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Chapter 1

INTRODUCTION

This thesis is, as the title suggests, concerned with the development of both
algorithms and structures for adaptive signal processing in a communication system
operating in the high frequency (HF) band, i.e. 3-30MHz. The motivation is to
develop techniques which will enable serial data transmission at data rates considerably
higher than are presently achievable. HF communications has long been a neglected
area of the spectrum, the advent of satellite communications and the difficult nature of
the medium itself apparently having made it redundant. However, the high cost and
questionable physical security of satellite links coupled with the advent of - relatively
cheap very large scale integration (VLSI) have reawakened interest in 'HF
communications{1-7}. Although it must be stated that within the United Kingdom

there has been a considerable body of ongoing work in HF communications.

Although receivers based on parallel structures [8] would appear to offer a better
performance[9] the resultant increased complexity at the receiver coupled with the
limitation imposed on transmitter power make serial structures more attractive. The
time-variant nature of the HF communications channel make it ideally suited as an

application area for adaptive signal processing techniques.

Adaptivé signal processing is a relatively youthful research area, the first
pioneering work [10-12] only having appeared thirty years ago, although it is true to
say that the groundwork was laid considerably earlier in the work of Gauss [13] and
J..egen‘dre[l4]. The recent plethora of texbooks on the subject [15-20] would appear to
suggest that this area is now approaching maturity. However, little attention has been
paid to the study of such techniques when applied to environments such as the non-
stationary HF channel, with the notable exception of[21-26]; this thesis adds to this
work by considering the tracking performance of adaptive algorithms in time-variant
environments. The thesis also studies existing methods and develops new techniques

for application in the HF communication scenario.



The purpose of this chapter is to provide the necessary definitions required to aid
the understanding of this thesis and also to detail the organisation of the material
presented in it. Consequently the first section defines precisely what is intended by the
term adaptive signal processing within the context of this thesis. The second section
then deals with the application of such techniques to the HF communications channel

and finally the organisation of the thesis is discussed.
1.1 ADAPTIVE FILTERING

As was indicated in the previous paragraphs, the aim of this chapter is to provide
the necessary definitions required to aid understanding of this thesis. In this section a
simple introduction to the concept of adaptive filtering is presented. In order to define

adaptive filtering it is necessary to first describe what is intended by the term filtering.

One of the primary aims of filtering is to enable the extraction of a signal from
one which has been contaminated t;y noise. In this thesis a filter is considered to be
both linear and discrete time in nature; Figure 1.1 represents the structure of such a
filter. The input and output signal sequences, x, and y, respectively are related to each
other by the impulse response of the filter, #,. Explicitly the output sequence, y,, is
the convolution of the input sequence, x,, with the the impulse response of the fiiter,
[

Clearly if models for the géneration of both the signal and noise processes exist it
is possible, in principle, to generate a filter which will optimally enhance the desired
signal with respect to the noise. However, in the real world only partial a-priori
knowledge of such processes will exist, (at best), and so it is not possible to explicitly
derive suéh a filter. However, it is perfectly reasonable to assume‘ that the necessary
information could be obtained through analysis of the real data. That is the optimal
filter could perhaps be learned from the data. As a consequence then some form of
on-line parameter adjustment is required, the adjustments required being derived from

analysis of the received data, as illustrated in Figure 1.2.
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Hence, it may be observed that adapt-ive, in this context at least, can be
interpreted as indicating some form of self learning which enables, or at least
approximates, optimal behaviour of the filter. The parameter adjustment is normally
achieved via adjustment of the filter impulse response based on an algorithm, i.e. a set
of rules, which minimise the error between the desired output and the actual output of
the filter. This statement raises the question of where the desired response is obtained
from since only analysis of actual data is being used. This is normally achieved by
transmission of a data sequence, termed the training sequence, which is known a-priori
at the destination. There are algorithms which attempt to operate witho‘ut a training
sequence, i.e. blind as in[27,28]. These are in general nonlinear in nature and are
not considered in this thesis. When an optimal, or as is more realistic near-optimal,
solution is reached the algorithm is said to have converged. This concept of
convergence also applies when time varying environments are considered, the
distinction being that the optimal solution is varying with time, and the convergence
behaviour may be measured by how well the adaptive filter tracks the behaviour of the

desired output.

In summary, an adaptive filter is a filter with a timé varying impulse response,
the time variations being selected on-line by an algorithm. The selection is aimed at
achieving optimal performance in the sense of minimising a function of the measured

error between the desired and actual responses.

1.2 THE APPLICATION OF ADAPTIVE FILTERING TECHNIQUES TO THE

HF COMMUNICATIONS CHANNEL

Thgre are many ways in which adaptive filtefs may be cdnfigured for real time
applications, [15-20] , however within the context of this thesis there are only two
particular structures which are of direct interest. These are channel estimation and
channel equalisation, their key differences being clearly illustrated in Figures 1.3 and
1.4. These particular structures are of interest here because, as will be discussed ih

more detail later, the HF channel may be viewed as a finite impuise response
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(FIR) filter whose impulse response is time varying in nature. This fact then allows us
to consider applying linear discrete time adaptive filters to estimate directly the impulse
response of the channel, i.e. channel estimation, or to equalise distortion introduced

into a data sequence transmitted over the channel, i.e. channel equalisation.

In channel estimation, Figure 1.3, -the adaptive filter is configured such that the
input sequence x, is also the input to the channel. The output of the filter, y,, is then
used in conjunction with the channel output, y,, to generate an error signal, e, to
drive the adjustment of the adaptive filter’s impulse response via the algorithm. The

aim being to track the time variations of the channel’s impulse response.

In channel equalisation, f‘igure 1.4, the adaptive filter operates in an inverse
system modelling approach in contrast to the direct system modelling mode adopted in
channel estimation. A transmitted data sequence, y, is distorted in passing through the
HF channel, the resultant sequence output from the channel, then forms the input to
the adaptive filter. The adaptive filter then attempts to reconstruct , y,, the original

transmitted data sequence.

The key point regarding the application of adaptive filters to HF communications
is that due to the time variant nature of the HF channel adaptive filters offer a method
by which on-line parameter estimation and adjustment, in both channel equalisation
and channel estimation, may be used to improve data rates for serial data

communication with no subsequent degradation in performance.

1.3 ORGANISATION OF THESIS

As the. title of this tﬁesis suggests it’s primary aim is to study existing and develop
new édaptive algorithms and structures for channel estimation and equalisation of the
HF communications channel. The preceding two sections have provided the definitions
of ‘adaptive filtering’ and the manner in which it will be applied to HF
communications systems required for the remainder of this thesis. In chapter 2

necessary background information regarding the nature of HF communications is



presented as well as the structure of the channel model used throughout this thesis for
computer simulations. The themes indicated in the title are developed along three

separate but inter-related paths in chapters 3,4 and 5.

The performance of the two most common adaptive algorithms, the LMS and
RLS [15] as channel estimators in the HF communications environment is first
considered in chapter 3. Their tracking performance is analysed to determine which if
any would be the most suitable for this application. It is demonstrated that contrary to
popular belief the RLS is not particularly suited to this type of environment, offering a
performance no bettc; than the LMS for a considerable penalty in terms of

computational complexity.

Chapter 4 moves on from these conclusions and attempts to develop novel
adaptive algorithms for HF channel estimation utilising a-priori knowledge of the
channel structure and incoporating it into the algorithm. A channel estimator, termed
the minimum variance Kalman (MVK) is presented which utilises full a-priori
knowledge of the channel. The performance of this algorithm is optimal. The next two
algorithms aim to overcome the full a-priori knowledge of the MVK. Initially this is
done within the context of an extended Kalman filter (EKF), and then by a
computationally simpler technique where the LMS is modified to include a prediction
filter, effectively increasing the order of the recursion in the LMS. The EKF structure
is shown to give exceilent performance but suffers from severe numerical instability due
the high degree of computational complexity. The modifed LMS is considerably
simpler, however it’s performance is disapointing although it offers scobe for

improvement.

In chapter 5 the equalisation problem is considered and a novel equaliser
structure is presented based on work presented in [29] , where the channel estimation
and sequence estimation processes are separated. The performance of the new
structures and their complexity is compared with that of two existing structures, a

Godard-Kalman decision feedback equaliser [30] and the adaptive Kalman equaliser



of[29].
Finally in chapter 6 the conclusions put forward in the preceding chapters are
summarised and areas worthy of further study based on the work presented here are

suggested.



Chapter 2

THE HIGH FREQUENCY COMMUNICATIONS ENVIRONMENT

This chapter deals with the basic nature of and principles by which
communication within the HF medium is achieved. The manner by which the HF
channel is quantified is discussed and the technique used in the computer simulations

in the remainder of this thesis presented.

2.1 INTRODUCTION

Within the historical development of electrical communications systems HEF must
rank high as a prime mover in the acceleration from the turn of the century to today:
which has no corner of the earth safe from one form or another of electrical
communication. When Marconi first demonstrated transatlantic communication by
radio in 1901 [31,32] many people envisaged HF communications p;roviding a worid
wide communication facility for general use. However the highly time-variant and
unpredictable nature of the HF radio prevented this and it’s use has, in general, been
restricted to the military and amateurs. Only in the United Kingdom was there a
continuing research effort. | In recent years interest has been growing on a worldwide
basis in HF communicatidns because of the increasing availability of cheap digital -
signal processors coupled with ‘the lack of physical security and high cost of many

satellite communications systems.

Initially in this chapter the physics involved in propagating radio waves over the
HF medium s discussed and also the nature of said medium. A brief ‘description of
the mathematical and physical justification of the manner in which the HF channel is-
 modelled is then presented. Finally a summ;ry of the simple channel model used in

this thesis is discussed.

2.2 PROPAGATION AT HF

This section summarises the physics involved in the propagation of HF radio



waves within the atmosphere.
2.2.1 The Ionosphere

The ionosphere is the region of the earth’s atmosphere at an altitude of
approximately 50-350km. It is formed as a result of the ionisation of atoms and
molecﬁlcs of oxygen and nitrogen in the atmosphere by the sun’s radiation. The
structure of the ionosphere has been determined by vertical and oblique radio
sounding[33]. It is generally divided into three regions labelled D, E and F. Signal
propagation in the HF band (3-30MHz) can be thought of as reflection from these
layers. It should be emphasised however that these macroscopic layers are in fact
peaks of ionisation intensity which vary in position, altitude and mean-square
reflectivity as a result of microscopic ionosphéric turbulence. The characteristics of

each of these regions is discussed below.

The D region lies at an altitude of 60-90km and is a daytime phenomenon, since
it disappears at night because molecular recombination is no longer counteracted by
the radiation of the sun. The D region does not normally support propagation as a

result of the high level of absorption which it exhibits.

The band between 90 and 170km is known as the E region, the maximum
ionisation intensity occurring at about 110km. This region does support propagation,
but, because there is still a significant concentration of heavy particles, it does not do

so particularly well at night.

The region above 170km is termed the F region; in daytime it is divided into the
F1 and F2 layers. The F1 layer is centred at around 200km and is not generally
considered as a vehicle for transmission on its own. The F2 layer is concentrated
about 300-320km and plays the dominant role in long-range (>2000km)
communication. At night the F1 and F2 layers merge at around 300km and provide
the main propagation mechanism at night. Figure 2.1 [33] illustrates typical variations

in height of the E and F regions over a twenty-four hour period for both summer and

.10 -
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winter.
2.2.2 The Method of Wave Propagation

As was stated in the previous section, signal progagation at HF is popularly
considered as reflection of the radio waves from the ionosphere. It is in fact a process
of refraction which arises from the continuous change in refractive index with altitude

of a particular layer as illustrated in Figure 2.2.

Clearly for a wave to be refracted back to the earth’s surface, its trajectory must
become horizontal at some point. By applying Snell’s law of refraction it is possible to
obtain an expreésion for the carrier frequency required to meet these limitations. From
this, the maximum frequency at which a vertically incident ray is refracted back to the
earth can be calculated and this is known as the critical frequency. If the selected
operating frequency is higher than the critical frequency then the ray passes through
the layer, and is termed an escape ray, albeit bent by the refraction process, as in

Figure 2.3.

Since the behaviour of the layers has been recorded over many years, tables have
been produced which indicate the maximum usable frequency (MUF) for a given time
of day, geographical location and time of year. The operating frequency of most
systems is normally selected to be approximately 10% below the MUF to try to ensure
communication since these predictions are essentially long term averages of observation
and prone to error as a result of any fluctuations. It should be emphasised that these
tables are merely a guide and communication may only be possible at a frequency

higher (or lower) than the specified MUF.

One important feature of the refraction process is that it can be shown to be
equivalent to mirror type reflection at a particular height, as is indicated in Figure 2.4.
This height commonly being referred to as the virtual height with Figure 2.5

illustrating its variation as a function of frequency.

-13 -
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2.2.3 Multiple Mode Propagation

Multiple progagation modes are possible in HF communications for three main
reasons, the first is as a result of radio waves being electromagnetic in nature. It is well
known [34] that on entering a magneto-ionic medium, (such as the ionosphere), any
electrofnagnetic wave will split into two waves, termed the ordinary and extraordinary
waves. Each of these waves will traverse different paths in the medium because the
expression for their refractive indices will be different. This of course means there are
two possible MUFs for each transmission mode and this phenomenon can be observed
on ionospheric _sou-nc_lings, as illustrated in Figure 26 In addition, since most HF
tadio systems oéeréte some 1Of15% below the MUF, it is possible to have a‘ high and
low angle ray, as illustrated in Figure 2.7. This phenomenon occurs because the
summit of the ray path at the MUF does not traverse the portion of maximum electron
density. Hence, if transmission is lower than the MUF, as is normal, two ray paths are
possible. The one éorresponding to the higher virtual height is termed the high angle
ray the other being the low angle ray.

Finally it is clear that beéause of the existence of two reflecting layers, (E and F),
it is possible for ducting of the wave to occur between the layers and also between the

layers and the earth’s surface as in Figure 2.8.
2.2.4 Signal Fading

It should be apparent from the preceding section that the multiple rays which
arise when communicating between two points, (as in Figure 2.9), cannot all arrive at
- _the receiver simultaneously. The continuously changing nature of the ionosphere
ensures that time variations in time of arrival and in the magnitude of each wave will
occur. These effects when combined result in constructive and destructive interference

at the receiver which causes fading of the received signal.
2.3 OTHER FACTORS INFLUENCING HF COMMUNICATIONS

It is clear that as well as the propagation of multiple paths within HF

217 -
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communication channels and the resultant signal fading that there are other factors that wi
influence the quality of communications at HF. The two most important of these are dea

within this section.
2.3.1 Atmospheric Noise

Noise is one of the fundamental limitations of any electrical communication
system and atmospheric noise influences radio communication. It may be separated
into two main categories, man-made noise and noise associated with natural
phenomena in the earth’s atmosphere. Man-made noise is generally associated with
urban areas where there is a greater concentration of electrical equipment, all
generating interference. Natural atmospheric interference is most commonly caused by
lightning strikes which radiate large amounts of noise over great distances and a wide
range of frequencies. In all simulations within this thesis the noise is modelled as a
single additive white Gaussian noise source. No account is taken of impulsive noise
[35] which is suggested will have a log-normal distribution. Such noise is normally

overcome by means of some form of forward error correcting code[36] .
2.3.2 Equipment Limitations

Clearly the equipment will play a major role in the performance of any HF
communication system. It is only in the recent past with the advent of relatively cheap
multi-purpose DSP chips that such technology has been available for use in HF radio
systems. The growth of this area is demonstrated in [123,124] where DSP technology
is being appliéd to all aspects of HF radio design from speech codecs [125,126] to the
filtering operations necessary within the radio receiver [127] and also to the control of
adaptive arrays for suppression of jammers as in [128]. Clearly as complex DSP chips
become more widely available and new algorithms are developed then adaptive

techniques will have an even larger role to play in the HF communications scenario.
2.3.3 Co-channel Interference

One of the major limitations in HF communications, especially within the

-20 -



Figure 2.8 - Illustration of ducting between layers in the ionosphere
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European context, is co-channel interference {45]. The ionosphere, as stated
previously, provides long range sky wave propagation paths; as a consequence users of
the HF medium often find that the channel they wish to use is occupied by an
interference signal arriving from a source at some considerable distance. These
interference signals tend to be narrowband in nature, persist for three to four minutes
and are in general non-Gaussian in nature [129,130]. Over the past decade, a great
deal of work [131-136] has been carried out in trying to measure and characterise this
interference with the aim of generating accurate statistical models of the nature and

form of co-channel interference.

One possible approach where adaptive signal processing techniques could be

utilised to overcome this problem is within the context of real-time channel evaluaticn

techniques (RTCE). Adaptive techniques are used to monitor the quality of any -

particular channel via measurements of SNR, fade-rate, etc. In addition these systems
can determine if a channel is occupied or not so that an operator can make the most

efficient use of the allocated frequencies.

Co-channel interference is not consideréd within the context of this thesis. This
approach is taken because of the nature of the interference, in particular the non-
Gaussian aspect, suggest that conventional adaptive filtering will not be enough to
eliminate it.‘ Consequently some combination of iechniques, such as RTCE and
adaptive equalisation; would be required to deal with both'the time-variant nature of
the channel and the non-Géus_sian nature of the co-channel interference. The work
reported in this thesis concentrates on the problem of adapting to the frequency

selective fading nature of the HF channel.
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2.4 THE HF CHANNEL MODEL
2.4.1 Mathematical Basis for the Channel Model

In the late 1950°s and early 1960’s, a considerable amount of work was carried
out into the characterisation and behaviour of randomly time-variant linear
channels{37-40] , the motivation for this work coming from both communication
systems and radar astronomy research. This section provides a summary of the work ‘

presented in[40] with particular reference to the HF communications channel.

