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Chapter 1 

INTRODUCTION 

This thesis is, as the title suggests, concerned with the development of both 

algorithms and structures for adaptive signal processing in a communication system 

operating in the high frequency (HF) band, i.e. 3-30MHz. The motivation is to 

develop techniques which will enable serial data transmission at data rates considerably 

higher than are presently achievable. HF communications has long been a neglected 

area of the spectrum, the advent of satellite communications and the difficult nature of 

the medium itself apparently having made it redundant. However, the high, cost and 

questionable physical security of satellite links coupled with the advent of relatively 

cheap very large scale integration (VLSI) have reawakened interest in HF 

communications[1-7]. Although it must be stated that within the United Kingdom 

there has been a considerable body of ongoing work in HF communications. 

Although receivers based on parallel structures [8] would appear to offer a better 

performance[9] the resultant increased complexity at the receiver coupled with the 

limitation imposed on transmitter power make serial structures more attractive. The 

time-variant nature of the HF communications channel make it ideally suited as an 

application area for adaptive signal processing techniques. 

Adaptive signal processing is a relatively youthful research area, the first 

pioneering work [10-12] only having appeared thirty years ago, although it is true to 

say that the groundwork was laid considerably earlier in the work of Gauss [13] and 

Legendre[14]. The recent plethora of texbooks on the subject 115-20] would appear to 

suggest that this area is now approaching maturity. However, little attention has been 

paid to the study of such techniques when applied to environments such as the non-

stationary HF channel, with the notable exception of[21-26]; this thesis adds to this 

work by considering the tracking performance of adaptive algorithms in time-variant 

environments. The thesis also studies existing methods and develops new techniques 

for application in the HF communication scenario. 

- 1 - 



The purpose of this chapter is to provide the necessary definitions required to aid 

the understanding of this thesis and also to detail the organisation of the material 

presented in it. Consequently the first section defines precisely what is intended by the 

term adaptive signal processing within the context of this thesis. The second section 

then deals with the application of such techniques to the HF communications channel 

and finally the organisation of the thesis is discussed. 

1.1 ADAPTIVE FILTERING 

As was indicated in the previous paragraphs, the aim of this chapter is to provide 

the necessary definitions required to aid understanding of this thesis. In this section a 

simple introduction to the concept of adaptive filtering is presented. In order to define 

adaptive filtering it is necessary to first describe what is intended by the term filtering. 

One of the primary aims of filtering is to enable the extraction of a signal from 

one which has been contaminated by noise. In this thesis a filter is considered to be 

both linear and discrete time in nature; Figure 1.1 represents the structure of such a 

filter. The input and output signal sequences, x and y respectively are related to each 

other by the impulse response of the filter, h, . Explicitly the output sequence, y , is 

the convolution of the input sequence, 
;, 

with the the impulse response of the filter, 

h. 

Clearly if models for the generation of both the signal and noise processes exist it 

is possible, in principle, to generate a filter which will optimally enhance the desired 

signal with respect to the noise. However, in the real world only partial a-priori 

knowledge of such processes will exist, (at best), and so it is not possible to explicitly 

derive such a filter. However, it is perfectly reasonable to assume that the necessary 

information could be obtained through analysis of the real data. That is the optimal 

filter could perhaps be learned from the data. As a consequence then some form of 

on-line parameter adjustment is required, the adjustments required being derived from 

analysis of the received data, as illustrated in Figure 1.2. 

-2- 
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Hence, it may be observed that adaptive, in this context at least, can be 

interpreted as indicating some form of self learning which enables, or at least 

approximates, optimal behaviour of the filter. The parameter adjustment is normally 

achieved via adjustment of the filter impulse response based on an algorithm, i.e. a set 

of rules, which minimise the error between the desired output and the actual output of 

the filter. This statement raises the question of where the desired response is obtained 

from since only analysis of actual data is being used. This is normally achieved by 

transmission of a data sequence, termed the training sequence, which is known a-priori 

at the destination. There are algorithms which attempt to operate without a training 

sequence, i.e. blind as in[27, 28]. These are in general nonlinear in nature and are 

not considered in this thesis. When an optimal, or as is more realistic near-optimal, 

solution is reached the algorithm is said to have converged. This concept of 

convergence also applies when time varying environments are considered, the 

distinction being that the optimal solution is varying with time, and the convergence 

behaviour may be measured by how well the adaptive filter tracks the behaviour of the 

desired output. 

In summary, an adaptive filter is a filter with a time varying impulse response, 

the time variations being selected on-line by an algorithm. The selection is aimed at 

achieving optimal performance in the sense of minimising a function of the measured 

error between the desired and actual responses. 

1.2 THE APPLICATION OF ADAPTIVE FILTERING TECHNIQUES TO THE 

HF COMMUNICATIONS CHANNEL 

There are many ways in which adaptive filters may be configured for real time 

applications, [15-20] , however within the context of this thesis there are only two 

particular structures which are of direct interest. These are channel estimation and 

channel equalisation, their key differences being clearly illustrated in Figures 1.3 and 

1.4. These particular structures are of interest here because, as will be discussed in 

more detail later, the HF channel may be viewed as a finite impulse response 

TI 
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(FIR) filter whose impulse response is time varying in nature. This fact then allows us 

to consider applying linear discrete time adaptive filters to estimate directly the impulse 

response of the channel, i.e. channel estimation, or to equalise distortion introduced 

into a data sequence transmitted over the channel, i.e. channel equalisation. 

In channel estimation, Figure 1.3, the adaptive filter is configured such that the 

input sequence x is also the input to the channel. The output of the filter, in,  is then 

used in conjunction with the channel output, y, to generate an error signal, en  to 

drive the adjustment of the adaptive filter's impulse response via the algorithm. The 

aim being to track the time variations of the channel's impulse response. 

In channel equalisation, Figure 1.4, the adaptive filter operates in an inverse 

system modelling approach in contrast to the direct system modelling mode adopted in 

channel estimation. A transmitted data sequence, y, is distorted in passing through the 

HF channel, the resultant sequence output from the channel, then forms the input to 

the adaptive filter. The adaptive filter then attempts to reconstruct , 9, the original 

transmitted data sequence. 

The key point regarding the application of adaptive filters to HF communications 

is that due to the time variant nature of the HF channel adaptive filters offer a method 

by which on-line parameter estimation and adjustment, in both channel equalisation 

and channel estimation, may be used to improve data rates for serial data 

communication with no subsequent degradation in performance. 

1.3 ORGANISATION OF THESIS 

As thetitle of this thesis suggests it's primary aim is to study existing and develop 

new adaptive algorithms and structures for channel estimation and equalisation of the 

HF communications channel. The preceding two sections have provided the definitions 

of 'adaptive filtering' and the manner in which it will be applied to HF 

communications systems required for the remainder of this thesis. In chapter 2 

necessary background information regarding the nature of HF communications is 
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presented as well as the structure of the channel model used throughout this thesis for 

computer simulations. The themes indicated in the title are developed along three 

separate but inter-related paths in chapters 3,4 and 5. 

The performance of the two most common adaptive algorithms, the LMS and 

RLS [15] as channel estimators in the HF communications environment is first 

considered in chapter 3. Their tracking performance is analysed to determine which if 

any would be the most suitable for this application. It is demonstrated that contrary to 

popular belief the RLS is not particularly suited to this type of environment, offering a 

performance no better than the LMS for a considerable penalty in terms of 

computational complexity. 

Chapter 4 moves on from these conclusions and attempts to develop novel 

adaptive algorithms for HF channel estimation utilising a-priori knowledge of the 

channel structure and incoporating it into the algorithm. A channel estimator, termed 

the minimum variance Kalman (MVK) is presented which utilises full a-priori 

knowledge of the channel. The performance of this algorithm is optimal. The next two 

algorithms aim to overcome the full a-priori knowledge of the MVK. Initially this is 

done within the context of an extended Kalman filter (EKF), and then by a 

computationally simpler technique where the LMS is modified to include a prediction 

filtef, effectively increasing the order of the recursion in the LMS. The EKF structure 

is shown to give excellent performance but suffers from severe numerical instability due 

the high degree of computational complexity. The modifed LMS is considerably 

simpler, however it's performance is disapointing although it offers scope for 

improvement. 

In chapter 5 the equalisation problem is considered and a novel equaliser 

structure is presented based on work presented in [291 , where the channel estimation 

and sequence estimation processes are separated. The performance of the new 

structures and their complexity is compared with that of two existing structures, a 

Godard-Kalman decision feedback equaliser [30] and the adaptive Kalman equaliser 
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of[29]. 

Finally in chapter 6 the conclusions put forward in the preceding chapters are 

summarised and areas worthy of further study based on the work presented here are 

suggested. 



Chapter 2 

THE HIGH FREQUENCY COMMUNICATIONS ENVIRONMENT 

This chapter deals with the basic nature of and principles by which 

communication within the HF medium is achieved. The manner by which the HF 

channel is quantified is discussed and the technique used in the computer simulations 

in the remainder of this thesis presented. 

2.1 INTRODUCTION 

Within the historical development of electrical communications systems HF must 

rank high as a prime mover in the acceleration fiom the turn of the century to today 

which has no corner of the earth safe from one form or another of electrical 

communication. When Marconi first demonstrated transatlantic communication by 

radio in 1901 [31,32] many people envisaged HF communications providing a world 

wide communication facility for general use. However the highly time-variant and 

unpredictable nature of the HF radio prevented this and it's use has, in general, been 

restricted to the military and amateurs. Only in the United Kingdom was there a 

continuing research effort. In recent years interest has been growing on a worldwide 

basis in HF communications because of the increasing availability of cheap digital - 

signal processors coupled with the lack of physical security and high cost of many 

satellite communications systems. 

Initially in this chapter the physics involved in propagating radio waves over the 

HF medium is discussed and also the nature of said medium. A brief description of 

the mathematical and physical justification of the manner in which the HF channel is 

modelled is then presented. Finally a summary of the simple channel model used in 

this thesis is discussed. 

2.2 PROPAGATION AT HF 

This section summarises the physics involved in the propagation of HF radio 



waves within the atmosphere. 

2.2.1 The Ionosphere 

The ionosphere is the region of the earth's atmosphere at an altitude of 

approximately 50-350km. It is formed as a result of the ionisation of atoms and 

molecules of oxygen and nitrogen in the atmosphere by the sun's radiation. The 

structure of the ionosphere has been determined by vertical and oblique radio 

sounding[33]. It is generally divided into three regions labelled D, E and F. Signal 

propagation in the HF band (3-30MHz) can be thought of as reflection from these 

layers. It should be emphasised however that these macroscopic layers are in fact 

peaks of ionisation intensity which vary in position, altitude and mean-square 

reflectivity as a result of microscopic ionospheric turbulence. The characteristics of 

each of these regions is discussed below. 

The D region lies at an altitude of 60-90km and is a daytime phenomenon, since 

it disappears at night because molecular recombination is no longer counteracted by 

the radiation of the sun. The D region does not normally support propagation as a 

result of the high level of absorption which it exhibits. 

The band between 90 and 170km is known as the F region, the maximum 

ionisation intensity occurring at about 110km. This region does support propagation, 

but, because there is still a significant concentration of heavy particles, it does not do 

so particularly well at night. 

The region above 170km is termed the F region; in daytime it is divided into the 

Fl and F2 layers. The Fl layer is centred at around 200km and is not generally 

considered as a vehicle for transmission on its own. The F2 layer is concentrated 

about 300-320km and plays the dominant role in long-range (>2000km) 

communication. At night the Fl and P2 layers merge at around 300km and provide 

the main propagation mechanism at night. Figure 2.1 [33] illustrates typical variations 

in height of the F and F regions over a twenty-four hour period for both summer and 
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winter. 

2.2.2 The Method of Wave Propagation 

As was stated in the previous section, signal progagation at HF is popularly 

considered as reflection of the radio waves from the ionosphere. It is in fact a process 

of refraction which arises from the continuous change in refractive index with altitude 

of a particular layer as illustrated in Figure 2.2. 

Clearly for a wave to be refracted back to the earth's surface, its trajectory must 

become horizontal at some point. By applying Snell's law of refraction it is possible to 

obtain an expression for the carrier frequency required to meet these limitations. From 

this, the maximum frequency at which a vertically incident ray is refracted back to the 

earth can be calculated and this is known as the critical frequency. If the selected 

operating frequency is higher than the critical frequency then the ray passes through 

the layer, and is termed an escape ray, albeit bent by the refraction process, as in 

Figure 2.3. 

Since the behaviour of the layers has been recorded over many years, tables have 

been produced which indicate the maximum usable frequency (MUF) for a given time 

of day, geographical location and time of year. The operating frequency of most 

systems is normally selected to be approximately 10% below the MUF to try to ensure 

communication since these predictions are essentially long term averages of observation 

and prone to error as a result of any fluctuations. It should be emphasised that these 

tables are merely a guide and communication may only be possible at a frequency 

higher (or lower) than the specified MUF. 

One important feature of the refraction process is that it can be shown to be 

equivalent to mirror type reflection at a particular height, as is indicated in Figure 2.4. 

This height commonly being referred to as the virtual height with Figure 2.5 

illustrating its variation as a function of frequency. 
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2.2.3 Multiple Mode Propagation 

Multiple progagation modes are possible in HF communications for three main 

reasons, the first is as a result of radio waves being electromagnetic in nature. It is well 

known [34] that on entering a magneto-ionic medium, (such as the ionosphere), any 

electromagnetic wave will split into two waves, termed the ordinary and extraordinary 

waves. Each of these waves will traverse different paths in the medium because the 

expression for their refractive indices will be different. This of course means there are 

two possible MUFs for each transmission mode and this phenomenon can be observed 

on ionospheric soundings, as illustrated in Figure 2.6. In addition, since most HF 

radio systems operate some 10-15% below the MUF, it is possible to have a high and 

low angle ray, as illustrated in Figure 2.7. This phenomenon occurs because the 

summit of the ray path at the MUF does not traverse the portion of maximum electron 

density. Hence, if transmission is lower than the MUF, as is normal, two ray paths are 

possible. The one corresponding to the higher virtual height is termed the high angle 

ray the other being the low angle ray. 

Finally it is clear that because of the existence of two reflecting layers, (E and F), 

it is possible for ducting of the wave to occur between the layers and also between the 

layers and the earth's surface as in Figure 2.8. 

2.2.4 Signal Fading 

It should be apparent from the preceding section that the multiple rays which 

arise when communicating between two points, (as in Figure 2.9), cannot all arrive at 

the receiver simultaneously. The continuously changing nature of the ionosphere 

ensures that time variations in time of arrival and in the magnitude of each wave will 

occur. These effects when combined result in constructive and destructive interference 

at the receiver which causes fading of the received signal. 

2.3 OTHER FACTORS INFLUENCING HF COMMUNICATIONS 

It is clear that as well as the propagation of multiple paths within HF 
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communication channels and the resultant signal fading that there are other factors that wi 

influence the quality of communications at HF. The two most important of these are dea 

within this section. 

2.3.1 Atmospheric Noise 

Noise is one of the fundamental limitations of any electrical communication 

system and atmospheric noise influences radio communication. It may be separated 

into two main categories, man-made noise and noise associated with natural 

phenomena in the earth's atmosphere. Man-made noise is generally associated with 

urban areas where there is a greater concentration of electrical equipment, all 

generating interference. Natural atmospheric interference is most commonly caused by 

lightning strikes which radiate large amounts of noise over great distances and a wide 

range of frequencies. In all simulations within this thesis the noise is modelled as a 

single additive white Gaussian noise source. No account is taken of impulsive noise 

[35] which is suggested will have a log-normal distribution. Such noise is normally 

overcome by means of some form of forward error correcting code[36] 

2.3.2 Equipment Limitations 

Clearly the equipment will play a major role in the performance of any HF 

communication system. It is only in the recent past with the advent of relatively cheap 

multi-purpose DSP chips that such technology has been available for use in HF radio 

systems. The growth of this area is demonstrated in [123,124] where DSP technology 

is being applied to all aspects of HF radio design from speech codecs [125,126] to the 

filtering operations necessary within the radio receiver [127] and also to the control of 

adaptive arrays for suppression of jammers as in [1281. Clearly as complex DSP chips 

become more widely available and new algorithms are developed then adaptive 

techniques will have an even larger role to play in the HF communications scenario. 

2.3.3 Co-channel Interference 

One of the major limitations in HF communications, especially within the 
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European context, is co-channel interference [45]. The ionosphere, as stated 

previously, provides long range sky wave propagation paths; as a consequence users of 

the HF medium often find that the channel they wish to use is occupied by an 

interference signal arriving from a source at some considerable distance. These 

interference signals tend to be narrowband in nature, persist for three to four minutes 

and are in general non-Gaussian in nature [129,130]. Over the past decade, a great 

deal of work [131-136] has been carried out in trying to measure and characterise this 

interference with the aim of generating accurate statistical models of the nature and 

form of co-channel interference. 

One possible approach where adaptive signal processing techniques could be 

utilised to overcome this problem is within the context of real-time channel evaluation 

techniques (RTCE). Adaptive techniques are used to monitor the quality of any 

particular channel via measurements of SNR, fade-rate, etc. In addition these systems 

can determine if a channel is occupied or not so that an operator can make the most 

efficient use of the allocated frequencies. 

Co-channel interference is not considered within the context of this thesis. This 

approach is taken because of the nature of the interference, in particular the non-

Gaussian aspect, suggest that conventional adaptive filtering will not be enough to 

eliminate it. Consequently some combination of techniques, such as RTCE and 

adaptive equalisation; would be required to deal with both the time-variant nature of 

the channel and the non-Gaussian nature of the co-channel interference. The work 

reported in this thesis concentrates on the problem of adapting to the frequency 

selective fading nature of the HF channel. 
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2.4 THE HF CHANNEL MODEL 

2.4.1 Mathematical Basis for the Channel Model 

In the late 1950's and early 1960's, a considerable amount of work was carried 

out into the characterisation and behaviour of randomly time-variant linear 

channels[37-40] , the motivation for this work, coming from both communication 

systems and radar astronomy research. This section provides a summary of the work 

presented in[40] with particular reference to the HF communications channel. 

System Functions 

If a randomly time-variant linear communications channel is represented as in 

Figure 2.10, then it is clear that the concept of time and frequency duality may be 

used to obtain four possible operators based on input and output representations in 

both the frequency and time domain, as illustrated below in equations 2.1a-d, 

V (t) = 0,, [ W  b 
V(f) =Off [W(f)], 

V (t) = O, [ W(f)  I, 

VU) = O [w(')]. 

Where clearly the operators 0,, 

(2.la) 

(2.lb) 

(2.lc) 

• 	 (2.ld) 

°,, O, and O, individually consist of dual 

operators. Since it is assumed that it is a linear channel which is being dealt with, then 

these equations may now be more formally expressed as linear integral operators with 

associated kernels, as demonstrated below. 

v(r) = 5 w(s) K 1(t,$) dc, 	 (2.2a) 

vQ) = 5 w(f) K 2(t,f) df, 	 (2.2b) 

VU) = 5 W(I) K 3(f,1) dl, 	 • 	 (2.2c) 

VU) = 5 W(t) K 4(f ;t) dt. 	 (2.2d) 

The variables , s and I representing dummy variables for time and frequency 

respectively. 

