equivalent. Therefore, we do not consider the

2D LMMSE and Q1D LMMSE techniques in the angle-time domain in this chapter.

• Techniques in the angle-time domain: As the channel coefficients in all the angle-

time domain bins are approximately uncorrelated, we may use the channel power in-

stead of the channel correlation to approximately apply the angle-time domain Q1D

LMMSE technique. We call the resulting technique the approximated LMMSE

(AMMSE) technique. Note that we refer to the channel power as the channel aver-

age power in this chapter. When the channel power is not available, we can use the

channel instantaneous power (i.e. the instantaneous power of estimated channel

coefficients) to estimate the channel power as shown in Chapter 8. In such cases, to

maintain the estimated channel power positive and estimation reliable, a threshold

is required to ignore the coefficients with low instantaneous power. Note that the

AMMSE technique is not considered in the angle-frequency domain because the

channel correlation within each angle-frequency domain beam might be too high

to be reasonably replaced by the channel power.

To the best of our knowledge, the work of this chapter is the first to systematically in-

vestigate LMMSE-based angle-domain channel estimation techniques for MIMO-OFDM

systems when the knowledge of either the channel correlation or power is available to

the receiver [96]. Angle-domain techniques when both the channel correlation and power

are unavailable to the receiver are described in [97]. The angle-domain LMMSE-based

channel estimation techniques proposed in this chapter have two main advantages. First,

compared to the 2D LMMSE technique, they can achieve significant complexity reduction
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while still maintaining good estimation performance for typical MIMO-OFDM channel

models. Second, they are flexible in implementation in the angle domain as explained in

Section 8.1.

The major contributions and results of this chapter are as follows:

1. We systematically develop reduced-complexity LMMSE-based channel estimation

techniques in both the angle-time and angle-frequency domain for MIMO-OFDM

systems. The choice of LMMSE-based techniques is largely dependent on the extent

of channel stochastic information (e.g. channel correlation or power) available to

the receiver.

2. We analyze the performances and complexity of different channel estimation tech-

niques. Our simulation results show that the Q1D LMMSE technique that is

based on the angle-frequency domain correlation can achieve similar performance

as the 2D LMMSE technique for typical MIMO-OFDM channel models, but has

significantly lower complexity.

3. We find that the AMMSE technique has the lowest complexity of all the LMMSE-

based techniques. Moreover, the channel power based AMMSE technique yields

significant performance gain while maintaining comparable complexity compared

to the LS technique for all the MIMO-OFDM channel models under consideration.

This chapter is organized as follows. In Section 9.2, we introduce and compare various

channel estimation techniques to estimate MIMO-OFDM channels. Then, we evaluate

the performances of different techniques in Section 9.3 by simulating typical IEEE 802.11

TGn channel models. Finally, we conclude the chapter in Section 9.4.

9.2 Channel Estimation for MIMO-OFDM

For channel estimation techniques, one of the most important performance measures is

the mean square error (MSE), which measures the average mean squared deviation of
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the estimator from the true value [110]. Thus, like the previous chapter, we use the MSE

to compare the performance of different techniques in this chapter. Note that the array-

time or array-frequency domain is related by a unitary transformation. Thus, of a given

estimation technique, the MSE represented in either the array-time or array-frequency

domain yields the same result, and is given by

MSE =
1

NdNtNr
E
[

||h̃ − ~h||2
]

(9.1)

where ~h is either h or c, and h̃ is the estimated ~h.

9.2.1 LS Technique

In MIMO-OFDM systems, there exist four domains, i.e. the angle-time, angle-frequency,

array-time, and array-frequency domain. As the noise representing in any domain is

related by a unitary transformation, the performance of LS technique in any of the

four domains should be the same. Further, we ultimately need the knowledge of array-

frequency domain channel coefficients to realize the coherent demodulation. Thus, we

only illustrate the array-frequency domain LS technique here. Recalling (8.3), we have

Y = X h + ϑ (9.2)

under the assumption that the pilots from different transmit antennas are time orthog-

onal to each other, where Y = [Ÿ
T
(n), Ÿ

T
(n + Nt), · · ·, Ÿ

T
(n + (Nc − 1)Nt)]

T with

Ÿ(n) = [yT (0, n), yT (0, n + 1), · · ·, yT (0, n + Nt − 1), yT (1, n), · · ·, yT (1, n + Nt − 1),

· · ·, yT (Nd −1, n+Nt −1)]T , X = [Ẍ(n), Ẍ(n+Nt), · · · , Ẍ(n+(Nc −1)Nt)]
T with Ẍ(n)

= diag[xT (0, n), xT (0, n + 1), · · ·, xT (0, n + Nt − 1), xT (1, n), · · ·, xT (1, n + Nt − 1), · · ·,

xT (Nd − 1, n + Nt − 1)], and ϑ = [ϑ̈
T
(n), ϑ̈

T
(n + Nt), · · · , ϑ̈

T
(n + (Nc − 1)Nt)]

T with

ϑ̈
T
(n) = [ϑT (0, n), ϑT (0, n + 1), · · ·, ϑT (0, n + Nt − 1), ϑT (1, n), · · ·, ϑT (1, n + Nt − 1),

· · ·, ϑT (Nd − 1, n + Nt − 1)]T are the received signal vector, transmitted signal matrix,

and noise vector, respectively, y(k, n) = [y0(k, n), y1(k, n), · · ·, yNr−1(k, n)]T , x(k, n) =

[x0(k, n), x1(k, n), · · ·, xNt−1(k, n)]T , ϑ(k, n) = [ϑ0(k, n), ϑ1(k, n), · · ·, ϑNr−1(k, n)]T ,

x1(k, n), · · ·, xNt−1(k, n)]T , ϑ(k, n) = [ϑ0(k, n), ϑ1(k, n), · · ·, ϑNr−1(k, n)]T , xit(k, n),

yir(k, n) and ϑir(k, n) represent the frequency-array domain transmitted data sample at
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the (it)th transmitter, the received data sample at the (ir)th receiver, and the additive

white Gaussian noise (AWGN) with variance σ2
f at the (ir)th receiver, respectively, at

the kth subcarrier in the nth OFDM symbol, h = [hT (0), hT (1), · · ·, hT (Nd −1)]T , h(k)

is the vector that stacks the columns of H(k), which is the channel transfer function

(CTF) matrix at the kth subcarrier defined in (7.5), Nt and Nr are the numbers of the

transmit and receive antennas, respectively, and Nc is the number of pilots used for each

channel coefficient in the LS channel estimation.