System Functions

If a randomly time-variant linear communications channel is represented as in
Figure 2.10, then it is clear that the concept of time and frequency duality may be
used to obtain four possible operators based on input and output representations in

both the frequency and time domain, as illustrated below in equations 2.1a-d,

vit) = 0, [w(1) ], (2.1a)
Vif)=0s[W(E) ] (2.1b)
v(e) =0y [W(f) ], ' (2.1¢0)
V() =0, [w() ] - (2.1d)

Where clearly the operators O,, Oy, Og, and O, individually consist of dual
operators. Since it is assumed that it is a linear channel which is being dealt with, then
these equations may now be more formally expressed as linear integral operators with

associated kernels, as demonstrated below.

v(t) = [ w(s)Ky(t,s)ds, (2.2a)

v(t) = [ W) K1) df . (2.2b)
V) = S W) K dl, : (2.2¢)
V()= [ w(t) KJf 1) d. (2.2d}

The variables s and ! representing dummy variables for time and frequency

respectively.

Although from a mathematical point of view the above expressions are sufficient

to describe the system, they do not easily allow a physical interpretation of the input-
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output relationship of the system. In order to achieve this it is necessary to derive a
series of kernel system functions. Obviously a series of such functions could be .
obtained and this was clearly illustrated by Bello in[40]. However, for the purposes of
this work it is sufficient to consider only two of these functions, the Input Delay Spread

function and the Time-Variant Transfer function.

The derivation of the Input Delay Spread function proceeds as follows, the

substitution s = ¢ — ¢ is made in equation (2.2a), thus:-

v(t) = [ w(t—e) g(t,e)de, (2.3)

where,

g (t &) = Ki(t,t —e€). (2.4)
This form of the equation allows the input-output relationship of the channel to be
interpreted as a continuum of stationary scintillating scatterers where g ( ,¢) represents
the complex modulation produced by the hypothetical elemental scatterers in the range
(e,e + de). The Input Delay Spread function as defined above may be viewed as the
channel impulse response at the delay e. This then allows, using equétion (2.3), the
input signal to be intc?rpreted as first delayed. and then multiplied by a differential

scattering gain. This is illustrated in Figure 2.11.
The Time-Variant Transfer function, T (f ,¢), is simply the Fourier transform of
the Input Delay Spread function, that is

T(f.t) = [ exp(je) g(t,e)de (2.5)
These functions provide the basis for the channel model used in this study as will be

illustrated in the proceeding sections.
Channel Correlation Functions

It is clear that given the time-variant nature of the communication channels
considered in this analysis that in order to characterise them completely, it will be
necessary to define the associated auto-correlation functions. A full treatment of all

the auto-correlation functions which can be developed is provided in Bello [40] but
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again only those of interest are illustrated here.

Proceeding with the assumptions that the scattering of the channel at different
delays is uncorrelated and that the channel may be considered wide-sense stationary,

then the auto-correlation function of the time-variant impulse response,g (z ,€), is,

B(ry, 75 80) = 2B [8° (D) gt + A1) (2.6)

The uncorrelated scattering assumption allows this to be written as,
D(1,, 7y ; At) = O(7y ; Ar)d(7; — T2), (2.7)

and if Ar = 0 then <I)(;r) is simply a power spectrum and provides a measure of the
average power output as a function of delay. This may be interpreted as the multi-

path spread of the channel.

Adopting a similar approach with the Time-Variant Transfer function, T(f ,t), a

similar auto-correlation function can be defined as below:

O(f 1 f2380) = 2B [T"G15n) Tas0 + A, (2.8)

and this is known as the spaced-frequency spaced-time correlation function. If Ar is

again set to zero and Af = f, — f, substituted then this becomes,

O(Af) = [ ®(AT)exp(—j2mAfT)dr (2.9)
i.e. the Fourier transform of the multi-path intensity profile. This function provides a

means of determining the frequency coherence of the channel and

(af). = T—l— _ " (2.10)

where T, is the multipath spread. If (Af ,)f is small in corﬂparison to the signal
baﬁdwidth then the channel is termed frequency selective since the signal will be
severely distorted. If Af is set to zero rather than Ar in the expression for the spaced-
frequency spaced-time correlation function then the time variations of the channel are

demonstrated as Doppler spreading and possibly a Doppler shift of a spectral line.

If the Fourier transform of ® ( Af ; Ar } is defined as,
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S(Af;,A) = } @ (Af ; At)exp(—j2mAAr) d At (2.11)

and Af is set to zero, then

S(\) = }q)( At)exp(—j2mAAr) d A (2.12)
This power spectral density function relates the signal intensity as a function of
Doppler frequency; hence §(X\) is termed the Doppler power spectrum of the channel.
The range of values over which §(X\) is non-zero is termed the Doppler spread of the
channel and consequently via the Fourier transform re]ati\bnship with ®( Az ), the

coherence time of the channel is

_ L -
(A: )c - Bd » (213)
where B, is the Doppler spread of the channel.

Delay Line Model

From the previous sections and the discrete nature of the multi-path phenomenon
in the HF channel as discussed in section 2.2, it is possible to propose a general model
as illustrated in Figure 2.12. The time-varying frequency response may then be written

as,

N
T(f.t) = 3 G; (t) exp(—jln7), (2.14)
i=1
where i is the tap or path number, 7, the time delay associated with the i, path, N

represents the total number of paths with G, (r) the time-varying gain of the ¢, path.
2.4.2 Physical Basis for Channel Model

The model which has been proposed has been shown to be an accurate |
representation of the HF chérmel by Watterstone et al. in[41,42]. This is because, as
measurements have confirmed [43-45] . for 80-85% of the time HF channels exhibit
Rayleigh fading characteristics. This implies that independent zero-mean complex
Gaussian characteristics would be appropriate to describe the tap gain functions. In

addition the discrete nature of the rays leads to the tapped delay line model.
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In some situations HF channels have exhibited Ricean fading characteristics (i.e.
a specular component exists), this means that the function may no longer be considered
to have a zero-mean. In addition, the channe! model assumes no dispersion and this is
in general true for the bandwidths involved in HF radio systems, however under
certain conditions the ionosphere can be very turbulent and in these situations,
dispersion may occur. For accurate modelling of such situations, it would be necessary
to incorporate all-pass dispersion filters in each path proceeding the multipliers. Table
2.1 illustrates the range of conditions which the CCIR recommend channel simulators

be capable of demonstrating.

Parameter . Range
Fading depths 2 to 40dB
(*)Fade duration 0.05 to 1.5s

(*)Fade rate 5 to 40 per minute
(*)Delay time 0 to 5ms
(*)Spectral width » 0.1 to 1.2kHz

(*)Rate at whic};_fade 0.5 to 2kHz/s
Frequency drifts ‘ 0to 7Hz

Table 2.1 - CCIR recommended range of parameters for HF channel simulators

* - note not all of these parameters are independent of each other.
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2.5 IMPLEMENTATION OF THE CHANNEL MODEL

This section details the manner in which the channel model was implemented. All
of the simulations performed for this thesis assumed a three path channel with a
symbol rate of 2400 symbols per second. The only extrancous noise source was
addiuve white Gaussian noise, impulse noise not being considered since it is generally
overcome via coding and data interleaving which are outwith the scope of this thesis.

Figure 2.13 illustrates the overall structure of the model.

The main difficulty in implementing the model lay in generating the tap gain
functions in a manner that ensured ease of repeatability; this was achieved by
generating a random number sequence with Gaussian characteristics with zero-mean
and unit variance. This sequence was then filtered via a digital second order low pass
Butterworth filter, the bandwidth of the filter being of the order of the fade rate
introduced on to the signal and the filter being generated by the bilinear
transfofmation. The characteristics of the filter are shown in Figures 2.14 and 2.15.
This is a recognised method for generating Rayleigh fading characteristics and has
been used by many researchers in the past|41,42,46-48]. Although not the perfect
filter response, the Butterworth is convenient because it is easy to implement and has
an approximate linear phase relationship; the structure of the filter is illustrated in
Figure 2.16. A separate filter was used for each path, with a different input sequence,
to ensure that each tap gain function was statistically independent. In order to scale
each lap weight and ensure an overall channel gain of unity, the steady-state gain of
the filter was calculated by means of calculus of residues. The behaviour of the tap

gain functions for a filter bandwidth of 10Hz is illustrated in Figure 2.17.

Although a complete channel model “;.ould be complex in nature, for the
simulations demonstrated in this thesis only a real channel was used. The reasoning
for this being that the primary concern in this work was the performance of adaptive
algorithms and all the information required is provided by a real channel simulation

without unnecessarily increasing the level of complexity required to that of a complex
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Fig. 2.14 - Impulse response of tap generation filter,
bandwidth=1.0Hz, sampling frequency=2400Hz.
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channel model. This approach has been adopted by several other researchers in the
area, namely Eleftheriou and Falconer [50] and Ling and Proakis[23], a full analysis of

the performance would require a more general model.

2.6 SUMMARY

In summary, this chapter has introduced the HF channel and illustrated its nature
and the manner in which radio communication is achieved in it. A mathematical and
physical justification has been presented which relates the frequency selective fading
channel model used for simulation purposes in this thesis to the physical reality. In

conclusion the manner in which the channel model was implemented was presented.
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Chapter 3
PERFORMANCE STUDY OF ADAPTIVE FIR FILTERING ALGORITHMS

AS HF CHANNEL ESTIMATORS
3.1 INTRODUCTION

This chapter is primarily concerned with ari analysis of the performance of two
adaptive FIR filtering algorithms as HF channel estimators, i.e. the LMS and the RLS.
At the present time considerable research effort is being expended to develop adaptive
equalisers for use in communication systems where the channel is time-varying in
nature, as in the HF channel. The overall aim is to allow data communication ét

speeds greater than are currently possible.

The chapter is structured such that an initial brief outline of least squares theory
is presented with it’s relationship to the LMS and RLS adaptive algorithms discussed as
well as the related topics of data windowing, numerical robustness and so called fast
algorithms. Then the analysis of both algorithms is presented, that of the LMS being
merely a summary of the work of Macchi [51, 52] and Eweda and Macchi ‘[53, 54] and

is presented for comparative purposes. Finally simulations are pfesented which illustrate

the performance of the algorithms and the accuracy of the theoretical predictions.

It has generally been assumed that the RLS algorithm would be suitable for use in
time-varying environments because of it’s fast convergence properties in a time-
.invariant environment. However, recently published work [55-58] would appear to
suggest that in both time-varying and high noise environments the RLS suffers a
considerable degradation in performance as demonstrated by a slower rate‘ of
‘convergence and higher minimum MSE. |

‘In this work the direct modelling (channel estimator) approach was chosen for
analysis as opposed to indirect modelling, i.e. equalisation, because the only unknown
time variation considered is that of the channel coefficients, the input signal being

stationary. This makes the analysis more tractable and isolates the tracking
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performance of the algorithms, since this is part of the algorithm’s steady—étate
behaviour, as opposed to transient behaviour which.is related to the initial convergence
behaviour of the algorithm. New theoretical results reinforced by simulation are
presented here which illustrate the optimal performance bounds for the RLS operating
in such an environment. The performance of the RLS is characterised for various
values of

i)the level of colouration of the input signal,

ii)the level of additive noise in the system,

iii)the level of time-variations.

The decoupling of the overall error achieved by the RLS in estimalting the system
into a measurement term and a lag term as in [21] , is used to illustrate the
degradation in performance due to the high additive noise and/or time variations in the
system. The relative effect of these errors is shown theoretically and reinforced with
simulations. The selection of A, the exponential windowing factor, to give optimal
performance is considered and the trade-off required in it’s selection is discussed and

illustrated.

To provide a comparison for the results obtained in this work use was made of
the considerable body of literature [51-54] on the performance of the LMS adaptive
algorithm in a time-variant environment, in particular the expression obtained by
Macchi in [51] for the residual steady-state mean squared error (MSE) in a

nenstationary environment.

3.2 ADAPTIVE FIR FILTERING ALGORITHMS AND LEAST SQUARES

ESTIMATION THEORY

Prior to considering the particular adaptive FIR filtering algorithms studied here
it is worthwhile to consider a brief review of least-squares estimation theory and it’s

relationship to adaptive FIR filtering algorithms. A brief outline of the numerical
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aspects of least squares estimation theory and the role of data windowing is also

considered.
3.2.1 Least Squares Estimation Theory

The need to estimate the state of a stochastic dynamic system from noisy
measurements is important in many aspects of engineering and natural science. It was
Gauss who first considered this problem in 1805 when studying the movement of
celestial bodies in[13] as did Legendre in[14] independently. The basic idea of least
squares, as applied to parameter estimation problems is that estimates of the parameter
of interest are selected such that the output of the model approximates the data as
accurately as bossible, ;as measured via the sum of the squares of the differences. This
statement may be expressed more formally by considering the following simple

estimation problem.

Consider a stochastic process whose mean value is a linear function of some
parameter vector B. Thus the least squares estimate attempts to minimise the error

between the desired signal and the estimated, i.e.,
& =y —&B. (3.1)

To minimise this in the least squares sense it is necessary to minimise,

IV

J = E,-z = éu( ¥i — ,TE )2, (32)

0

!

Consequently, by differentiating expression (3.2) and setting the result to zero the so

called Normal equation is obtained[59).

The early work in the application of least squares theory did not consider the
estimation problem in a probabilistic sense; rather it was viewed as a deterministic
problem in terrﬁs of the error minimisation. It was not until Wiener in [60] that this
was achieved for stationary continuous time systems, Wiener reduced the continuous
filtering problem to the solution of an integral equation, the so called Wiener-Hopf

equation. The general linear nonstationary problem was resolved in the pioneering
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work of Kalman [61] and Kalman and Bucy[62]. This chapter is primarily concerned
with the performance of adaptive FIR filtering algorithms; therefore a summary of the
relevant areas only will be presented; more detailed and general accounts of least-

squares estimation theory may be found in any of [59, 63-65].

The structure of the estimation problem considered here is illustrated in Figure
3.1, where a random sequence {x(n)} is input to a time varying system and the
resultant noise contaminated output, y,, is generated. The problem is to estimate the
impulse response vector, &, of the system given that y, = Afx, + n,, and to do so in
some optimal manner. The error generated is e, = y, — %, where j, = hlx, .

The widely acceptéd approach has been to min.imise the mean-squared value of
the error, ¢, , the mean-squared value representing a cost or loss function, [59, 63-65] ,
so called because it indicates the penalty associated with an incorrect estimate. It may
be readily shown[59,63-65] , that given this criterion the optimal estimate of A,

denoted by &, , is obtained from the so called Wiener solution;
Bope = D! @, ’ (3.3)

where ®,, = E [xxf) and @, = E [ x5 ], and E[.] denoting the expectation

operator.

Cleérly the presence of the expectation operator in equation (3.3) precludes any
practical application. It is the purpose of adaptive FIR filtering algorithms to determine
b, given only access to the data sc(iuenccs. Oniy two approaches to this problem are
considered here, the so called LMS algorithm and the RLS algorithm and these are

dealt with in the following sections.
3.2.2 The Least Mean Squares Adaptive Algorithm

The simplest approach adopted to achieve the minimisation of the MSE criterion
was by means of a stochastic gradient search technique[66]. The LMS algorithm, first
suggested by Widrow in 1960 [67] , is the best known of these techniques. The LMS

utilises a weighted estimate of the gradient to recursively estimate in time the optimal
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tap weights, that is,

Beer = b — 1Y, (3.4)
where f, represents the estimate of k., at sample instant £ and the vector v, is the
estimate of the gradient of the MSE cost function given the particular estimate B, . The
scalar parameter p is a convergence factor which determines stability and rate of

adaptation of the algorithm. The exact gradient,
5 :
7 - R G
which is simply equal to the following,

% (E 10 - bn ) - (3.6)
and thus becomes,

Y, = 2E [& Ox - bix )] | (3.7)

The estimate, ¥, , could be obtained by utilising a time average as opposed to an
ensemble average, (assuming ergodicity), but clearly the time average may only be
obtained from a single instant since k. changes at each sample. Consequently when the

time average is used the estimate of the gradient becomes,
ik = _2&‘&8#*]’ . (38)
which when substituted in-expression (3.6) results in,
Ek+1 = Ek = 2P 1€ 1 , (3.9)
The selection of the ﬁarameter p is crucial to both the performance and stability
of the algorithm. The work of Feuer and Weinstein [68] provided a criterion for the
stability of the LMS given the length of the filter and the eigenstructure of the input
signal. As regards the performance of the algorithm there have been many publications

which have looked at the algorithm in many situations, [15] and references therein.

The limitations of the LMS are summarised below.

The LMS is by far the simplest (and oldest) adaptive algorithm; however it suffers

from a relatively slow initial convergence rate which is affected quite severely by the
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eigenstructure of the input signal. This is explained fully in [66] , but intuitively may
be explained by the fact that the gain u can adjust to only one mode of the system at a
time. A highly coloured signal will have a large eigenvalue spread and as a result many
modes. A fuller description of the performance and characteristics of the algorithm

may be found in any of the adaptive filter textbooks referenced in chapter 1.