Although from a mathematical point of view the above expressions are sufficient 

to describe the system, they do not easily allow a physical interpretation of the input- 
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output relationship of the system. In order to achieve this it is necessary to derive a 

series of kernel system functions. Obviously a series of such functions could be 

obtained and this was clearly illustrated by Bello in[40].  However, for the purposes of 

this work it is sufficient to consider only two of these functions, the Input Delay Spread 

function and the Time-Variant Transfer function. 

The derivation of the Input Delay Spread function proceeds as follows, the 

substitutions = - € is made in equation (2.2a), thus:- 

v(t) = 5 w(t—€) g(t,€)de, 	 (2.3) 

where, 

g (t ,e) = K i (t ,t —€). 	 (2.4) 

This form of the equation allows the input-output relationship of the channel to be 

interpreted as a continuum of stationary scintillating scatterers where g (t ,e) represents 

the complex modulation produced by the hypothetical elemental scatterers in the range 

(€,€ + dE). The Input Delay Spread function as defined above may be viewed as the 

channel impulse response at the delay E. This then allows, using equation (2.3), the 

input signal to be interpreted as first delayed and then multiplied by a differential 

scattering gain. This is illustrated in Figure 2.11. 

The Time-Variant Transfer function, TV ,t), is simply the Fourier transform of 

the Input Delay Spread function, that is 

T(f ,t) = 5 exp(jc) g (t ,e)d€ 
	

(2.5) 

These functions provide the basis for the channel model used in this study as will be 

illustrated in the proceeding sections. 

Channel Correlation Functions 

It is clear that given the time-variant nature of the communication channels 

considered in this analysis that in order to characterise them completely, it will be 

necessary to define the associated auto-correlation functions. A full treatment of all 

the auto-correlation functions which can be developed is provided in hello [40] but 
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again only those of interest are illustrated here. 

Proceeding with the assumptions that the scattering of the channel at different 

delays is uncorrelated and that the channel may be considered wide-sense stationary, 

then the auto-correlation function of the time-variant impulse response,g (t ,e), is, 

	

'r2  ; At) = 1 2 [ g (Ti ; t) g(t2 ; t + At)]. 	 (2.6) 

The uncorrelated scattering assumption allows this to be written as, 

(P (TI ' '2 At) = ID('r1 ; At)6(T I  - 
	 (2.7) 

and if At = 0 then F(t) is simply a power spectrum and provides a measure of the 

average power output as a function of delay. This may be interpreted as the multi-

path spread of the channel. 

Adopting a similar approach with the Time-Variant Transfer function, T (f ,t), a 

similar auto-correlation function can be defined as below: 

(f 1 f2; At) = 	E [T(f I  ;t)TJ2 ;t + At)], 	 (2.8) 

and this is known as the spaced-frequency spaced-time correlation function. If At is 

again set to zero and Af = 12 - f  substituted then this becomes, 

t( Af) = 5 ( At) exp(—j2Aft) dt 
	 (2.9) 

i.e. the Fourier transform of the multi-path intensity profile. This function provides a 

means of determining the frequency coherence of the channel and 

(Af) = T. 	 (2.10) 

where T. is the multipath spread. If ( Af  ) is small in comparison to the signal 

bandwidth then the channel is termed frequency selective since the signal will be 

severely distorted. If Af is set to zero rather than At in the expression for the spaced-

frequency spaced-time correlation function then the time variations of the channel are 

demonstrated as Doppler spreading and possibly a Doppler shift of a spectral line. 

If the Fourier transform of cD ( Af ; At ) is defined as, 
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S(Af;X)= f(1sf ;1st)exp(—j2X1st)d1st 	 (2.11) 

and 1sf is set to zero, then 

5(X) = 5 ( At )exp(—j2)LAt) dAt 
	

(2.12) 

This power spectral density function relates the,signal intensity as a function of 

Doppler frequency; hence 5(X) is termed the Doppler power spectrum of the channel. 

The range of values over which S (X) is non-zero is termed the Doppler spread of the 

channel and consequently via the Fourier transform relationship with (D( At ), the 

coherence time of the channel is 

( At ) = j'-, 	
(2.13) 

where B d  is the Doppler spread of the channel. 

Delay Line Model 

From the previous sections and the discrete nature of the multi-path phenomenon 

in the HF channel as discussed in section 2.2, it is possible to propose a general model 

as illustrated in Figure 2.12. The time-varying frequency response may then be written 

as, 

N 

T(f,t) = 	G (:) exp(—j2irr 1 ), (2.14) 

where i is the tap or path number, T i the time delay associated with the 1rh  path, N 

represents the total number of paths with G 1  (t) the time-varying gain of the 1rh  path. 

2.4.2 Physical Basis for Channel Model 

The model which has been proposed has been shown - to be an accurate 

representation of the HF channel by Watterstone et al. in[41, 42]. This is because, as 

measurements have confirmed [43-45] , for 80-85% of the time HF channels exhibit 

Rayleigh fading characteristics. This implies that independent zero-mean complex 

Gaussian characteristics would be appropriate to describe the tap gain functions. In 

addition the discrete nature of the rays leads to the tapped delay line model. 



In some situations HF channels have exhibited Ricean fading characteristics (i.e. 

a specular component exists), this means that the function may no longer be considered 

to have a zero-mean. In addition, the channel model assumes no dispersion and this is 

in general true for the bandwidths involved in HF radio systems, however under 

certain conditions the ionosphere can be very turbulent and in these situations, 

dispersion may occur. For accurate modelling of such situations, it would be necessary 

to incorporate all-pass dispersion filters in each path proceeding the multipliers. Table 

2.1 illustrates the range of conditions which the CCIR recommend channel simulators 

be capable of demonstrating. 

Parameter Range 

Fading depths 2 to 40dB 

(*)Fade  duration 0.05 to 1.5s 

(*)Fade  rate 5 to 40 per minute 

()Delay time 0 to Sms 

(*)Spectral width 0.1 to 1.2kHz 

(*)Rate  at which fade 0.5 to 2kHz/s 

Frequency drifts 0 to 7Hz 

Table 2.1 - CCIR recommended range of parameters for HF channel simulatos 

- note not all of these parameters are independent of each other. 
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2.5 IMPLEMENTATION OF THE CHANNEL MODEL 

This section details the manner in which the channel model was implemented. All 

of the simulations performed for this thesis assumed a three path channel with a 

symbol rate of 2400 symbols per second. The only extraneous noise source was 

additive white Gaussian noise, impulse noise not being considered since it is generally 

overcome via coding and data interleaving which are outwith the scope of this thesis. 

Figure 2.13 illustrates the overall structure of the model. 

The main difficulty in implementing the model lay in generating the tap gain 

functions in a manner that ensured ease of repeatability; this was achieved by 

generating a random number sequence with Gaussian characteristics with zero-mean 

and unit variance. This sequence was then filtered via a digital second order low pass 

Butterworth filter, the bandwidth of the filter being of the order of the fade rate 

introduced on to the signal and the filter being generated by the bilinear 

transformation. The characteristics of the filter are shown in Figures 2.14 and 2.15. 

This is a recognised method for generating Rayleigh fading characteristics and has 

been used by many researchers in the past[41, 42, 46-48]. Although not the perfect 

filter response, the Butterworth is convenient because it is easy to implement and has 

an approximate linear phase relationship; the structure of the filter is illustrated in 

Figure 2.16. A separate filter was used for each path, with a different input sequence, 

to ensure that each tap gain function was statistically independent. In order to scale 

each tap weight and ensure an overall channel gain of unity, the steady-state gain of 

the filter was calculated by means of calculus of residues. The behaviour of the tap 

gain functions for a filter bandwidth of 10Hz is illustrated in Figure 2.17. 

Although a complete channel model would be complex in nature, for the 

simulations demonstrated in this thesis only a real channel was used. The reasoning 

for this being that the primary concern in this work was the performance of adaptive 

algorithms and all the information required is provided by a real channel simulation 

without unnecessarily increasing the level of complexity required to that of a complex 
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channel model. This approach has been adopted by several other researchers in the 

area, namely Eleftheriou and Falconer [50] and Ling and Proakis[231, a full analysis of 

the performance would require a more general model. 

2.6 SUMMARY 

In summary, this chapter has introduced the HF channel and illustrated its nature 

and the manner in which radio communication is achieved in it. A mathematical and 

physical justification has been presented which relates the frequency selective fading 

channel model used for simulation purposes in this thesis to the physical reality. In 

conclusion the manner in which the channel model was implemented was presented. 
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Chapter 3 

PERFORMANCE STUDY OF ADAPTIVE FIR FILTERING ALGORITHMS 

AS HF CHANNEL ESTIMATORS 

3.1 INTRODUCTION 

This chapter is primarily concerned with an analysis of the performance of two 

adaptive FIR filtering algorithms as HF channel etimators, i.e. the LMS and the RLS. 

At the present time considerable research effort is being expended to develop adaptive 

equalisers for use in communication systems where the channel is time-varying in 

nature, as in the HIT channel. The overall aim is to allow data communication at 

speeds greater than are currently possible. 

The chapter is structured such that an initial brief outline of least squares theory 

is presented with it's relationship to the LMS and RLS adaptive algorithms discussed as 

well as the related topics of data windowing, numerical robustness and so called fast 

algorithms. Then the analysis of both algorithms is presented, that of the LMS being 

merely a summary of the work of Macchi [51,52] and Eweda and Macchi [53, 5 4 1 and 

is presented for comparative purposes. Finally simulations are presented which illustrate 

the performance of the algorithms and the accuracy of the theoretical predictions. 

It has generally been assumed that the RLS algorithm would be suitable for use in 

time-varying environments because of it's fast convergence properties in a time-

invariant environment. However, recently published work [55-58] would appear to 

suggest that in both time-varying and high noise environments the RLS suffers a 

considerable degradation in performance as demonstrated by a slower rate of 

convergence and higher minimum MSE. 

In this work the direct modelling (channel estimator) approach was chosen for 

analysis as opposed to indirect modelling, i.e. equalisation, because the only unknown 

time variation considered is that of the channel coefficients, the input signal being 

stationary. This makes the analysis more tractable and isolates the tracking 
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performance of the algorithms, since this is part of the algorithm's steady-state 

behaviour, as opposed to transient behaviour which is related to the initial convergence 

behaviour of the algorithm. New theoretical results reinforced by simulation are 

presented here which illustrate the optimal performance bounds for the RLS operating 

in such an environment. The performance of the RLS is characterised for various 

values of 

i)the level of colouration of the input signal, 

ii)the level of additive noise in the system, 

iii)the level of time-variations. 

The decoupling of the overall error achieved by the RLS in estimating the system 

into a measurement term and a lag term as in [21] , is used to illustrate the 

degradation in performance due to the high additive noise and/or time variations in the 

system. The relative effect of these errors is shown theoretically and reinforced with 

simulations. The selection of K, the exponential windowing factor, to give optimal 

performance is considered and the trade-off required in it's selection is discussed and 

illustrated. 

To provide a comparison for the results obtained in this work use was made of 

the considerable body of literature [51-54] on the performance of the LMS adaptive 

algorithm in a time-variant environment, in particular the expression obtained by 

Macchi in [51] for the residual steady-state mean squared error (MSE) in a 

nonstationary environment. 

3.2 ADAPTIVE FIR FILTERING ALGORITHMS AND LEAST SQUARES 

ESTIMATION THEORY 

Prior to considering the particular adaptive FIR filtering algorithms studied here 

it is worthwhile to consider a brief review of least-squares estimation theory and it's 

relationship to adaptive FIR filtering algorithms. A brief outline of the numerical 
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aspects of least squares estimation theory and the role of data windowing is also 

considered. 

3.2.1 Least Squares Estimation Theory 

The need to estimate the state of a stochastic dynamic system from noisy 

measurements is important in many aspects of engineering and natural science. It was 

Gauss who first considered this problem in 1805 when studying the movement of 

celestial bodies in[131 as did Legendre in[14] independently. The basic idea of least 

squares, as applied to parameter estimation problems is that estimates of the parameter 

of interest are selected such that the output of the model approximates the data as 

accurately as possible, as measured via the sum of the squares of the differences. This 

statement may be expressed more formally by considering the following simple 

estimation problem. 

Consider a stochastic process whose mean value is a linear function of some 

parameter vector 13•  Thus the least squares estimate attempts to minimise the error 

between the desired signal and the estimated, i.e., 

Ei = y — T3 	 (3.1) 

To minimise this in the least squares sense it is necessary to minimise, 

== 	
- sfl3 )2• 	 (3.2) 

Consequently, by differentiating expression (3.2) and setting the result to zero the so 

called Normal equation is obtained[59]. 

The early work in the application of least squares theory did not consider the 

estimation problem in a probabilistic sense; rather it was viewed as a deterministic 

problem in terms of the error minimisation. It was not until Wiener in [60] that this 

was achieved for stationary continuous time systems. Wiener reduced the continuous 

filtering problem to the solution of an integral equation, the so called Wiener-I-Iopf 

equation. The general linear nonstationary problem was resolved in the pioneering 
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work of Kalman [611 and Kalman and Bucy[62]. This chapter is primarily concerned 

with the performance of adaptive FIR filtering algorithms; therefore a summary of the 

relevant areas only will be presented; more detailed and general accounts of least-

squares estimation theory may be found in any of [59, 63-65]. 

The structure of the estimation problem considered here is illustrated in Figure 

3.1, where a random sequence {x(n)} is input to a time varying system and the 

resultant noise contaminated output, Yk'  is generated. The problem is to estimate the 

impulse response vector, h,  of the system given that Yk = + nk, and to do so in 

some optimal manner. The error generated is ek  = Yk - Yk' where 9k = 

The widely accepted approach has been to minimise the mean-squared value of 

the error, ek , the mean-squared value representing a cost or loss function, [59, 63-65] 

so called because it indicates the penalty associated with an incorrect estimate. It may 

be readily shown[59, 63-651 , that given this criterion the optimal estimate of b4, 

denoted by 11,1,,,  is obtained from the so called Wiener solution; 

b.opt = cP;' cj:, 	 (3.3) 

where & = E [rx&d] and 	= E [Yk ], and E[] denoting the expectation 

operator. 

Clearly the presence of the expectation operator in equation (3.3) precludes any 

practical application. It is the purpose of adaptive FIR filtering algorithms to determine 

h,,,,, given only access to the data sequences. Only two approaches to this problem are 

considered here, the so called LMS algorithm and the RLS algorithm and these are 

dealt with in the following sections. 

3.2.2 The Least Mean Squares Adaptive Algorithm 

The simplest approach adopted to achieve the minimisation of the MSE criterion 

was by means of a stochastic gradient search technique[66]. The LMS algorithm, first 

suggested by Widrow in 1960 [67] , is the best known of these techniques. The LMS 

utilises a weighted estimate of the gradient to recursively estimate in time the optimal 
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tap weights, that is, 

Ltk+I = & - 
	 (3.4) 

where fik  represents the estimate of li,,,,  at sample instant k and the vector !k  is the 

estimate of the gradient of the MSE cost function given the particular estimate uk.  The 

scalar parameter x is a convergence factor which determines stability and rate of 

adaptation of the algorithm. The exact gradient, 

L = fif(hk) 	 (3.5) 

which is simply equal to the following, 

Sh 
	

II(Yk -W )2]) 	 (3.6) 

and thus becomes, 

1k = —2E [&k (Yk -Lila )]. 	 (3.7) 

The estimate, !k'  could be obtained by utilising a time average as opposed to an 

ensemble average, (assuming ergodicity), but clearly the time average may only be 

obtained from a single instant since fik  changes at each sample. Consequently when the 

time average is used the estimate of the gradient becomes, 

1k = —24e, 	 (3.8) 

which when substituted in expression (3.6) results in, 

Lk+1 = Ilk - 2p4.Iek+1. 	 (3.9) 

The selection of the parameter p is crucial to both the performance and stability .  

of the algorithm. The work of Feuer and Weinstein [68] provided a criterion for the 

stability of the LMS given the length of the filter and tk eigenstructure of the input 

signal. As regards the performance of the algorithm there have been many publications 

which have looked at the algorithm in many situations, [15] and references therein. 

The limitations of the LMS are summarised below. 

The LMS is by far the simplest (and oldest) adaptive algorithm; however it suffers 

from a relatively slow initial convergence rate which is affected quite severely by the 
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eigenstructure of the input signal. This is explained fully in [66] , but intuitively may 

be explained by the fact that the gain p. can adjust to only one mode of the system at a 

time. A highly coloured signal will have a large eigenvalue spread and as a result many 

modes. A fuller description of the performance and characteristics of the algorithm 

may be found in any of the adaptive filter textbooks referenced in chapter 1. 

As a concluding comment, the LMS is the oldest adaptive algorithm but it is also 

by far the simplest to implement, requiring only 2K operations per iteration, K being 

the order of the filter. Consequently the LMS is the most widely applied of all 

adaptive algorithms in spite of it's many drawbacks and limitations. 

3.2.3 Recursive Least Squares 

As was stated previously the exact measures of cD and 	are not readily 

available. The RLS algorithm utilises the data sequences which are available to 

construct estimates of these measures. These estimates are as follows, 

k 

= 
	

(3.10) 
.=O 

and, 

k 

=&Yk 	 (3.11) 
,i =0 

which are of course the auto and cross-correlation estimates for the sequences s, and 

y. With these an estimate of the optimum tap weight vector, at time instant k, may be 

constructed from, 

= c,,(k). 	 (3.12) 

In a practical situation a: recursive formulation of this expression is obviously 

required and this achieved via the following substitutions, 

r(k) = z(k-1) + 	j 	 (3.13) 

and 

r,(k) = c.,(k -1) + 4Y*' 	 (3.14) 

in conjunction with the expression, 
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= z(k-1). 	 (3.15) 

The recursive formulation may then be written as, 

£ = L4 - 1 + r'(k)s4 ek . 	 (3.16) 

The inverse , rj1 (k), is obtained using the Sherman-Morrison Identity [69] 

= 4;'(k —1) - 	 (3.17) 
1 + siz 1 (k -1 )s 

The above recursion requires K 2  products per iteration and indicates the penalty 

involved in implementing the RLS algorithm. Algorithms based on the RLS may be 

obtained with complexity of order K, but like the RLS they suffer from a high degree 

of numerical instability and invariably require some form of 'numerical rescue', i.e. 

periodic initialisation even when implemented on 32 bit floating point processors[70-

72]. In it's favour the RLS is guaranteed to converge within 2K iterations, K being 

the order of the filter, provided that the system under consideration is stationary. 

The tracking performance of the algorithm in the above form is very poor as a 

result of the growing memory form of the correlation estimates in expressions (3.10) 

and (3.11). This problem is normally overcome by the use of data windows [73,74] 

which give greatest weight to most recent data. The most commonly implemented 

windowing function being in the form of an exponential function [74] . Windowing 

functions will be discussed in slightly more detail in the proceeding section. 

To summarise the RLS, in low noise and stationary environments, will converge 

within 2K iterations, K being the order of the filter; it is relatively complex to 

implement and displays a high degree of numerical sensitivity although recent 

formulations suggest that this problem may have been overcome[75, 761. 

3.2.4 Other Aspects of Least Squares Estimation 

Data Windowing 

As has been stated the tracking performance of the algorithm in the above form 
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is very poor. This problem is normally overcome by the use of data windows which 

give greatest weight to most recent data, as in Figure 3.2, the most commonly 

implemented windowing function being in the form of an exponential function. This 

results in a modified cost function from the original sum of errors squared to, 

_9 )2)kfl 	0<k<1. 	 (3.18) 
n=O  

There are clearly many possible window functions but in general only the 

exponential window [74] and sliding window [73] are ever considered. The 

exponential window is generally used as less computation is required, also the work of 

Porat [77] would suggest that the sliding window would offer no significant 

performance advantage. 