In this case, the array-frequency domain LS estimator is given by

hLS =
(

XHX
)−1

XHY. (9.3)

By rearranging the vector form h
LS

into its matrix form, we get the LS estimated

array-frequency domain channel matrix H̃(k) for k = 0, 1, · · ·, Nd − 1. Let β =

E(|xit(k, n)|2)E(1/|xit(k, n)|2)/Nc and the signal-to-noise ratio (SNR) = E(|xit(k, n)|2)/σ2
f ,

where xit(k, n) is the transmitted signal at the kth subcarrier in the nth OFDM symbol

from the itth transmit antenna. Then, the mean square error (MSE) per subcarrier is

given by

MSELS =
β

SNR
. (9.4)

The angle-frequency domain LS estimator is easily obtained by using the linear trans-

formation (e.g. from (7.26)) of the obtained array-frequency domain LS estimator, or

directly computing (9.3), in which the array-frequency domain transmitted and received

signals should be replaced by the angle-frequency domain ones.

9.2.2 2D LMMSE Technique

When both the channel spatial and the channel frequency correlations (i.e. the 2D

channel correlation) are known to the receiver, we can use the 2D LMMSE technique

to realize the channel estimation. Note that because of the unitary transformations
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between the four domains, the 2D channel correlation in any domain is interchangeable

and will result in the same performance for the 2D LMMSE technique. Further, we

ultimately need the knowledge of array-frequency domain channel to realize the coherent

demodulation. Therefore, we only consider the 2D LMMSE channel estimator in the

array-frequency domain, which is given by

h2D LMMSE = R
[

R + σ2
f

(

XHX
)−1
]−1

hLS (9.5)

where R = E{h hH} is the array-frequency domain 2D channel correlation. (9.5) clearly

shows that 2D LMMSE technique can be obtained from the array-frequency domain LS

estimator through a linear transformation. Further, the singular value decomposition

(SVD) of R gives

R = UΛUH (9.6)

where U is a unitary matrix containing the eigenvectors, and Λ is a diagonal matrix

containing the eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λNdNtNr−1 on its diagonal. If (XHX)−1 is

replaced with its expectation, the average MMSE in the estimator per subcarrier becomes

MMSE2D LMMSE =
β

NdNtNrSNR

NdNtNr−1
∑

ii=0

λii

λii + β

SNR

. (9.7)

Compared with (9.4), (9.7) clearly shows that the 2D LMMSE technique improves over

the LS technique in terms of MSE since λii/[λii + β/(SNR)] is always not larger than

1. However, the complexity of 2D LMMSE technique is too high to allow implementa-

tion. For example, when Nt = 4, Nr = 4 and Nd = 64, the total number of channel

parameters to be estimated is 1024. Then, the size of 2D channel correlation matrix

becomes 1024×1024. This large size makes the matrix inversion shown in (9.5) highly

complex (the complexity is O(10242.376) for the Coppersmith-Winograd algorithm [50]),

and thus results in considerable complexity for the 2D LMMSE technique since the ma-

trix inversion is needed every time when X changes. When X does not change, the

matrix R[R + σ2
f (XHX)−1]−1 needs to be computed only once. Then, from (9.5), the

2D LMMSE technique still requires NtNrNd complex multiplications for each channel

coefficient when hLS is available. A possible solution to reduce the complexity is the

low-rank realization of LMMSE technique by the use of SVD.
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9.2.3 2D SVD Technique

In [57], the SVD technique was proposed for the low-rank realization of the LMMSE

technique for SISO-OFDM systems. As hLS is also a vector, the technique proposed

in [57] is easily extended to MIMO-OFDM systems by first replacing (XH X)−1 with

E[(XHX)−1] in (9.5) to avoid matrix inversion each time. Then, applying SVD on R,

and ignoring all the eigenvalues except the largest N ′
h eigenvalues, the resulting channel

estimator becomes

h
2D SVD

= U1Λ
′ (Λ′ + σ2

f I
)−1

UH
1 h

LS
(9.8)

where U1 contains the first N ′
h columns of U, and Λ′ is the upper left N ′

h × N ′
h sub-

matrix of Λ. Usually, N ′
h is chosen such that λN ′

h
is the first eigenvalue that is smaller

than the noise power. It is clear from (9.8) that the 2D SVD technique results in lower

computational complexity1 compared with the 2D LMMSE technique since the matrix

inversion to be done is for diagonal matrices and the size is reduced to Ñh×Ñh. Further,

when Ñh − 1 is chosen such that λk = 0 for k ≥ Ñh, the performance is the same as the

2D LMMSE technique. If Ñh − 1 is not correctly chosen such that λk 6= 0 when k ≥ Ñh,

the extra average MMSE will be

MMSE2D SVD, res =
1

NdNtNr

NdNtNr−1
∑

l=Ñh

λl. (9.9)

As Λ′+σ2
fI is a diagonal matrix, its inversion will not result in significant complexity.

Further, it has been shown in [57] that the 2D SVD technique requires 2Ñh multiplica-

tions for each channel coefficient if the LS estimated channel coefficients are available.

Thus, when 2Ñh is significantly smaller than NtNrNd, the complexity reduction is con-

siderable compared to the 2D LMMSE technique.

1For the 2D SVD to be computationally simple, the channel correlation matrix R should be fixed.

This is easily satisfied, for example, in indoor channels.
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9.2.4 Q1D LMMSE Technique

When Nt and Nr are large, the complexity of above two 2D techniques is still quite high.

One possible technique to reduce the complexity is to partition all the channel coefficients

to be estimated into a set of blocks with reasonable sizes and perform channel estimation

independently in these blocks at the price of a certain performance loss. Recall that unlike

in the conventional array domain, the channel coefficients in different angle-frequency

domain beams can be approximated as spatially uncorrelated. Thus, we may divide the

channel coefficients into NtNr blocks, each having size (Nd × Nd) and corresponding

to one angle-frequency domain beam. Then, the corresponding Q1D LMMSE channel

estimator is given by

ha
Q1D LMMSE,itr = Ra

itr

[

Ra
itr + σ2

f

(

(Xa
itr)

HXa
itr

)−1
]−1

ha
LS,itr (9.10)

for itr = 0, 1, · · · , NtNr − 1, where Ra
itr

, Xa
itr , and ha

LS,itr are the angle-frequency domain

channel correlation matrix, transmitted signal matrix, LS estimated angle-frequency do-

main channel vector, respectively, for the (itr)th block. ha
LS,itr can be obtained from hLS

by the use of (7.26). Then, again from (7.26), we can finally obtain the corresponding

array-frequency domain channel estimator when all the ha
Q1D LMMSE,itr become available.