As a concluding comment, the LMS is the oldest adaptive algorithm but it is also
by far the simplest to implement, requiring only 2K operations per iteration, X being
the order of the filter. Consequently the LMS is the most widely applied of all

adaptive algorithms in spite of it’s many drawbacks and limitations.
3.2.3 Recursive Least Squares

As was stated previously the exact measures of ¢, and & are not readily
available. The RLS algorithm utilises the data sequences which are available to

construct estimates of these measures. These estimates are as follows,

Lo (k) = éom.’, | (3.10)
and,
Ly(k) = éﬂan, : (3.11)

which are of course the auto and cross-correlation ;stimates for the sequences x, and
v, . With these an estimate of the optimum tap weight vector, at time instant k, may be
constructed from,
La (KB, = 1o (k). “ C (3.12)
In a practical situation a- recursive formulatiqn of this expression is obviously
required and this achieved via the folléwing substitutions,

Lo (k) = ro(k-1) + oo | (3.13)
and

Loy (k) = ry(k=1) + Xy, (3.14)

in conjunction with the expression,
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L. (k dl)hkl—l = Iy (k-1). ~ (3.15)
The recursive formulation may then be written as,
By = By + £k )xcex. (3.16)
_The inverse , r;(k), is obtained usiﬁg the Sherman-Morrison Identity [69] ,

rk -Dxxlre ' (k—1)
1+ gtk —1)x

rk) = £k 1) — (3.17)

The above recursion requires K? products per iteration and indicates the penaity
involved in implementing the RLS algorithm. Algorithms based on the RLS may be
obtained with_complepiit.y of o:igier K, but like the RLS they suffer from a high degree
of numerical instability and invariably require some form of 'numerical rescue’, i.e.
periodic initialisation even when implemented on 32 bit floating point processors{70-
72]. In it’s favour the RLS is guaranteed to converge within 2K iterations, X being

the order of the filter, provided that the system under consideration is stationary.

The tracking performance of the algorithm in the above form is very poor as a
result of the growing memory form of the correlation estimates in expressions (3.10)
and (3.11). This problem is normally overcome by the use of data windows [73,74]
which give greatest weight to most recent data. The most commonly implemented
windowing function being in the form of an exponential function [74] . Windowing

functions will be discussed in slightly more detail in the proceeding section.

To summarise the RLS, in low noise and stationary environments, will converge
within 2K iterations, K being the order of the filter; it is relatively complex to
implement and displays a high degree of numerical sensitivity although recent

formulations suggest that this problem may have been overcome[75, 76].
3.2.4 Other Aspects of Least Squares Estimation
Data Windowing

As has been stated the tracking performance of the algorithm in the above form
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is very poor. This problem is normally overcome by the use of data windows which
give greatest weight to most recent data, as in Figure 3.2, the most commonly
implemented windowing function being in the form of an exponential function. This

results in a modified cost function from the original sum of errors squared to,

k
S (¥a =P P 0<A<L (3.18)
a=0

There are clearly many possible window functions but in general only the
exponential window [74] and sliding window [73] are ever considered. The
exponential window is generally used as less computation is required, also the work of
Porat [77] would suggest that the slid{ng window would offer no significant

performance advantage.

The value of A, the exponential windowing factor, used is normally chosen to lie
in the range, 0.9 < A <1.0 because of constraints on the accuracy of the correlation
function estimates it imposes. This raises a question as to the selection of A in time-
variant environments where it is required that the variations in the parameters to be
estimated be small within the window length. The result of Porat in [77] provides a
means of equating X to an equivalent window length M, and this sﬁows up the
conflicting requirements. That is as the time-variations increase then the window
length must become shorter, hence A becomes smailer (possibly below 0.9), but the

correlation estimate requires that N\ remain as close to unity. as possible.
Finite Precision Effects

The finite nature of the digital machines on which any least-squares algorithm is
to be implemented must be taken into account in any assessment of performance. The
inherently éomplex nature of many least-squares estimation algorithms ensures that
they will suffer from errors as a result of digital word truncation and round off in
matri); multiplication. “This idea of finite word length and its effects is illustrated in

Figure 3.3.
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There are many techniq.ues which have been adopted to try and overcome the
numerical instability that results from finite precision and these may be divided into
two broad categories which can be termed algorithmic manipulation as in [75,76, 78]
and numerical rescue[79-81]. Examples of the former are square root formulations as
in [78] or decompositions as in[75,76]. Numerical rescue is simpler to implement since
the technique is simply to detect the onset of numerical instability, i.e. divergence, and
then reinitialise the algorithm to some preset values as illustrated in Figure 3.4. It is
worth noting that numerical rescue is always likely to be necessary since irrespective of
the algorithm manipulations adopted,. they will only delay the onset of n-nmerical

instability due to the inherent finite nature of digital machines[71].

Fast Algorithms

 As a result of the inherently complex nature of algorithms such as the RLS,
(where of order K? operations are required every iteration), many so called fass
algorithms have been developed [73,82,83] to reduce the computational load when
implementing such algorithms. All of these so called fast algorithms reduce the
complexity to order K operations per iteration by utilising various properties of
matrices. It must be emphasised however that these algorithms only exhibit the same
level of performance associated with the conventional RLS. The term fast referring

only to the computational load.

3.3 ANALYSIS OF ADAPTIVE FIR FILTER ALGORITHMS AS HF CHANNEL

ESTIMATORS

3.3.1 Introduction

The problem considefed is that of direct modelling of a time-varying system
which is characterised by the tapped delay line model of chapter 2, where the time-
varying taps are generated by filtering random white Gaussian noise through a filter; in
this case is a 2nd order digital Butterworth filter is used with bandwidth very much

narrower than the symbol rate. The construction used to carry out the system
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identification is as discussed in chapter 2. That is, the input to the system is also the
input to the adaptive algorithm so that only the time-variations of the system under
investigation are being tracked. In the inverse modelling situation decision errors,
inputs which would be both nonstationary and coloured would lead to degradation in
the performance of the algorithms for reasons not associated with their tracking

performance.

Using the representation of Figure 3.1 allows the system output at iteration & to

be written as,

Y = b +n - (3.19)

where, x, is the input signal vector with the superscript T representing the
transpose operator, 4, is the tap weight vector of the time varying system and n,
represents the unobservable measurement noise in the system, which in this case is
additive white Gaussian noise (AWGN).

The noise, n,, and input signal vector x;, are assumed to satisfy the following

assumptions.
Al:-The sequence x, is stationary and Gaussian in nature with finite moments.
A2:-The sequence n, is identically distributed and independent of x, .

A3:-The time variations of g, are random and independent of x, and n,.

-~ k . . -
Ad:- The estimate of the autocorrelation matrix, R, = ¥ £ A\*~ x[, of the input signal
j=1

vector x; can, in the limit, be represented as R, =®(1-A)", where ®=E[xx]] and is
the exact autocorrelation matrix of the input signal vector x, and initially in the case
considered here since the input is white ® = J, where I is the identity matrix. That
is,

lkig}ﬁk =1(1-\)"!
This assumes that A lies close to 1 ( normally > 0.9 ), if this condition is not satisfied

then this assumption cannot be considered valid. It should be noted that assumptions
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Al to A3 are identical to those used by Macchi [52] in her analysis of the LMS in a |

nonstationary environment.

It may be argued that these assumptions are not representative of the scenario in
which the algorithms have to operate, however they provide a means of analysing the
performance of the algorithm and as will be shown later the theoretical predictions
obtained from the analysis are in close agreement with simulation results and this in

itself is sufficient justification for them.

Proceeding with the definition of the following variables,

de = hewy — by - (3.20)
and, ¢, is a measure of the nonstationarity of the channel. Also,

»

9% = B — b (3.21)
which is the tap weight error vector (or misadjustment).

The error ¢, would normally be written as,

& =y — &l : (3.22)
Where A, represents the tap weight vector estimate. By using the expressions (3.20) to

(3.22) it is possibie to rewrite (3.23) as below,

e, = N, *ﬁg_k‘ (3.23)

In this way it is expressed in terms of the unobservable noise in the system and the tap

weight error_vector.

3.3.2 LMS Mathematical Analysis

This analysis is a brief summary of the work on the LMS by Eweda and Macchi
in [52] and[53).

The LMS algorithm is normally written as was indicated previously as,
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b 1= h +2pep x, : (3.9)

where p is a small positive constant. From this a recursion for the error in the tap

estimate is obtained,
Q1= (I <2020, 0) g + 201, 0 —di (3.24)
This can be split into two identifiable terms,

gfer = —2pxx)qf+2nnx (3.25a)

and,
g1 =0 2pxxDei—d i (3.25b)

where (3.25a) is associated with the gradient noise and is present even in stationary
systems and (3.25b) is the lag error and demonstrates the error contributed by the time
variation of the system. Using a standard result of linear algebra {84] it is possibie to

make the following substitution,
U= 205D ~2p6 &l 1) (0 2pg0000) (3.26)

and thus by solving in the usual manner,

i ‘
g1 =2n 3 Uiy (3.27a)
j=1
and,
i=k
gh1=—Z U ud; (3.27b)
i=1

In the limit the Steady State MSD is clearly,
lkimE |xlq, 2= 1kimE |xFqf |* + IkimE |xfqi |2 (3.28)
that s,

Total MSD = Stationary MSD + Lag MSD - (3.29)

Clearly the limits of each term are required in order to obtain the steady state MSD.
Thus,

j=k-1

aimE lgf|? = leE Ru S U eans)? (3.30a)
-3 - -0 121
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and also,

=k ~1
lkimE |Q£ |2 = iimE |jl > Ujiad; |2 (3.30b)

It is demonstrated in [52] that these limits are finite by means of standard statistical

theory. This leads to the following,

MSD =2N(1—pKS) Y (2uKS +D /2N i) ' (3.31)

where, N is the noise power in the system, K is the order of the system with,

|l |?=KS

and,

D=E [1dk *]
3.3.2 RLS Mathematical Analysis

If the RLS algorithm is written below as previously indicated,
Biar = b + Rlex (3.17)
Where B, is the estimated autocorrelation of the input signal vector x, .

As has been noted earlier this representation of the RLS is similar to the structure

of the LMS with 2i. replaced by the inverse of the estimated autocorrelation of the

input signal vector.

Using these expressions and by employing some algebraic manipulation a

recursive expression for the parameter error vector g, can be obtained.

G = (1 — R7gxl da + R7mx —d (3.32)

It is clear that expression (3.32) can be split into two clearly identifiable terms as

before and these are shown below,

gf = (I —R7'wal gt + R'nx, (3.33a)

and,

(3.33b)




The first term, gf, can be viewed as a measurement noise term and is present
even in the stationary situation. The second term, g{ can be considered as a lag term
and is associated with the time variations of the system. As a result of assumptions A2
& A3 it may be assumed that the two contributions to the error in expression (5) are
independent of each other. In the limit the excess steady state mean square deviation

(MSD) i,
imE |xfg, |*=limE |xfgf|*+limE |xigs I (3.39)

that is,

Total MSD = Stationary MSD + Lag MSD.

The limits of each term are required to be finite in order to obtain the steady state
excess MSE. Since the the input signal vector and tap weight error vector are
independent and the input signal is stationary it is sufficient to show that the squared
norm of the tap weight error vector, g, is finite in the limit. The analysis for the
general case i.e. not utilising assumption (A4) is possible [85] but extremely complex.
For the situation considered here it is unnecessary since by utilising assumption (A4) it
is possible to substitute (1—-A)I for R ! and the proof that the tap weight error vector is
finite in the limit then follows as in [52] . Once the limits are shown to be finite an

expression for the excess steady state MSD can be obtained as follows.

Using the recursions of (3.33a) and (3.33b) and taking the measurement noise

term first,

E[igf 1A=E[|U R xxDgf+ R mx, 7] (3.35)

Now if E[|n, |!]=N and we replace the inverse of the estimated autocorrelation matrix

, R, by (1-M\)I using assumption (A4), where I is the identity matrix, we obtain

Ellgter =EL] (I — (1 =N )xad ) gf + (1 - Nmxe [) (3.36)
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Expanding the expressions and using assumption A2 this becomes,
Ellgt 11 =E[ | 0—(1 =N) gl )gf Pl + (1 = 2E[ | mx ] (.37)
5o that,

E{lgt. 21 = E[ @ 0 —(1~ Naead YU ~(1= Nzl dgf )] (3.38)
+ (1- \)*NK

where K is the order of the system. It now follows from the distributive law that,

E[|gt.; |P|=E[gf "qf]—2(1— ME [gf "x. x/qf] (3.39)
+ (1- \)E [af "xexfualqf] + (1— \PNK

At this point we can make use-of assumptions Al and A3 to obtain,
E[lgf.: 121 = E{|g# 11 — 2(1= X)) + (1= A)’B) + (1= A)’NK | (3.40)
where B = K — 1 +E[x*] [86] .
Thus in the limit the steady state MSD associated with the measurement noise i;,
Measurement MSD =KN (1-\)/(2—(1-A)B) (3.41a)
Similarly for the lag term,

Lag MSD =D / ((1—- A) (2—=(1— X\)B)) (3.41b)
Where D = E [ | 4, |*] and is the variance of the time varying tap increment
(assuming zero mean). Therefore the steady state MSE achieved by the RLS
algorithm is as below;
MSE = N+KN(1-A)Y (2= 8(1-A)) + D/((1-A)2— B (1-A)) (3;.42)
When the input is no longer white then it is necessary to proceed as follows.
- Clearly equation (4) which is the RLS tap-\;'eight update equation can be written as,
bivi= b+ 1 -2)27 gx (3.43)
by use of assumption (A4). As a result of the independence assumptions it should be
noted that @ is a diagonal matrix. Although this assumption is clearly untrue for the
time sequence considered here, a simple unitary rotation would guarantee that @

would be diagonal and thus allow the analysis to proceed.
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If equation (3.32) is rewritten as,

Gesr1 = @ — (1 = AUG@ede + 1) g - d- (3.44)

In order to obtain the MSD we require E[||q.]||?], so if equation (3.44) is
squared and the expectation taken at the limit then we may proceed as below.
E[lges:]? = E[1g 1] =200 = ME[[(ge-5 + m NP5 ) [] (3.45)

+ (1 ~NE[[{(ges + m ) (@15 )] +E[|de |71,
and if this is expanded then,

E[|g-112 = E[lg |1 —2(1 = ME[1(gx & X(P®7%)-q: 1] (3.46) -
+ (1 = APE[[(ge-2 (@772 )? ] + (1 = MNE[|[(@7.5)%|] + D.
As a consequence of @ being a diagonal matrix then,
s ) i=k =K1
E[|Qk+1| ]= E[lﬂk 1?] —2(1 - }\)EH(EQEJ“E)(Z a_(ﬁx};)” (3.47)
i=1 i=1 i
) i=k ; x,ﬁ , i=K q
+ (1= NE(E@)() ]+ (2 )L - MN + D,

i=1 i i=1 i
where x{ and g represent the constituent components in the vectors x, and g,
respectively. The terms «, represent the eigenvalues of the input signal autocorrelation

matrix. If this expression is then taken to the limit then the total MSD is expressed in

equation (3.48) shown below,

_ N : D {
N ETEa o T done - =yt

i=k
Total MSD = (3 GL) (
i=1"

It is interesting to note that both expressions for the MSD, i.e. in white and
coloured input signal conditions allows the effect of system time-variations and input

signal colouration on the rate of convergence to be assessed, as in[86].
3.4 PERFORMANCE COMPARISONS

It has previously been assumed that RLS algorithms would always track time
variations of a system faster than the LMS algorithm, and Honig [18] demonstrated
that the RLS algorithm will always converge faster than the LMS in a stationary
envifonment even when the input is white. This misconception has arisen as a result of

failing to distinguish between the spectral robustness and fast initial rate-of-
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Fig. 3.5a - Theoretical achievable MSE for RLS algorithm in dB plotted
against Tap variance in dB, for afixed Noise power ranging
from -80dB to -10dB, exponential windowing factor set at 0.95.
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Fig. 3.5b - Theoretical achievable MSE for RLS algorithm plotted
against Noise power in dB, with tap variance fixed and
ranging from -80dB to -10dB, exponential windowing
factor set at 0.95.
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convergence, i.e. transient behaviour of the RLS algorithm from it’s steady-state, i.e.
tracking behaviour. The term spectral robustness may be considered to describe the
lack of sensitivity of the RLS to the eigenstructure of the input sequence. The
expression obtained for the steady state MSE of the RLS may now be used to evaluate
and compare the theoretical performance of the algorithm in a time-varying

environment.

Figure 3.5a illustrate the theoretical steady state MSE for the RLS for constant
noise in steps of 10dB (-10dB to -80dB) and for tap variance ranging from -10dB to
-80dB. Figure 3.5b illustrate the performance of the algorithm for constant tap
variance in 10dB steps and noise ranging from -10dB to -80dB. In both situations the |

input is assumed to be white and A = 0.95 for the RLS.

As can clearly be seen the algorithm achieves an asymptotic error floor which it
cannot improve upon. It is also interesting to note that if the expressions for the
predicted steady state MSE, obtained in [52] , for the LMS are utilised then the
predicted MSE is lower than that for the RLS when the nonstationarity is high (tap

variance >-40dB).

| Figures 3.6a to 3.6h illustrate the simulated performance of the LMS and RLS
algorithms as channel estimators for nonstationarity levels of 25dB and 45dB
respectively, signal to noise ratios of 30dB and 50dB and for both white and coloured
input signal conditions. The level of colouration being determined by an eigenvalue
ratio (EVR) of 16.5. The plots show tap vector norms (or mean squared deviation
MSD) against nu-mber of iterations. The tap vector norm plots wére chosen rather than
MSE plots becaﬁée they illustrate the tracking beha\;iour of the élgorithms ‘more
accurately. Table 3.1 indicates the appropriate values for each figure with MSD,
representing the théoretically predicted MSD and‘MSD,,, representing the measured

values from the simulations.
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Fig. 3.6a - Performance comparison of LMS and RLS algorithms

as HF Channel estimators with white input.

Fade rate=1Hz {D=-45dB) and Noise power ,N=-50dB,
exponential windowing factor for RLS=0.95,
LMS step size =0.16666.
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Fig. 3.6b - Performance comparison of LMS and RLS algorithms

as HF Channel estimators with white input.
Fade rate=1Hz (D=-45dB) and Noise power, N=~-30dB,

exponential windowing factor for RLS=0.95,
LMS step size=0.1666.
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Fig. 3.6¢ - Performance comparison of LMS and RLS algorithms

as HF Channel estimators with white input.
Fade rate=10Hz (D=-25dB) and Noise power, N=-50dB,

exponential windowing factor for RLS=0.95,
LMS step size=0.16666.
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Fig. 3.6d - Performance comparison of LMS and RLS algorithms
~as HF Channel! estimators with white input.