The value of X, the exponential windowing factor, used is normally chosen to lie 

in the range, 0.9 C K <1.0 because of constraints on the accuracy of the correlation 

function estimates it imposes. This raises a question as to the selection of K in time-

variant environments where it is required that the variations in the parameters to be 

estimated be small within the window length. The result of Porat in [77] provides a 

means of equating K to an equivalent window length M, and this shows up the 

conflicting requirements. That is as the time-variations increase then the window 

length must become shorter, hence K becomes smaller (possibly below 0.9), but the 

correlation estimate requires that K remain as close to unity as possible. 

Finite Precision Effects 

The finite nature of the digital machines on which any least-squares algorithm is 

to be implemented must be taken into account in any assessment of performance. The 

inherently complex nature of many least-squares estimation algorithms ensures that 

they will suffer from errors as a result of digital word truncation and round off in 

matrix multiplication. This idea of finite word length and its effects is illustrated in 

Figure 3.3. 
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There are many techniques which have been adopted to try and overcome the 

numerical instability that results from finite precision and these may be divided into 

two broad categories which can be termed algorithmic manipulation as in [75,76,78] 

and numerical rescue[79-81]. Examples of the former are square root formulations as 

in [78] or decompositions as in[75, 76]. Numerical rescue is simpler to implement since 

the technique is simply to detect the onset of numerical instability, i.e. divergence, and 

then reinitialise the algorithm to some preset values as illustrated in Figure 3.4. It is 

worth noting that numerical rescue is always likely to be necessary since irrespective of 

the algorithm manipulations adopted, they will only delay the onset of numerical 

instability due to the inherent finite nature of digital machines[71]. 

Fast Algorithms 

As a result of the inherently complex nature of algorithms such as the RLS, 

(where of order K 2  operations are required every iteration), many so called fast 

algorithms have been developed [73, 82, 831 to reduce the computational load when 

implementing such algorithms. All of these so called fast algorithms reduce the 

complexity to order K operations per iteration by utilising various properties of 

matrices. It must be emphasised however that these algorithms only exhibit the same 

level of performance associated with the conventional RLS. The term fast referring 

only to the computational load. 

3.3 ANALYSIS OF ADAPTIVE FIR FILTER ALGORITHMS AS HF CHANNEL 

ESTIMATORS 

3.3.1 Introduction 

The problem considered is that of direct modelling of a time-varying system 

which is characterised by the tapped delay line model of chapter 2, where the time-

varying taps are generated by filtering random white Gaussian noise through a filter; in 

this case is a 2nd order digital Butterworth filter is used with bandwidth very much 

narrower than the symbol rate. The construction used to carry out the system 
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identification is as discussed in chapter 2. That is, the input to the system is also the 

input to the adaptive algorithm so that only the time-variations of the system under 

investigation are being tracked. In the inverse modelling situation decision errors, 

inputs which would be both nonstationary and coloured would lead to degradation in 

the performance of the algorithms for reasons not associated with their tracking 

performance. 

Using the representation of Figure 3.1 allows the system output at iteration k to 

be written as, 

Yk = 4T11k + ttk 
	 (3.19) 

where, Xk  is the input signal vector with the superscript T representing the 

transpose operator, Bl k  is the tap weight vector of the time varying system and nk 

represents the unobservable measurement noise in the system, which in this case is 

additive white Gaussian noise (AWGN). 

The noise, nk, and input signal vector s are assumed to satisfy the following 

assumptions. 

Al:-The sequences. is stationary and Gaussian in nature with finite moments. 

A2:-The sequence nk is identically distributed and independent of a,• 

A3:-The time variations of ILk  are random and independent of c, and nk. 

k 
A4:- The estimate of the autocorrelation matrix, Rk = 

E sj X'< -J J, of the input signal 
j=I 

vector& can, in the limit, be represented asAk =cV(1—k) -1 , where ct=EI,xj] and is 

the exact autocorrelation matrix of the input signal vector Sk  and initially in the case 

considered here since the input is white 'F = I, where I is the identity matrix. That 

is, 

limAk  

This assumes that K lies close to 1 ( normally > 0.9 ), if this condition is not satisfied 

then this assumption cannot be considered valid. It should be noted that assumptions 



Al to A3 are identical to those used by Macchi [52] in her analysis of the LMS in a 

nonstationary environment. 

It may be argued that these assumptions are not representative of the scenario in 

which the algorithms have to operate, however they provide a means of analysing the 

performance of the algorithm and as will be shown later the theoretical predictions 

obtained from the analysis are in close agreement with simulation results and this in 

itself is sufficient justification for them. 

Proceeding with the definition of the following variables, 

Ilk = hk I I - hk 	 (3.20) 

and, Ilk  is a measure of the nonstationarity of the channel. Also, 

'1k = 	- lii. 	 (3.21) 

which is the tap weight error vector (or misadjustment). 

The error ek would normally be written as, 

ek 	Yk —sflik 	 (3.22) 

Where £ represents the tap weight vector estimate. By using the expressions (3.20) to 

(3.22) it is possible to rewrite (3.23) as below, 

ek = k — sqk. 
	 (3.23) 

In this way it is expressed in terms of the unobservable noise in the system and the tap 

weight error, vector. 

3.3.2 LMS Mathematical Analysis 

This analysis is a brief summary of the work on the LMS by Eweda and Macchi 

in [521 and[53]. 

The LMS algorithm is normally written as was indicated previously as, 
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(3.9) 

where p. is a small positive constant. From this a recursion for the error in the tap 

estimate is obtained, 

qk+1- (1 —2p.sflq +21.flk 	4k 	 (3.24) 

This can be split into two identifiable terms, 

QI+i =(1-2jss4 sflqj+2p.nk 4 	 (3.25a) 

and, 

qi+1 =(J_2p. j)q —d 	 (3.25b) 

where (3.25a) is associated with the gradient noise and is present even in stationary 

systems and (3.25b) is the lag error and demonstrates the error contributed by the time 

variation of the system. Using a standard result of linear algebra [841 it is possible to 

make the following substitution, 

UJ ,k = (I —2p.fl(J 	 ) ..... (I —2p.& + sJ+ ) 	 (3.26) 

and thus by solving in the usual manner, 

J = 
— 	qf+l 2p.UJ , k nJaJ 	 (3.27a) 

j=1  

and, 

jk 

= —EUJ,kdj 	 (3.27b) 
j=1  

In the limit the Steady State MSD is clearly, 

limE Iilk (2- limE IilqI 1 2  + limE IilI 1 2 	 (3.28) 
- 	k=x 	- 	k-. 	- 

that is, 

Total MSD = Stationary MSD + Lag MSD 	 (3.29) 

Clearly the limits of each term are required in order to obtain the steady state MSD. 

Thus, 

jk-1 
limE 1q112 = limE 2p. 	(JJ ,k _lnJ &J  1 2 	 (3.30a) 

j-1 



before and these are shown below, 

qj~ j = (1 
- Rh SLkSk )qf + kk ' flk&c , 

and, 

= (I —14 sksk)qk - 

(3.33a) 

(3.33b) 

and also, 

k-1 

liME  I  jkl 1 2  = limE 
j 	

V I E U111 _1 	 (3.30b) 

It is demonstrated in [52] that these limits are finite by means of standard statistical 

theory. This leads to the following, 

MSD =2N (1 —p.KS ) 1 (2pKS +D12N ji) 	 (3.31) 

where, N is the noise power in the system, K is the order of the system with, 

Se 1 2 =KS 
and, 

D=E[Idk 1 2 1 
3.3.2 RLS Mathematical Analysis 

If the RLS algorithm is written below as previously indicated, 

= £ + Rk4S4 	 (3.17) 

Where Rk is the estimated autocorrelation of the input signal vector x, . 

As has been noted earlier this representation of the RLS is similar to the structure 

of the LMS with 2ii. replaced by the inverse of the estimated autocorrelation of the 

input signal vector. 

Using these expressions and by employing some algebraic manipulation a 

recursive expression for the parameter error vector qk11  can be obtained. 

qk+I = (1 - R k  &cXk )k + Rk kIk - 	
(3.32) 

It is clear that expression (3.32) can be split into two clearly identifiable terms as 
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The first term, q, can be viewed as a measurement noise term and is present 

even in the stationary situation. The second term, q  can be considered as a lag term 

and is associated with the time variations of the system. As a result of assumptions A2 

& A3 it may be assumed that the two contributions to the error in expression (5) are 

independent of each other. In the limit the excess steady state mean square deviation 

(MSD) is, 

limE Idk 12= limE I.ilql 12+ limE Iil 1 2 	 (3.34) 
k— - 	k-.cc 	- 	k-ac 	- 

that is, 

Total MSD = Stationary MSD + Lag MSD. 

The limits of each term are required to be finite in order to obtain the steady state 

excess MSE. Since the the input signal vector and tap weight error vector are 

independent and the input signal is stationary it is sufficient to show that the squared 

norm of the tap weight error vector, q, is finite in the limit. The analysis for the 

general case i.e. not utilising assumption (A4) is possible [851 but extremely complex. 

For the situation considered here it is unnecessary since by utilising assumption (A4) it 

is possible to substitute (1—h)! for A' and the proof that the tap weight error vector is 

finite in the limit then follows as in [52] . Once the limits are shown to be finite an 

expression for the excess steady state MSD can be obtained as follows. 

Using the recursions of (3.33a) and (3.33b) and taking the measurement noise 

term first, 

E[qf+ , Ih]=E[I(I _Ak_ 1 	+Rk 1 nk ak  1 2 1 	 (3.35) 

Now if E[ Ink 12]=N and we replace the inverse of the estimated autocorrelation matrix 

Rk by (1—h)! using assumption (A4), where! is the identity matrix, we obtain 

E[Iqf,I 2]=E[J (1 —(1 —h)s T )qf+ (1 — h)n k 	1 2 1 	(3.36) 
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Expanding the expressions and using assumption A2 this becomes, 

E[Jqt j I 2] = 	I (/—(1 	 + (1 -X) 2E[ I nk4k 1 2 1 (3.37) 

so that, 

E[ jqj,j  2] = E[ qf T(j -(1- A)Ad  )(1 —(1— X)il )q( )] 	 (3.38) 

+ (1— X) 2NK 

where K is the order of the system. It now follows from the distributive law that, 

E[iqf+1  1 2 1 
=E[uI T11]-2(l- X)E[qf skskqI] 	 (3.39) 

+ (1— k) 2E[qf 	 + (1— X) 2NK 

At this point we can make use of assumptions Al and A3 to obtain, 

E[iqf+i  1 21 = E[iqfi2](l - 2(1—A) + (1- A) 2 13 ) + (1— A) 2NK 	(3.40) 

where 13 = K —1 +E[i[86] 

Thus in the limit the steady state MSD associated with the measurement noise is, 

Measurement MSD KN (1 —k)/(2—(1 —k)3) 	 (3.41a) 

Similarly for the lag term, 

Lag MSD =D / ((1— X) (2—(1— X)13)) 
	

(3.4Th) 

Where D = E [ I dk  12 1 and is the variance of the time varying tap increment 

(assuming zero mean). Therefore the steady state MSE achieved by the RLS 

algorithm is as below; 

MSE = N.+KN(1-k)/ ( 2- 13(1-k)) + D/((1-k)(2- 13 (1-A)) 	(3.42) 

When the input is no longer white then it is necessary to proceed as follows. 

Clearly equation (4) which is the RLS tap-weight update equation can be written as, 

111+1 = II + ( 1 - A )cF eks4 	 (3.43) 

by use of assumption (A4). As a result of the independence assumptions it should be 

noted that c  is a diagonal matrix. Although this assumption is clearly untrue for the 

time sequence considered here, a simple unitary rotation would guarantee that 'P 

would be diagonal and thus allow the analysis to proceed. 
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If equation (3.32) is rewritten as, 

qk+I = qk —(1 —X)(qs., + flk) crsk 	 (3.44) 

In order to obtain the MSD we require E[I II 121, so if equation (3.44) is 

squared and the expectation taken at the limit then we may proceed as below. 

E[q +1 I 2] = E[Iq 1 2] - 2(1 - X)E[(qk 	+ h'k)( 	£k)qk II 	(3.45) 

+ (1 - X) 2E[l(qkx. + nj 2(4r'sk ) 2 1] +E[ldk 1 21, 

and if this is expanded then, 

E[ Ilk  +l 2] = E[1!2 2] - 2(1 - X)E[J(q.aj(1D's).q I] 	(3.46) 

+ (1 - k) 2E[ I(Qk .s ) 2QIrl.a) 2 I } + ( 1 - X) 2NE[ I@r'.xk )2  II + D. 

As a consequence of 'b being a diagonal matrix then, 

1K 	1K 

E[Iqk+I  1 2] = E[Iq 1 2] - 2(1 - X)E[J(qx)( 	J(q4) II 	(3.47) 
1=1 	i=I 

K  1 
+ (1— 	 ] + ( f —)(1 - X)N + D, 

1=1 	 i=1 a, 

where x and q represent the constituent components in the vectors x. and q 

respectively. The terms a represent the eigenvalues of the input signal autocorrelation 

matrix. If this expression is then taken to the limit then the total MSD is expressed in 

equation (3.48) shown below, 

i=k1 	 N 	 D 

	

Total MSD = ( —) (1 -X)  (2 — (1 	+ k1j 48) 
1=1 a 	 rr k)(2 - (1 — 

It is interesting to note that both expressions for the MSD, i.e. in white and 

coloured input signal conditions allows the effect of system time-variations and input 

signal colouration on the rate of convergence to be assessed, as in[86]. 

3.4 PERFORMANCE COMPARISONS 

It has previously been assumed that RLS algorithms would always track time 

variations of a system faster than the LMS algorithm, and Honig [18] demonstrated 

that the RLS algorithm will always converge faster than the LMS in a stationary 

environment even when the input is white. This misconception has arisen as a result of 

failing to distinguish between the spectral robustness and fast initial rate-of- 
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convergence, i.e. transient behaviour of the RLS algorithm from it's steady-state, i.e. 

tracking behaviour. The term spectral robustness may be considered to describe the 

lack of sensitivity of the RLS to the eigenstructure of the input sequence. The 

expression obtained for the steady state MSE of the RLS may now be used to evaluate 

and compare the theoretical performance of the algorithm in a time-varying 

environment. 

Figure 3.5a illustrate the theoretical steady state MSE for the RLS for constant 

noise in steps of 10dB (-10dB to -80dB) and for tap variance ranging from -10dB to 

-80dB. Figure 3.5b illustrate the performance of the algorithm for constant tap 

variance in 10dB steps and noise ranging from -10dB to -80dB. In both situations the 

input is assumed to be white and X = 0.95 for the RLS. 

As can clearly be seen the algorithm achieves an asymptotic error floor which it 

cannot improve upon. It is also interesting to note that if the expressions for the 

predicted steady state MSE, obtained in [52] , for the LMS are S  utilised then the 

predicted MSE is lower than that for the RLS when the nonstationarity is high (tap 

variance >40dB). 

Figures 3.6a to 3.6h illustrate the simulated performance of the LMS and RLS 

algorithms as channel estimators for nonstationarity levels of 25dB and 45dB 

respectively, signal to noise ratios of 30dB and 50dB and for both white and coloured 

input signal conditions. The level of colouration being determined by an eigenvalue 

ratio (EVR) of 16.5. The plots show tap vector norms (or mean squared deviation 

MSD) against number of iterations. The tap vector norm plots were chosen rather than 

MSE plots because they illustrate the tracking behaviour of the algorithms more 

accurately. Table 3.1 indicates the appropriate values for each figure with MSD 

representing the theoretically predicted MSD and MSD m  representing the measured 

values from the simulations. 
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A D N EVR MSD p  MSDM 

0.95 -45db -50dB 1 -34.0dB -35dB 

0.95 -45dB -30dB 1 -33.2dB -35dB 

0.95 -25dB -50dB 1 -14.6dB -13.5dB 

0.95 -25dB -30dB 1 -14.6dB -13.5dB 

0.95 -45db -50dB 16.5 -34.4dB -35dB 

0.95 -45dB -30dB 16.5 -32:0dB -35dB 

0.95 -25dB 16.5 -14.4dB -13.5dB 

0.95 -25db -50dB 16.5 -14.5dB -13.5dB 

Table 3.1 - Comparison of simulated and theoretical results 

The value of p. selected for the LMS used the stability criterion suggested by 

Feuer and Weinstein in [68] , 0 s s C 1/3 tr[R], for this work p. was chosen to be 

at the proposed optimal value, i.e. p. = 11(6 Ir [R 1) which for the white input 

conditions is = 116K where K is the order of the system. This value of p. was 

chosen to guarantee stability of the LMS but still ensure reasonable tracking 

performance by the algorithm for the simulations presented. Therefore, for the three 

tap channel used in the simulations p.0.05556. 

The simulations represented in Figures 3.6a-h consider 3 situations. 

tap variance >> additive noise power, 

additive noise power >> tap variance, 

additive noise power = tap variance. 

In all cases when the input is white the LMS performs as well if not better than the 

RLS. The predicted values of the RLS are all within 1-2dB of the measured values. 

In the situations when the input signal is coloured the lack of spectral robustness of the 

LMS is demonstrated while the RLS is , as expected, relatively unaffected by the signal 

colouration. The best performance of the RLS (and the theoretical prediction) results 

IM 



when the window length is short i.e. K becoming smaller. This is as predicted by the 

theoretical expression of the RLS. If the expression is differentiated and the 

measurement and lag terms considered separately it is clear that the contribution of the 

measurement term becomes smaller as K approaches 1 and that of the lag term becomes 

larger as K approaches 1. This illustrates the trade off required in window selection, 

i.e. the longer the window length (K closer to 1 ) then the better the estimate of the 

autocorrelation matrix and the shorter the window length (K getting smaller) then the 

better the tracking speed and thus the smaller the lag error contribution. 

The expression 2fs = (1 - K)[151 can be used with the stability criterion shown 

previously to illustrate the effect of the order of the system. If K is constrained to lie 

within the region 0.92-0.999 then clearly if X=0.92 (i.e. '. = 0.04) the LMS could not 

be guaranteed stable for systems of greater than order 8. However, if K=0.98 was 

chosen then the LMS would not be guaranteed stable for systems of order greater than 

33. Eleftheriou and Falconer [50] applied a similar technique in their work but 

utilised a less conservative stability criterion for the LMS and considered a channel 

model represented by a first order Markov process. 

It is clear from the results presented in this chapter that there is a reasonable 

agreement between the simulation results and theoretical predictions. Work recently 

published by Clark & Harun [26] and previously by Tront [56] reinforces the results 

demonstrated here. 
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3.5 CONCLUSIONS 

It is clear from the results presented that the tracking performance expected of 

RLS algorithms in time varying environments is not achieved. Although this work has 

only looked at the algorithm's performance in a direct modelling situation it is clear 

that the tracking performance of the algorithm is an important characteristic of the 

algorithm which • must be clearly separated from other effects such as spectrally robust 

convergence behaviour. 