As the size of channel correlation matrix is reduced to (Nd × Nd), the complexity of

matrix inversion is significantly reduced. However, this complexity reduction may result

in performance degradation because of the ignorance of channel correlation between each

angle-frequency domain beam. Let R̄ represent the revised version of R such that R̄

ignores the channel correlation between each angle-frequency domain beam. Then, the

extra average MMSE is given by

MMSEQ1D LMMSE, res

=
1

NdNtNr
trace

[

(S̄M−1
1 M2M

−1
1 S̄ + ΛM−1

2 Λ − S̄M−1
1 Λ −ΛM−1

1 S̄)
]

(9.11)

where

M1 = S̄ +
β

SNR
I, M2 = Λ +

β

SNR
I,

and

S̄ = UHR̄U.
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(9.11) clearly shows that the mismatch of channel correlation may result in extra MMSE.

Nevertheless, as shown in our simulation results, this mismatch will not result in significant

performance degradation for typical MIMO-OFDM channel models.

Further, when X does not change and ha
LS,itr is available, from (9.10), obtaining the

Q1D LMMSE angle-frequency domain channel estimator requires only Nd complex multi-

plications for each channel coefficient because the size of Ra
itr [R

a
itr +σ2

f ((Xa
itr)

HXa
itr)

−1]−1

becomes Nd × Nd. To make a fair complexity comparison among all the techniques, we

assume that LS estimated array-frequency domain channel coefficients are available be-

forehand. Then, obtaining the angle-frequency domain ha
LS,itr from the array-frequency

domain h
LS

requires Nt + Nr complex multiplications for each channel coefficient. Fur-

ther, transforming the estimated angle-frequency domain ha
Q1D LMMSE,itr into the array-

frequency domain also requires Nt+Nr complex multiplications for each channel coefficient.

Therefore, the total required number of complex multiplications for each channel coefficient

is Nd + 2(Nt + Nr). This will result in significant complexity reduction for large Nt and

Nr compared to the 2D LMMSE technique.

9.2.5 Channel Power Based AMMSE Technique

In the time domain, the channel coefficients in different time indices are uncorrelated for

the sample-spaced channels. Adding that the channel coefficients are approximately spa-

tially uncorrelated in different angle-time domain beams, the channel correlation can be

approximated as the channel power in the angle-time domain. In this case, the approx-

imated channel correlation matrix becomes a diagonal matrix. Thus, the joint filtering

of all the channel coefficients in the LMMSE technique becomes independent filtering

for each channel coefficient, which significantly reduces the computational complexity.

When the channel power is known to the receiver, the angle-time domain AMMSE chan-

nel estimator is given by

c̃air ,it,AMMSE
(l) =

σ2
irtl

σ2
irtl

+ β

SNR

c̃air ,it(l) (9.12)
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where c̃air ,it(l) is the LS estimated angle-time domain channel coefficient of the (ir, it)th

angle-time domain beam at the delay l, and σ2
irtl

is the power of the angle-time domain

channel coefficient cair ,it
(l). Let c̃air ,it

(l) (for l = 0, 1, · · · , Nd) form the channel vector

c̃air ,it , which consists of all the channel coefficients of the (ir, it)th angle-time domain

beam. Then, c̃a
ir ,it

can be obtained by

c̃air ,it = Fh̃a
ir ,it (9.13)

where F is the Nd × Nd unitary Fourier matrix, and h̃a
ir ,it is the channel vector for

the (ir, it)th angle-frequency domain beam; h̃a
ir ,it can be obtained from hLS via (7.26).

Compared to the Q1D LMMSE technique, this channel power based AMMSE technique

should have wider application because only the channel power is required to be a pri-

ori known. Further, the complexity of AMMSE technique is much lower. The penalty

paid is a slight performance degradation due to the further mismatch of channel corre-

lation. The AMMSE technique is well suited for clustered-based channel models, and

will not result in any performance degradation compared to the LS technique for non-

clustered-based channel models. Therefore, it is applicable in any MIMO-OFDM system.

Next, we begin to analyze the performance of channel power based AMMSE tech-

nique. Here we use the LS technique to coarsely estimate the angle-time domain channel

vector. Let ca represent the stacked actual angle-time domain channel vector, then from

(7.20), we obtain

ca = Bc (9.14)

where

B = INd
⊗UT

t ⊗UH
r (9.15)

is an (NtNrNd × NtNrNd) matrix and the superscript ‘T ’ denotes the transpose. It is

easily verified that matrix B is unitary, i.e.

BHB = INt×Nr×Nd
. (9.16)

Then, the AMMSE channel estimator is given by

ca
AMMSE

= Mca
LS

(9.17)
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where caLS is the stacked LS estimated angle-time domain channel vector, and M is a

diagonal (NtNrNd × NtNrNd) matrix whose ith diagonal element mi is dependent on

the channel power and is given by σ2
i /(σ

2
i + β/SNR), where σ2

i is the power of the ith

angle-time domain channel coefficient. Clearly, M represents the AMMSE process. Since

M is diagonal and real, we have

MH = M. (9.18)

From (9.1), the MSE of channel power based AMMSE technique is given by

MSEAMMSE =
1

NdNtNr
E
[

||BHMBcLS − c||2
]

. (9.19)

Note that M is dependent on not c but the channel power. Thus, M is uncorrelated to

c. Further, X is uncorrelated to c. Then, using (9.16) and (9.18), we obtain

MSEAMMSE =
1

NdNtNr
trace

{ β

SNR
MBBHM + Ra − 2MRa + MRaM

}

(9.20)

where

Ra = E[Bc cHBH ] (9.21)

is the angle-time domain channel correlation matrix. Further, (9.20) can be rewritten as

MSEAMMSE =
β

NdNtNrSNR

NdNtNr−1
∑

i=0

σ2
i

σ2
i + β

SNR

. (9.22)