Fade rate=10Hz (D=-25dB) and Noise power, N=-30dB,

exponential windowing factor for RLS=0.95,
LMS step size=0.16666.
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N D N ~ EVR MSD, MSD,,
0.95 -45db -50dB 1 -34.0dB -35dB
0.95 -45dB | -30dB 1 -33.2dB -35dB
0.95 -25dB -50dB 1 -14.6dB -13.5dB
0.95 -25dB -30dB 1 -14.6dB -13.5dB
0.95 -45db -50dB 16.5 -34.4dB -35dB
0.95 -45dB -30dB 16.5 -32.0dB -35dB
0.95 -25dB -30dB 16.5 -14.4dB -13.5dB
095 | 25db -50dB 16.5 - -14.5dB -13.5dB

Table 3.1 - Comparison of simulated and theoretical results

The value of w selected for the LMS used the stability criterion suggested by
Feuer and Weinstein in {68] , 0 = p < 1/3 «r[R], for this work u was chosen to be
at the proposed optimal value, i.e. p = 1/(6 r[R}) which for the white input
conditions is g = 1/6K where K is the order of the system. This value of p was
chosen to guarantee stability of the LMS but still ensure reasonable tracking
performance by the‘ algorithm for the simulations presented. Therefore, for the three
tap channel used in the simulations p=0.05556.

The simulations represented in Figures 3.6a-h consider 3 situations.
i) tap variance > > additive noise power,
ii) additive noise power >>> tap variance,
iii) additive noise power = :(ap variance.

In all cases when the input is white the LMS perfofms as well if not better than the
RLS. The predicted values of the RLS are all within 1-2dB of the measured values.
In the situations when the input signal is coloured the lack of spectral robustness of the
LMS is demonstrated while the RLS is , as expected, relatively unaffected by the signal

colouration. The best performance of the RLS (and the theoretical prediction) results
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when the window length is short i.e. A becoming smaller. This is as predicted by the
theoretical expression of the RLS. If the expression is differentiated and the
measurement and lag terms coﬁsidered separately it is clear that the contribution of the
measurement term becomes smaller as X approaches 1 and that of the lag term becomes
larger as N\ approaches 1. This illustrates the trade off required in window selection,
i.e. tﬁe longer the window length (A closer to 1 ) then the better the estimate of the
autocorrelation matrix and the shorter the window length (A getting smaller) then the

better the tracking speed and thus the smaller the lag error contribution.

The expression 2 = (1 — X)[15] can be used with the stability criterion shown
previously to illustrate the effect of the order of the system. If A is constrained to lie
. within the region 0.92-0.999 then clearly if A=0.92 (i.é. w = 0.04) the LMS could not
be guaranteed stable for systems of greater than order 8. However, if A=0.98 was
chosen then the LMS would not be guaranteed stable for systems of order greater than
33. Eleftheriou and Falconer [50] applied a similar technique in their work but
utilised a less conservative stability criterion for the LMS and considered a channel

model represented by a first order Markov process.

It is clear from the results presented in this chapter that there is a reasonable
agreement between the simulation results and theoretical predictions. Work recently

published by Clark & Harun [26] and previously by Tront [56] reinforces the results

demonstrated here.
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Fig. 3.6e - Performance comparison of LMS and RLS algbrithms
as HF Channel estimators for coloured input.

Fade rate=1Hz (D=-45dB) and Noise power, N=-50dB,
exponential windowing factor for RLS=0.95,
LMS step size=0.1666.
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Fig. 3.6f - Performance Comparison of LMS and RLS algorithms
as HF Channel estimators with coloured input.

Fade rate=1Hz (D=—45dB) and Noise power, N=-50dB,
exponential windowing factor for RLS=0.95,
LMS step size=0.16666.

- 65 -



20 T I T L

RLS
40 L g,

-50 |

mean-squared deviation in dB

~-60

il | ] L
! T 1 1
0 100 200 300 400 500

no. of iterations

Fig 3.6g - Performance comparison of LMS and RLS algorithms
as HF Channel estimators with coloured input.

Fade rate=10Hz (D=-25dB) and Noise power, N=-50dB,
exponential windowing factor for RLS=0.95,
LMS step size=0.1666.
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Filg. 3.6h - Performance Comparison of LMS and RLS algorithms
as HF Channel estimators for coloured input.

Fade rate=10Hz (D=-25dB) and Noise power, N=-30dB,
exponential windowing factor for RLS =0.95,
~ LMS step size=0.1666.
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3.5 CONCLUSIONS

It is clear from the results presented that the tracking performance expected of
RLS algorithms in time varying environments is not achieved. Although this work has
only looked at the algorithm’s performance in a direct modelling situation it is clear
that the tracking performance of the algorithm is an important characteristic of the
algorithm which must be clearly separated from other effects such E:;S spectrally robust

convergence behaviour.

It would appear that RLS algorithms are not necessarily suitable for use in highly
time-variant environments, such as the HF communication channel. The slow rate of
convergence. and subsequént degradation in performance of the LMS algorithm with
coloured input also makes it unsuited for such applications. Consequently it would
appear that some form of nonlinear techniques [87] or new algorithms which estimate
the parameters generating the nonstationarity may have to be considered to produce
adaptation algorithms which can function in such hostile environments, as will now be

discussed in the next chapter.
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Chapter 4

THE USEl OF A-PRIORI KNOWLEDGE IN HF CHANNEL ESTIMATION

The results which were presented in chapter 3 indicate that there is considerablé room
for improvement in the performance of conventional adaptive algorithms as HF chan-
nel estimatofs. This chapter looks at the development of three algorithms which utilise
varying degrees of a-priori knowledge to improve their performance. The term a-priori
. knowledge refers here to knowledge of the parameters which define the model in a
state space sense; this information allowing the use of a Kalman filter approach in the

exact sense.
4.1 INTRODUCTION

The publication of [61, 62) by Kalman and Bucy proposed an extremely powerful
recursive estimation technique commonly described as Kalman filters. The use of
Kalman filter equations pre-supposes that the system under consideration can be
described by a set of linear difference equations, for discrete time systems of the type

" considered here the system is normally described as,

o
I

F (k/k—=1) &g + Gewy, (4.1)

and
u =H s +u, (4.2)

where F (k/k-1) represents a K XK state-transition matrix. The M -dimen;sional
vector z, is normaily termed the measurement vector and H, is the M XX observation
or measurement matrix. The terms w, and v, are respectively tﬁe K and M-
dimensional vectors of the zero-mean vi*hite noise processes, which are assumed to be. ,

statistically independent with covariances deroted by Q and W respectively.

Given this description optimal estimates of the K -dimensional state vector § are
obtained from the noisy observations, z., in a recursive manner by the following

equations. The estimation equation,
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g=8"+K{a-H &) (4.3)

the prediction equation,

S5 = Fk/k—1)§835. (4.4)
The Kalman gain, K, , being described by,

Ko = VEYHI [HVETH + W, 17 (4.5)
The error covariance, V}~, being defined by E [ (x5 — & ) (x5 — 27 )7 ) and

obtained from,

Vi = Fk/k —1)VESF (k/k-1) + O, (4.6)

and the other covariance term, V}Z}, is defined by. Ef(n —£)(x —xf) ], and

obtained via, -
Vi = Vi - Ko H o VES R C)
In order to proceed with the development with the algorithms in this chapter it is
necessary to return to the channel model and tap generation filter described in chapter
2 and put it into a suitable format. algorithms in this chapter.

4.2 MINIMUM VARIANCE KALMAN ESTIMATOR

As has been stated the Kalman-Bucy filter is the optimal (i.e. minimum variance)

filter for the discrete linear system described by equations (4.1)and (4.2). ‘

Unfortunately in most applications not all the parameters which define the system are
known a-priori and as a result modelling errors [88] occur in practical applications of
the filter. However, by utilising the state space definition of the channel model and
incorporating the information provided into the filter it is clear that these modelling
errors could be eliminated, and by definitiqn tl;js filter would be the true minimum
variance estimator for this system. This fact can then be used to allow the filter to be
uéed to set a bound on the minimum achievable MSE for any HF channel estimator,

since it has full a-priori knowledge of the channel.

The widely accepted method for modelling the HF channel views the channel as a
FIR filter with time-varying tap weights each of which is statistically independent, as

described in chapter 2. The channel may then be described by the equations presented
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in the previous section and the state transition matrix used directly in the Kalman filter
equations. Thus, the MVK estimator may be defined as the optimal estimator for the
representation of the HF channel used in this study. It is optimal because the algorithm

has full a-priori knowledge of the system inbuilt, as illustrated in Figure 4.1.

The tap generation filter can be represented by the equations below,

Xo(k) = X4(k-1), (4.8)

and,

Xi(k) = V{k) = CoXolk~1) — C1Xy(k—1). (4.9)
The values of Cy and C, being dependent on the bandwidth of the filter. These
equations may be used in conjunction with the observation equation of the channel to
describe the system in terms of the equations below,

Sie1 = Fgp + Gewy, (4.10)

and,
e = Hise + v (4.11)
This is clearly of the form of equations (4.1) and (4.2) with the state vector 5, defined

as, & =[XoX,]F and the time-invariant state transition matrix being,

F= H,, is the observation matrix, constructed from the input signal

_C1 "'"CQ :

and C =[1-C, 2~Cy], thus H, =[(1 =Cy) xg (1 —Cy)x;] where the x
represent the inputs to the filter.

In order to expand this to the three tap model considered here the matrices are
simply augmented appropriately aﬁd consequently, the overall state is described by,

[ XoX, X, X, X,X5][, with the state transition matrix being,

0 0 0 0
—C, -C; 0 0 0 0
0 0 0 1 0 0
0 0 -C, —C, 0 0
0 0 0 0 0 1
0 0 0 0 -C, —C,
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Figure 4.2 - Motivation for using extended Kalman algorithm
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This description of the system provides the means of defining exactly what a-
Apriori information is required in the development of the three adaptive algorithmé.
Obviously the MVK estimator is not implementable in a pracAtical situation since such
information is not available, however it is still useful for the insight which it provides

and illustrates the motivation for the next stage of algorithm development.

4.3 THE EXTENDED KALMAN ALGORITHM AS A HF CHANNEL

ESTIMATOR

Since it is clearAthat full a-priori knowledge of the channel will not be available in
pracricél éituations it would seem logical to develop an algorithm which can approach
tﬁe performance of the MVK with the full a-priori knowledge coﬁstraint removed. The
hierarchial approach adepted here is illustrated in Figure 4.2. Essentially, an
Extended Kalman filter (EKF) algorithm [64] is utilised to develop the estimator in
which only partial a-priori knowledge is used, that being the structure of the model as
opposed to particular parameter values. 'The EKF algorithm is an application of linear
Kalman filter theory to nonlinear systems, the nonlinear system is linearised about the
current state estimate and the standard Kalman filter algorithm applied to the resultant
time-varying linear system.

Before proceeding with the derivation of the EKF algorithrﬁ for HF channel
estimation it is possible to illustrate, by a simple example, its relationship to the MVK
estimator of section 4.2, Figure 4.3 illustrates a simple communication system, the
channel being of order two, each of the taps is generated by passing white noise
thr01.1gh a simple first order autoregressive filter. If the MVK estimator was applied tol_
this channel then the state vector would be 5 = [a;,a,] but in the case of the
extended Kalman this would become, 5, = [ @, a, § ]7 where ¢ represents an estimate
of the gain of the filter in the tap generation pfocess. Clearly then the algorithm is no
longer simply estimating the taps of the channel but also the parameters responsible for

the variations in the tap weights.
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The state-space representation of the channel model, as described by (4.1) and.
(4.2), is converted to a nonlinear system by augmenting the state vector of the linear
system with the stationary parameters that make up the tap generation model. The key
to the performance of the EKF algorithm lies in the accuracy of the initial linearising
approximation made to the nonlinear system. Therefore, in order to ensure that the
EKF algorithm has a good initial estimate, ( thus ensuring good convergence
behaviour ), an LMS algorithm was used to carry out the initial training of the

algorithm.
4.3.1 State Space Formulation

As has béen stated previously the Kalman filter is not optimal for nonlinear
systems, the problem of optimal filtering for nonlinear scenarios being considerably
more complex than in linear system theory. Normally an exact solution via recursive
methods is not possible, the conventional approach has been to adapt standard linear
algorithms and determine their performance. The EKF algorithm is simply an
exteﬁsion of the conventional linear Kalman filter algorithm to a first order nonlinear

system which has undergone a first-order linearisation.

By using the state-space description of the channel model as described in
equations previously, the state vector s, = [ Xy X, ]/ is augmented with the filter
coefficients such that the augmented state 5, equals [ Xy X, Cy C; |f. The system is
now a nonlinear system and in order to apply the EKF it is necessary to obtain the

state transition and measurement ( or observation) matrices.

This is achieved by the following substitutions in the state equations of the
system, X, (k) = X,(k) + 8X,(k) and C, = C, + 5C, where X, and C, may be
considered as reference statcs. When these substitutions are made in equations (4.1)

and (4.2) then,

Xg(k) + 8Xo(k) = X;(k) + 8X,(k) | (4.12)

and,
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Xy (k) + 8Xy(k) = V(k) — [ C1(k=1) + BCy(k=1) [ Xy (k =1) + 8Xo(k) ]
—[Cok—1) + 8Co(k—1) ] [ X;(k-1) + 8X;(k-1) ] (4.13)

result.

Once all the terms have been multiplied out equations (4.12) and (4.13) become

8X (k) = 8X,(k ~1), (4.14)

and

83X (k) = V(k) — X; (k =1)8Co(k —1)— Cg(k —1)8X,(k —1)
— 8Xo(k —1)C; (k—1) — X¢(k—1)3C, (k —1) (4.15)

If this process is carried out for all six states then the resulting time variant state

transition matrix, now termed A, may be written as,

0 1 0 0 00 0 0
-C, —C; 0 0 0 0 —X, —-X;
0 0 0 1 00 0 O
0 0 -C,—C, 0 0 -X; -X,
0 0 0 0 01 0 0

0 0 0 0 -C, —Cy —X; —X,
0 0 0 0 00 1 0
| 0 0 0 0 o0 0 1

similar arguments can be applied to the measurement matrix resulting in,

H, = [ xg 2xg X1 2x; x; 253 _(oni +x1X;; +x2X5')
—(xoXo + x1 X3 +x,X4)]

~ where x, represents constituents of the input signal vector. Table 4.1 details the

algorithm in full making use of the natural block structure.

It should be noted at this point that this realisation of the EXF algorithm assumes
only the forlfl of the channel model, it does not force a Butterworth form onto the tap
generation filter, merely a second order section structure and as a result the stability of -
the filter is not guaranteed. This problem can be overcbme by ensuring that the initial
estimate was reasonably accurate via an LMS algorithm and also if neccessary by
monitoring the poles of the filter. If the poles of the estimated filter are outside the
unit circle, then by reflecting them inwards along their radii the filter's stability can be

maintained. Ovbiously if the EKF algorithm converges that the filter is being
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Description Equation

State estimate £(k+1) = A, £(k) + K(k)y (k) — Ct (k)]
£(0) = £,
State estimate Bk+1) = 8(k) + L(k)[y (k) — Co (k)]
é(k) = é0
Kalman gain estimate K(k)=[Ay 2y (k) CT + M, ZL(k)CT

+ A Zy(k)D]

+ M Z,(k)DT + S } P}

Kalman gain estimate L) =[{Z2(k) CT+ Z5(k)D] P

Error covariance estimate P, = C,Z23(k)CT + C . Z,(k)D]

+ D, ZH(k)CT + D, Zh(k)D] + R

‘Covariance estimate Shulk+1) = A ZA + A S MT
+ M ZH(k) Al + M Z(k)M]

_K(k)PkKT(k) + 0 Z(0) = E101

Covariance estimate Zplk+1) = A, Z(k) + M Zp(k)

— K{k)PKT(k); Z0) = Zi;

Covariance estimate Tk +1) = Z,(k) — L{k)P,LT(k); 2,,(0) =22

This form assumes the state space description of equations (4.1) and (4.2), and utilises
the natural block structure shown below where the augmented state is

_ i85k
Soug (£) = [9—((;)1

and the Kalman gain and Covariance matrix being similarly sectioned as below,

K(k)
L{k)

Ko (k) = (k) Zap{k)

s - [zu(k) En(k) ]

Table 4.1 - EXTENDED KALMAN FILTER ALGORITHM
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approximated accurately. to a MSE value approaching the noise floor it would be

reasonable to assume
4.3.2 Innovations Based Representation of the EKF Algorithm

In past applications ‘of the EKF method [89-91] has exhibited an alarming
tendency to give biased estimates or to diverge if the initial linearisation is inaccurate.
Detailed analysis of the convergence behaviour of the EKF algorithm is a difficult
problem and it was not until the publication by Ljung of [92] that the reasons for the
convergence difficulties were shown to be related to a combination of factors, such as
incorrect specification of the system noise covariances and the lack of coupling bet\_veen
the Kalman gain and the parameter estimates. Ljung also demonstrated that
convergence, at least to a local minima, was guaranteed if the algorithm was modified.
to incoporate some coupling between the Kalman gain and the parametef being
estimated. Unfortunately this increased the complexity of the algorithm considerably,
however as Ljung demonstrated if an innovations representation of the original system
is used for the initial linearisation procedure rather than the conventional state space
then a lesé complex algorithm results. Consequently in' this section an innovations
based représentation of the algorithm is derived. For detailed discussions on the
applications of the i.nnovations approach to linear least-squares estimation Kaliath et al
in [93-99] have e:-(plored the matter in great depth and Anderson and Moore in [63]

provide useful discussions.