It would appear that RLS algorithms are not necessarily suitable for use in highly 

time-variant environments, such as the HF communication channel. The slow rate of 

convergence and subsequent degradation in performance of the LMS algorithm with 

coloured input also makes it unsuited for such applications. Consequently it would 

appear that some form of nonlinear techniques [87] or new algorithms which estimate 

the parameters generating the nonstationarity may have to be considered to produce 

adaptation algorithms which can function in such hostile environments, as will now be 

discussed in the next chapter. 
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Chapter 4 

THE USE OF A-PRIORI KNOWLEDGE IN HF CHANNEL ESTIMATION 

The results which were presented in chapter 3 indicate that there is considerable room 

for improvement in the performance of conventional adaptive algorithms as HF chan-

nel estimators. This chapter looks at the development of three algorithms which utilise 

varying degrees of a-priori knowledge to improve their performance. The term a-priori 

knowledge refers here to knowledge of the parameters which define the model in a 

state space sense; this information allowing the use of a Kalman filter approach in the 

exact sense. 

4.1 INTRODUCTION 

The publication of [61, 62] by Kalman and Bucy proposed an extremely powerful 

recursive estimation technique commonly described as Kalman filters. The use of 

Kalman filter equations pre-supposes that the system under consideration can be 

described by a set of linear difference equations, for discrete time systems of the type 

considered here the system is normally described as, 

= F (k/k—i) 4k-1 + Gk1 	 (4.1) 

and 

Zk = 	+ TMk, 	 (4.2) 

where F (k/k —1) represents a K XK state-transition matrix. The M-dimensional 

vector Zk  is normally termed the measurement vector and Hk  is the M x K observation 

or measurement matrix. The terms Wk and Vk  are respectively the K and M - 

dimensional vectors of the zero-mean *bite noise processes, which are assumed to be 

statistically independent with covariances denoted by Q and W respectively. 

Given this description optimal estimates of the K -dimensional state vector .f are 

obtained from the noisy observations, Z k  , in a recursive manner by the following 

equations. The estimation equation, 

am 



e=j'+Kk[Zk j1k 	 (4.3) 

the prediction equation, 

= F(k/k -1)j?. 	 (4.4) 

The Kalman gain, Kk, being described by, 

Kk  = Vk H[ [Hk Vr1HI + Wk 1_I. 	 (4.5) 

The error covariance, Vkk 	being defined by E [ ( 	- i -  ) ( 4k- jk-I )T and 

obtained from, 

= F(k/k -i)V:?F (k/k—i) + 
	

(4.6) 

and the other covariance term, Vt:?,  is defined by E [ ( 	- j ) ( 	- 	) ], and 

obtained via, 

uk-i - uk-2 - v Ti uk-2 
1 k-1 - "k-i 	"k-I' k-i k-1 (4.7) 

In order to proceed with the development with the algorithms in this chapter it is 

necessary to return to the channel model and tap generation filter described in chapter 

2 and put it into a suitable format. algorithms in this chapter. 

4.2 MINIMUM VARIANCE KALMAN ESTIMATOR 

As has been stated the Kalman-Bucy filter is the optimal (i.e. minimum variance) 

filter for the discrete linear system described by equations (4.1)and (4.2). 

Unfortunately in most applications not all the parameters which define the system are 

known a-priori and as a result modelling errors [88] occur in practical applications of 

the filter. However, by utilising the state space definition of the channel model and 

incorporating the information provided into the filter it is clear that these modelling 

errors could :1e  eliminated, and by definition this filter would be the true minimum 

variance estimator for this system. This fact can then be used to allow the filter to be 

used to set a bound on the minimum achievable MSE for any HF channel estimator, 

since it has full a-priori knowledge of the channel. 

The widely accepted method for modelling the HF channel views the channel as a 

FIR filter with time-varying tap weights each of which is statistically independent, as 

described in chapter 2. The channel may then be described by the equations presented 
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in the previous section and the state transition matrix used directly in the Kalman filter 

equations. Thus, the MVK estimator may be defined as the optimal estimator for the 

representation of the HF channel used in this study. It is optimal because the algorithm 

has full a-priori knowledge of the system inbuilt, as illustrated in Figure 4.1. 

The tap generation filter can be represented by the equations below, 

x 0(k) = x 1 (k-1), 	 (4.8) 

and, 

X 1 (k) = V(k) - CGXO(k—l) - C 1x 1(k-1). 	 (4.9) 

The values of C O  and C 1  being dependent on the bandwidth of the filter. These 

equations may be used in conjunction with the observation equation of the channel to 

describe the system in terms of the equations below, 

= Fs + 
	

(4.10) 

and, 

= III S& + t'k 	 (4.11) 

This is clearly of the form of equations (4.1) and (4.2) with the state vector 	defined 

as, ik =  [ X 0  X 1  ]f and the time-invariant state transition matrix being; 

F = _9 I. 14, is the observation matrix, constructed from the input signal 

and C ={1—C 1  2—C o b thus ilk = [(1—C i )x 0  (1—0 0 )x 1 ] where the x1  

represent the inputs to the filter. 

In order to expand this to the three tap model considered here the matrices are 

simply augmented appropriately and consequently, the overall state is described by, 

[X 0  x1 X 2  X3 K 4  X 5  ][, with the state transition matrix being, 

01 00 
-C l  —C O  0 0 0 0 

00 01 00 
0 0 —C 1  —C o  0 0 

00 00 01 
0 0 0 0 -C 1  —C o  
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This description of the system provides the means of defining exactly what a-

priori information is required in the development of the three adaptive algorithms. 

Obviously the MVK estimator is not implementable in a practical situation since such 

information is not available, however it is still useful for the insight which it provides 

and illustrates the motivation for the next stage of algorithm development. 

4.3 THE EXTENDED KALMAN ALGORITHM AS A HF CHANNEL 

ESTIMATOR 

Since it is clear that full a-priori knowledge of the channel will not be available in 

practical situations it would seem logical to develop an algorithmwhich can approach 

the performance of the MVK with the full a-priori knowledge constraint removed. The 

hierarchial approach adopted here is illustrated in Figure 4.2. Essentially, an 

Extended Kalman filter (EKF) algorithm [64] is utilised to develop the estimator in 

which only partial a-priori knowledge is used, that being the structure of the model as 

opposed to particular parameter values. The EKF algorithm is an application of linear 

Kalman filter theory to nonlinear systems, the nonlinear system is linearised about the 

/  current state estimate and the standard Kalman filter algorithm applied to the resultant 

time-varying linear system. 

Before proceeding with the derivation of the EKF algorithm for HF channel 

estimation it is possible to illustrate, by a simple example, its relationship to the MVK 

estimator of section 4.2. Figure 4.3 illustrates a simple communication system, the 

channel being of order two, each of the taps is generated by passing white noise 

through a simple first order autoregressive filter. If the MVK estimator was applied to 

this channel then the state vector would be j = [ a 1  a2 ]T  but in the case of the 

extended Kalman this would become, 4 = [ a 1  a 2 9  ]' where ,Q represents an estimate 

of the gain of the filter in the tap generation process. Clearly then the algorithm is no 

longer simply estimating the taps of the channel but also the parameters responsible for 

the variations in the tap weights. 
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The state-space representation of the channel model, as described by (4.1) and 

(4.2), is converted to a nonlinear system by augmenting the state vector of the linear 

system with the stationary parameters that make up the tap generation model. The key 

to the performance of the EKF algorithm lies in the accuracy of the initial linearising 

approximation made to the nonlinear system. Therefore, in order to ensure that the 

EKF algorithm ,  has a good initial estimate, ( thus ensuring good convergence 

behaviour ), an LMS algorithm was used to carry out the initial training of the 

algorithm. 

4.3.1 State Space Formulation 

As has been stated previously the Kalman filter is not optimal for nonlinear 

systems, the problem of optimal filtering for nonlinear scenarios being considerably 

more complex than in linear system theory. Normally an exact solution via recursive 

methods is not possible, the conventional approach has been to adapt standard linear 

algorithms and determine their performance. The EKF algorithm is simply an 

extension of the conventional linear Kalman filter algorithm to a first order nonlinear 

system which has undergone a first-order linearisation. 

By using the state-space description of the channel model as described in 

equations previously, the state vector 1* = [X 0  X 1 
 ][ 

is augmented with the filter 

coefficients such that the augmented state s equals [X 0  X 1  C O  C 1  ]f. The system is 

now a nonlinear system and in order to apply the EKF it is necessary to obtain the 

state transition and measurement ( or observation) matrices. 

This is achieved by the following substitutions in the state equations of the 

system, X, (k) = X(k) + 8X, (k) and C = c + 8C where x and c may be 

considered as reference states. When these substitutions are made in equations (4.1) 

and (4.2) then, 

X(k) + 3X 0(k) = X(k) + 8X 1 (k) 	 (4.12) 

and, 
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x(k) + 6X 1 (k) = V(k) - [ C(k-1) + 8C 1 (k-1) ] [x(k-1) + 3x 0(k) I 
- [ c (k —1) + 8C 0(k -1)1 [x (k —1)+ 8X 1 (k —1)] 	 (4.13) 

result. 

Once all the terms have been multiplied out equations (4.12) and (4.13) become 

8X 0(k) 
	

(4.14) 

and 

8x 1 (k) = v(k) - x (k -1')6C 0(k -1)- C (k -1)8x 1 (k -1) 

- 8X 0(k -1)C (k —1) -  X (k -1)8C 1  (k —1) (4.15) 

If this process is carried out for all six states then the resulting time variant state 

transition matrix, now termed A k  may be written as, 

01 00 00 0 0 

—c 1  —c 0 0 0 0 —x —x 
00 01 00 0 0 

0 0 —c —c 0 o —x —x 
00 00 01 0 0 

0 0 0 0 —c; —c—x—x; 
00 00 00 1 0 
00 00 00 0 1 

similar arguments can be applied to the measurement matrix resulting in, 

Hk = [ xo 2xg x 1  2x 1 x 2 2x 2  —(x 0 X + X1  + x2Xh ) 

+ X1  + X2  )I 
where x represents constituents of the input signal vector. Table 4.1 details the 

algorithm in full making use of the natural block structure. 

It should be noted at this point that this realisation of the EKF algorithm assumes 

only the form of the channel model, it does not force a Butterworth form onto the tap 

generation filter, merely a second order section structure and as a result the stability of 

the filter is not guaranteed. This problS can be overcome by ensuring that the initial 

estimate was reasonably accurate via an LMS algorithm and also if neccessary by 

monitoring the poles of the filter. If the poles of the estimated filter are outside the 

unit circle, then by reflecting them inwards along their radii the filter's stability can be 

maintained. Ovbiously if the EKF algorithm converges that the filter is being 
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Description Equation 

State estimate 1(k+1) = Ak 1(k) + K(k)[y(k) - Ck i(k)I 

.f (0) = io 

State estimate O(k + 1) = Ô(k) + L (k )[y (k) - CI (k)] 

O(k) = 6 0  

Kalman gain estimate K(k) = [A k  E 	(k) C[ + Mk  2f2 (k)C T 
 

+ A k EI2(k)D[ 

+ Mk12(k)Df + s ] 

Kalman gain estimate L (k) = [ 	12(k )T  C 	+ 222(k) D[] 	k 

Error covariance estimate Pk =  C,, E 11 (k )Cj' + C,, 	12 (k )D[ 

+ D,,E12(k)C1 + D,,E22(k)D[ + R 

Covariance estimate E11(k+1) = A,,E 11A[ + A,,E 12M[ 

+ M,,E(k)AT+ M,,E 12 (k)MT 

—K(k)P,,K T (k) + Q; E(0) = E 101 

Covariance estimate 12 (k + 1) = A,, E 12 (k) + M,, E 22 (k) 

- K(k)P,,K T (k); 	E12(0) = 	i2 

Covariance estimate 222(k +1) = 	22(k) - L(k)P,,LT(k); 	22(0) 	22 

This form assumes the state space description of equations (4.1) and (4.2), and utilises 

the natural block structure shown below where the augmented state is 

• 	s(k) 
= J 	1 

and the Kalman gain and Covariance matrix being similarly sectioned as below, 

= [K(k) 1 	 [E11 (k) 12 (k) 
K(k) 	

[L (k)]' E(k) - [ 2(k) E 2 (k) 

Table 4.1 - EXTENDED KALMAN FILTER ALGORITHM 
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approximated accurately. to a MSE value approaching the noise floor it would be 

reasonable to assume 

4.3.2 Innovations Based Representation of the EKF Algorithm 

In past applications of the EKF method [89-91] has exhibited an alarming 

tendency to give biased estimates or to diverge if the initial linearisation is inaccurate. 

Detailed analysis of the convergence behaviour of the EKF algorithm is a difficult 

problem and it was not until the publication by Ljung of [92] that the reasons for the 

convergence difficulties were shown to be related to a combination of factors, such as 

incorrect specification of the system noise covariances and the lack of coupling between 

the Kalman gain and the parameter estimates. Ljung also demonstrated that 

convergence, at least to a local minima, was guaranteed if the algorithm was modified 

to incoporate some coupling between the Kalman gain and the parameter being 

estimated. Unfortunately this increased the complexity of the algorithm considerably, 

however as Ljung demonstrated if an innovations representation of the original system 

is used for the initial linearisation procedure rather than the conventional state space 

then a less complex algorithm results. Consequently in this section an innovations 

based representation of the algorithm is derived. For detailed discussions on the 

applications of the innovations approach to linear least-squares estimation Kaliath et al 

in [93-99] have explored the matter in great depth and Anderson and Moore in [63] 

provide useful discussions. 

What is meant by an innovations representation? As has been stated previously 

the Kalman filter is optimal in the mean square error sense for systems described by a 

set of linear difference equations as described by equations (4.1) and (4.2). It is also 

true to say that one Kalman filter may be optimal for many different signal models, as 

discussed in[64], and [63] although it's performance may alter between the models. 

That is to say that although the filter gain may remain constant for various models the 

error covariance will be different. These signal models, which have the same Kalman 

filter have in common however the same output covariance. That is the Kalman filter 
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is determined by the covariance associated with the particular observation (or 

measurement) process as opposed to the particular details of the signal models. In this 

mapping of many signal models to one Kalman filter there is one model which is 

important, this being the innovations process, so called as a result of the white noise 

driving process being identical to the innovations process of the associated filter. There 

are many properties associated with the innovations model the most important being 

that it is causally invertible, i.e. the input noise process may be obtained from the 

output process in a causal fashion. 

In order to obtain the innovations form of the EKF for the problem posed here it 

is necessary to obtain an innovations representation of the channel model. If the usual 

model of the HF channel is assumed, as defined in the previous section by equations 

(4.10) and (4.11), then the innovations form of the channel model may be written 

down as[ 63], 

= FT + Kk ek , 	
(4.16) 

and, 

Yk = uA + EL. 	 (4.17) 

Where the innovations sequence, EL, is defined as; 

Ek = Yk - 11k & 	 (4.18) 

where Yk  is the output and 14 the measurement matrix, (as before), and the current 

estimate of the state. 

In order to obtain the Kalman gain, Kk , it is necessary to define the quantities 

Tk, M L , Pk, L k  and f1k as in[63], so that the Kalman gain may be obtained recursively 

from, 

- (FTLJjL - Mk )fl 1 	 (4.19) 

The covariance associated with the innovations sequence, CL, is termed Ilk being 

defined as E [EL €fl and obtained recursively from, 

nk = Lk — LLTTLLA. 	 (4.20) 

Where Lk represents E [YLYJ]  and is the covariance of the output sequence Yk  being 
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obtained recursively from, 

Lk = 	+ Wk. 	 (4.21) 

The covariance of the state 4 being Pk,  that is Pk = E [ia,fl and obtained from the 

recursion, 

Pk +!.FPkFT  + GkQkGI. 	 (4:22) 

The quantity Mk representing the cross-covariance of the state and the observation 

sequence being obtained via, 

lv!,, = FP,,ff,. + G,,S,, 	 (4.23) 

with the sequence 7',, representing the covariance of £ that is 7',, = E[ZAk] and given 

that T 0  = 0 then, 

',, 	= FT,,FT + (FT,,LL,, - Mk ) ( L,, - ll[T,,II,, )-1 	 (4.24) 

( FT,,LL,, - M,, )T 

The innovations form of the extended Kalman filter may then be written down directly 

as before, Table 4.2 details the algorithm in full. 

4.3.3 FINITE PRECISION CONSIDERATIONS 

As was discussed in section 4.2 in most applications of Kalman filtering modelling 

errors arise due to the imperfect knowledge of the system being observed. This 

concept may also be applied when the finite nature of the digital machines on which 

the algorithm is implemented are taken into account as was discussed previously in 

chapter 3. The inherently complex nature of the EKF algorithm ensures that it will 

suffer from such errors as a result of digital word truncation and round off errors in 

matrix multiplication. 

There are two possible approaches to implementing the solution to this numerical 

stability, the whole identification process could be restarted and the algorithm 

reinitialised to the original preset values. However, this would require complete 

retraining of the algorithm and is clearly unattractive. Alternatively detection of the 

onset of numerically inspired divergence could be monitored by some means and some 



Description Equation 

State estimate .f(k+1) = A k i(k) + Kk€(k) 

State estimate 4(k+1) = 4(k) + L(k) c(k) 

Kalman gain L (k) = [ E12(k )T  C 	+ 222 (k )D1] 

Covariance matrix 11 (k+1) 	Ak12 + Mk 	22(k) -  K(k)A k L T (k) 

Covariance matrix 22(k + 1) = E22(k) - L (k )A(/C )LT  (k) - 8E 22 (k ) 22(k) 

Log likelihood A(k) = A(k —1) + 	E(k)E(k) - A(k-1) I 

This formulation assumes the state space model previously described in equations 

(4.1) and (4.2) and uses the natural block structure as in table 4.1 

Table 4.2 - INNOVATIONS FORM OF EXTENDED KALMAN FILTER ALGORITHM 



form of partial reinintialisation invoked as in Lin[81]. A more fundamental approach 

to improving the numerical stability of the algorithm could be achieved by the use of 

orthogonal decompositions such as rotations or reflections as in[75, 76]. In this work it 

is considered sufficient to demonstrate the performance possible by the use of a-priori 

knowledge and the development of numerically stable techniques is left until a later 

date. 

4.4 A-PRIORI KNOWLEDGE AND THE LMS ALGORITHM 

4.4.1 Introduction 

The performance of various adaptive HF channel estimators have been studied so 

far, the results may be summarised as follows:- 

Minimum Variance Kalman (MVK) estimator:- this estimator requires full a-priori 

knowledge of the channel and as a result is not implementable. However it provides 

the lowest achievable MSE bound on any HF channel estimator 

EKF algorithm:- this technique relies on partial a-priori knowledge of the channel 

and its performance approaches that of the MVK, but it is very computationally 

complex and is liable to suffer from numerical instability consequently making 

implementation difficult. 

Adaptive FIR filters (LMS/RLS algorithms):- these techniques have no a-priori 

knowledge of the channel and consequently have the poorest performance although the 

LMS is the least computationally complex.. 

Clearly the ideal estimator would, be one which had a performance approaching 

that of the MVK but with a level of computational complexity comparable with the 

LMS algorithm, as illustrated in Figure 4.4. This section considers one approach in 

attempting to achieve this. 

Essentially the LMS recursion is increased from a first order to a second order 

recursion by utilising a prediction filter which incorporates partial a-priori knowledge 
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of the tap generation process. The algorithm was implemented on computer as a set of 

parallel prediction filters and LMS algorithms (as illustrated in Figure 4.5), each 

prediction filter catering for a possible fade rate. 