As σ2
i /(σ

2
i + β/SNR) is always smaller than 1, the channel power based AMMSE tech-

nique always yields better performance compared to the LS technique. Moreover, this

technique should achieve the same performance as the Q1D LMMSE technique in the

sample-spaced channel, where the channel correlation is equivalent to the channel power

within each angle-time domain beam. But the performance of this AMMSE technique

will be degraded for non-sample-spaced channels, where the channel coefficients in dif-

ferent time indices are correlated due to the power leakage effect (see Chapter 6), as

shown in the next section. Nevertheless, it still significantly outperforms the conven-

tional array-frequency domain LS technique at all the SNRs under consideration.
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As the channel power based AMMSE technique filters each LS estimated channel

coefficients independently, it only requires 1 multiplication for each channel coefficient

when c̃air ,it
(l) is known. If only LS estimated array-frequency domain channel coefficients

are available beforehand, then from the previous subsection we know that the transfor-

mations between the array-frequency domain and angle-frequency domain require totally

2(Nt+Nr) complex multiplications for each channel coefficient. In addition, the transfor-

mations between the angle-frequency domain and angle-time domain require totally 2Nd

complex multiplications for each channel coefficient by examining (9.13). Typically, Nd

is the power of 2. Then, using the FFT and IFFT [187] for transformations between the

angle-time and angle-frequency domain, the total complex multiplications required for

each channel coefficient is reduced to log2 Nd complex multiplications for each channel

coefficient. From the above, the total required complex multiplications for each channel

coefficient is log2 Nd +2(Nt +Nr)+1. In view that the Q1D LMMSE technique requires

additionally complexity of O(N 2.376
d ) for the matrix inversion shown in (9.10), the com-

plexity of the channel power based AMMSE technique is always lower compared to the

previous techniques.

9.2.6 Channel Instantaneous Power Based AMMSE Technique

When even the channel power is not available, we can still realize the AMMSE technique

by using the channel instantaneous power to approximate the channel power as shown

in [97]. In this technique, we still use (9.17) to get the estimated angle-time domain

channel vector but mi is revised as

mi =











|c̃air,it
(l)|2− β

SNR
|c̃air,it

(l)|2 , if |c̃air ,it(l)|2 ≥ η,

0, otherwise.

(9.23)

Here the threshold η is chosen not to be smaller than β/SNR. Otherwise, the approxi-

mated channel power (|c̃air ,it
(l)|2 − β/SNR) becomes negative. (9.23) clearly shows that

mi is dependent on |c̃air ,it(l)|2 and η, which makes the MSE computation quite difficult.

The complicated expression to compute the MSE can be found in Chapter 8, and will

not be covered in this chapter. From Chapter 8, we know that when the channel power
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is completely unknown, setting the threshold to be 2β/SNR is sufficient for the channel

instantaneous power based AMMSE technique to improve over the LS technique in terms

of performance. When additional information (e.g. the portion of the number of channel

coefficients, whose average powers are below the β/SNR, to the total number of channel

coefficients) is available, the threshold may be moderately adjusted to achieve further

performance gain. Same as the channel power based AMMSE technique, the channel

instantaneous power based AMMSE requires only log2 Nd +2(Nt +Nr)+1 complex mul-

tiplications for each channel coefficient when only LS estimated array-frequency domain

channel coefficients are available beforehand.

Table 9.1: Required complex multiplications per channel coefficient for different channel

estimation techniques.

General Case Typical Case

2D LMMSE NtNrNd 1024

2D SVD 2N ′
h 400

Q1D LMMSE Nd + 2(Nt + Nr) 80

AMMSE (Average) log2 Nd + 2(Nt + Nr) + 1 23

AMMSE (Instant) log2 Nd + 2(Nt + Nr) + 1 23

Table 9.1 lists the required complex multiplications for each channel coefficient in

all the channel estimation techniques introduced for both the general case and one

typical case under the assumption that LS estimated array-frequency domain channel

coefficients are available beforehand. We use the ‘AMMSE (Average)’ and ‘AMMSE

(Instant)’ to represent the channel power based AMMSE technique and channel instan-

taneous power based AMMSE technique, respectively, in the table. In the typical case,

we set Nt = Nr = 4, Nd = 64. Additionally, we consider N ′
h = 200, which is a typical

value obtained by simulating the IEEE 802.11 TGn channel model E in [61] such that

only the largest N ′
h eigenvalues of the array-frequency domain 2D channel correlation

R are larger than the noise power. As shown in the typical case, all the angle-domain
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techniques require much less complex multiplications for each channel coefficient and

thus result in significant complexity reduction compared to the 2D LMMSE and SVD

techniques.

9.3 Simulation Results

Simulation environment was introduced in Section 8.4 and will not be repeated here.

Then, in this section, we use the ‘LS’, ‘2D LMMSE’, ‘Q1D LMMSE’, ‘AMMSE (Aver-

age)’ and ‘AMMSE (Instant)’ to represent the LS technique, 2D LMMSE technique, Q1D

LMMSE technique, channel power based AMMSE technique and channel instantaneous

power based AMMSE technique, respectively. Further, when ignoring the eigenvalues

smaller than β/SNR, our simulation results show that the 2D SVD technique performs

similarly as the 2D LMMSE technique. As the complexity of both techniques is rela-

tively large compared to our proposed angle-domain techniques, we will not rigorously

differentiate these two techniques in this section and the results of the 2D SVD technique

will not be presented.

9.3.1 Channel Model A

The same as Subsection 8.4.1, we consider the AS to be 40◦ for both the ASt and ASr as

the worst case in performing channel estimation in the angle domain. We also consider

the AS to be 2◦ for both the ASt and ASr as the best case, which is valid for outdoor

environments. Further, we consider 45◦ to be the AoDm and AoAm of the cluster for the

worse-case consideration. We also consider 0◦, from which most of energy of multipath

components concentrate on one angle-time domain beam, to be the AoDm and AoAm.