What is meant by an innovations representation? As has been stated previously
the Kalman filter is optimal in the mean square error sense for systems described by a
set of linear difference equ’aﬁons as described by equations (4.1) and (4.2). It is also
true to say that one Kalman filter may be optimal for many different signal models, as
discussed in[64], aﬁd [63] although it's performance may alter between the models.
That is to say that although the filter gain may remain constant for various models the
error covariance will be different. These signal models, which have the same Kalman

filter have in common however the same output covariance. That is the Kalman filter
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is determined by the covariance associated with the particular observation (or
measurement) process as opposed to the particular details of the signal models. In this
mapping of many signal models to one Kalman filter there is one model which is
important, this being the innovations process, so called as a result of the white noise
driving process being identical to the innovations process of the associated filter. There
are many properties associated with the innovations model the most important being
that it is causally invertible, i.e. the input noise process may be obtained from the

" output process in a causal-fashion.

In order to obtain the innovations form of the EKF for th;s problem posed here it
is necessary to obtain an innovations representation of the channel model. If the usuai
model of the HF channel is assumed, as defined in the previous section by equations
(4.10) and (4.11), then the innovations form of the channel model may be written
down as[63],

1 = F3 + Keey, . (4.16)

and,

Vi = HIg + €. (4.17)

Where the innovations sequence, €, , is defined as;

& =y —H & (4.18)
where e is the output and H, the measurement matrix, (as before), and §;, the current
estimate of the state.

In order to obtain the Kalman gain, K,, it is necessary to define the quantities
T,, M., P,, L, and ), as in[63], so that the Kalman gain may be obtained recursively
from, | A

K, = — (FT H, — M, YO, (4.19)
The covariar_xce associated with the innovations sequence, ¢, is termed {;, being
defined as E [¢, €[] and obtained recursively from,

Qk = Lk - H[Tka. (4.20)

Where L, represents E [y, yf] and is the covariance of the output sequence y, being
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obtained recursively from,

Lk = HEPLHI: + Wk' (4.21)
The covariance of the state 5, being P,, that is P, = E[s,57] and obtained from the
recursion,

Pis1.= FP.FT + G,Q,GY. ' (4.22)
The quantity M, representing the cross-covariance of the state and the observation
sequence being obtained via,

M, = FP,H, + G¢$; (4.23)
with the sequence T, representing the covariance of g, that is T, = E[5 5] and given
that T, = 0 then,

Ty = FT,FT + (FTHe — My ) (Lo — BT H, )™ (4.24)

(FT Hy =M, )

The innovations form of the extended Kalman filter may then be written down directly

as before, Table 4.2 details the algorithm in full.
4.3.3 FINITE PRECISION CONSIDERATIONS

As was discussed in section 4.2 in most applications of Kalman filtering modelling
errors arise due to the imperfect knowledge of the system being observed. This
concept may also be applied when the finite nature of the digital machines on which
the algorithm is implemented are taken into account as was discussed previously in
chapter 3. The inherently complex nature of the EKF algorithm ensures that it will
suffer from such errors asra result of digital word truncation and round off errors in

matrix multiplication.

There are two possible approaches to implementing the solution to this numerical
stability, the whole identification process could be restarted and the algorithm
reinitialised to the original preset values. Howevér, this would require complete
retraining of the algorithm and is clearly unattractive. Alternatively detection of the

onset of numerically inspired divergence could be monitored by some means and some
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Description Equation

State estimate S(k+1) = A,s(k) + K e(k)

State estimate Bk +1) = 8(k) + L (k) e(k)

Kalman gain L(k) = [ Zp(k) CF + Su(k)DF ] A
Covariance matrix Salk+1) = A, Z, + M EL(k) — K (k)AL (k)
‘Covariance matrix | Zp(k+1) = Sp(k) — L (k)AK)ILT (k) — 8Zp0(k)Zp0(k)

Log likelihood /i(kj = Afk-1) + %— [ e(k)e(k) = Au_y ]

This formulation assumes the state space model previously described in equations

(4.1) and (4.2) and uses the natural block structure as in table 4.1

Table 4.2 - INNOVATIONS FORM OF EXTENDED KALMAN FILTER ALGORITHM
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form of partial reinintialisation invoked as in Lin[81]. A more fundamental approach
to improving the numerical stability of the algorithm could be achieved by the use of
orthogonal decompositions such as rotations or reflections as in[75,76]. In this work it
is considered sufficient fo demonstrate the pefformance possible by the use of a-prion
knowledge and the development of numerically stable techniques is left until a later

date.
4.4 A-PRIORI KNOWLEDGE AND THE LMS ALGORITHM
4.4.1 Introduction

The performance of various adaptive HF channel estimators have been studied so

far, the results may be summarised as follows:-

1) Minimum Variance Kalman (MVK) estimator:- this estimator requires full a-priori
knowledge of the channel and as a result is not implementable. However it provides

the lowest achievable MSE bound on any HF channel estimator.

2) EKEF algorithm:- this technique relies on partial a-priori knowledge of the channel
and its performance approaches that of the MVK, but it is very computationally
complex and is liable to suffer from numerical instability consequently making

implementation difficult.

3) Adaptive FIR filters (LMS/RLS algorithms):- these techniques have no a-priori
knowledge of the channel and consequently have the poorest performance although the

LMS is the least computationally complex.. ‘

Clearly the ideal estimator would. be one which had: a performance approaching
that of the MVK but with a level of computational complexity comparabie with the
LMS algorithm, as illustrated in Figure 4.4. This section considers one approach in
attempting to achieve this.

Essentially the LMS recursion is increased from a first order to a second order

recursion by utilising a prediction filter which incorporates partial a-priori knowledge
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of the tap generation process. The algorithm was implemented on computer as a set of
parailel prediction filters and LMS algorithms (as illustrated in Figure 4.5), each

prediction filter catering for a possible fade rate.

The illustration in Figure 4.5 bears a gtﬁking resemblance to the time sequenced
adaptive filter suggested by Ferrara and Widrow in[97], the difference lying in the
presence of a prediction filter. In their application of enhancement of
electrocardiogram traces, Ferrara and Widrow adopted a similar approach to here in
that they utilised a-priori knowledge of the signal being analysed to improve the

'pérformance of their system.
4.4.2 Algorithm Development

Again assuming the state space description of the tap generation model of the
channel, a prediction filter for each of the taps may be constructed. The ideal input
for these prediction filters would be the actual tabs, which are of course not directly
observable. However, the estimate of the taps from the LMS algorithm is available
and this may be used, although it is in fact a noisy observation. The predicted value
of the taps obtained may then be used in the LMS algorithm by increasing the order of

the recursion from a first to a second order.

In order to derive the required prediction filters directly, it would be necessary to
carry out a minimum phase spectral factorisation on the tap generation process, this
would be both difficult and computationally intensive since the input of the filters is a
contaminated tap estimatg. As a result a Kalman filter approach is adopted since this

i

is-equivalent for white noise processes as is the case here.

If the representation of the channel specified previously is used once again then it

is possible to develop a one stage predictor algorithm([101], thus,

§hU= FgE2 4 KE Uy, (4.25)

where v, = k, — H, §£7%,i.e. the error in the tap estimate and the Kalman gain,
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Figure 4.5 - Structure of modified LMS algorithm
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K¥!is obtained from,

Kil=F, V.(k/k=1) HT V. (k). (4.26)
The covariances V,(k/k —1) and V (k) are defined by,

V. (ktk=1) = E [ (s, —§P (s, — 35T ]

and,

V) =E [v v]

respectively and may be obtained from the following equations,

V.(k+1/k) = F V. (k/k=1) FT + G, V,, (k) G] (4.27)
- K§+1 H, V;(k/k -1) FT,
and,
V,(k) = HIV (k/k—=1) + V, (k). (4.28)
If the variance and gain equations are taken to the steady state values by
computer simulation, then the steady state gain, K,,, will be obtained and may then be
used for prediction. This mechanism is then used to increase the recursion of the LMS.
If the variance and gain equations (eqns. 4.25-4.27) are taken to the steady state by
computer simulation then the steady state gain, X,, is obtained and this can be used in
the algorithm for prediction as detailed in the equations shown below.

U= H g5 (4.29)

that is the predicted value of the tap based on an estimate of the state obtained from,

&7 =F g3 (4.30)
and,
3 =53 4 K. [ — B , (4.31)

That is, since the actual taps are not observable then the estimate obtained from the

LMS, E,, 1, as illustrated below, is used to aid the prediction of the state.

Ek—l = ";f:lz + 20 1€ : (4.32)

where x, _; represents the input signal vector and the error ¢, _; is obtained from,

€1 = Ye-1 = Ve (4.33)
that is the output of the channel less the estimated output where the output
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Yooy = hf_xey + n, where n; is additive white gaussian noise. The estimated output

is

3

Ye1 = ﬁf——lzxk -1 (4.34)
Table 4.3 below summarises the modified LMS algorithm.
Description of operation Equation
predicted value of tap based on state estimate. it = CsE?
predicted value of state based on an estimate of the state | §™' = F &3
$3 = §#3 +Ka [ — BT

estimate of state

estimate of tap coefficient

= Fk-2
= hili T 2px 18

estimated output

£ -1
the error €t = Yi-1 — Yk-1
A k-2
Vi1 = X

Where x, _, represents the input signal vector.
% P p g
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4.5 PERFORMANCE COMPARISONS

The simulations carried out which are reported here were performed for a

channe! of fade rate 10.0Hz and with and additive noise power set at -50dB.

The perforﬁance of the LMS, MVK and EKF algorithms are illustrated in Figures 4.6
to 4.10. Figures 4.6-4.8 show the performance for white input signal conditions and
Figures 4.9-4.10 for coloured input signal, (eigenvalue ratio of 11.8) conditions. Table
4.4 below summarises the performance of each of the algt;rithms as channel estimators

for white and coloured inputs.

Figure Algorithm EVR | Steady-State MSE |
4.6 MVK 1 -45dB
4.7 Modified LMS 1 -25dB
4.8 EK 1 -45dB (*)
4.9 MVK 11.8 -43dB
4.10 EK 11.8 -28dB (1) i

* . achieved after initialisation with LMS —

! - algorithm diverges due to numerical instability very quickly

Table 4,4 - Summary of performance of algorithms in simulations

Comparing the performance of the LMS with priori knowledge that of the MVK it is
clear that the LMS is some 20dB from the noise floor. This is as a result of the
contribution to the error by the time variations in the system as di_scussed by Macchi
in[52) and described in chapter 3. It can be seen from Figure 4.8 that thé EKF .
provides an improvement in perfromance of some 5-20dB. The EKF utilised the LMS
to provide an initial estimate and as can be seen clearly imi)roves upon it. Figures
4.9-4.10 illustrate the algorithms performance under similar conditions to those above

except that the input signal is now coloured. The EKF approaches that of the MVK
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which is independent of input signal colouration since its performance is based on the use
of a-priori knowledge about the channel model. Unfortunately the performance of the
EKF degrades with time, this is due to the inherent numerical instability of the algorithm

as discussed in section 4.3.3.
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Figure 4.6 - Performance of MVK for white input signal on 10Hz fading channel with

additive noise power = -50dB.
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Figure 4.7 - Performance of modified LMS algorithm for white input signal on 10Hz

fading channel with additive noise power = -50dB.
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Figure 4.8 - Performance of Extended Kalman algorithm for white input signal on

10Hz fading channel with additive noise power = -50dB.

.92 -



mean:squared error in dB

~10

-40

I \;WW N\M Y

H _ [} . | |
no. of iterations

0 50 100 150 200

Figure 4.9 - Performance of MVK algorithm for coloured input signal (evr=11.8) on

10Hz fading channe! with additive noise power = -50dB.
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4.6 CONCLUSIONS

In this chapter three new algorithms for the HF channel have been developed
each performing with various degrees of success. The MVK requires full a-priori
knowledge, a constraint which precludes implementation. The EKF although providing
a good performance in the 'éggj;;dy-state MSE sense is complex and numerically
unstable. Finally the PLMS is the least complex but performed least well, however it
has not fully been explored and the work of Clark et al in [102-104] offer some hope

that this type of technique may still be useful if a suitable predictor filter was utilised.

In summary this work has demonstrated the possibility of utilising a-priori
knowledge of the channel being identifi’éa to improve the performance. Ultimately’
such an estimator would be incoporated iﬁ an equaliser where the channel estimation
and decision process are seperated, as reported in, Mulgrew paper 1987 the following

chapter now considers such structures.
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Chapter 5

ADAPTIVE EQUALISATION OF THE HF CHANNEL
5.1 INTRODUCTION

All the chapters preceeding this one have considered channel eétimation only, in
this chapter adaptive equalisation is considered. Equalisation is used in communication
systems to compensate for the distortion introduced into the transmitted data sequence
by the communications channel, Quershi in [105] illustrates several applications. When
an equaliser is termed adaptive, it is assumed capable of some form of self-adjustment
to deal with variations which arise in the channe! impulse response consequently
causing distortion. This seli-adjustment is normally achieved by incorporating an
adaptive algorithm such as the LMS or RLS into the structure to set the tap weights of
the equaliser based on some criterion, such as MSE, to a value which minimises the

distortion in the system.

This chapter considers three possible structures, one novel, and their MSE

performance in the HF communication scenario. The three structures are:

1) A conventional decision feedback equaliser (DFE) which utilises a Godard-Kalman

adaptive algorithm to carry out the tap weight update.

2) A linear Kalman equaliser which utilises an LMS channel estimator, reported

in[29], separating the channel and sequence estimation processes.

3) A Kalman based equaliser which like the above uses an LMS algorithm to carry

out the channel estimation but which incorporates an element of decision feedback.

The structures stﬁdied in this chapter are detailed in the following sections,
however their relationship to each other may be shown in a qualitative manner by
Figures 5.1a;c. Figure 5.1a illustrates, in block diagram form, a conventional DFE in
which the adaptive estimation and data equalisation functions are performed at the

same time, Figure 5.1b represents the adaptive Kalman equaliser reported in [29} and
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Figure 5.1b - Adaptive Kalman equaliser
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as can be seen the channel estimation and data equalisation processes have been
separated. The final illustration, Figure 5.1c, depicts the novel adaptive Kalman
decision feedback equaliser, where as in Figure 5.1b, the estimation and equalisation

processes have been separated but now decisions are fedback into the structure.

This chapter is structured as follows, initially the equalisation problem is
highlighted and existing structures which have been reported e¢lsewhere summarised
with their advantages and disadvantages discussed. Following on from this, the
development of the adaptive Kalman equaliser of [29] is briefly illustrated and used to
develop the novel Kalman decision feedback structure. Finally comparisons of the
performance of the three structures considered here are presented and conclusions
drawn based on the results, the relative performances considered in terms of their

steady state MSE.
5.2 EQUALISER STRUCTURES

In this section a brief resume of existing equaliser structures is presented before

illustrating the development of the Kalman decision feedback structure.

5.2.1 Introduction

As has been intimated previously adaptive equalisation of radio and telephone
communication channels is used to compensate for the time dispersion introduced to
the transmitted data sequence. This time dispersion introduces intersymbol-
interference (ISIj into the transmitted data sequence. The nature of this ISI in the HF
channel can be appreciated by consideration of the multipéth nature of the channel
which results in the energy associated with the transmission of one symbol being

smeared across several symbol periods as illustrated in Figure 5.2.

Research over the last twenty years has produced a large body of literature [105]
and references therein, there are many typés of equaliser structure, and they may be

summarised as follows:

a) Linear transversal equalisers which in general suffer from an inability to represent
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the inverse of the channel transfer function adequately.

b) Conventional decision feedback equalisers which, although providing a better perfor-
mance than linear equalisers, suffer from a degraded performance due to error propagation

in the feedback section.

¢) Maximum likelihood sequence estimation is a technique which is not considered in this
thesis but whose main disadvantage would appear to be its computational complexity, how-

ever considerable effort is being expended in developing more efficient implementations

In general most equalisers have two modes of operation, training and decision-
directed. In -training mode the transmitted data sequence is known a-priori and is
termed the training sequence. In this xﬂode the a-priori knowledge of the training
sequence is utilised to ensure the coefficients of the equaliser achieve the appropriate
values to mitigate the ISI. On completion of the training sequence the equaliser
éwitches into decision-directed mode, i.e. the data sequencé is not known a-priori and
the equaliser must assume that all decisions it takes are correct. Clearly this may not
always be the case and the equaliser will clearly suffer a degraded performance in such
situations. There are some applications, such as microwave line-of-sight
communication systems[106,107], where a training sequence is not present. This is
termed blind equalisation [108].since the equaliser is required to bootstrap into
decision-directed que. It will be apparent that in such situations the level o‘f
complexity required in the equaliser is much greater than the sit.uation being
considered here. This is because the system has no prior knowledge of the channel or
of the transmitted data sequence as would normally be provided rby the training

sequence.

The selection of coefficients for the equaliser to minmise the effect of ISI may be
based on many criteria[109-111], the most suitable would be the probability of error.
However this is a highly nonlinear function and generally not practicable, hence the
most common criteria is the MSE, which is the sum of squares of all the ISI terms and

the noise power at the output of the equaliser. Many equalisers operate by generating
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an estimate of the inverse filter which when convolved with the channel response
allows the transmitted data sequence to be reconstructed accurately, as in the linear
equaliser illustrated in Figure 5.3. For conventional DFE’s, a feedback filter is inserted
after the decision device, (as in Figure 5.4), and is used to cancel out any trailing
intersymbol interference (ISI) by using previously detected symbols, which are assumed

to be correct,

In all the situations which will be considered here the equaliser tap weights are
symbol spaced, however it is perfectly feasible to have fractionally-spaced coefficients.
In general the spacing is chosen to be T/2, where T represents the symbol period. The
motivation for ﬁsing a fractionally-spaced eqﬁaliser, (FSE), are it’s relative insensitivity
to timing phase and ability to deal with more severe delay distortion than a symbol-
spaced equaliser. However, as in all engineering applications there is a penalty to be
paid and in this case the complexity is increased since a FSE requires twice as many

coefficients as a symbol-spaced equaliser.