The illustration in Figure 4.5 bears a striking resemblance to the time sequenced 

adaptive filter suggested by Ferrara and Widrow in[97], the difference lying in the 

presence of a prediction filter. In their application of enhancement of 

electrocardiogram traces, Ferrara and Widrow adopted a similar approach to here in 

that they utilised a-priori knowledge of the signal being analysed to improve the 

performance of their system. - 

4.4.2 Algorithm Development 

Again assuming the state space description of the tap generation model of the 

channel, a prediction filter for each of the taps may be constructed. The ideal input 

for these prediction filters would be the actual taps, which are of course not directly 

observable. However, the estimate of the taps from the LMS algorithm is available 

and this may be used, although it is in fact a noisy observation. The predicted value 

of the taps obtained may then be used in the LMS algorithm by increasing the order of 

the recursion from a first to a second order. 

In order to derive the required prediction filters directly, it would be necessary to 

carry out a minimum phase spectral factorisation on the tap generation process, this 

would be both difficult and computationally intensive since the input of the filters is a 

contaminated tap estimate. As a result a Kalman filter approach is adopted since this 

is-equivalent for white noise processes as is the case here. / 

If the representation of the channel specified previously is used once again then it 

is possible to develop a one stage predictor algorithm[101], thus, 

4 -1  = FS:? + 
	

(4.25) 

where Vk = Ilk - 11k it:?, i.e. the error in the tap estimate and the Kalman gain, 
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K' is obtained from, 

	

= Fk v1 (k/k -1)HIV;'(k). 	 (4.26) 

The covariances V1 (k/k —1) and V(k) are defined by, 

	

V,(k/k -1)E[(sk 	it )  (Sk _ it) F] 

and, 

V(k) = E [ vk Vj 

respectively and may be obtained from the following equations, 

	

V5 (k+1/k)= F V1(/cIk_1)FT  + Gk V(/c)G[ 	 (4.27) 

- vk 	ri un,', .....1\ CT 	 - 
"k+1 '1k 	L) £ 	 - 

and, 

V,(k) = H[V 5 (k/k-1) + V(k). 	 (4.28) 

If the variance and gain equations are taken to the steady state values by 

computer simulation, then the steady state gain, K,  will be obtained and may then be 

used for prediction. This mechanism is then used to increase the recursion of the LMS. 

If the variance and gain equations (eqns. 4.25-4.27) are taken to the steady state by 

computer simulation then the steady state gain, K2 is obtained and this can be used in 

the algorithm fqr prediction as detailed in the equations shown below. 

= "k £t 1 	 (4.29) 

that is the predicted value of the tap based on an estimate of the state obtained from, 

and, 

-'k-I - r -'k -I 
S& (4.30) 

- k-2 + ri:
k-I 	" 

_Ckk-2 
- k-1 	Ll.ss I " -  I 

That is, since the actual taps are not observable then the estimate obtained from the 

LMS, Ekl, as illustrated below, is used to aid the prediction of the state. 

+ 2P..tk...ICkl 	 (4.32) 'k -I =  

where Xk_1 represents the input signal vector and the error ekl is obtained from, 

= Yk-! 	Yk-1 	 (4.33) 

that is the output of the channel less the estimated output where the output 
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Yk-1 = hk_lxk_1 + ii,, where 11k  is additive white gaussian noise. The estimated output 

is, 

Yk-1 - "k _lXk 1 
	 (4.34) 

Table 4.3 below summarises the modified LMS algorithm. 

Description of operation Equation 	-- 

predicted value of tap based on state estimateS = C4 1  

predicted value of state based on an estimate of the state j 	= F 

estimate of state fl:? = 	:? +, [k-i - 

estimate of tap coefficient 'k-1 = 	+ 2Isxk_Iek...1 

the error ek_1 = Yk-1 - Yk-1 

estimated output Yk -1 = 	- 

(Where Xk_1 represents the input signal vector.) 

Table 4.3 - LMS Channel Estimator with a-priori Modifications 
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4.5 PERFORMANCE COMPARISONS 

The simulations carried out which are reported here were performed for a 

channel of fade rate 10.0Hz and with and additive noise power set at -50dB. 

The performance of the LMS, MVK and EKF algorithms are illustrated in Figures 4.6 

to 4.10. Figures 4.6-4.8 show the performance for white in put signal conditions and 

Figures 4.9-4.10 for coloured input signal, (eigenvalue ratio of 11.8) conditions. Table 

4.4 below summarises the performance of each of the algorithms as channel estimators 

for white and coloured inputs. 

Figure Algorithm EVR Steady-State MSE 

4.6 MVK 1 -45dB 

4.7 Modified LMS 1 -25dB 

4.8 EK 1 -45dB (*) 

4.9 MVK 11.8 -43dB 

4.10 EK 11.8 -28dB (!) 

* - achieved after initialisation with LMS 	 - 

- algorithm diverges due to numerical instability very quickly 

Table 4.4 - Summary of performance of algorithms in simulations 

Comparing the performance of the LMS with priori knowledge that of the MVK it is 

clear that the LMS is some 20dB from the noise floor. This is as a result of the 

contribution to the error by the time variations in the system as discussed by Macchi 

in[52] and described in chapter 3. It can be seen from Figure 4.8 that the EKF 

provides an improvement in perfromance of some 5-20dB. The EKF utilised the LMS 

to provide an initial estimate and as can be seen clearly improves upon it. Figures 

4.9-4.10 illustrate the algorithms performance under similar conditions to those above 

except that the input signal is now coloured. The EKF approaches that of the MYK 



which is independent of input signal colouration since its performance is based on the use 

of a-priori knowledge about the channel model. Unfortunately the performance of the 

EKF degrades with time, this is due to the inherent numerical instability of the algorithm 

as discussed in section 4.3.3. 
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4.6 CONCLUSIONS 

In this chapter three new algorithms for the HF channel have been developed 

each performing with various degrees of success. The MVK requires full a-priori 

knowledge, a constraint which precludes implementation. The EKF although providing 

a good performance in the steady-state MSE sense is complex and numerically 

unstable. Finally the PLMS is the least complex but perfqrmed least well, however it 

has not fully been explored and the work of Clark et al in [102-104] offer some hope 

that this type of technique may still be useful if a suitable predictor filter was utilised. 

In summary this work has demonstrated the possibility of utilising a-priori 

knowledge of the channel being identified to improve the performance. Ultimately 

such an estimator would be incoporated in an equaliser where the channel estimation 

and decision process are seperated, as reported in, Mulgrew paper 1987 the following 

chapter now considers such structures. - 
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Chapter 5 

ADAPTIVE EQUALISATION OF THE HF CHANNEL 

5.1 INTRODUCTION 

All the chapters preceeding this one have considered channel estimation only, in 

this chapter adaptive equalisation is considered. Equalisation is used in communication 

systems to compensate for the distortion introduced into the transmitted data sequence 

by the communications channel, Quershi in [105] illustrates several applications. When 

an equaliser is termed adaptive, it is assumed capable of some form of self-adjustment 

to deal with variations which arise in the channel impulse response consequently 

causing distortion. This self-adjustment is normally achieved by incorporating an 

adaptive algorithm such as the LMS or RLS into the structure to set the tap weights of 

the equaliser based on some criterion, such as MSE, to a value which minimises the 

distortion in the system. 

This chapter considers three possible structures, one novel, and their MSE 

performance in the HF communication scenario. The three structures are: 

A conventional decision feedback equaliser (DFE) which utilises a Godard-Kalman 

adaptive algorithm to carry out the tap weight update. 

A linear Kalman equaliser which utilises an LMS channel estimator, reported 

in[29], separating the channel and sequence estimation processes. 

A Kalman based equaliser which like the above uses an LMS algorithm to carry 

out the channel estimation but which incorporates an element of decision feedback. 

The structures studied in this chapter are detailed in the following sections, 

however their relationship to each other may be shown in a qualitative manner by 

Figures 5.la-c. Figure 5.1a illustrates, in block diagram form, a conventional DFE in 

which the adaptive estimation and data equalisation functions are performed at the 

same time, Figure 5.1b represents the adaptive Kalman equaliser reported in [29] and 
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as can be seen the channel estimation and data equalisation processes have been 

separated. The final illustration, Figure 5.1c, depicts the novel adaptive Kalman 

decision feedback equaliser, where as in Figure 5.1b, the estimation and equalisation 

processes have been separated but now decisions are fedback into the structure. 

This chapter is structured as follows, initially the equalisation problem is 

highlighted and existing structures which have been reported elsewhere summarised 

with their advantages and disadvantages discussed. Following on from this, the 

development of the adaptive Kalman equaliser of [29] is briefly illustrated and used to 

develop the novel Kalman decision feedback structure. Finally comparisons of the 

performance of the three structures considered here are presented and conclusions 

drawn based on the results, the relative performances considered in terms of their 

steady state MSE. 

5.2 EQUALISER STRUCTURES 

In this section a brief resume of existing equaliser structures is presented before 

illustrating the development of the Kalman decision feedback structure. 

5.2.1 Introduction 

As has been intimated previously adaptive equalisation of radio and telephone 

communication channels is used to compensate for the time dispersion introduced to 

the transmitted data sequence. This time dispersion introduces intersymbol-

interference (1ST) into the transmitted data sequence. The nature of this 1ST in the HF 

channel can be appreciated by consideration of the multipath nature of the channel 

which results in the energy associated with the transmission of one symbol being 

smeared across several symbol periods as illustrated in Figure 5.2. 

Research over the last twenty years has produced a large body of literature [105] 

and references therein, there are many types of equaliser structure, and they may be 

summarised as follows: 

a) Linear transversal equalisers which in general suffer from an inability to represent 
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the inverse of the channel transfer function adequately. 

Conventional decision feedback equalisers which, although providing a better perfor-

mance than linear equalisers, suffer from a degraded performance due to error propagation 

in the feedback section. 

Maximum likelihood sequence estimation is a technique which is not considered in this 

thesis but whose main disadvantage would appear to be its computational complexity, how-

ever considerable effort is being expended in developing more efficient implementations 

In general most equalisers have two modes of operation, training and decision-

directed. In training mode the transmitted data sequence is known a-priori and is 

termed the training sequence. In this mode the a-priori knowledge of the training 

sequence is utilised to ensure the coefficients of the equaliser achieve the appropriate 

values to mitigate the 1ST. On completion of the training sequence the equaliser 

switches into decision-directed mode, i.e. the data sequence is not known a-priori and 

the equaliser must assume that all decisions it takes are correct. Clearly this may not 

always be the case and the equaliser will clearly suffer a degraded performance in such 

situations. There are some applications, such as microwave line-of-sight 

communication systems[106, 107], where a training sequence is not present. This is 

termd blind equalisation [108]. since the equaliser is required to bootstrap into 

decision-directed mode. It will be apparent that in such situations the level of 

complexity required in the equaliser is much greater than the situation being 

considered here. This is because the system has no prior knowledge of the channel or 

of the transmitted data sequence as would normally be provided by the training 

sequence. 

The selection of coefficients for the equaliser to minmise the effect of 151 may be 

based on many criteria[ 109-1111, the most suitable would be the probability of error. 

However this is a highly nonlinear function and generally not practicable, hence the 

most common criteria is the MSE, which is the sum of squares of all the ISI terms and 

the noise power at the output of the equaliser. Many equalisers operate by generating 
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an estimate of the inverse filter which when convolved with the channel response 

allows the transmitted data sequence to be reconstructed accurately, as in the linear 

equaliser illustrated in Figure 5.3. For conventional DFE's, a feedback filter is inserted 

after the decision device, (as in Figure 5.4), and is used to cancel out any trailing 

intersymbol interference (1ST) by using previously detected symbols, which are assumed 

to be correct. 

In all the situations which will be considered here the equaliser tap weights are 

symbol spaced, however it is perfectly feasible to have fractionally-spaced coefficients. 

In general the spacing is chosen to be T12, where T represents the symbol period. The 

motivation for using a fractionally-spaced equaliser, (FSE), are it's relative insensitivity 

to timing phase and ability to deal with more severe delay distortion than a symbol-

spaced equaliser. However; as in all engineering applications there is a penalty to be 

paid and in this case the complexity is increased since a FSE requires twice as many 

coefficients as a symbol-spaced equaliser. 

A range of adaptive algorithms are used in adaptive equalisation, the two most 

common being the LMS and RLS algorithms which have been discussed in detail 

previously. The LMS offers an easily implementable algorithm but lacks the spectral 

robustness and initial fast convergence of the RLS, which unfortunately is relatively 

complex to implement. The conclusions presented in chapter three suggest that when 

operated as a channel estimator, as opposed to an equaliser, the LMS offers a similar if 

not improved performance, in terms of the steady state MSE achieved, than the RLS 

on channels which are time-varying and this is reinforced by the results reported 

elsewhere[26, 56-581. It is these results which have provided some of the motivation 

for the novel structure considered here, in that the data sequence estimation and 

channel impulse response estimation processes are separated. 

5.2.2 Linear Equaliser Structures 

The simplest structure used for equalisation is the transversal equaliser, Fig. 5.3. 
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If a digital communications scenario is assumed, then the channel may be modelled as 

a discrete tithe transversal filter with additive white Gaussian noise, the output of the 

channel can be written down as, 

yk = ILISk + '1k 	 (5.1) 

where & represents the channel input vector with Xj,k representing it's constituent 

components and Ilk  is the M -point impulse response vector, which may or may not be 

time-variant, with components represented by /11k. In a similar way the equaliser 

output may be written down as, 

= CIZk 	 (5.2) 

where Q represents the N -point impulse response vector of the equaliser and 

Zk 	E Yk Yk-I Yk-2 ......... Yk-N 1 	 (5.3) 

is the vector which contains the N previous channel outputs. It is clear that the 

coefficients of such an equaliser are essentially being selected to force the combined 

channel and equaliser impulse response to approximate a unit pulse. That is, the 

equaliser must approximate the inverse filter of the channel. This requirement results 

in the equaliser suffering from .excessive noise enhancement and sensitivity to sampler 

timing phase[105]. 

5.2.3 Decision Feedback Equalisers. 

In attempt to overcome the performance limitations of linear equalisers, as 

discussed previously, a simple non-linear equaliser was developed, the decision 

feedback equaliser as illustrated in Figure 5.4. Essentially it is a transversal equaliser 

with a feedback section which uses past decisions to cancel out the 1ST associated with 

these detected symbols. 

= cf4 + JBi 	 (5.4) 

where, 

il represents the A coefficients in the feedforward section of the equaliser, 

c,IB represents the B coefficients in the feedback section of the equaliser, and 

i is the vector containing the B previous decisons. 
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The DFE as a result of the feedback section's ability to cancel the 1ST associated 

with past symbols removes the constraint from the feedforward section that it 

approximate the inverse filter of the channel. This means that excessive noise 

enhancement and sensitivity to sampler timing phase is reduced. However it is clear 

that if an incorrect decision is made that it will propagate 'through the feedback section 

thus increasing the likelihood of more incorrect decisions, i.e. error propagation will 

occur. The effect of error propagation has received little attention[112], since for 

many applications the error bursts which would result in error propagation are 

relatively short. In the time-varying HF channel it is clear from previous results 

[56, 113] that this is not the case, consequently a degraded perforipance of the DFE 

results. 

5.2.4 Maximum Likelihood Sequence Estimation 

As was discussed in section 5.2.1 conventional adaptive equalisers utilise the MSE 

criteria in general in order to minimise the 151 in the received data sequence. This is 

not an ideal criterion the probability of error being more suitable but unfortunately 

highly nonlinear. This has motivated many researchers to investigate the use of other 

nonlinear criteria, as in[1141. Such receivers usually use the maximum a-posteriori 

probabability rule[115] to maximise the probability of correctly detecting each symbol 

as in[116], or the entire transmitted sequence. These receivers are termed maximum 

likelihood receivers (ML), the classical ML receiver [114] may be viewed as a bank of 

m' matched filters, where k is the length of the sequence of symbols which come from 

a discrete alphabet of size m. Unfortunately the computational complexity of such 

receivers increases exponentially as the sequence length increases although the Viterbi 

algorithm [117,118] partially overcomes this problem. 

In general MLSE receievers require knowledge of the channel and it is necessary 

to utilise an adaptive chabnel estimator [119] as illustrated in Figure 5.5. This 

estimator will of course only provide an estimate of the channel and this introduces a 

possible source 'of error under severe non-stationary or high noise conditions. Also, 
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although the Viterbi stops the exponential growth in complexity it still places a 

considerable load on any processor, as a result of this much work has been devoted in 

recent years to developing reduced state MLSE detectors as in the following[ 120-1221. 

This coupled with the growth in capability of VLSI techniques ensure that MLSE 

receivers will receive more and more attention in the future. 

5.3 GODARD KALMAN DECISION FEEDBACK EQUALISER 

The conventional DFE structure differs, as has been stated earlier, from the 

linear structure by the addition of a feedback section which is used to cancel out the 

ISI associated with these symbols. The feedback section allows a greater freedom for 

the linear section in selecting tap weight coefficients. Conventional DFE's of this type 

have been found to operate very well over wire line channels but in rapidly time-

varying environments the performance appears to be degraded by en -or propagation in 

the feedback section. 

In this chapter the algorithm which was used to adjust the tap weight co-

efficients of the equaliser was the algorithm postulated by Godard [30] in 1974 in 

which he chose not to replace the equaliser with a conventional Kalman filter, but 

rather adopted a transversal equaliser structure and used the Wiener solution for the 

optium tap weights as a starting point. The algorithm offers very fast initial 

convergence and is spectrally robust but suffers from relatively high level of complexity. 

To apply it to the DFE, the observation vector contains both the feedforward and 

feedback coefficients, the algorithm for the DPE being summarised in Table 5.1. The 

solution obtained by Godard was for a stationary channel and its application was 

extended to slowly time-varying channels by means of exponential data windowing. 

In terms of the conventional Kalman filter equations, Godard assumed that the 

state transition matrix was the Identity matrix and the state vector chosen to be the tap 

weights of the equaliser. The selection of states for the application of Kalman filter 

theory to data equalisation is crucial and is discussed later. 
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Description of operation Equation 

tap weight vector estimate & (k) = ti (k —1) + K(k) [ x(k) - II (k)! (k —1) 

Kalman gain vector K(k) = 1(k —i)& T (k) [a (k) y(k —i)& T (Ic) + 

Covariance matrix estimate 1(k) = 1.0/X[ I - K(k)& (k) ]L/ (k —1) 

Where the estimated 	tap weight vector 	is 

& (Ic) = [a 0  (k) a 1 	(Ic) ..... a1 	(Ic) fi 	(Ic) 6 1  (Ic) b 	(Ic)], 	the Kalman 	gain vector is 

KT (Ic) = [K o  (Ic) K 1  (Ic) ..... K, (Ic) 1 with f the number of feedforward, taps and Ji, the 

number of feedback taps. 

Table 5.1 - Summary of Godard-Kalman DEE Equations 

/ 	5.4 AN ADAPTIVE KALMAN EQUALISER 

In [29] Mulgrew and Cowan presented a novel equaliser structure, the derivation 

of which may be summarised as follows. Initially, a channel model based on a FIR 

filter was postulated and the constraint that the optimum transversal equaliser for such 

a channel, which requires minimisation of its MSE subject to the impulse response 

being finite, causal and stable is relaxed. The new relaxed constraint requires only that 

the filter be causal and stable, this results in the solution to the minimisation problem 

being provided by a Wiener infinite impulse response (IIR) filter. 