For the channel model A, the channel correlation is equivalent to the channel power in

each angle-time domain beam. Therefore, the ‘Q1D LMMSE’ achieves the same per-

formance as the ‘AMMSE (Average)’. In this sense, we will not differentiate these two

techniques in this subsection.
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Figure 9.1: Performances of different channel estimation techniques for the model A with

AoDm = 0◦, ASt = 2◦, AoAm = 0◦, and ASr = 2◦.
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Figure 9.2: Performances of different channel estimation techniques for the model A with

AoDm = 45◦, ASt = 2◦, AoAm = 45◦, and ASr = 2◦.
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Fig. 9.1 and Fig. 9.2 correspond to the cases when the angular spread is 2◦. In

the first case when the AoAm and AoDm are both equal to 0◦, each physical path ap-

proximately corresponds to one angle-time domain beam. Thus, channel coefficients in

different angle-time domain beams are approximated spatially uncorrelated. Therefore,

compared to the ‘2D LMMSE’, the ‘Q1D LMMSE’ does not degrade the performance

significantly as shown in Fig. 9.1. In the second case when the AoAm and AoDm are both

equal to 45◦, the energy of multipath components leaks into more than one angle-time

domain beams. Then, the spatial correlation between channel coefficients in different

angle-time domain beams becomes much larger compared to the first case. The igno-

rance of this spatial correlation will result in more performance degradation for the ‘Q1D

LMMSE’ in the second case (7 dB when the MSE is 10−3) compared to the first case

(3 dB when the MSE is 10−3). This result indicates that the performance of the ‘Q1D

LMMSE’ is highly dependent on the AoAm and AoDm when the angular spread is small.

We also find that although the ‘AMMSE (Instant)’ cannot achieve similar performance

as the ‘2D LMMSE’, it still achieves 7 dB performance gain when the MSE is 10−2 com-

pared to the ‘LS’. This result indicates that we can still use the ‘AMMSE (Instant)’ to

improve the performance of the LS technique when the channel power is not available to

the receiver.

Fig. 9.3 and Fig. 9.4 correspond to the cases when the angular spread is 40◦. At first

glance, it seems surprising that the ‘Q1D LMMSE’ yileds similar performance as the

‘2D LMMSE’ in both figures. Although not shown here, our further investigations show

that similar results are obtained by computing (9.7) and (9.22). These results support

the observations in Fig. 9.3 and Fig. 9.4. The essential reason for these results is that

the angular spread is relatively large, which makes the first largest 16 (channel model

A only consists of 4 × 4 nonzero angle-time domain coefficients, i.e. 1/64 of the total

coefficients) eigenvalues of R much larger than all the β/SNR under consideration. Then,

of all the terms λii/[λii + β/(SNR)] (for ii = 0, 1, · · · , 1023), 1/64 of the total terms ap-

proach one and the rest is zero. Similarly, the first largest 16 diagonal elements of Ra

are much larger than all the β/SNR under consideration. Then, 1/64 of all the terms
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Figure 9.3: Performances of different channel estimation techniques for the model A with

AoDm = 0◦, ASt = 40◦, AoAm = 0◦, and ASr = 40◦.
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Figure 9.4: Performances of different channel estimation techniques for the model A with

AoDm = 45◦, ASt = 40◦, AoAm = 45◦, and ASr = 40◦.
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σ2
i /(σ

2
i + β/SNR) (for i = 0, 1, · · · , 1023) approach one and the rest are zero. Therefore,

the MSEs of both the ‘2D LMMSE’ and ‘Q1D LMMSE’ approach 1/64 of that of the

‘LS’ as shown in both Fig. 9.3 and Fig. 9.4. Note that it is the fact that the number of

large values of σ2
i and λii is the same, and similarly that the number of zero values of σ2

i

and λii is the same, which results in the similar performances of the ‘2D LMMSE’ and

‘Q1D LMMSE’ even though the nonzero values of σ2
i and λii do not quite coincide with

each other. This is unlike in the cases when the angular spread is 2◦ as shown in Fig. 9.1

and Fig. 9.2, where the ‘Q1D LMMSE’ performs worse than the ‘2D LMMSE’ due to the

small mismatch between the values of σ2
i and λii. Further, we find that the performance

gains achieved by the ‘2D LMMSE’ in Fig. 9.3 and Fig. 9.4 are not significant as those

shown in Fig. 9.1 and Fig. 9.2. This is because when the angular spread is small, not all

the 1/64 of the total terms for the λii/[λii + β/(SNR)] (for ii = 0, 1, · · · , 1023) approach

one. Again, we find that the ‘AMMSE (Instant)’ achieves better performance compared

to the ‘LS’.

From the above, we may conclude that the performance of angle-domain techniques

are highly dependent on the angular spread, AoAm and AoDm. When the angular

spread is small, the performance degradation of the ‘Q1D LMMSE’ compared to the ‘2D

LMMSE’ is dependent on the AoAm and AoDm. When the angular spread is large, the

‘Q1D LMMSE’ performs similarly as the ‘2D LMMSE’, and is robust to the change of

AoAm and AoDm.

9.3.2 Typical Channel Models

We consider typical non-sample-spaced indoor channels in Fig. 9.5 and Fig. 9.6. From

these two figures, we have five important findings. First, the ‘Q1D LMMSE’ performs

similarly as the ‘2D LMMSE’ in both Fig. 9.5 and Fig. 9.6 at all the SNRs under con-

sideration. This is because the angular spread for each cluster at both model B and E

is relatively large. Then, consistent with the results in the model A, it is not surprising

that the ‘Q1D LMMSE’ performs similarly as the ‘2D LMMSE’. Therefore, when the
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channel correlation is available to the receiver, the ‘Q1D LMMSE’ can replace the ‘2D

LMMSE’ because of its much lower complexity. Second, unlike in the model A, the

‘AMMSE (Average)’ performs worse than the ‘Q1D LMMSE’ because the channel power

is no longer equivalent to the channel correlation in each angle-time domain beam for

the non-sample-spaced channels. As shown, the adverse effects of this nonequivalence

become more obvious at high SNRs. Third, unlike in the model A, the performance im-

provement of the ‘AMMSE (Average)’ over the ‘AMMSE (Instant)’ is more significant

at low SNRs than at high SNRs. This is because at lower SNRs, it is less accurate to

estimate the channel power from the channel instantaneous power in typical models com-

pared to in the model A. Fourth, the ‘AMMSE (Instant)’ always performs better than

the LS technique. As the term σ2
i /(σ

2
i + β/SNR) shown in (9.22) gradually approaches

one with the increase of SNR, the MSE of ‘AMMSE (Average)’ gradually approaches

that of ‘LS’ as observed. Nevertheless, when the channel power is known to the receiver,

the ‘AMMSE (Average)’ can still replace the ‘LS’ because it achieves better performance

for all the SNRs under consideration while requiring comparable complexity for imple-

mentation. Fifth, the ‘AMMSE (Instant)’ still outperforms the ‘LS’ at all the SNRs.