A range of adaptive algorithms are used in adaptive equalisation, the two most
common being the LMS and RLS algorithms which have been discussed in detail
previously. The LMS offers an easily implementable algorithm but lacks the spectral
robustness and initial fast convergence of the RLS, which unfortunately is relanvely
complex to implement. The conclusions presented in chapter three suggest that when
operated as a channel estimator, as opposed to an equaliser, the LMS offers a similar if
not improved performance, in terms of the steady state MSE achieved, than the RLS
on channels which are time-varying and this is reinforced by the resuits reported
elsewhere[26, 56-58]. Tt is these results which have provided some of .the motivation
for the novel structure considered here, in that the data séquence estimation and

channel impulse response estimation processes are separated.
5.2.2 Linear Equaliser Structures

The simplest structure used for equalisation is the transversal equaliser, Fig. 5.3.
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If a digital communications scenario is assumed, then the channel may be modelled as
a discrete time transversal filter with additive white Gaussian noise, the output of the
channel can be written down as,

Yo = bin + | | l (5.1)
where x, represents the channel input vector with x; , representing it's constituent
components and k, is the M -point impulse response vector, which may or may not be
time-variant, with components represented by %, ,. In a similar way the equaliser
output may be written down as,

fx = Cle ' (5.2)
where ¢, represents the N -point impulse response vector of the equaliser and

Ze = [V Yea1 Yoo v Yen | (5.3)
is the vector which contains the N previous channel outputs. It is clear that the
coefficients of such an equaliser are essentially being selected to force the combfned
channel and equaliser impulse response to approximate a unit pulse. That is, the
equaliser must approximate the inverse filter of the channel. This requirement results‘
in the equaliser suffering from excessive noise enhancement and sensitivity to sampler
timing phase[105].

5.2.3 Decision Feedback Equalisers.

In attempt to overcome the performance limitations of linear equalisers, as
discussed previously, a simple non-linear equaliser was developed, the decision
feedback equaliser as illustrated in Figuré 5.4. Essentially it is a transversal equaliser
with a feedback section which uées past decisions to cancel out the ISI associated with

these detected symbols.

Ry =L+ PR (5.4)
where,
¢F represents the A coefficients in the feedforward section of the equaliser,

cf? represents the B coefficients in the feedback section of the equaliser, and

X, is the vector containing the B previous decisons.
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The DFE as a result of the feedback section’s ability to cancel the ISI associated
with past symbols removes fhe constraint from the feedforward section that it
approximate the inverse filter of the channel. This means that excessive noise
enhancement and sensitivity‘to sampler timing phase is reduced. However it is clear
that if an incorrect decision is made that it will propagate through the feedback section
thus increasing the likelihood of more incorrect decision;; 1e error propagation will
occur. The effect of error propagation has received little attention[112}, since for
many applications the error bursts which would result in error propagation are
relatively short. In the time-varying HF channel it is clear from previous results
[56,113] that this is not the case, consequently a degradea -performance of the DFE

results.
5.2.4 Maximum Likelihood Sequence Estimation

As was discussed in section 5.2.1 conventional adaptive eq'ijalisers utilise the MSE
criteria in general in order to minimise the ISI iﬁ the received data sequence. This is
not an idéal criterion the probability of error being more suitable but unfortunately
highly nonlinear. This has motivated many researchers to investigate the use of other
nonlinear criteria, as in{114]. Such receivers usually use the maximum a-posteriori
probabability 'ru]e[115] to maximise the probability of correctly detecting each symbol
as in[116], or the entire transmitted sequence. These receivers are termed maximum
likelthood receivers (ML), the classical ML receiver [114] may be viewed as a bank of
m* matched filters, where & is the length of the sequence of symbols which come from
a discrete alphabet of size m. Unfortunately the computational complexity of such
receivers increases exponentially as the sequence length increases although the Viterbi

algorithm [117, 118] partially overcomes this problem.

In general MLSE receievers require knowledge of the channel and it is necessary
to utilise an adaptive channel estimator [119] as illustrated in Figure 5.5. 'This
estimator will of course only provide an estimate of the channel and this introduces a

possible source -of error under severe non-stationary or high noise conditions. Also,
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although the Viterbi stops the exponential growth in complexity it still places a
considerable load on any processor, as a result of this much work has been devoted in
recent years to developing reduced state MLSE detectors as in the following[120-122].
This" coupled with the growth in capability of VLSI techniques ensure that MLSE

receivers will receive more and more attention in the future.
5.3 GODARD KALMAN DECISION FEEDBACK EQUALISER

The conventional DFE structure differs, as has been stated earlier, from the
linear structure by the addition of a feedback section which is used to cancel out the
IS1 associated with these symbols. The feedback section allows a greater freedom for
the linéar section in selecting tap weight coefficients. Conventional DFE’S of this type
have been found to operate very well over wire line channels but in rapidly time-
varying environments the performance appears to be degraded by error propagation in

the feedback section.

In this chapter the algorithm which was used to adjust the tap weight co-
efficients of the equaliser was the algorithm postulated by Godard [30] in 1974 in
which he chose not to replace the equaliser with a conventional Kalman filter, but
rather adopted a transversal equaliser structure and used the Wiener solution for the
optium tap weights as a starting point. The algorithm offers very fast initial
convergence and is spectrally robust but suffers from relatively high level of complexity.
To apply it to the DFE, the observation vector contains both the feedforward and
feedback coefficients, the algorithm for the DFE being summarised in Table 5.1. The
‘solution obtained by Godard was for a stationary channel and its application was

extended to slowly time-varying channels by means of exponential data windowing. -

In terms of the conventional Kalman filter equations, Godard assumed that the
state transition matrix was the Identity matrix and the state vector chosen to be the tap
weights of the equaliser. The selection of states for the application of Kalman filter

theory to data equalisation is crucial and is discussed later.
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Description of operation Equation

tap weight vector estimate | 8 (k) = H (k=1) + K(k) [x(k) —H k)L (k—1)]

Kalman gain vector KK)=VYE-DET G [H ;) Y,-DET (k) + 1]

Covariance matrix estimate | Y (k) = LON T — K (k)H (k) ¥ (k-1)

Where

H (k)=

the - estimated ' tap weight vector is

[ do (k) d, (k)..... d; (k) By (k) by (k) - - - Eﬂ, (k) ], the Kalman gain vector is

KT (k) = [ Ko (k) Ky (k) ... K, (k)] with f the number of feedforward.taps and fb the

number of feedback taps.

Table 5.1 - Summary of Godard-Kalman DFE Equations

5.4 AN ADAFPTIVE KALMAN EQUALISER

In [29] Mulgrew and Cowan presented a novel equaliser structure, the derivation
of which may be summarisgd as follows. Initially, a channel model based on a FIR
filter was postulated and the constraint that the optimum transversal equaliser fér such
a channel, which requires minimisation of its MSE subject to the impulse res;ﬁonse
being finite, causal and stable is relaxed. The new relaxed constraint requires only that
the filter be causal and stable, this results in the solution to the minimisation problem

being provided by a Wiener infinite impulse response (IIR} filter.

The motivation for considering an IIR structure was to try and overcome the
limitations of conventional FIR equaliser structures. In many applications FIR

solutions have been found to be perfectly adequate, and they are generally preferable

since they are unconditionally stable. However these FIR filters suffer from

indeterminate order when required to model transfer function poles, especially poles
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close to the unit circle. The obvious aiterﬁative has been IIR filters, but, IIR filters are
not unconditionally stable The IIR equaliser has received little attention recently with
the development of the DFE. The DFE which although it has a superior MSE
performance compared to an IIR equaliser when the number of signal levels are low
or the noise is high, suffers from error propagation unlike the IIR equaliser. The
development of the DFE has restricted the wider application of IIR structures because
of the improvement it offers over FIR structures and the lack of guaranteed stability
associated with IR filters. However, DFE structures suffer from error propagation as a
result of the feedback of previously detected symt?ols, the IR based structure offers a

means of overcoming this problem.

The Wiener IR filter offers advantages over the conventional linear (FIR)
equaliser in terms of the order required for the same level of performance for
" minimum phase channels. However, the realisation of such a filter would require a
minimum phase spectral factorisation, this would present a major difficulty. The
solution adopted was to use a Kalman filter to realise the solution since, if the
processes are stationary and the observation noise white, t:li:en the steady state Kalman
and Wiener IIR filters are identical. The FIR filter model of the communications
channel in common usage although readily adapted to a state space representation, and
hence to a Kalman filter, requires care in the selection of states which will constitute

the state vector.

The care in the selection of states for the state vector is because the FIR filter
model of the channel assumes M taps, that is to say it may be completely described by
M -1 states. If this approach was adopted however it would result in the plant and
observation noise terms being correlated. The Kalman filter for such a situation,
although it exists, -would only be conditionally stable, the stability being dependent on
the channel impulse response. If the channel is described by a state vector with M

states then the appropriate Kalman filter, as in [123] and[124] is unconditionally stable.
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In order to deal with non-minimum pha;e channels, a fixed lag smoothing form
of the Kalman filter was used. Fixed-lag smoothing [63] is concerned with the on-line
smoothing of data with a fixed delay 4 between the signal being received and an
estimate being made. As was intimated in section 4.1 in Kalman filters an estimate at
iteration k£ is based on a set of noisy observations, clearly there need be no delay
between the last observation and the next estimate. However should a delay be
permitted then it is clear that more observations are available on which the estimate
may be made. Unfortunately as in all engineering applications although a smoother
would be expected to provide a better estimate than a filter because it has more
obsewations on wh.ich to make estimates, a penalty of increased complexity is incurred.-
A fixed lag smoother would normally imply that for a fixed lag, ¢, a state vector
augmented to,

[$7(k) &7 (k=1) ... s (k—d) ]. | (5.5)
However, this is unnecessarily complex because the state transition matrix is simply a
shift matrix, thus the state vector is augmented to contain 4 + 1 elements,

sTkYy=[s(k)ys(k=1) ...... s{k—M+1) -+ - s(k—d)], (5.6)
where d is the fixed lag and M is the number of taps in the channel. The state
transition equation then becomes,

s(k) = as(k—1) + bs(k), (5.7)
where g isa (d+1) X (d+1) shift matrix and 4 is a vector with (d +1) elements,

BT =[100..0]. : (5.8)

The observation equation is clearly,

x(k) = hTs(k) + n(k), | (5.9)
where 2 is a column vector with (d +1) elements,

BT = [hohy -~ hy_,00 -+ 0], (5.10)

that is the channel tap weight vector augmented to d + 1 elements by the addition of

ZE€T05.
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The problem still remains however of making the equaliser adaptive, since
knowledge of the channel impulse response is required and this is achieved by using én
LMS algorithm as a channel estimator to provide the required estimate. Some measure
of the observation noise in the system is also required for the Kalman structure and
this is achieved by the recursion shown below, the derivation of which is detailed -
in[29],

GXk+1) = (1 — 1/M YoXk) + eX(k+1/M, (5.11)
where e(k+1) is the error obtained from the LMS. This recursion also provides a
measure of the model uncertainty in the system and therefore offers a means for model
order réeduction by using the residuals to provide some information on any pa.ths not
modelled by the LMS. The structure of the equaliser is illustrated in Figure 5.7. The
main point to note about the general structure of this equaliser is the separation of the
state and channel estimation processes, and this approach is extended in the next
section. The Kalman filter can then be written down directly from these definitior;s

and is detailed in Table 5.2.

5.5 AN ADAPTIVE KALMAN DECISION FEEDBACK EQUALISER

The motivation in the previous section for adopting an IR structure was it's
freedom from error propagation. However, the DFE offers an inherent MSE
performance advantage, as illustrated in Figure 5.7. Figure 5.7 illustrates the
theoretical MSE performance of both a DFE and an IIR equaliser on a stationary
non-minimum phase channel, whose Iimpulse response was described by
0.2602z 7! + 0.928z % + 0.2602z =, where the addifive noise power was set at -40dB.
It can cléarly be seen that for a range of estimation lags the performance advantage of
the DFE is constant at approximately 5dB. This inherent theoretical performance
advantage provides the motivation for the development of the Adaptive Kalman DFE

now discussed.

As in development of the previous equaliser, the structure of the channel model is
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Operation Equation

state estimate S kk) = § (hik—1) + K (k) [x(k) — H £ (k/k—1) ]
state prediction £ (k/k—1) = a§ (k-V/k-1)
Kalman gain K(k)=Vk/&-DHT [HY (k/k -1)HT + 6217

Covariance prediction Vik/k-1) = gV (k—1/k—Dg” + pbTa?

Covariance estimate Vktky=[1 -~ K(k)H [V (k/k-1)

Tap estimate B (k+1)=h (k) + 2u £ (k+1e(k+1)

Channel estimation error | e(k+1) = x(k+1) = A 7 (k) § (k+1)

observation noise estimate | 62 (k+1) = (1 — UM ) 62 (k) + e (k+1)M -

The Kalman gain vector is as below,

KT (k)= [Ko (k) Ky (k) ... Ka(K) |-
with the estimated tap weight vector k (k) being used in the 4 element vector H as

below,

H=[};D};l ..... hM_IOO"'O],

Table 5.2 - Summary of Equations for an Adaptive Kalman Equaliser
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again the starﬁng point. The channel is considered as a FIR filter which can be
represented in the state space form as shown below,

s(k+1) = F(k+1/k)s(k) + n(k). (5.12)
where F(k+1/k) represents the state space transition matrix associated with the
channel and s(k) is the input data vector. The following observation equations may
then be associated with this model,

xy(k) = BTs(k) + n(k) (5.13a)

and,

x,(k) = g(k—d). . (5.13b)
The first equation represents the channel output and the second repreéents a decision
feedback term. It is worth noting at this point that it would be possible to have many
similar observation equations to the second one, that is feedback many decisions.
However preliminary investigations{125], suggested that nothing would be gained in
terms of performance for a considerable increase in complexity. The two observation
equations may now be combined as below,

x(k) = Ha(k) + N(k). - (5.14)
H being a (d +1) X 2 matrix as shown below,

[hoh]...hM_lOO...O-l
oo ... 000 .1

It is clear that the problem presented here is identical to that of the previous
section, the difference lying in the observation equations, it is necessary then to
generate the Kalman filter which provides the solution given these particular
observation, equations. With the definitions above, this may be done directly and the
equations are détaiied in Table 5.3: It should now be noted that the iﬂversion of the
innovations term,

[HY (k/k -DHT + g} ]7, (5.15)
is no longer a scalar and consequently the inversion of a two by two matrix is required.

The LMS channel estimator is used in exactly the same way as in the previous structure
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to provide the tap weight vector estimate and a measure of the observation noise. The

detailed structure of the equaliser is shown in Figure 5.8.

The final question which remains is to determine how many states are required
for the equaliser to operate efficiently, and clearly 4 +1, that is the estimation with lag

delay is 4 and there is one feedback term.

- 114 -

S



Operation Equation

state estimate S (k/k)y =5 (ktk-1) + K(k) [ x(k) —H £ (k/k-1) ]
state prediction §(ktk—1) =g § (k—1/k-1)
Kalman gain Kk) = ¥(k/k-1DET | HY (k/k -1DHT + g2 ]!

Covariance prediction V(k/k=1) =g V(k-Vk-1) g" + pbTo?

Covariance estimate Vkak)=[TI —K&)H ¥ (k/k-1)

Tap estimate h(k+1) =k (k) + 20§ (k+De(k+1)

Channel estimation error | e(k+1) = x(k+1) =& T (k) § (k+1)

observation noise estimate | 62 (k+1) = (1 — UM )62 (k) + e* (k+1VM

where the Kalman gain vector is as below,

Koo Kog - -« Koanr
Kio K1g - - . Ki.d+1]

The estimated tap weight vector ;i (k) being used in the ¢ element vector H as below,

ho hy . . . By, 00 .. .0]

006 ... 0 00...1|
L 1

Table 5.3 - Summary of Adaptive Kalman DFE Equations
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5.6 ALGORITHM COMPLEXITY CONSIDERATIONS

A breakdown of the computation required to process each of the three algorithms
considered here is presented in this section. Tables 5.4 and 5.5 present the
computation required for each process in the algorithm given particular values of the

lag d and the number of taps in the channel.

This results in the adaptive Kalman DFE requiring 123 multiplications and 99
additions/subtractions per iteration to carry out the tests performed in this report. The
adaptive Kalman equalisel; required 47 multiplications and 37 additions/subtractions
and is clearly less complex, the conventional DFE using the Godard Kalman required
133 operations per iteration which is comparable with the adaptive Kalman equaliser.”
It is also worth remembering that more computationally efficient implementations are
possible by utilising the standard matrix algebra techniques as has been demonstrated

in[75,76, 78].
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operation mult. add/sub.
V(k/k—1) H(k) d(M-1)+1 | d(M-2)
HT (k) ¥ (k/k-1) H(k) + o M M
x(k) — HT.(k);‘_(k/k -1) M1 M-1
V(ksk—1) Hk) [ HT (k) ¥ (k/k-1) H(k) + 03']-1 d+1

S(k/k—1) + K(k) [ x(k) — HT(k) $(k/k=1) ] d+1 d

K (k) HT(k) V (k/k —1) ‘;—2+%

V(krk—1) —K(k) HT (k) ¥ (k/k 1) %2_+_c21_
y(k) = BT (k—1) x(k) M M
2pa(e) (yk) —AT(k-1) x(k)) M+1

bk—=1) + 2 px(k) (y(k) — &7 (k1) x(k)) M
(1- 2)eie-n+ <& 3 !

no. of states = d+1
no of channel taps = M

Table 5.4 - Adaptive Kalman Equaliser Complexity
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no.

no.