The motivation for considering an HR structure was to try and overcome the 

limitations of conventional FIR equaliser structures. In many applications FIR 

solutions have been found to be perfectly adequate, and they are generally preferable 

since they are unconditionally stable. However these FIR filters suffer from 

indeterminate order when required to model transfer function poles, especially poles 
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close to the unit circle. The obvious alternative has been IIR filters, but, IIR filters are 

not unconditionally stable The IIR equaliser has received little attention recently with 

the development of the DFE. The DFE which although it has a superior MSE 

performance compared to an HR equaliser when the number of signal levels are low 

or the noise is high, suffers from error propagation unlike the IIR equaliser. The 

development of the DFE has restricted the wider application of IIR structures because 

of the improvement it offers over FIR structures and the lack of guaranteed stability 

associated with IIR filters. However, DFE structures suffer from error propagation as a 

result of the feedback of previously detected symbols, the IIR based structure offerñ a 

means of overcoming this problem. 

The Wiener UR filter offers advantages over the conventional linear (FIR) 

equaliser in terms of the order required for the same level of performance for 

minimum phase channels. However, the realisation of such a filter would require a 

minimum phase spectral factorisation, this would present a major difficulty. The 

solution adopted was to use a Kalman filter to realise the solution since, if the 

processes are stationary and the observation noise white, then the steady state Kalman 

and Wiener IIR filters are identical. The FIR filter model of the communications 

channel in common usage although readily adapted to a state space representation, and 

hence to a Kalman filter, requires care in the selection of states which will constitute 

the state vector. 

The care in the selection of states for the state vector is because the FIR filter 

model of the channel assumes M taps, that is to say it may be completely described by 

M —1 states. If this approach was adopted however it would result in the plant and 

observation noise terms being correlated. The Kalman filter for such a situation, 

although it exists, would only be conditionally stable, the stability being dependent on 

the channel impulse response. If the channel is described by a state vector with M 

states then the appropriate Kalman filter, as in [123] and[124] is unconditionally stable. 
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In order to deal with non-minimum phase channels, a fixed lag smoothing form 

of the Kalman filter was used. Fixed-lag smoothing [63] is concerned with the on-line 

smoothing of data with a fixed delay d between the signal being received and an 

estimate being made. As was intimated in section 4.1 in Kalman filters an estimate at 

iteration k is based on a set of noisy observations, clearly there need be no delay 

between the last observation and the next estimate. However should a delay be 

permitted then it is clear that more observations are available on which the estimate 

may be made. Unfortunately as in all engineering applications although a smoother 

would be expected to provide a better estimate than a filter because it has more 

observations on which to make estimates, a penalty of increased complexity is incurred. 

A fixed lag smoother would normally imply that for a fixed lag, d, a state vector 

augmented to, 

[jT (k) sj(k —1) ..... f(k —d) ]. 	 (5.5) 

However, this is unnecessarily complex because the state transition matrix is simply a 

shift matrix, thus the state vector is augmented to contain d + 1 elements, 

	

= [s(k)s(/c-1) ...... s(k —M + 1) 	. s(k—d)], 	 (5.6) 

where d is the fixed lag and M is the number of taps in the channel. The state 

transition equation then becomes, 

L(k) = Q3..(k-1) + frs(k), 	 (5.7) 

where a is a (d + 1) x (d + 1) shift matrix and k is a vector with (d + 1) elements, 

hr = [100....O]. 	 (5.8) 

The observation equation is clearly, 

x(/c) = h Ts.(k) + n(k), 	 (5.9) 

	

where / is a column vector with (d + 1) elements, 	- 

hT_[hh 	JIM_100 	0], 	 (5.10) 

that is the channel tap weight vector augmented to d + 1 elements by the addition of 

zeros. 
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The problem still remains however of making the equaliser adaptive, since 

knowledge of the channel impulse response is required and this is achieved by using an 

LMS algorithm as a channel estimator to provide the required estimate. Some measure 

of the observation noise in the system is also required for the Kalman structure and 

this is achieved by the recursion shown below, the derivation of which is detailed 

in[29], 

â(k+1) = ( 1 - 11M )â 2(k) + e 2(k+1)/M, 	 (5.11) 

where e (k + 1) is the error obtained from the LMS. This recursion also provides a 

measure of the model uncertainty in the system and therefore offers a means for model 

order reduction by using the residuals to provide some information on any paths not 

modelled by the LMS. The structure of the equaliser is illustrated in Figure 5.7. The 

main point to note about the general structure of this equaliser is the separation of the 

state and channel estimation processes, and this approach is extended in the next 

section. The Kalman filter can then be written down directly from these definitions 

and is detailed in Table 5.2. 

5.5 AN ADAPTIVE KALMAN DECISION FEEDBACK EQUALISER 

The motivation in the previous section for adopting an HR structure was it's 

freedom from error propagation. However, the DFE offers an inherent MSE 

performance advantage, as illustrated in Figure 5.7. Figure 5.7 illustrates the 

theoretical MSE performance of both a DFE and an HR equaliser on a stationary 

non-minimum phase channel, whose impulse response was described by 

0.2602r' + 0.928r2  + 0.2602r3 , where the additive noise power was set at -40dB. 

It can clearly be seen that for a range of estimation lags the performance advantage of 

the DFE is constant at approximately 5dB. This inherent theoretical performance 

advantage provides the motivation for the development of the Adaptive Kalman DFE 

now discussed. 

As in development of the previous equaliser, the structure of the channel model is 
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Operation Equation 

state estimate I (k/k) = I (k/k —1) + K(k) [ x(k) - if £ (k/k -1)1 

state prediction 1 (k/k —1) = 	(k —Ilk —i) 

Kalman gain K(k) = E(k/k _i)11T  [LLY(k/k _i)11T  + a3 ] 

Covariance prediction 1(k/k —i) = aJL(k —1/k _i)QT  + 

Covariance estimate JL(k/k) = [I - K(k)tL Jy(k/k —1) 

Tap estimate Li (k+i) = Li (Ic) + 2p. £ (k +1)e(k+i) 

Channel estimation error e(k+i) = x(k+i) - 	T  (k) £ (k+i) 

observation noise estimate d 2  (k + 1) = (i - 11M ) â, (k) + e 2  (k + 1)/M 

The Kalman gain vector is as below, 

K T  (k) = [K 0  (k) K,(Ic) ..... Kd (k) J. 

with the estimated tap weight vector Li (Ic) being used in the d element vector if as 

below, 

LL=[h0h1 ..... hM_lOO 	01, 

Table 5.2 - Summary of Equations for an Adaptive Kalman Equaliser 
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again the starting point. The channel is considered as a FIR filter which can be 

represented in the state space form as shown below, 

i(k+1) = F(k+1/k).(k) + n(k). 	 (5.12) 

where F (k + 1/k) represents the state space transition matrix associated with the 

channel and i(k) is the input data vector. The following observation equations may 

then be associated with this model, 

x i (k) = &TL(k) + n(k) 
	

(5.13a) 

and, 

X2(k) = i(k—d). 	 (5.13b) 

The first equation represents the channel output and the second represents a decision 

feedback term. It is worth noting at this point that it would be possible to have many 

similar observation equations to the second one, that is feedback many decisions. 

However preliminary investigations[ 125], suggested that nothing would be gained in 

terms of performance for a considerable increase in complexity. The two observation 

equations may now be combined as below, 

a(k) = &(k) + &(k). 	 (5.14) 

if being a (d + 1) )< 2 matrix as shown below, 

[h 0  h 1  . 	'M-1 0 0 . . . 01 

1 0 	0...0 	00...lj 

It is clear that the problem presented here is identical to that of the previous 

section, the difference lying in the observation equations, it is necessary then to 

generate the Kalman filter which provides the solution given these particular 

observation :  equations. With the definitions above, this may be done directly and the 

equations are detailed in Table 5.1 It should now be noted that the inversion of the 

innovations term, 

+ 	2]-1, 	 (5.15) 

is no longer a scalar and consequently the inversion of a two by two matrix is required. 

The LMS channel estimator is used in exactly the same way as in the previous structure 
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to provide the tap weight vector estimate and a measure of the observation noise. The 

detailed structure of the equaliser is shown in Figure 5.8. 

The final question which remains is to determine how many states are required 

for the equaliser to operate efficiently, and clearly d + 1, that is the estimation with lag 

delay is d and there is one feedback term. 
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Operation Equation 

state estimate j (k/k) = j (k/k —1) + K(k) 
[ 
x(k) - II 1 (k/k —1)1 

state prediction I (k/k —1) = a i (k —11k —1) 

Kalman gain K(k) = 7(k1k _1)fjT I tLYL(k/k _i)1JT + 	2 j-1 

Covariance prediction 2(k/k —1) = a L/ (k —11k —1) a T  + kk T c,2  

Covariance estimate y(k/k) = [1 - K(k)li ] .TL(k/k —1) 

Tap estimate Ii (k+1) = fi (k) + 2p I (k+1)e(k+1) 

Channel estimation error e(k+1) = x(k+1) 	J T  (k)j (k+1) 

observation noise estimate d, (k + 1) = (1 - 11M ) 6' 	+ e 2  (k + 1)/tv! 

where the Kalman gain vector is as below, 

rK0,0 K01 	.

1 , 0  K 1 , 1 	K 1 , +1  

The estimated tap weight vector 11 (k) being used in the d element vector II as below, 

[h 0  h 1 	hM _I 0 0 	01 

1 0 	0... 	0 	00...l 

Table 5.3 - Summary of Adaptive Kalman DFE Equations 
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5.6 ALGORITHM COMPLEXITY CONSIDERATIONS 

A breakdown of the computation required to process each of the three algorithms 

considered here is presented in this section. Tables .5.4 and 5.5 present the 

computation required for each process in the algorithm given particular values of the 

lag d and the number of taps in the channel. 

This results in the adaptive Kalman DFE requiring 123 multiplications and 99 

additions/subtractions per iteration to carry out the tests performed in this report. The 

adaptive Kalman equaliser required 47 multiplications and 37 additions/subtractions 

and is clearly less complex, the conventional DFE using the Godard Kalman required 

133 operations per iteration which is comparable with the adaptive Kalman equaliserr. 

It is also worth remembering that more computationally efficient implementations are 

possible by utilising the standard matrix algebra techniques as has been demonstrated 

in[75, 76,78]. 
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operation rnult. add/sub. 

y(k/k-1) 11(k) d(M-1)+1 d(M —2) 

HT (k) y(k/k-1) 11(k) + (T M M 

x(k) _ [IT (k)j(k/k_1) M-1 M-1 

.!L(k/k —1)11(k) [ 11 T  (k) Y(k/k-1) 11(k) + d+1 

j(k1k-1) + K(k) [x(k) — If (k) j(k1k-1) d+i d 

K(k)II T (k)V(k/k-1) 

y(k/k-1) — K(k)11 T (k)1(k/k - 1) 

y(k) —h T (k-1)x(k) Iv! M 

2p.&(k)(y(k) — ft T (k -1)i(k)) M+1 

h(k-1) + 2 1st(k) (y(k) — h T (k -1)(k) ) M 

(1—fr)a(k-1)+ e2(k) 3 1 

no. of states = d+ 1 

no of channel taps = M 

Table 5.4 - Adaptive Kalman Equaliser Complexity 
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operation mult. add/sub. 

M(k1k-1)11(k) 2(d+1)M 2(d+1)(M-2) 

UT (k) y(k1k-1) 11(k) ± a, 4M 4M-4 

x(k) - UT(k) j(k/k —1) 2(M-1)+2(d+1) 2M-2 

y(1k-1) 11(k) [ff T (k) 11 (k/k-1) 11(k) + gz 	]' 4(d+1)+4 2(d+1)+1 

i(k/k—l) + K(k) [x(k) - II T (k) j(klk —1)1 2(d+1) 2(d±1) 

K(k) 11 1 (k) v(klk —1) 
2(d+1)M+(d+1)2  2(d+2)(M —2)+(d+1)2  

y(k/k —1) - K(k) Er (k) y(k/k —1) 

y(k) —h T (k-1)a(k) M Al 

2p.a(k)(y(k) —ftT(k-1)(k)) M+1 

k-1) + 2 p &(k) (y(k) —ft T (k-1)&(k) ) Al 

(1— fr)e(k-1) 
+ e2(k) 3 1 

no. of states = d+2 

no. of channel taps = M 

Table 5.5 - Adaptive Kalman DFE Complexity 
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5.7 PERFORMANCE RESULTS 

The results presented in this section detail the performance of the three equaliser 

structures under a variety of channel scenarios. Initially simulations are presented for a 

stationary channel situation. These tests were performed to determine if the inherent 

performance advantage, in terms of the steady state MSE achieved, of decision 

feedback structures was actually achieved. Subsequently tests were performed on the 

channel simulator discussed in chapter 2 to' determine the level of performance 

achieved under the time varying conditions of the HF channel. 

Channel No. Impulse Response Classification 

1 0.6082 + 0.7603 z 	+ 0.228 z 2  minimum phase 

2 0.2602 + 0.9298 z 	+ 0.2602 z 2  non-minimum phase 

Table 5.6 - CHANNEL IMPULSE RESPONSES 

All of the simulations were performed on a Sun 3/60 workstation using the 'C' 

computer language. The two stationary channels used in these simulations are detailed 

in table 5.6 above. In the HF channel simulations the Doppler spread was 1Hz, as 

indicated on the plots. In all cases an additive noise power level of -50dB was adopted. 

The tests were performed for 100% and 50% periodic retraining on the stationary 

channels and 50% for the HF channel. The 100% retraining being used to provide a 

reference. When periodic retraining is 50% only 50 out of every 100 symbols is known 

a-priori, the rest of the time the equaliser is operating in decision directed mode. 

It is clear from the results on the stationary channels, illustrated in Figures 5.9-

5.18 and summarised below in table 5.7, that the best performance, in terms of final 

MSE, is offered by the the decision feedback structures, This is particularly noticeable 

on the non-minimum phase channel where an improvement of approximately 10dB is 

available, this is as expected. 
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Figure Equaliser Channel % training Steady-state MSE 

5.9a Godard-Kalman DFE 1 100% -40dB 

5.91, Godard-Kalman DFE 2 100% -30dB 

5.10a Godard-Kalman DFE 1 50% -40dB 

5.10b Godard Kalman DFE 2 50% -30dB 

5.1la Adaptive Kalman 1 100% -35dB 

5.12a Adaptive Kalman 1 50% -35dB 

5.13a Adaptive Kalman 2 100% -22dB 

5.14a Adaptive Kalman 2 50% -22dB 

5.15a Adaptive Kalman DFE 1 100% -38dB 

5.16a Adaptive Kalman DFE 1 50% -38dB 

5.17a Adaptive Kalman DFE 2 100% -30dB 

5.18a Adaptive Kalman DFE 2 50% -30dB 

Table 5.7 -Steady-state MSE of equalisers on stationary channels 

In the HF scenario, as Figures 5.19-5.21 illustrate, the results are markedly 

different from the stationary case. Table 5.8 below summarises the performance of the 

various equalisers for these simulations. 

Figure Equaliser Fade rate % training Steady-state MSE 

5.19 Godard-Kalman DFE 1Hz 50% -15dB (*) 

5.20a Adaptive Kalman 1Hz 50% -23dB 

5.21a Adaptive Kalman DFE 1Hz 50% -23dB 

* - algorithm diverges due to numerical instability. 

Table 5.8 -Steady-state MSE of equalisers on HF channel 
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It is clear that both adaptive Kalman structures offer a lower final MSE than that achieved 

by the conventional DFE by some 5-10dB. This rather suprising result may be explained in 

several ways. The inherent robustness of channel estimator to decision errors compared 

with channel equalisation, the separation of the channel and sequence estimation processes. 

In addition both of the adaptive Kalman structures offer greater freedom in selection of the 

number of taps. That is for a conventional equaliser if the length is increased beyond a cer-

tain point, for a fixed channel length, the increased algorithm noise this causes outweighs 

any advantage in improved performance the additional taps offer. The numerical sensitivi-

ty of techniques such as the Godard Kalman algorithms is also clearly illustrated in Figure 

5.19. 
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Fig. 5.9a — MSE performance of Godard-Kalman DFE on 
channel 1, additive noise power=-50dB. 
(5 feedforward taps, 2 feedback taps, Iag=4,100% training). 
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Fig. 5.9b — MSE performance of Godard-Kalman DFE on 
channel 2, additive noise power=-50dB. 
(5 feedforward taps, 2 feedback taps, lag=4, 100% training). 
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Fig 5.1 Oa - MSE performance of Godard-Kalman DFE on 
channel 1, additive noise power=-50dB. (5 feedforward taps, 
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channel 2, additive noise power=-50dB. (5 feedforward taps, 
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Fig 5.11a - MSE performance of Adaptive Kalman equaliser on 
channel 1,additive noise power=-50dB, (6 states, 100% training). 
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Fig 5.11 b - MSE performance of LMS channel estimation for 
Adaptive Kalman equaliser on channel 1, additive noise 
power=-50d B, (3 taps, 100% training). 
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Fig 5.12a - MSE performance of Adaptive Kalman equaliser 
on channel 1, additive noise power= -50dB, 
(6 states, 50% training). 
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Fig 5.12b - MSE performance of LMS channel estimator for 
Adaptive Kalman equaliser on channel 1, additive 
noise power=-50dB, (3 taps, 50% training). 
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Fig 5.13a - MSE performance of Adaptive Kalman equaliser 
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Fig 5.13b - MSE performance of LMS channel estimator for 
Adaptive Kalman equaliser on channel 2, additive noise 
power=-50dB, (3 taps, 100% training). 
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Fig. 5.14a - MSE performance of Adaptive Kalman equaliser 
on channel 2, additive noise power=-5OdB, 
(6 states, 50% training). 
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Fig 5.14b - MSE performance of LMS channel estimator for 
Adaptive Kalman equaliser on channel 2, additive noise 
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Fig 5.15a - MSE performance of Adaptive Kalman OFE on 
channel 1, additive noise power= -50dB, (7 states, lag=6, 
100% training). 

1' 
0 

C 
I- 

C) 

-20 

-30 

-40 

-60 

-so 

03SS 	 7. 	EOS 

no. of iterations 

Fig. 5.15b - MSE performance of LMS channel estimator for 
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Fig 5.16a - MSE performance of Adaptive Kalman DFE on 
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lag=6, 100% training) 
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Fig. 5.18a - MSE performance of Adaptive Kalman OFE on 
channel 2, additive noise power=-50dB, 
(7 states, lag=&, 50% training). 
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Fig. 5.18b - MSE performance of LMS channel estimator 
for Adaptive Kalman DFE on channel 2, additive noise 
power=-50dB, (3 taps, 50% training). 
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5.8 CONCLUSIONS 

It is clear from the results presented here that the adaptive Kalman IIR offers the 

best performance in the HF channel of the three structures tested here. This is based 

on the final MSE achieved and the computational complexity of the algorithm. The 

adaptive Kalman DFE would appear to offer a better MSE performance in several 

channel scenarios. However, it should be noted that it is likely to suffer a degradation 

in performance due to error propagation as in the conventional DFE. 