Additionally, its performance gain achieved at low SNRs is more significant than that at

high SNRs because the error floor due to the ignorance of the channel power gradually

becomes less obvious at lower SNRs. As the ‘AMMSE (Instant)’ requires no knowledge

of channel stochastic information and has simple complexity, we can always use it to

replace ‘LS’ for MIMO-OFDM systems.

9.4 Conclusions

In this chapter, we have investigated various angle-domain channel estimation techniques

for MIMO-OFDM systems. All the angle-domain techniques are flexible in implemen-

tation and were found to perform better than the conventional LS technique for all the

MIMO-OFDM channels under consideration. The applicability of angle-domain tech-

niques is dependent on the channel stochastic information available to the receiver. For

the situation when no stochastic information is available, we have used the AMMSE
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Figure 9.5: Performances of different channel estimation techniques for the model B.
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Figure 9.6: Performances of different channel estimation techniques for the model E.
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technique based on the angle-time domain channel instantaneous power to improve over

the LS technique in terms of performance. For the situation when the channel power is

known, we have used the AMMSE technique based on the angle-time domain channel

power. For the situation when the channel correlation is known to the receiver, the choice

of angle-domain techniques is then a trade-off between the performance and complexity.

If the performance is of the utmost concern, we may choose the Q1D LMMSE technique

because it can perform similarly as the 2D LMMSE technique with significantly lower

complexity for typical MIMO-OFDM models. If the computational complexity is of the

utmost concern, we may choose the channel power based ALMMSE technique because it

can achieve significant performance gain while maintaining comparable complexity com-

pared to the LS technique for all the MIMO-OFDM channel models under consideration.



Chapter 10

Conclusions and Future Work

We explore reduced-complexity signal processing techniques to facilitate high-speed and

high-quality data reception in multiple-input multiple-output storage and wireless com-

munication systems in this thesis. As suggested in the title, this thesis consists of two

parts. In Part I of the thesis, we investigate the reduced-complexity detection techniques

under the assumption that the channel is a priori known. The techniques proposed in

this part facilitate the high-speed implementation of the two-dimensional optical storage

(TwoDOS) system, which may push the development of the 4th generation optical stor-

age system. Moreover, although the techniques are developed for the TwoDOS system

whose bit-cells are arranged in a hexagonal structure, most techniques are applicable to

any multi-track data storage system with square or rectangular bit-cells. In Part II of

the thesis, we study channel estimation techniques for multiple-input multiple-output

systems where prior knowledge of the channel is not available. These channel estimation

techniques perform noise filtering in the angle domain, where the channel model lends

itself to a simple physical interpretation. To the best of our knowledge, we are the first

to systematically investigate these angle-domain channel estimation techniques. Though

the techniques in this part are developed for multiple-input multiple-output orthogonal

frequency division multiplexing (MIMO-OFDM) systems, they are applicable to other

multiple-input multiple-output wireless communication systems as well.

187
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10.1 Reduced-Complexity Detection Techniques

10.1.1 Conclusions of Part I

In Part I of the thesis, the two-dimensional (2D) Viterbi detector (VD), which is the

optimal 2D detector in the presence of additive white Gaussian noise, serves as the

benchmark in terms of performance. We develop techniques to reduce the complexity

of the 2D VD in both the temporal and spatial dimensions, and develop a 2D target

optimization technique to compensate for the detection performance loss due to the

complexity reduction in both dimensions. The techniques proposed in Part I ensure the

high-speed implementation of the two-dimensional optical storage (TwoDOS) system.

Further, our proposed generalized 2D VD called the FDTS-DF/VD provides flexibility

to design multiple-input multiple-output systems with a trade-off between performance

and complexity. We also show that by judiciously choosing the target and number of

tracks under consideration in FDTS/DF-VD, we can develop a reduced-complexity 2D

Viterbi-like detector that facilitates the high-speed TwoDOS implementation without

paying a large penalty in detection performance. Moreover, though the techniques are

developed for the TwoDOS system whose bit-cells are arranged in a hexagonal structure,

most techniques are applicable to any multi-track data storage system with square or

rectangular bit-cells.

In order to reduce the complexity of the 2D VD in the temporal dimension as well

as maintain reliable detection, we propose two techniques to reduce the complexity of

2D VD by means of shortening the channel memory. One technique concerns the 2D

minimum mean square error (MMSE) equalizer for a given 2D partial response (PR)

target. The equalizer developed in Chapter 3 is a 2D MMSE equalizer that is more

general than that of in [156] since it can deal with correlated data, colored additive

noise, domain bloom, and transition jitter. The other technique is to jointly design the

equalizer and targets based on MMSE approach to improve the performance of 2D VD.

Instead of directly imposing a constraint on the 2D PR target to avoid the trivial so-

lution, we propose a novel technique which converts the 2D target design problem into

a 1D problem. This technique is not developed for TwoDOS only, it is applicable to
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any multiple-input multiple-output system that requires a good target to ensure good

detection performance. The results show that the target that has the smallest noise

correlation effect leads to the best detection performance for the 2D VD. Note that this

conclusion is obtained in the 2D case and can be seen as a generalized conclusion of [137],

which is obtained in the one-dimensional (1D) case. Moreover, it is observed that for

symmetric targets, the one that has the largest normalized central tap results in the best

detection performance of the 2D VD. This observation reconfirms that our proposed 2D

monic constraint is a reasonable target constraint since it causes the energy to be concen-

trated near the normalized central tap and accordingly results in the largest normalized

central tap compared with other target constraints. In order to evaluate different tar-

gets, we simplify the conventional analytical technique by taking a smaller number of

bits into account, which was shown to be still effective for analyzing the detection per-

formance of the 2D VD. This simplification is reasonable since only the bits that have

little contribution to the residual intersymbol interference (ISI) or intertrack interference

(ITI) are ignored, and will thus result in minor inaccuracies in analyzing the detection

performance of the 2D VD. Moreover, the threshold chosen in this reduced-complexity

analytical technique is variable. This variable threshold provides great flexibility to deal

with the performance-complexity trade-off, which is application-dependent. Further-

more, there are no assumptions about the target. Therefore, the reduced-complexity

analytical technique is a general technique that can be used to evaluate any target under

any channel condition.