R RS ek
(1-3pefe-n + Sl

operation mult. add/sub.
| v -1) 2 x) Ad +1)M Ad +1)}(M -2)
HT (k) ¥{k/k —1_) (k) + ai aM M —4
x(k) — HT (k) $(k/k 1) 2M —1)+2(d +1) 2M -2
Y{k/k—1) H(k) [HT (k) ¥(k/k —1) H{k) + g? ] 4d+1)+4 2d+1)+1
S/ —1) + K(k) [ x(k) = HT (k) §(ksk—1) | 2(d+1) 2(d+1)
K(6) B (k) V(krk—1) 2(d+1)Mz+(d+1)2 2d +2)M ;2)+(d+1)2
V(s —1) — K (k) HT (k) Y{k/k —1) L;l)z—
y(k) — &7 (k-1) x(k) M M
2pa(k) (yk) —AT (k1) x(k)) M+1
hk-1) + 2 px(k) (y(k) = 4" (k1) x(k) ) M
3 1

of states = d+2

of channel taps = M

Table 5.5 - Adaptive Kalman DFE Complexity
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5.7 PERFORMANCE RESULTS

The results presented in this section detail the performance of the three equaliser
structures under a variety of channel scenarios. Initially simulations are presented for a
stationary channel situation. These tests were performed to determine if the inherent
performance advantage, in terms of the steady state MSE achieved, of decision
feedback structures was actually achieved. Subsequently tests were performed on the
. channel simulator discussed in chapter 2 to- determine the level of performance

achieved under the time varying conditions of the HF channel.

Channel No. Impulse Response Classification
1 0.6082 + 0.7603 z7! + 0.228 : 2 minimum phase
2 0.2602 + 0.9298 z ! + 0.2602 z~? | non-minimum phase

Table 5.6 - CHANNEL IMPULSE RESPONSES

All of the simulations were performed on a Sun 3/60 workstation using the 'C’
computer language. The two stationary channels used in these simulations are detailed
in table 5.6 above. In the HF channel simulations the Doppler spread was 1Hz, as
indicated on the plots. In all cases an additive noise power level of -50dB was adopted.
The tests were performed for 100% and 50% periodic retraining on the stationary
channels and 50% for the HF channel. The 100% retraining being used to provide a
reference. When periodic retraining is 50% only 50 out of every 100 symbols is known

a-priori, the rest of the time the equaliser is operating in decision directed mode.

It is clear froﬁ the results on the stationary channels, illustrated in Figures 5.9-
5.18 and summarised below in table 5.7, that the best performance, in terms of final
_ MSE, is offered by the the decision feedback structures, This is particularly noticeable
on the non-minimum phase channel where an improvement of approximately 10dB is

available, this is as expected.
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Figure Equaliser Channel | % training | Steady-state MSE
5.9a Godard-Kalman DFE 1 100% -40dB
5.9 Godard-Kalman DFE 2 100% -30dB
5.10a Godard-Kalman DFE 1 50% -40d4B
5.10b Godard Kalman DFE 2 50% -30dB
5.11a Adaptive Kalman 1 100% -35dB
5.12a Adaptive Kalman 1 50% -35dB
5.13a Adaptive Kalman 2 100% -22dB
5.14a Adap&ive Kalman 2 50% -22dB
5.15a | Adaptive Kalman DFE 1 100% -38dB
5.16a | Adaptive Kalman DFE 1 50% -38dB
5.17a | Adaptive Kalman DFE 2 100% -30dB
5.18a | Adaptive Kalman DFE 2 50% -30dB

In the HF scenario, as Figures 5.19-5.21 illuétrate, the results are markedly

different from the stationary case. Table 5.8 below summarises the performance of the

various equalisers for these simulations.

Table 5.7 -Steady-state MSE of equalisers on stationary channels

Figure Equaliser Fade rate | % training | Steady-state MSE
5.19 Godard-Kalman DFE 1Hz 50% -15dB (*)
'5.26a Adaptive Kalman 1Hz 50% -23dB
5.21a | Adaptive Kalman DFE 1Hz 50% -23dB

* - algorithm diverges due to numerical instability.

Table 5.8 -Steady-state MSE of equalisers on HF channel
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It is clear that both adaptive Kalman structures offer a lower final MSE than that achieved
by the conventional DFE by some 5-10dB. This rather suprising result may be explained in
several ways. The inherent robustness of channel estimator to decision errors compared
with channel equalisation, the separation of the channel and sequence estimation processes.
In addition both of the adaptive Kalman structures offer greater freedom in selection of the
number of taps. That is for a conventional equaliser if the length is increased beyond a cer-
tain point, for a fixed channel length, the increased algorithm noise this causes outweighs
any advantage in improved performance the additional taps offer. The numerical sensitivi-
ty of techniques such as the Godard Kalman algorithms is also clearly illustrated in Figure

5.19.
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(6 states, 50% training).
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Fig 5.14b - MSE performance of LMS channel estimator for
Adaptive Kalman equaliser on channel 2, additive noise
power=-50dB, (3 taps, 50% training).
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Fig 5.15a - MSE performance of Adaptive Kalman DFE on
channel 1, additive noise power= -50dB, (7 states, lag=6,
100% training).
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Fig. 5.15b - MSE performance of LMS channe! estimator for

Adaptive Kalman DFE on channel 1, additive noise power=-50dB,
(3 taps, 100% training). '
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Fig 5.16a — MSE performance of Adaptive Kalman DFE on
channel 1, additive noise power= -50dB, :
(7 states, lag=6, 50% training).
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Fig. 5.16b - MSE performance of LMS channel estimator
| for Adaptive Kalman DFE on channel 1, additive noise
power=-50dB, (3 taps, 50% training).
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Fig . 5.17a - MSE performance of Adaptive Kalman DFE
on channel 2, additive noise power=-50dB, 7 states,
lag=6, 100% training)
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Fig 5.17b ~MSE performance of LMS channel estimator for
Adaptive Kalman DFE on channel 2, additive noise
power=-50dB, (3 taps, 100% training).
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Fig. 5.18a - MSE performance of Adaptive Kalman DFE on
channel 2, additive noise power=-50dB,
(7 states, lag=6, 50% training).
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Fig. 5.18b - MSE performance of LMS channel estimator
for Adaptive Kalman DFE on channel 2, additive noise
power=-50dB, (3 taps, 50% training). |

-132 -



0

10

Numerical instability behaviour
N4 of Godard-Kalman algorithm.

mean-squared error in dB
]
k)
[ww ]

= — : | |

g 158 3™ =5 7 g3

no. of iterations

Fig. 5.19 - MSE performance of Godard-Kalman DFE on HF channel,
additive noise power= -50dB, (5 feedforward taps, 2 feedback taps,

lag=4, fade rate=1Hz, 50% training).
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Fig. 5.20a - MSE performance of Adaptive Kalman equaliser
on HF channel, additive noise power= -50dB,
(6 states, lag=>5, fade rate=1Hz, 50% training).
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Fig. 5.20b - MSE performance of LMS channel estimator for
Adaptive Kalman equaliser on HF channel, additive noise

power= -50dB, (3 taps, 50% training).
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Fig. 5.21a - MSE performance of Adaptive Kalman DFE on HF
channel, additive noise power = -50dB, (7 states, lag=6,
fade rate=1Hz, 50% training).

a0 _
10 4

=30 + :
-40 -+

U 158 3= = bz =l =9
no. of iterations

Fig. 5.21b MSE performance of LMS channel estimator for
Adaptive Kalman DFE on HF channel, additive noise
power = -50dB, (3 taps, 50% training).
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5.8 CONCLUSIONS

It is clear from the results presented here that the adaptive Kalman IIR offers the
best performance in the HF channel of the thx:ee structures tested here. This is based
on the final MSE achieved and the computational complexity of the algorithm. The
adaptive Kalman DFE would appear to offer a better MSE performance in severalr
channel scenarios. However, it should be noted that it is likely to suffer a degradation

in performance due to error propagation as in the conventional DFE.

It is worth noting that if a more accurate channel estimator, of reasonable level of
complexity, could be developed then an improvement in performance could be

expected from the adaptive Kalman based structures.
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Chapter 6

CONCLUSIONS

In this thesis the problem of designing both adaptive algorithms and structures for
use as channel estimators and equalisers within the HF communications scenario has
been addressed. In this chapter the main conlusions of this work are highlighted with

suggestions of possible further research in the area.

In chapter 3, a study of the performance of two existing adaptive algorithms, the
LMS and RLS, as HF channel estimators was carried out. The work determined that,
contrary to popular opinion, the more complex RLS algorithm offered no performance
advantage over the computationally simpler LMS algorithm. A new theoretical
expression was derived which allowed the steady state MSE pertormance of the RLS
afgorithm to be predicted, given prior knowledge of the levels of both noise and time-

variations which would be encountered in the system.

Although the performance of the LMS as a channel estimator was as good if not
better than the RLS, its lack of spectral robustness and relatively slow convergence
make it less than ideal for application in this environment. Consequently in chapter 4
three new adaptive algorithms were derived for specific use as HF channel estimators.
The key to the development of each of thée algorithms is in their particular use of a-
priori knowledge of the channel structure. Each of the algorithms uses, to a greater or
lesser degree, some a-priori knowledge of the state space representation of both the
channel structure and the tap generation process. As was described in chapter 2, it is

widely accepted that the HF channel is accurately modeled by a tapped delay line

structure with time varying taps which are generated by filtering a zero-mean Gaussian -

sequence. This is readily represented in a state-space form and thus lends itself to the
use of Kalman filters.

The first algorithm, the MVK, requires full a-priori knowledge of the channel, (

and is consequently not implementable ), in the form of both the noise covariance and
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state-space transition matrices being incorporated into a standard Kalman filter. This
algorithm has optimal performance and provided the motivation for the derivation of
the second new algorithm, the EKF channel estimator. In this algorithm, only partial
a-priori knowledge of the channel was required in the form of the structure of the
channel model. In addition, an LMS was used to boorstrap the algorithm on
initialisation by providing estimates of the required variables. Although the
performance of the EKF is near optimal its computational complexity and numerical

sensitivity preclude implementation in the present form.

The results from the first two algorithms provided the impetus for the third novel
algorithm. This time, the a-priori knowledge of the structure of the channel model was
used to provide a series of prediction filters, configured for various parameters, in
conjunction with an LMS algorithm. This algorithm operated by essentially increasing
the order of the recursion within the LMS algorithm from first to second order. The
performance. of the algorithm, although disappointing, still offers rloom for

improvement by selecting the prediction filter on different criteria.

In chapter 5, the problem of channel equalisation was addressed and three
equaliser structures, one novel, were considered. The structures were a conventional
DFE utilising a Godard-Kalman algorithm for the tap adjustment, an adaptive Kalman
structure which utilised an LMS channel estimator and a new adaptive Kalman DFE
structure which also used an LMS channel estimator. The performance of each of the
structures wa-s studied under a variety of conditions, the MSE criteria being used to
assess their performance. It was determined that the structures where the channel and

sequence estimation processes were separate offered an enhanced performance.

Although this thesis has considered both channel estimation and equalisation for
"HF communication systems it is far from a complete study of the application of
adaptive techniques to this area. In particular there are specific areas which have not
been addressed fully or only touched upon in passing. These particular points provide

suggestions for possible areas of further research and are summarised below.
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As has been alluded to on several occasions within the thesis, there are several
techniques by which the complexity and numerical sensitivity of adaptive aigorithms
may be reduced. It is possible that, if these techniques were applied, that the EKF
algorithm would become more attractive for implementation. The rapid growth in
VLSI, as demonstrated by the increasing gate count, has now made it possible for
implememationA of the more complex algorithms, such as the EKF, to be considered.
In fact a description of the implementation of a square root covariance form of the
EKF was recently reported in'[137]. This now makes it possible to consider
implementation of the EKF technique so that further analysis of the algorithm’s
performance on actual HF channels as opposed to a simulator ¢ould be performed.
This would allow confirmation of the assumptions made regarding the channel model
description in the algorithms derivation to be verified. Consequently, if the EKF
offered the enhanced performance suggested by the results in this thesis, then it could
be incbrporated as the channel estimator for the Kalman equaliser structures described
in chapter 3.

Since the tests performed in this thesis utilised a simplified channel model it
would be necessary to confirm the performance of the algorithms and structures on a
more realistic model or on actual channel data. If this was carried out, then the
problems of carrier frequency acquisition and tracking, timing recovery and resistance
to co-channel interference would have to be addressed. The channel model used in
this work is a relatively simple ‘model; As such, in addition to modelling the HF
channel, it is very useful in the representation of a wide range of communication
channels, such as troposcatter, meteor burst, line-of sight microwave and mobile
communication channels all of which exhibit frequency selective fading. One
consequence of this is that thé results presented in this thesis are of more general use

than just the HF communications scenario.

In terms of the equaliser structures, it would be interesting to develop the

predictor LMS algorithm so that it could predict several samples ahead thus removing,
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or at least reducing, the lag in the equaliser structures. In addition, some work on the
performance of the equalisers when configured in a fractionally spaced format to

determine if the increased complexity is acceptable for any significant improvement in

performance.
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APPENDIX A - RELEVANT PUBLICATIONS

1) S.McLaughlin,C.F.N. Cowan and B. Mulgrew, "Tracking Performance of Least
Squares Algorithms as HF Channel Estimators”, Presented at the IEE Digital Signal

Processing Colloqium, January 1987, Digest No.1987/14 pp 16/1-7.

2)" S.McLaughlin,C.F.N. Cowan and B. Mulgrew "Performance Comparison of Least
Squares and Least Mean Squares Algorithms as HF Channel Estimators”, Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Dallas, U.S.A., April 1987, pp 2105-2108.

3)* S.McLaughlin, B. Mulgrew and C.F.N. Cowan "A Performance Study of the
Extended Kalman Algorithm as a HF Channel Estimator”, Procee&ings of Fourth
International Conference on HF Radio Systems and.Techniques, London April 1988.
4)* S.McLaughlin, B. Mulgrew and C.F.N. Cowan "The Use of A-Priori Knowledge
for HEF Channel Estimation” Proceedings of the Fourth European Conference on Signal
Processing (EUSIPCOQ) held in Grenoble September 1988.

5) S.McLaughlin, B.Mulgrew and C.F.N. Cowan "Performance Bounds for Exponen-
tially Windowed RLS Algorithms in a Nonstationary Environment”, Pr-oceedings of the

2nd International Conference on Mathemaiics in Signal Processing, University of

Warwick, Dec. 13-15 1988.

6)" S.McLaughlin, B.Mulgrew and C.F.N. Cowan "A Novel Adaptive Equaliser for
Nonstationary Communication Channels”, Proceedings of the TEEE International

Conference on Acoustics, Speech and Signal Processing, May 1989, Glasgow

7) S.McLaughlin, B.Mulgrew and C.F.N. Cowan "A Performance Study of 3 Adap-
tive Equalisers in the Mobile Communications Environment”, Proceédings of the IEEE

International Conference on Communications 1989,Boston.

* Reprinted at back of thesis,
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8) S. McLaughlin and C.F.N. Cowan. "A Performance Study of the RLS algorithm as
a Channel Estimator in a Nonstationary Environment”, Proceedings of the second IEE

Adaptive Filters Colloquium 22nd of March 1989.
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s PERFORMANCE STUDY OF THE EXTENDED KALMAN ALGORITHM AS A HF CHANNEL ESTIMATOR

S McLaughlin, B Mulgrew and C F ¥ Cowan

Cniversity of Edinburgh, (K

ABSTRACT

In this paper a study is made of the tracking and
convergence properties of an extended Kaiman (EK)
algorithm as a high frequency (HF) channel estimator.
This study uses the EK algorithm 1o adaptively estimate
not only the time varying taps of the systemn but the
parameters in the system model which generate the
nonstationanty. This approach makes use of the a-priori
knowledge of the HF ¢ el to construct the extended
Kalman algorithm for this system. Simulations are
presented of the performance of the EX aigorithm as a HF
channe! estimator for both white and coloured imput signal
&muom and are (;:fﬁg;ueddwith the performance of the
mean square (L2 and minimum varianc

(MVK) algoﬁduns. . ¢ Kalman
INTRODUCTION

The application of adaptive equalisation techniques to HF
ommunication systems s necessary if higher data
ransmission rates than are presently possible are to be
obtained. This means that robust adaptive aigorithms
vhich operate effectively in nonstationary environments
are  required.  Unfortunately few studies of the
onvergence and tracking properties of adaptive algorithms
n oonstationary environrments have been published. The
sublished work which is available has concentrated on the
wo mast common adaptive zalgorithms, the least mean
puzire {LMS) [1,2] and the recursive least squares (RLS)
3.4].

lhe poor performance of the LMS algorithm under
oloured input signal conditions make it unsuitable for use
n an HF cEanne%HEqualiser. The RLS has been considered
1 likely candidate for such applications because of it's fast
ate of convergence, which is independent of input signal
olouration, In  stationary cnvironments.  However,
ecently published studies indicate that the RLS has a
-onsiderably degraded performance in high noise [5] and
onstationary environments [6].

As a resuit npew iechniques will have to be Jdeveloped 1o
ichieve the necessary performance required for HF
ommunication systems. [he work reported here is an
xpioratory study of a techmique where estimation of the
barameters  which generate the noostatonarity are
ncoporated into the adaptive algorithm. In this paper a
tudy is made of the tracking and convergence properties
f an extended Kalman FEK) algorithm as a high
Tequency (HF) channel estimator. The direct modeiling
ituation allows the properties of the algorithms to be
nalysed under controllable input signal conditions.

The EX algorithm is an application of linear Kaiman filter
heory to nonlinear systems, where the system is linearised
iround the current state estimate and the standard Kalman
ilgorithm  applied to the resulting time-varying linear
ystem.