It is worth noting that if a more accurate channel estimator, of reasonable level of 

complexity, could be developed then an improvement in performance could be 

expected from the adaptive Kalman based structures. 
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Chapter 6 

CONCLUSIONS 

In this thesis the problem of designing both adaptive algorithms and structures for 

use as channel estimators and equalisers within the HE communications scenario has 

been addressed- In this chapter the main conlusions of this work are highlighted with 

suggestions of possible further research in the area. 

In chapter 3, a study of the performance of two existing adaptive algorithms, the 

LMS and RLS, as HE channel estimators was carried out. The work determined that, 

contrary to popular opinion, the more complex RLS algorithm offered no performance 

advantage over the computationally simpler EMS algorithm. A new theoretical 

expression was derived which allowed the steady state MSE performance of the RES 

algorithm to be predicted, given prior knowledge of the Levels of both noise and time-

variations which would be encountered in the system. 

Although the performance of the EMS as a channel estimator was as good if not 

better than the RLS, its lack of spectral robustness and relatively slow convergence 

make it less than ideal for application in this environment. Consequently in chapter 4 

three new adaptive algorithms were derived for specific use as HE channel estimators. 

The key to the development of each of the algorithms is in their particular use of a-

priori knowledge of the channel structure. Each of the algorithms uses, to a greater or 

lesser degree, some a-priori knowledge of the state space representation of both the 

channel structure and the tap generation process. As was described in chapter 2, it is 

widely accepted that the HE channel is accurately modeled by a tapped delay line 

structure with time varying taps which are generated by filtering a zero-mean Gaussian 

sequence. This is readily represented in a state-space form and thus lends itself to the 

use of Kalman filters. 

The first algorithm, the MVK, requires full a-priori knowledge of the channel, 

and is consequently not implementable ), in the form of both the noise covariance and 
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state-space transition matrices being incorporated into a standard Kalman filter. This 

algorithm has optimal performance and provided the motivation for the derivation of 

the second new algorithm, the EKF channel estimator. In this algorithm, only partial 

a-priori knowledge of the channel was required in the form of the structure of the 

channel model. In addition, an LMS was used to bootstrap the algorithm on 

initialisation by providing estimates of the required variables. Although the 

performance of the EKF is near optimal its computational complexity and numerical 

sensitivity preclude implementation in the present form. 

The results from the first two algorithms provided the impetus for the third novel 

algorithm. This time, the a-priori knowledge of the structure of the channel model was 

used to provide a series of prediction filters, configured for various parameters, in 

conjunction with an LMS algorithm. This algorithm operated by essentially increasing 

the order of the recursion within the LMS algorithm from first to second order. The 

performance. of the algorithm, although disappointing, still offers room for 

improvement by selecting the prediction filter on different criteria. 

In chapter 5, the problem of channel equalisation was addressed and three 

equaliser structures, one novel, were considered. The structures were a conventional 

DFE utilising a Godard-Kalman algorithm for the tap adjustment, an adaptive Kalman 

structure which utilised an LMS channel estimator and a new adaptive Kalman DEE 

structure which also used an LMS channel estimator. The performance of each of the 

structures was studied under a variety of conditions, the MSE criteria being used to 

assess their performance. It was determined that the structures where the channel and 

sequence estimation processes were separate offered an enhanced performance. 

Although this thesis has considered both channel estimation and equalisation for 

HF communication systems it is far from a complete study of the application of 

adaptive techniques to this area. In particular there are specific areas which have not 

been addressed fully or only touched upon in passing. These particular points provide 

suggestions for possible areas of further research and are summarised below. 
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As has been alluded to on several occasions within the thesis, there are several 

techniques by which the complexity and numerical sensitivity of adaptive algorithms 

may be reduced. It is possible that, if these techniques were applied, that the FKF 

algorithm would become more attractive for implementation. The rapid growth in 

VLSI, as demonstrated by the increasing gate count, has now made it possible for 

implementation of the more complex algorithms, such as the EKF, to be considered. 

In fact a description of the implementation of a square root covariance form of the 

EKF was recently reported in [137]. This now makes it possible to consider 

implementation pf the EKF technique so that further analysis of the algorithm's 

performance on actual HF channels as opposed to a simulator could be performed. 

This would allow confirmation of the assumptions made regarding the channel model 

description in the algorithms derivation to be verified. Consequently, if the EKF 

offered the enhanced performance suggested by the results in this thesis, then it could 

be incorporated as the channel estimator for the Kalman equaliser structures described 

in chapter 5. 

Since the tests performed in this thesis utilised a simplified channel model it 

would be necessary to confirm the performance of the algorithms and structures on a 

more realistic model or on actual channel data. If this was carried out, then the 

problems of carrier frequency acquisition and tracking, timing recovery and resistance 

to co-channel interference would have to be addressed. The channel model used in 

this work is a relatively simple model; As such, in addition to modelling the HF 

channel, it is very useful in the representation of a wide range of communication 

channels, such as troposcatter, meteor burst, line-of sight microwave and mobile 

communication channels all of which exhibit frequency selective fading. One 

consequence of this is that the results presented in this thesis are of more general use 

than just the HF communications scenario. 

In terms of the equaliser structures, it would be interesting to develop the 

predictor LMS algorithm so that it could predict several samples ahead thus removing, 
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or at least reducing, the lag in the equaliser structures. In addition, some work on the 

performance of the equalisers when configured in a fractionally spaced format to 

determine if the increased complexity is acceptable for any significant improvement in 

performance. 
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Dallas, U.S.A., April 1987, pp  2105-2108. 
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Extended Kalman Algorithm as a HF Channel Estimator", Proceedings of Fourth 
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* Reprinted at back of thesis. 
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8) S. McLaughlin and C.F.N. Cowan. "A Performance Study of the RLS algorithm as 

a Channel Estimator in a Nonstationary Environment", Proceedings of the second lEE 

Adaptive Filters Colloquium 22nd of March 1989. 
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McLaughlin, B MuLgrew and C F N Cowan 

Un!vers!ry of Edinburgh, UK 

ABSTRACT 

In this paper a study is made of the tracking and 
convergence properties of an extended Kalman (EK) 
algonth.m as a high frequency (HF) channel estimator. 
This study uses the EK algorithm to adaptively estimate 
not only the time varying taps of the system but the 
parameters in the system model which generate the 
nonstanonarity. This approach makes use of the a-priori 
knowledge of the HF channel to construct the extended 
Kalman aigórithm for this system. Simulations are 
presented of the performance of the EK algorithm as a HF 
channel estimator for both white and coloured input signal 
conditions and are compared with the performance of the 
east mean square (LMS) and minimum variance Kalman 
(MVK) algorithms. 

INTRODUCTION 
The application of adaptive equalisation techniques to HF 
communication systems is necessary if higher data 
transmission rates than are presently possible are to be 
abtained. This means that robust adaptive algorithms 
which operate effectively in nonstationar.' environments 
ire required. Unfortunately few studies of the 
convergence and tracking properties of adaptive algorithms 
.n nonstationary environments have been published. The 
?ublished work which is available has concentrated on the 
two most common adaptive algorithms, the least mean 
quare (LMS) [1.2] and the recursive least squares (RLS) 
3.4]. 
Die poor performance of the LMS algorithm under 
coloured input signal conditions make it unsuitable for use 
n an HF channel equaliser. The RLS has been considered 
i likely candidate for such The because of it's fast 
:ate of convergence, which is independent of input signal 
colouration, in stationary environments. However. 
recently published studies indicate that the RLS has a 
considerably degraded performance in high noise [5] and 
aonstationarv environments [6]. 
As a result new techniques will have to be developed to 
ichievethe necessary performance required for HF 
communication systems. The work reported here is an 
rxploratorv study of a technique where estimation of the 
parameters which generate the nonstationarity are 
.ncoporated into the adaptive algorithm. In this papera 
;tudy is made of the tracking and convergence properties es  
if an extended Kalman (EK) algorithm as a high 
frequency (HF) channel estimator. The direct modelling 
ntuation allows the properties of the algorithms to be 
inalysed under controllable input signal conditions. 

The EK algorithm is an application of linear Kalman filter 
theory to nonlinear systems, where the system is linearised 
iround the current state estimate and the standard Kalman 
algorithm applied to the resulting time-varying linear 
;ystem. 
The standard model [7] of the HF channel represents it as 
a finite impulse response (FIR) filter (figure 1) with time 
varying complex taps each of which is statistically 
.ndependent and has Gaussian statistics- A nonlinear 
;ystem is obtained by representing the generation of the 
:ime varying taps in a state space formulation and then 
Iugrnenting the state vector of the linear system with the 
tatioriary parameters that make up the tap generation 
nodel. The EK algorithm is then applied to this system. 
[be key to the performance of the extended Kalnian 
ilgortthm is the accuracy of the initial linearising 
Ipproximation applied to the nonlinear system. In order 
hat the EK algorithm has a good initial estimate of the 
vstem (which ensures convergence ) for the EK an LMS 
dgorithm is used to initially train the EK algorithm. 

Simulations are presented of the performance of the EK 
and LMS algorithms as HF channel estimators for both 
white and coloured input signal conditions. A mimrnum 
variance Kalman (MVK) [6] estimator obtained by using a 
priori knowledge of the linear system and which achieves 
the lowest possible mean squared error (MSE) of any 
linear channel estimator is used as comparative measure of 
the performance of all the algorithms. The simulations 
illustrate the improved performance of the EK algorithm 
over the LMS algorithm as an f-IF channel estimator. 

DERIVATION OF EXTENDED 	KALMAN 
ALGORITHM FOR HF CHANNEL ESTIMATION 

It is well known that the Kalman filter is the optimal filter 
for the linear system described by equations I and 2 below; 

	

+ Gw, 	 (1) 

y=H,x •Y k (2) 

Clearly however, this filter is not optimal for a nonlinear 
system. The problem of optimal filtering for nonlinear 
systems is considerably more complex than is the case in 
Linear systems theory. For nonlinear systems an exact 
solution via recursive methods is not normally possible, the 
conventional initial approach has been to adapt standard 
linear algorithms and determine their performance. The 
extended Kalman algorithm is simply an application of the 
linear Kalman filtering algorithm to a nonlinear system 
which has undergone a first order linearisation. Table I 
summarises the extended Kalman algorithm [101. 
In the I-IF channel model the time varying taps are 
normally generated by filtering random numbers which 
have Gaussian statistics through a 2nd order Butterworth 
(or similar) filter whose bandwidth is dependent on the 
lade rate of the channel. For the simulations carried out in 
this paper a digital 2nd order Butterworth filter with filter 
structure as in figure 2 was used- This filter can be 
represented by equations (3) to (5) shown below. 

	

X 0(k) = X 1 (k -1) 	 (3) 

X,k) = Vt/c) - C 1  X,(k -1) - C 0  X 1 (k —U 	(4) 

the values of C 0  and C 1  being dependent on the bandwidth 
of the filter and consequently the fade rate. The taps for 
the HF channel model are then obtained using equation 
(5) below; 

	

= Cx + v(k) 	 (5) 

This can be representçd in the form of equations (I) and 

(2) with state ; = and state transition matrix 

F= and C = [I -C 1  2 -0 0  1. 

One of these filters is used to generate each of the taps 
required for the channel model, thus, the overall state for 
a three tap channel model is j x 0  X 1  x 2  x, x 4  x 5  IT. By 
augmenting the state vector .rk  with the filter coefficients 
C 0  and C 1  the system is made nonlinear. In order to apply 
the extended Kalman algorithm the state transition matrix 
D(k:k —1). and the measurement matrix M(k) are 
requirect 
To 	obtain 	the 	following 	substitutions, 
X, (k) X, (k) - ox, where K, represents a reference 
state and n=0.l,..5 and C m (k) = C(k) - 8C_(k) m=0.1 
and C. a reference as before. Inserting these substitutions 
in equations 3) and (4) results in. 
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8X 0(k) = 8X 1 (k -1) 	 (6) 
and, 

ax ,(k ) 	V(k)  - 1 (k -1 )&C 0(k —1)— C (k -1)6X 1 (k —1) 

- &X(k -1)c; (k -1) -  X 0  (k -1)6C 1  (k -1)(7) 

If this is applied to all of the individual states then the 
resulting state transition matrix is, 

01 00 00 0 0 
-C, -cc  0 0 0 0 —x —x 
00 01 00 0 0 
0 0 -C -C 0 0 —X —X 
00 00 01 0 0 
0 0 0 0 -C 1  _C O —x —X 4  
00 b 0 00 1 0 
00 00 00 0 1 

similar arguments can be applied to the measurement 
matrix and lead to 

U1  = [ in 0  2ni 0 ,n, 2m  n, 2  2in 2  

-( rn 0  1, - in, X, - rn 2  I, ) —( in0  10 + in; 12 	in, X ) 
wnere in represents constituents of the input signal vector. 
In the operation of the algorithm each new state estimate 
provided by the algorithm is used as the reference state. 
thus X. = 1,, and C. = C.,. where indicates an estimate 
It should be noted that this realisation of the extended 
Kalman algorithm does not force a Butterworth form onto 
the tap generation filter nor does it guarantee that the 
estimated filter would be stable. This problem is overcome 
by ensuring that the intial approximation, i.e. the intial 
estimate used in the extended Kalman filter, is reasonably 
accurate in the mean squared sense by using the LMS to 
train it. Stability can be ensured by monitoring the poles of 
the filter , if they are not within the unit circle then by 
reflecting them through the unit circle along the same radii 
the filters stability is maintained. It is clear that if the 
extended Kalman converges then the filter approximation 
must be reasonably accurate. 
The question of convergence of the extended Kalman is 
difficult and few results have been published. Ljung in 181 
demonstrated that global convergence of the extended 
Kalman could be guaranteed if an innovations 
representation was used for the linearisation procedure 
rather than the normal state space formulation. This is 
because of the lack of coupling between the Kalman gain 
and the  state  being estimated. Recently Joshi in [9] 
considered the robustness of extended Kalman observers in 
the control field given certain actuator or sensor 
nonlinearities and showed convergence would be achieved 
given a certain limited range of the nonlinearity. 
In this paper no theoretical proof of convergence is given 
but simulations are presented which show that given a 
reasonable initial estimate in the mean squared sense then 
convergence occurs 
Simulation Results 
The simulations carried out for this paper were performed 
for a channel of fade rate lO.OH.z and signal-to-noise 
(SNR) of 50dB. Figures 35 show the algorithms 
performance for white input signal conditions and figures 
6-8 for coloured input signal (eigenvalue ratio of 11.8) 
conditions. 
Comparing the performance of the LMS with that of the 
MVK it is clear that the LMS is some 20dB from the noise 
floor. This is as a result of the contribution to the error by 
the time variations in the system as discussed by Macchi in 
(2]. It can be seen from figure 5 that the EK provides an 
improvement in perfromance of some 5-10dB. The EK 
utilised the LMS to provide it's initial estimate and as can 
be seen clearly improves upon it. 
Unfortunately the perfo-mance of the EK degrades with 
time, this is due to the inherent numerical instability of the 
algorithm, although there are techniques for overcoming 
this problem they are not within the scope of this paper. 
Nevertheless the simulation demonstrates that the 
technique suggested in this paper may provide a means of 
improving upon the performance of existing algorithms. 

Figures 6-8 illustrate the algorithms performance under 
similar conditions to those above except that the input 
signal is now coloured. The LMS shows a slight 
degradation in performance but again the EK approaches 
that of the MVI( which is independent of input signal 
colouration since it's performance is based on the use of 
a-priori knowledge about the channel model. 

CONCLUSIONS 
It is clear from the results presented in this paper that the 
approach adopted has resulted in an improved channel 
estimator. Although the extended Kalman algorithm is 
not practical for implementation purposes, because of it's 
complexity and numerical instability, it has provided an 
insight into the perfomance of techniques which incoporate 
estimation of the parameters which generate the 
nonstationarity. The next stage will be to adapt existing 
simpler algorithms to operate in a similar manner to the  
extended Kalman and determine if the improved 
Performance can  be maintained  with a simpler 
implementation structure. 
In summary this paper has demonstrated the possibility of 
utilising a-priori knowledge of the system being identified 
to improve the performance. Ultimately it may even be 
possible to incoporate such a channel estimator into an 
equaliser of the form suggested by Clark et al in [11 ]  or 

m Macchi et al 	[12] wnere the channel estimation and 
decision process are seperated. 
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TABLE 1 - EXTENDED KALMAN FILTER ALGORITHM 

The nonlinear system is described by, 

= f(xt) + 	 . 	 . x,0 V( .ç 0 ,P, 0  

and 

Ysfr  = h(x,1  tk) + 

which undergoes a first order linearisation with Sx, x, - .t (t) and 	- 

(ti) . This leads to the linearised system described by, 

Sx, 	= 	•X' )}&r, -' 

and, 

M [k 41k )j8x + 

The standard Kalman filter equations are then applied to this linearised system and 
the resulting algorithm consists of prediction via 

A(tkIitk)1(tkItk)+ I 1c4(k, ),I) di 
ft 

and 

I lk  ) = 	 (t 
') ] PQ 	(j)T[11 .t(tk t) I + Q(rt . 1 ) 

and at an observation, 

	

i(r+jz. ) = t(t_ 	+ K[t.1 ;1k+I 'k )] 	- h(i(tk _ l 	) ] 

and, 

	

P(tk.,.l I lk , , ) 	[I - K(t_ 1 	) ) Al' 	;t(r+ 	') ) ] 

('+ 'k) x [1 - 	. ) M( . ) IT + K( . ) R(k+1) KT( 
. ) 

where ( . ) represents what has gone before. Finally the Kalman gain is. 

K[r1 	t+t ') j = P(,11  ') MT( . ) x [M( . ) P( - ) M T ( . ) + R (k+ 1) 
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ABSTRACT 

Within the high frequency (HF) communications system scenario there is a requirement 
for higher rates of data transmission than are presently possible. The use of adaptive equalisers 
is considered as one possible solution to this problem. However, until recently there have been 
few published studies which characterise the performance of adaptive algorithms in time-varying 
environments (such as the HF communications channel). In this paper a new algonthm for use 
in HF channel estimators is developed which utilises a-priori knowledge of the channel 
structure. A comparitive study of the algorithm's performance against more conventional 
adaptive algorithms is presented. 
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INTRODUCTION 

Until recently there have been few published studies 
which characterise the performance of adaptive algorithms 
in time-varying environments (such as the HF 
communications channel). Recently published studies 
[1.2.31, would appear to suggest that the algorithms 
considered most suitable for this application, the east 
mean squares (LMS) and recursive least squares (RLS) 
[4], are incapable of tracking the time variations of the 
channel accurately enough The aim of this paper is to 
investigate possibile alternatives to such algorithms by 
utilising the available a-priori information about the 
structure of the HF channel. 

It is worth noting that several authors have indicated 
previously [LS] the importance of accurate channel 
prediction in adaptive equalisation.. this and the fact that 
the best channel estimators are those with a-priori 
knowledge of the channel make it logical to incoporate 
some form of prediction which utilises the a-priori 
knowledge of the simulated tap generation process for 
more accurate estimation of the channel. 

The performance of various HF channel estimators 
was studied in [6.71 and the results can be summarised as 
follows:- 

Minimum Variance Kalman (MVK) - this estimator 
requires full a-priori knowledge of the channel and as a 
result is not implementable but provides the lowest 
achievable mean squared error (MSE) bound of any HF 
channel estimator. 

Extended Kalman Filter - This estimator has partial a-
priori knowledge of the channel and it's performance 
approaches that of the MVK but convergence is not 
guaranteed for this algorithm and it also suffers from a 
computational complexity which excludes implementation. 