For the purpose of reducing the complexity of the 2D VD in the spatial dimension

as well as achieving reliable detection, a generalized 2D VD called the FDTS/DF-VD

is proposed. It provides the flexibility to design multiple-input multiple-output systems

with trade-off between performance and complexity. The conventional full-fledged 2D

VD, QR detector, and our proposed quasi-1D VD can all be seen as special cases of this

detector. The basic idea of the detector is to divide the full-fledged 2D VD into a set

of sub-2D VDs, each dealing with a smaller number of tracks. The result shows that

the dominant factor that degrades the performance of the detector is the reduction in
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the effective target energy available for detection. Therefore, the choice of the number

of tracks considered in each sub-2D VD, which determines the effective target energy,

is quite important. In this research, we find that setting the number of tracks to three

permits acceptable complexity and performance in the TwoDOS system. As the num-

ber of tracks is variable in the design of detectors, the proposed detector can provide

flexibility to deal with the performance-complexity trade-off. Thus, it is applicable to

other systems that have different constraints on performance and complexity. We also

propose a causal ITI target that has been shown to facilitate the design of reduced-

complexity 2D Viterbi-like detectors. This can be explained as follows. The causal ITI

target makes some inputs before the 2D VD suffer from only ISI, unlike the traditional

targets that make all the inputs suffer from both ISI and ITI. Thus, we can detect those

inputs that suffer from only ISI without using any technique to estimate the ITI resulting

from the spatial dimension. The detections of these target-ITI-free inputs are immune to

detrimental effects due to the spatial error propagation compared with conventional 2D

targets, and can then aid the detection of other inputs that are constrained to suffer only

causal ITI. Further, by putting some additional but reasonable constraints on the causal

ITI target, we propose two new targets specifically for the FDTS/DF. They can result

in reduction in the latency due to the spatial error propagation for the inputs that are

constrained to suffer causal ITI, and can lead to lower complexity in the implementation

of FDTS/DF-VD as well as the process of target design. The results suggest that by

judiciously choosing the target and number of tracks under consideration in FDTS/DF-

VD, we can develop a reduced-complexity 2D Viterbi-like detector that facilitates the

high-speed TwoDOS implementation without paying a large penalty in detection perfor-

mance. Note that there are no assumptions about the casual ITI. Therefore, the concept

of causal ITI is applicable to any 2D system. Further, constraining the target to be

causal intersymbol interference can be extended to multidimensional systems as well.

Since most of the techniques proposed in this study do not assume any specific con-

straints of the TwoDOS system, they are applicable to any multiple-input multiple-

output system. For instance, the novel technique which converts the 2D target design
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problem into a 1D problem can be used for any 2D target design. The performance

evaluation technique and FDTS/DF-VD both possess one parameter that is adjustable

so that both can meet different performance and complexity requirements of various

multiple-input multiple-output systems.

10.1.2 Future Work

At the end of this thesis, we would like to present a number of recommendations and

open issues to stimulate future research based on our work on detection techniques.

• Unlike the TwoDOS system, many multiple-input multiple-output systems are not

limited to binary signals. Therefore, effective techniques (e.g. set partitioning [63])

should be investigated to reduce the complexity of our proposed FDTS/DF and

RFDTS/DF for multilevel signals.

• Our techniques for the TwoDOS system assume that the system has an equal

number of inputs and outputs. However, in many multiple-input multiple-output

wireless communication systems, the number of transmit and receive antennas can

be different. It has been shown that, for a given number of transmit antennas,

the detection performance improves with the increase of the number of the receive

antennas due to the receiver diversity. For this reason, the number of transmit

antennas is usually larger than that of the receive antennas. Thus, the application

of our proposal techniques to these nonsymmetric transmission systems needs to

be investigated.

• The 2D equalizer before the 2D detector usually colors the additive white Gaus-

sian noise (AWGN). Therefore, some effective techniques, e.g. the noise-predictive

maximum likelihood (NPML) technique that embeds a noise prediction process

into the branch metric computation of a Viterbi-like detector [40,41,47], should be

investigated to whiten the colored noise and to enhance the detection performance.

• As our proposed FDTS/DF and RFDTS/DF divide the conventional full-fledged

2D VD into a set of sub-2D VDs, it is interesting to see whether designing a set
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of sub-2D equalizers and targets specifically for each sub-2D VD is suitable for the

FDTS/DF and RFDTS/DF. Further, as most of the detection errors occur from

the lower tracks in the FDTS/DF and RFDTS/DF, it is possible to design track-

dependent 2D codes that have stronger error correction capability but relatively

lower code rate for lower tracks, and relatively weaker error correction capability

but higher code rate for upper tracks.

• Since 2D detectors serve as a basis for the investigation of reduced-complexity

higher-dimensional detectors that may emerge in the future, our techniques could

be applicable to multidimensional (nD) detectors as well. In such cases, we can

first design an nD causal intersymbol interferece target so that part of inputs before

the nD VD suffers from only ISI. Then, we can detect the corresponding bits from

these inputs that suffer from only ISI. Similar to the FDTS/DF or RFDTS/DF,

the resulting detected bits are used to facilitate the data recovery from all the other

inputs dimension by dimension.

10.2 Reduced-Complexity Channel Estimation Techniques

10.2.1 Conclusions of Part II

In Part II of the thesis, we develop several reduced-complexity, suboptimal, approximated

linear MMSE (LMMSE) channel estimation techniques in the angle domain, where the

channel model lends itself to a simple physical interpretation. All the angle-domain

techniques proposed are flexible in implementation. They can either use conventional

array-domain estimators as the coarse estimators and perform post-processing in the

angle domain, or use the specifically designed pilots introduced in Chapter 7 for a direct

implementation. The applicability of these angle-domain techniques is highly dependent

on the channel stochastic information (e.g. channel power or correlation) available to

the receiver. To the best of our knowledge, we are the first to systematically investigate

these angle-domain channel estimation techniques. Though the techniques are developed

for MIMO-OFDM systems, they are applicable to other multiple-input multiple-output
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wireless communication systems as well.