Adaptive FIR Filters (LMS/RLS) - These estimators 
have no a-priori knowledge of the channel and also have 
the poorest performance although the least mean square 
(ES) is the least computationally complex. 

Clearly the ideal estimator would be one which has a 
performance approaching that of the .MVK but with a 
computational complexity comparable with that of the 
LMS. 

The standard model for the HF channel is a FIR 
filter with statistically independent time varying raps (as in 
fig. 1), the taps being generated by passing a white 
random sequence with Gaussian statistics through a filter 
with a bandwidth determined by the fade rate of the 
channel and an (approximate) Gaussian frequncy 
response. A second order Butterworth filter was used for 
the simulation and analysis presented here. This a-pron 
knowledge is then used to develop an algorithm which 
utilises an LMS algorithm and incoporates a prediction 
filter based on the tap generation model assumed for the 
simulations presented. 

This modified LMS is a first attempt at achieving the 
performance of the LMVK algorithms while reducing the 

Figure 1 - HF Channel model 
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computational 	complexity. 	The 	algorithm 	was 
implemented on computer as a set of parallel prediction 
filters and EMS algorithms (as in fig. 2). Each prediction 
filter catering for a possible fade rate and the algorithm 
with the lowest MSE was utilised. In this way the system 
could cope with changing fade rates and always achieved 
the optimal performance. 

Simulation results are presented which demonstrate 
he performance of this modified LMS as a HF channel 

estimator, and compared with the conventional EMS and a 
MVK estimator, which is used to demonstrate the 
minimum achievable MSE. 

OF ClianMi 	i. 

t' F-4 

L J  

I_____ 

Figure 2 - Algorithm Set up 

LI ALGORITHM DEVELOPMENT 

As has been stated the conventional model for the 
HF communications channel is a FIR filter with time 
varying taps. The tap generation filter used is a 2nd order 
digital butterworth filter as illustrated in figure 3. the 
coefficients C,, and C  being determined by the bandwidth 
of the filter. The filter may be considered as a linear 
system represented by equations I and 2 below: 

CW 	 (1) 

Cs  

Where the state s, = jt 	and the state 
I. 

transition 	matrix 	F = _9. 4, 	with 

C=[l—C 1  2—0 0 ]. Both w.andii. are zero mean 
with variances V(k) and Vjk) respectively. 

From this assumed tap-generation model a prediction 
filter for each of the taps can be constructed. The ideal 
inputs for these prediction filters would be the actual taps 
which are however not directly observable, but the 
,estimate of the taps provided by the LMS is a reasonable 
approximation. The predicted value of the taps obtained 
from this filter can then be used in the LMS algorithm. 
This could be viewed as increasing the order of the 
recursion in the LMS from first to second. 

In order to derive the required prediction filters 
directly it would be necessary to carry out a spectral 
factorisation on the tap generation process, this would be 
both difficult and computationally intensive because the 
input to the prediction filters is a noisy estimate of the 
actual tap. As a result a Kalman filter is used since it is 
equivalent to carrying out the spectral factorisation. 

Figure 3 - Tap Generation filter 

Using the model of the tap generation process 
detailed in equations 1 and 2 allows a one stage predictor 
algorithm, as detailed in [81 to be written as follows 

= 	+ K_ i' 	 (3) 

with v1 = h —C 	i.e. the error in the tap estimate. 
and the Kalman gain is. 

K;., = pvkk_l)crv, -i(k) 	(4) 

where the variances are as follows. 

Vjk) = C T V(klk—l) + Vjk) 	. 	(5) 

and. 

	

V(k +1k) = FV(ktk _1)pr + GV_(k)cr 	(6) 

—K,Cv -Aklk _urr 

If the variance and gain equations (eqns. 4-6) are 
taken to the steady state by computer simulation then the 
steady state gain. K. is obtained and this can be used in 
the algorithm for prediction as detailed in the equations 
shown below. 

= C 	 (7) 

that is the predicted value of the tap based on an estimate 
of the state obtained from. 

ps_i 	
fS) 

and, 

(9) 

That is, since the actual taps are not observable then the 
estimate obtained from the LMS, h.. 1 , as illustrated below, 
is used to aid the prediction of the state. 

= 	+ 2ILX,.. 1 e._i 	 (10) 

	

where X, represents the input signal and the error 	is 
obtained from, 

= Y, -I - A -1 	 . 	( 11) 

that is the output of the channel less the estimated output 
where the output Y*-i = h(..X1 + n where n, is 
additive white gaussian noise. The estimated output is, 

= 	 (12) 

These equations are shown for one tap only but clearly it 
is trivial to extend it to multiple taps each with their own 
prediction filter. 
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It is worth noting that this form of prediction could 
readily be extended to predict the channel impulse 
response M samples ahead, M being some integer, for use 
in a Viterbi based equaliser as in [5J. Normally as M gets 
larger the equalisation Improves but the system 
identification degrades (i.e. the tracking performance 
degradesi. But hopefully with this technique the tracking 
performance could be maintained while still allowing the 
decision to be delayed M samples. 

III SIMULATION RESULTS 

The simulations carried out for this paper were 
performed for a three tap channel with a fade rate of 
10.0Hz and signal-to-noise ratio (SNR) of 50dB. All 
simulations are for a white input signal and are averaged 
over an ensemble of 30. The simulations were performed 
on a Sun 350 workstation in 64 bit double precision. 

Figure 4 illustrates the performance of the MVK 
which approaches the noise floor even under the severe 
fading conditions simulated. Figure 5 shows the predictor 
filter utilising the actual taps to demonstrate it's optimal 
performance which approaches that of the MVK. The 
performance of the LMS. as shown in fig 6, is some 20dB 
from the noise floor in the mean with a considerable 
variance. Figure 7 which illustrates the performance of 
the combined LMS and prediction filter which is no bettet 
than that of the LMS. 

This performance although dissapointing in the sense 
that it offers no improvement over the EMS suggests that 
were it configured for prediction M samples ahead, as 
suggested earlier would offer an improved performance 
over a Viterbi equaliuser using a conventional EMS 
channel estimator. 

IV CONCLUSIONS 

In this paper a new algorithm for use in the HF 
communications environment has been developed and it's 
performance demonstrated. Although the pertbrmance of 
the algorithm was no better than the LMS it offers possible 
improved performance over a conventional EMS in a 
Viteroi type equaliser of the type suggested in [Si. 

Further investigation of the algorithm's performance 
under such conditions will be carried out and reported at a 
later date. 
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ABSTRACT 

Adaptive equalisation of communications channels is used 
to compensate for time dispersion introduced into the 
transmitted data sequence. In this paper the performance of a 
novel Kalman decision feedback equaliser (DEE) which uses a 
channel estimator via a least mean squares (LMS) algorithm is 
studied for a variety of stationary and nonstationary 
communications channels. This structure providing a means of 
model order reduction by using the residuals of the LMS to 
provide information on the unmodelled paths in the 
communication channel, which is then incorporated into the 
Kalman DFE structure as observation noise. The structure is 
compared with a conventional DEE which is trained by a 
Godard-Kalman algorithm with exponential windowing and an 
adaptive Kalman structure previously reported (2]. 

LNIRODUCTION 
In the digital communications scenario many of the media 

over which communications is attempted are nonstationary, i.e. 
time varying, in nature, e.g. high frequency and mobile 
communications channels. As a consequence it is necessary to 
utilise adaptive equalisation techniques to overcome this 
problem and ensure robust communication at the required data 
rate. Existing adaptive equaliser structures [1] although 
adequate for many applications suffer a degraded performance 
under the more severe conditions which can occur- This can be 
attributed to several causes, the adaptive algorithms lack spectral 
robustness or suffer from numerical instabilities, the equaliser 
structures fail to approximate the inverse of the channel 
accurately, or propagation of decision errors in the structure. In 
this papa an attempt is made to overcome some of these 
problems with a novel equaliser structure which consists of an 
equaliser with decision feedback and utilises a least mean square 
-(LMS) algorithm for channel estimation in a manner similar to 
that discussed in [2]. 

This equaliser provides several benefits over existing structures, 
in particular it offers a means of model order reduction. This is 
achieved by using the residuals of the LMS to provide 
information on the unmodeiled paths in the communication 
channel and incorporating this information as observation noise 
in the Kalman structure. Also, the number of taps required by 
the LMS for channel estimation will normally be less than that 
required by either a linear equaliser or of a conventional 
decision feedback equaliser (DEE), thus reducing the number of 
taps requiring to be adjusted adaptively. The structure is also 
more robust to decision error propagation than a conventional 
DEE because the channel estimator has fewer taps and due to 
the inherently robust nature of the LMS. - 

Simulation results are presented in the paper showing the 
equalisers' mean squared error (MSE) performance compared to 
that of a conventional DEE which uses a Godard-Kalman 
adaptive algorithm with exponential windowing for a 
nonstationary, channel. - 

EQUALISER STRUCTURES 
Research over the last twenty years has produced a large 

body of literature, [ii and references therein, and there are 
many types of equaliser structure, however, they may be 
summarised as follows: 

a) Linear transversal equalisers which in general 
suffer from an inability to represent the inverse of the channel 
impulse response adequately. 

Conventional decision feedback equalisers which, 
although providing a better performance than linear equalisers. 
suffer from a degraded performance due to error propagation in 
the feedback section. 

Maximum likelihood sequence estimation is a 
technique which is not considered in this paper but whose main 
disadvantage would appear to be its computational complexity. 
However considerable effort is being expended in developing 
more efficient implementations. 

In general most equalisers operate by generating an 
estimate of the inverse filter which when convolved with the 
channel response allows the transmitted data sequence to be 
reconstructed accurately, as in the linear equaliscr illustrated in 
Figure 1. For the case of conventional DEE's, a feedback filter 
is inserted after the decision device. (as in Figure 2a), and is 
used to cancel out any trailing inters mbol interference (151) by 
using previously detected symbols, which are assumed to be 
correct. 

A range of adaptive algorithms are used in adaptive 
equalisation, the two most common being the LMS and RLS 
algorithms 1 3 1 The LMS offers an easily implennentable 
algorithm but lacks the spectral robustness and fast convergence 
of the RLS. which unfortunately is relatively complex to 
implement. The conclusions of [4.5,61 would appear to suggest 
that when operated as a channel estimator, as opposed to an 
equaliser, the LMS offers a similar if not better performance 
than the 815 on channels which are time-varying. These 
results have provided some of the motivation for the novel 
structure considered here, in that the data sequence estimation 
and channel impulse response estimation processes are 
separated. 

The conventional DEE structure differs, as has been stated 
earlier, from the linear structure by the addition of a feedback 
section which is used to cancel out the ISI associated with these 
symbols. The feedback section allows a greater freedom for the 
linear section in selecting tap weight coefficients. Conventional 
DEE's of this type have been found to operate very well over 
wire line channels but in rapidly time-varying environments the 
performance appears to be degraded by error propagation in the 
feedback section [7]. 

In this paper the algorithm which was used to adjust the 
tap weight coefficients of the equaliser was the algorithm 
postulated by Godard [8] in 1974 in which he chose not to 
replace the equaliser with a conventional Kalman filter, but 
rather adopted a transversal equaliser structure and used the 
Wiener solution for the optimal tap weights as a starting point. 



The algorithm offers very fast initial convergence and is 
spectrally robust but suffers from a relatively high level of 
complexity. To apply it to the DFE, the observation vector 
contains both the ieedforward and feedback coefficients. The 
solution obtained by Godard was for a stationary channel and 
its application was extended to slowly time-varying channels by 
means of exponential data windowing. 

In [21 Mulgrew and Cowan presented a novel equaliser 
structure, the derivation of which may be summarised as 
follows. Initially, a channel model based on a FIR filter as 
postulated and the constraint that the optimum transversal 
equaliser for such a channel, which requires minimisation of its 
MSE subject to the impulse response being finite, casual and 
stable is relaxed. The new relaxed constraint requires only that 
the filter be casual and stable, this results in the solution to the 
minimisation problem being provided by a Wiener infinite 
impulse response (fiR) filter. 

The Wiener fIR filter offers advantages over the 
conventional linear (FIR) equaliser in. terms of the order 
required for the same level of performance for minimum phase 
channels. However, the realisation of such a filter would 
require a minimum phase spectral factorisation, this would 
present a major difficulty. The solution adopted in (2] was to 
use a Kalman filter to realise the solution since, if the processes 
are stationary and the observation noise white, then the steady 
state Kalman and Wiener fiR filters are identical. The FIR 
filter model of the communications channel in common usage 
[1,21 although readily adapted to a state space representation, 
and hence to aKalman filter, requires care in the selection of 
states which will constitute the state vector. 

In order to deal with non-minimum phase channels, a 
fixed lag smoothing [9] form of the Kalman filter was used. 
Normally this would imply that for a fixed lag, d, a state vector 
augmented to, 

[z'(k) f(k -1) ..... .zT (k-d) I. 
However, this is uneccessarily complex because the state 
transition matrix g is simply a shift matrix, thus the state vector 
is augmented to contain 4 + 1 elements [2], 

a  ( r(k) s(k-1) ...... s(k-M+j) . . . s(k -d) ], 

where 4 is the fixed tag and M is the number of taps in the 
channel. The state transition equation then becomes, 

k) 	al(k-1) ' 

where a is a (d+1) x (d+L) shift matrix and h is a vector 
with (a+ 1) elements, 

The observation equation is clearly, 

x(k) a jzr(k) + 

where It is a column vector with (ci • 1) elements, 
ftt a 	 . ' - tIM_tOO - - - 0]. 

That is the channel tap weight vector augmented to (d + 1) 
elements by the addition of some zeros. 

The problem still remains however of making the equaliser 
adaptive, since knowledge of the channel impulse response is 
required and this is achieved by using an 1_MS algorithm as a 
channel estimator to provide the required estimate. Some 
measure of the observation noise in the system is also required 
for the Kalinin structure and this is achieved by the recursion 
shown below; the derivation of which is detailed in [2]. 

a 2(k+1) = (I — 1./U )é3(k) + e 2(k+1)/M, 

where e (A:+ 1) is the error obtained from the LMS. The above 
recursion also effectively provides a measure of the model 
uncertainty in the system and therefore offers a means for 
model order reduction by using the residuals to provide some 
information on any paths not modeled by the LMS. The main 
point to note about the general structure of this equaliser is the 
separation of the state and channel estimation processes, and 
this approach is extended in the next section, the structure of 
the equaliser is ilustrated in figure 2b. 

AN ADAPTIVE KALMAN DECISION FEEDBACK 
EQUALISER 

As in the development of the previous equaliser [3] the 
structure of the channel model is again the starting point, the 
channel is considered as a FIR filter which can represented in 
the state space form shown below, 

z(k+ I) = 	(k+I,k)a(k) 4- flU). 

Where t(k + I k) represents the state space transition matrix 
associated with the channel and i(k) is the input vector. The 
following observation equations can be associated with this 
model. 

x,(k) = LL T L(k) + si(k) 

and 

x 7 (k) = a(k -d). 

The first equation represents the channel output, as in the 
conventional DEE structure, and the second represents a 
decision feedback term. It is worth noting at this point that it 
would be possible to have many similar observation equations to 
the second one, that is feed back many decisions, but 
preliminary investigations suggested that nothing would be 
gained in terms of performance for a considerable increase in 
complexity. The two observation equations can be combined as 
below, 

x(J) = 	+ 

U being a (d + I) x 2 matrix as shown below. 

h 4  h 1  - - - 	0 0 - . . 0 

00... 	0 	00...i 

It is clear that the problem presented here is identical to 
that of the previous section, the difference lying in the 

observation equations. It is necessary then to generate the 
Kalman filter which provides the solution given these particular 
observation equations. With the definitions above it is possible 
to write down the Kalman filter equations which are detailed in 
table 2. Note that the inversion of the innovations now requires 
the inversion of a 2x 2 matrix. The LMS channel estimator is 
used in exactly the same way as the previous structure to 
provide the tap weight vector estimate and a measure of the 
observation noise. The detailed structure of the equaliser is 
shown in figure 2c. 

The question remains as to how many states are required 
for the equaliser to operate efficiently, and clearly 

= ci 4- t • 1. That is. the estimation with lag delay is 
ci - 	and there is one feedback term. 

Table I, An Adiptite K..n Onlslon Fenhack Eqealiser 

i(t/k -I) 	Ktk I .rtk) - II itt/k -ill 

.(kik -I) - 1(k -l/t -I) 

Irk) 	Vtk,k -lw? T  I llvtkik _lwlr + z! 

Vt&at - I) - a V(k -i/k -I) a' 4-

V(k/k) - { I - Ktk)Ii Vt/k - I) 

where he Kaitnan gain vr  its, bilow. 
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The L5 system identifionon being. 

h(k - t) = h(k) 4- 2s(k+1).(k41) 
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operation mull, add/sub. 
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&'9) 1(k/k-i) d(k) + 4/I - 	4M -4 

,(I) - a'(k) Uk/k -I) 2(M -1)42(d 4.!) 2/I -2 

Z(k/k-i) &(k) [ d'(k) 1(k/k-Ud(k) 4 aj 4(d+1)+4 2(54 l)+ I 

1(k/k--1) + L(k)tx(k) -u'k)w/k-I) I 2(4+1) 2(4+3) 
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1(4/k-I) _&(&)dr(e)1(k,k_I) 

y(k) _hT(k_fl z (k) Al Al 
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3 

The estimated tap weight vector i ( k ) being used in the 4 element vector 11 as below. 

1's-i 0 0 . . 	0 

00.. 	0 	OO...i 

ALGORITHM COMPLEXITY CONSIDERATIONS 

A breakdown of'the computation required to process each 
of the three algorithms considered here is presented in this 
section. Tables 2 and 3 present the computation required for 
each process in the algorithm given particular values of the lag 
d and the number of taps in the channel.. 

For the dmulations presented in this paper the number of 
taps in the channel was M ) with the lag for bdth the adaptive 
Kalman structures being d -5 . The Godard-Kalman driven 
DEE had 5 feedforward and 2 feedback taps. This results in 
the adaptive Kalman DEE requiring 123 multiplications and 99 
additions/subtractions per iteration to carry out the tests 
performed in this report. The adaptive Kalman equaliser 
required 47 multiplications and 37 additions/subtractions and is 
clearly less complex, the conventional DEE using the Godard 
Kalman required 133 operations per iteration which is 
comparable with the adaptive Kalman equaliser. 

It is also worth remembering that more computationally 
efficient implementations are possible by utilising standard 
matrix algebra techniques as has been demonstrated in [9]. 

PERFORMANCE RESULTS 

The results presented in this section detail the performance 
of the three equalisers on time varying channels. The channel 
has 3 time varying taps, generated by filtering random white 
noise sequence through a 2nd order filter as in 1101. the data 
rate being 100kbit/s and a Doppler spread of 100Hz, in all cases 
the signal-to-noise ratio was SOdS. The tests were carried out 
for 50% training, that is only 50 out of every 100 symbols is 
known a-priori the rest of the time the equaliser is operating in 
a decision-directed mode, this is more akin to normal operation 
of the equalisers. All tests were simulated in the 'C' language 
on a Sun 3/50 workstation. 

It is clear from the results presented in figures 3-5 that the 
bat performance, in terms of final MSE, is offered by the 
adaptive Kalman DEE structure the final MSE being lower than 
that achieved by the conventional DEE by some 5-10dB. 
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