For the case where no channel stochastic information is available to the receiver, we

develop the angle-frequency domain most significant taps (MST) selection technique, the

angle-time domain MST selection technique, and the angle-time domain approximated

MMSE (AMMSE) technique. These three techniques are shown to be effective when

the angular spread of clusters of multipath components is small. More importantly, the

angle-time domain techniques can improve over the array-frequency domain LS tech-

nique in all the situations under consideration even when the angular spread is relatively

large. Further, both our theoretical analysis and simulation results indicate that the

angle-time domain AMMSE technique achieves the best performance, and is robust to

the choice of the threshold and the mismatch between the actual signal-to-noise ratio

(SNR) and the assumed SNR. Thus, when only the target SNR range is available to the

receiver, the angle-time domain AMMSE technique is suitable for typical IEEE 802.11

TGn MIMO-OFDM systems. In addition, we also find that with a suitable threshold

and known operating SNR, the angle-time domain MST selection technique results in

little performance degradation compared to the angle-time domain AMMSE technique.

Therefore, in such cases, the angle-time domain MST selection technique may be a po-

tential candidate for the IEEE 802.11 TGn MIMO-OFDM systems because of its lower

computational complexity.

The above angle-time domain AMMSE technique utilizes the channel instantaneous

power (i.e. the instantaneous power of estimated channel coefficients) and is thus re-

ferred to as the channel instantaneous power based AMMSE technique. For the case

where the channel power is known, we develop the AMMSE technique that is based on

the angle-time domain channel power. This channel power based AMMSE technique

has similar complexity to the channel instantaneous power based AMMSE technique but

provides better performance. For the case where the channel correlation is known to the

receiver, we develop the quasi 1D (Q1D) LMMSE technique that can further increase

the performance. Our simulation results show that the Q1D LMMSE technique can even
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perform similarly as the 2D LMMSE technique but with significantly lower complexity.

The channel estimation techniques developed in this thesis are investigated in both

the angle-time and angle-frequency domains, which at first glance seems uniquely applica-

ble to MIMO-OFDM systems. However, the angle-domain channel estimation techniques

are applicable to many other multiple-input multiple-output wireless communication sys-

tems because the angle-domain representations can be used to characterize channels in

those wireless multiple-input multiple-output (MIMO) system. For example, the angle-

time domain in MIMO-OFDM systems can be seen as an extension of the angle domain,

which corresponds to MIMO flat fading channels. Thus, the channel instantaneous power

based AMMSE technique, channel power based AMMSE technique, and Q1D LMMSE

technique are all applicable in MIMO flat fading channels. Further, the estimated chan-

nel coefficients in the angle domain may serve as the basis for the future coding and

detection techniques developed in the angle domain.

10.2.2 Future Work

At the end of this thesis, we would like to present a number of recommendations and

open issues to stimulate future research based on our work on angle-domain channel

estimation techniques.

• We assume the channel to be time-invariant over a given training period as our

main concern in this thesis is the indoor propagation environment. But channel

estimation for rapidly time-varying MIMO-OFDM systems is also a challenging

task because the channel is required to be reestimated frequently. In [35], the

channel matrix is found to be factored into time-dependent and time-independent

components under the assumption that the scatters are stationary. Thus, we may

estimate the time-independent components first and keep tracking the channel by

reestimating the time-dependent components, which are dependent on the velocity

of the mobile station, the number and angles of departure (AoD) of resolvable

scatters. In the angle-domain representation, the number and AoD of scatters are
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kept constant. Thus, we only need to track the channel by estimating the velocity,

which is a scalar. This will significantly reduce the number of coefficients to be

reestimated in time-varying MIMO-OFDM systems and could be investigated in

our future research.

• We may also investigate channel estimation for “keyhole” (or “pinhole”) channels,

which exhibit low spatial correlations at both transmit and receive antennas but

still have low-rank properties [34, 72]. This situation may be imaged by placing

a screen, with a small keyhole punched through it, to separate the scatters from

the ones around transmit antennas and receive antennas. As the keyhole is the

only way for microwaves to pass through, it will relay the captured signals from

the scatters around transmit antennas to the scatters around receive antennas.

In the angle domain, the channel matrix at a given delay is an outer product of

two independent angle-domain channel vectors. We can thus estimate the channel

vectors instead of directly estimating the channel matrix itself. As a result, the

number of parameters to be estimated is significantly reduced, which is especially

useful for systems with large number of transmit and receive antennas.

• We assume that all subcarriers are used for data or pilot transmission in MIMO-

OFDM systems and use the discrete Fourier transform (DFT) or inverse DFT

(IDFT) to transform the channel between angle-time and angle-frequency domain.

However, in many practical MIMO-OFDM systems, some subcarriers are not used

for data or pilot transmission. These unused subcarriers are referred to as the

virtual carriers (VCs) [121]. In such MIMO-OFDM systems with VCs, the IDFT

operation, which transforms the estimated channel coefficients from the angle-

frequency domain into the angle-time domain, is not applicable because it requires

that the discrete samples to be processed are equally spaced. But the discrete

samples available are the estimated channel coefficients at pilot subcarriers, which

are usually not equally spaced. Therefore, some effective techniques, e.g. by first

estimating the channel coefficients at VCs [95], should be investigated to ultimately

improve the estimation performance for the channel coefficients at pilot subcarriers.
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• We show that channel estimation techniques developed in the angle domain are

effective for multiple-input multiple-output systems. Due to the physical mean-

ing of the angle-domain representation of systems, future work may focus on the

development of coding and signal processing in the angle domain. For example,

in spatially correlated MIMO channels, some angle-domain beams may contain

insufficient information for data recovery. Based on this, we may develop some

reduced-complexity detection techniques for such MIMO systems.

• We assume that the antenna array configuration is the uniform linear array. How-

ever, 2D and three-dimensional (3D) arrays are also used in practice to form better

beamforming patterns compared with the uniform linear array. Besides, the mu-

tual coupling between antenna elements in an array may not always be ignorable in

practice. All these cases will affect the array response vectors defined in (7.13) and

(7.14) and thus the transformation between the array domain into the angle do-

main. In the future, we could extend our work to investigate angle-domain channel

estimation techniques for such cases by reconstructing the transformation matrix.

In addition, we could redesign pilots with the method introduced in Section 7.4 for

the direct implementation of such angle-domain techniques.

• We do not consider strong interference conditions, which are likely to exist in

MIMO-OFDM systems. For example, in the 2.4 GHz band, systems may suffer

from many interferences coming from (other) wireless local area network (WLAN)

systems, microwave ovens, Bluetooth devices, etc. This might happen only at

selected subcarriers and/or for a limited duration. Therefore, we could consider

some effective techniques (e.g. Huber’s M estimator [99], error correction codes,

2D and 3D antenna arrays) to deal with these strong interferences in conjunction

with angle-domain channel estimation techniques.
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