[he standard model {7} of the HF channe} represents it as
t finite impuise response (FIR) filter {figure 1) with time
yarying complex taps each of which is statisticaily
ndependent and has Gaussian statistics. A ncniinear
ystem is obtained by representing the generation of the
ime varying taps in a state space formuiation and then
iugmenting the state vector of the linear system with the
tationary parameters that make up the tap generation
nodel. The EK.algorithm is then applied 0 this system.
[he key to the performance of the extended Kalman
lgorithm  is the accuracy of the initial linearising
pproximation applied to the nonlinear svstem. [n order
hat the EK algorithm has a good initial estimate of the
vstem (which ensures convergence ) for the EK an LMS
lgorithm is used to initially rain the EK alporithm.

Simulations are presented of the performance of the EK
and LMS algorithms as HF channel estimators for both
white and coloured input signal conditions. A mimumum
variance Kalman (MVK) [6] estimator obtained by using a

priort knowledge of the linear system and which achieves
the lowest possible mean squared error (MSE) of any
linear channel estimator is used as comparative measure of
the performance of all the algorithms. The simulations
illustrate the improved performance of the EK algorithm
over the LMS algorithm as an HF channel estimator.

DERIVATION OF EXTENDED KALMAN
ALGORITHM FOR HF CHANNEL ESTIMATION

It is well known that the Kaiman filter is the opuamal filter
for the linear system described by equations 1 and 2 below;

2= Fx + Gewy (1
w=H{n + (2

Clearly however, this filter is not optimal for a nonlinear
svstem. The problem of optimal filtering for nonlinear
systems is considerably more complex than is the case in
linear systems theory. For nonlinear systems an exact
solution via recursive methods is not normally possible, the
conventional inidal approach has been to adapt standard
linear algorithms and determine their performance. The
extended Kaiman algorithm is simply an application of the
linear Kalman filtering algorithm to a nonlinear system
which has undergone a first order linearisation. Table 1
summarises the extended Kalman algorithm [10}.

In the HF channel model the time varving taps are
normally generated by filtering random numbers which
have (Gaussian statistics through a Ind order Burterworth
(or similar) filter whose bandwidth is dependent on the
fade rate ot :he channel. For the simulations carried out in
this paper a digital 2nd order Butterworth fiiter with {ilter
structure as in figure 2 was used. This filter can be
represented by equations (3) o (5} shown below,

Xolk)y = X, (k=1) (3)
Xpk) = VIE) — € Xolk=1) = Cg X (k =1) (4)

the values of C, and C, being dependent on the bandwidth
of the filter and consequently the fade rate. The taps for
the HF channel model are then obtained using equation
{5) below;

T, = Cr, + v{k) ' (5)

This can be represented in the {orm of equations {1) and

(2) with state x = [‘fffﬁ% and state transition matrix
- 1

_jo
Fe= [~c= ~Co

One of these filters is used to generate each of the taps
required for the channel model, thus, the overall state for
a three tap channel model is [X X, X, X;X, X, }]. By
augmenting the state vector v, with the filter coetficients
"y and €, the system is made nonlinear. In order to apply
the extended Kalman algerithm the state transition matrix
®(ksk—1), and the measurement matrix M(k) are
required.

To obtain the following substitutions,
X, (kY= X, (k) - 8X,tk1, where X, represents a reference
state and n=0.1,..3 and C, %) = C (k) - 8C, (k) m=0.1
and <, a reference as before. [nserting these substitutions
in egquations {3} and (4) results in,

]_a.ndC = (1 =Cy 2 =Cy ).



8Xolk} = BX(k -1) (&)
and,
X (k) = V{k) — X (k=1)8Ce(k —1)~ Cq(k —1)BX,(k —1)
- 8Xo{k —1)Cy {k-1) = Xo(k -1)8C, (k -1} N

If this is applied to all of the individual states then the

resulting state transition matrix is,
r

6 1 ¢ ¢ ¢ 0 0 0

~C, Cq 0 O 0 0 -X; -X,

¢ 0 G 1 0 ¢ 0 ¢

0 0 ~C, —Ce 0 O -X; —X;

0 0 0 0 ¢ 1 0 0

0 0 0 0 ~C, -C; —X. -X,

0 0 [ 0 0 1

0 0 ¢ 0 ¢ 0 0 1 J
similar arguments can be applied to the measurement
matrix and lead to

M, ={my2msm; 2m, m, 2m,

(Mo Xy S m Xy s ma X, ) ~{mg X, Fom Xt mX, )

where m, vepresents constituents of the input signal vector.

Ir the operaton of the algorithm each new state estimate
provided by the algorithm is used as the reference state.
thus X, = X, and ¢, = €, . where ~ indicates an estimate.
It should be noted that this realisation of the extended
Kalman aigorithm does not force a Butterworth form onto
the tap generation filter nor does it guarantee that the
estimatedg filter would be stable. This probiem is overcome
by ensunng that the intial approximatior, i.e. the intial
estimate used in the extended Kaiman filter, is reasonably
accurate in the mean squared sense by using the LMS to
train it. Stability can be ensured by monitoring the poles of
the filter , if they are not within the unir circle then by
reflecting them through the unit circle along the same radii
the filters stability is maintained. It is clear that if the
extended Kalman converges then the filter approximation
must be reasonably accurate.

The question of convergence of the extended Kalman is
difficult and few results have been published. Ljung mJCBJ
demonstrated that global convergence of the exten
Kalman could be if an innovations
representation  was for the linearisation procedure
rather than the normal state space formulation. This is
because of the lack of coupling between the Kaiman gain
and the state being estimated. Recently Joshi in [9]
considered the robustness of extended Kalman observers in
the controi field given certain actuator or sensor
nonlinearities and showed convergence would be achieved
given a certain limited range of the nonlinearity.

Ir. this paper no theoretical proof of convergence is given
but simulations are presented which show that given 2
reasonizble initial estimate in the mean squared sense then
CONVETZENCe OCCUTS.

Simulation Results

The sirnulations carried out for this paper were performed
for a channel of fade rate 10.0Hz and signai-to-noise
(SNR) of 50dB. Figures 3-5 show the algorithms
performance for white input signal conditions and figures
6-8 for coloured input signal (eigenvalue ratio of 11.8)
conditions.

Comparing the performance of the LMS with tha: of the
Mvm clear that the LMS is some 20dB from the noise
floor. This is as a result of the contribution to the error by
the time variations in the system as discussed by Macchi in
f2]. It can be seen from figure 5 that the EK provides an
mmprovemen: in perfromance of some 5-10dB. The EK
utilised the LMS to provide it's initial estimate and as can
be seen cleariy improves upor it.

Uniortunately the perfc-mance of the EK degrades with
time, this is due to the inherent numerical instability of the
algorithm, although there are techniques for overcoming
this problem they are not within the scope of this paper.
Nevertheless the simulaton demonstrates that the
technique suggested in this paper may provide a means of
improving upon the performance of existing algorithms.

Figures 6-8 iilustrate the algoritims performance under
similar conditions to those above except that the input
signal is now coloured. The LMS shows a slight
degradation in performance but again the EK approaches
that of the MVK which is independent of input signal
colouration since it’s performance is based on the use of
a-priori knowledge about the channel mode].

CONCLUSIONS

It is clear from the resuits presented in this paper tha: the
approach adopted has resulted in an improved chamel
estmator. though the extended Kalman algorithm is
not practical for implementation purposss, because of it's
complexity and numerical instabih't}', it has provided an
insight into the perfomance of techniques which incoporate
esimation of the parameters which generate the
nonstationarity. The next stage will be to adapt existing
simpler algorithms to operate in a similar manner to the
extcnded Kaiman and determine if the improved
performance can be maintained with a simpler
unplementation structure.

In summary this paper has demonstrated the possibility of
utilising a-priori knowledge of the system being identified
1o improve the performance. Ultimately it may even be
possible to incoporate such a channe! estimator into ac
equaliser of the form suggested by Clark et al in [11} or
Macchi et ai in [12] where the channel estimation and
decision process are s=perated.
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TABLE 1 - EXTENDED KALMAN FILTER ALGORITHM
The nonlinear system is described by,

dx, . .
7;_= (5,0) + G{t)w, . 1215, 5, =N( 5P, )

and

Yoy

= h(x, 1) * "
which undergoes a first order linearisation with Sx,zx, —x(r) and Oy, =y, — ¥
(t,) . This leads to the linearised svstem described by,
Sx, = Pllerates Mn )ox, +w,
and,
By, = Mt ; X1, )Jox, + v

The standard Kalman filter equations are then applied to this linearised system and
the resulting algorithm consisis of prediction via :

s

'-‘(fia-li’t) = ;(ft ln) + f f(-;(fifk ).t} dt
t
and
Pty | 5 ) = Plhnte i 16) ) P (0 1) BT lonute s |6) ]+ Q(6has)
and at an observation,
Htyar[tear ) = Htgoy [0) + K[teey Mty 16 )] by, =4 (Htgey 1) star ) ]
and, } '
Ptiey iy )= U = K{thay ity |0 ) ) M5 iy §n) M|
X Pfyay () X I —K{.IM( )+ K( )R+ KT( )
where (. ) represents what has gone before. Finally the Kalman gain is,
"‘IK[h‘: ey 1) ] = Ploy ) MT( L) % M. )r(.) MT‘( )+ R(k.+1) ™
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THE USE OF A-PRIOR]I KNOWLEDGE FOR HF CHANNEL ESTIMATION
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ABSTRACT

Within the high frequency (HF} communications system scenario there is a requirement
for higher rates of duta transmission than are presently possible. The use of adaptive equalisers
is considered as one possible solution to this problem. However. untif recently there have been
few published studies which characterise the performance of adaptive algorithms in tme-varving
environments (such as the HF communicauons channel). [n this paper a new aigonithm for use
in HF channel estimators is deveioped which utilises a-priori knowledge of the channel
structure. A comparitive studv of the algorthm's performance against more conventional

adaptive algorithms is presented.

1 INTRODUCTION

Until recently there have been few published studies
which characterise the performance of adaptive algorithms
in tme-varying environments ({such as the HF
communications channel). Recently published studies
[1.2.3], would appear to suggest that the algorithms
considered most switable for this application, the ieast
mean squares (LMS) and recursive least squares (RLS)
4], are incapabie of iracking the time varations of the
channel accurately enough. The aim of this paper is to
investigate possibile alternatives 0 such algorithms by
utilising the available a-priori information about the
structure of the HF channel.

it is worth noting that several authors have indicated
previously {1.5] the importance of accurate channet
prediction in adaptive equalisation. this and the fact that
the best channel estimators are those with a-prion
knowtedge of the channel make it logical to incoporate
some form of prediction which utilises the a-prion
knowledge of the simulated tap generadon process for
more accurate estimation of the channel,

The performance of various HF channel estimators

was studied in [6.7] and the results can be summarised as’

follows:-

1) Minimum Variance Kalman (MVK) - this estimator
requires full a-priori knowledge of the channel and as a
result is oot implementable but provides the lowest
achievable mean squared error (MSE) bound of any HF
channel estimator.

2) Extended XKalman Filter - This estimator has partial a-
priori knowiedge of the channel and it’s performance
approaches that of the MVK but convergence is not
guaranteed for this algorithm and it also suffers from a

computational complexity which excludes implementation. -

3) Adaptive FIR Filters (LMSRLS) - These estimators
have no a-priori knowledge of the channel and aiso have
the poorest performance although the least mean square
(LMS) is the ieast computationally compilex.

Clearly the ideal estimator would be ane which has a
performance approaching that of the MVK but with a
computational compiexity comparable with that of the
LMS.

The standard model for the HF channel is a FIR
filter with watistically independent time varying raps {as in
fig. 1), the taps being generated by passing a white
random sequence with Gaussian statistics through a filter
with a bandwidth determined bv the fade rate of the
channel and an (approximate) Gaussian frequncy
response. A second order Butterworth filter was used for
the simulation and anaivsis presented here. This a-pron
knowledge is then used ro develop an algorithm which
atiiises an LMS algorithm and incoporates a prediction
filter based on the tap generation model assumed for the
simulations presented.

This modified LMS is a first attempt at achieving the
performance of the MVK algorithms while reducing the

Input v tapped Deiay Line

&“—9&5 Gty G.L)CP

Output

X

Figure 1 - HF Channel model
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compuiational  complexity. The  algorithm  was
implemented on computer as a set of parailel prediction
filters and LMS algorithms {as in fig. 2). Each prediction
filter catering for a possibie fade rate and the algorithm
with the lowest MSE was utilised. In this way the system
could cope with changing fade rates and always achieved
the optimal performance.

Simulation results are prescnted which Jdemonstrate
the performance of this modified LMS as a HF channel
estimator. and compared with the convenrionat LMS and a
MVK zstimator. which is used to demonstrate the
mifimum achievable MSE.

~
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Figure 2 - Algorithm Set up
1 ALGORITHM DEVELOPMENT

As has been stated the conventional model for the
HF communications channel is a FIR iilter with time
varying taps. The tap generation filter used is a 2nd order
digital butterworth filter as illustrated in figure 3. the
coefficients C, and €, being determined by the bandwidth
of the fiiter. The. filter mav be considered as a linear
systemn represented by squattons | and 2 below:

Zemt = Fi = Gw (1
Ay = Cil oy (2)
Where the state s, = I'.;ufﬂ and the state
l
transition matrix F= _%E _‘CU with

C=[1-C; 2 -Cyj. Both w,-and «, are zero mean
with variances ¥, (k) and V, (k) respectively.

From this assumed tap-generation model a prediction
filter for each of the taps can be constructed. The ideal
inputs for these prediction filters wouid be the actual taps
which are however not directly observable, but the
_estimate of the taps provided by the LMS is a reasonable
approximation. The predicted value of the taps obtained
from this filter can then be used in the LMS aigorithm.
This could be viewed as increasing the order of the
recursion in the LMS from first 1o second.

In order to derive the required prediction filters
directly it would be necessary to carry out a spectral
factorisation on the tap generation process, this would be
both difficult and computationally intensive because the
input to the prediction filters is a noisy =stimate of the
actual tap. As a result a Kalman filter is used since it is
" equivalent to carrying out the spectral factorisation.

'Figure 3 - Tap Generation filter

Using the model of the tap generation process
detailed tn equations 1 and 2 allows a one stage predictor
algorithm. as detailed i [8] to be written as follows

5,.I=F§"+ {:-1 vy (3

with v, = 4, -C ¥7'. i.e. the error in the tap estimate,
and the Kalman gain is.

Kio = FV{k|k-1)CTV, (k) #

where the variances are as follows,

V.(k) = CTVi{klk -1} + V, (k) )]
and.
Vilk+11k) = FVi{klk -1)FT + GV, (k)CGT (6)
—K{CVilklk =1)FT

If the variance and gain equations (eqns. 4-6) are
taken to the steady state by computer simulation then the
steady state gain. K, is obtained and this can be used in

the algorithm for predicrion as detailed in the zquations
shown below.

R =C 'g—x (7

‘that is the predicted value of the tap based on an estimate

of the state obtained from,

i =Fi i8)
and,
=3 vk, (A, - R (9)

That is, since the actual taps are not observable then the
estimate obtained from the LMS, A, _,. as illustrated below,
is used to aid the prediction of the state.

heos = B2+ 20X, -~ -t (10)

where X, _; represents the input signal and the =rror e, s
obtained from,

€tul = Yioy —4‘.“‘1 : (11

that is the output of the channel less the estimared output
where the output y,_, = Al X, , + n, where n, is
additive white gaussian noise. The estimated output is,

Yoy = f't‘:lzxt—t (12)
These equations are shown for one tap only but clearly it

is trivial to extend it to multiple taps sach with their own
prediction filter.

o,



It is worth noung that this form of prediction could
readily De extended to predict the channel impulse
respofise M samples ahead. M being some integer. for use
in a Viterbi based equaliser as in [S]. Normally as M gets
larger the equalisation :mproves but the svstem
identification degrades (i.e. the tracking performance
degrades}. But hopefully with this techmique the tracking
performance couid be maintained while stifl allowing the
decision 0 be delaved M samples.

I  SIMULATION RESULTS

The simulations carmied out for this paper were
performed for a three tap channel with a fade rate of
10.0Hz and signai-to-noise rano (SNR} of 50dB. All
simulations are for a white input signal and are averaged
over an ensemble of 30. The simuiations were performed
on a Sun 350 workstation in 64 bit double precision.

Figure 4 illustrates the performance of the MVK
- which approaches the noise floor even under the severe
lading conditions simulated. Figure 5 shows the predictor
tilter utilising the actual taps w demonstrate it's aptimal
performance which approaches that of the MVK. The
performance of the LMS. as shown in fig 6. is some 20dB
from the noise floor in the mean with a considerable
variance. Figure 7 which illustrates the performance of
the combined LMS and prediction filter which is no bettef
than that of the LMS.

This performance although dissapointing in the sense
that it oifers no improvement over the LMS suggests rhat
were it configured for prediction M samples ahead. as
suggested earlier would offer an improved performance
over a Viterbi equalivser using a conventional LMS
channel estmator.

IV CONCLUSIONS

In this paper a new aigorithm for use in the HF
communications <nvironment has been developed and it's
performance demonstrated. Although the performance of
the algorithm was no better than the LMS it offers possible
improved performance over a conventional LMS in a
Viterbi type equaliser of the rvpe suggested in {51.

Further investigation of the algorithm’s performance
under such conditions wiil be carried out and Teported ar a
tater date.
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ABSTRACT

Adaptive equalisation of communications channels is used
to compensate for time dispersion introduced into the
transmitted data sequence. In this paper the performance of a
novel Kalman decision feedback equaiiser (DFE) which uses a
channel estimator via a least mean squares (LMS) algorithm is
studied for a variety of stationary and nonstationary
communications channels. This structure providing a means of
model order reduction by using the residusis of the LMS to
provide information on the uamodelled paths in the
communication channel, which is then incorporaied into the
‘Kalman DFE structure as observation ncise. The structure is
compared with a conventional DFE which is trained by a
Godard-Kalman algorithm with exponentiai windowing and an
adaptive Kalman structure previously reported [2].

TTANTRUDUCTION

In the digital communications scenario many of the media
over which communications ‘is attempted are nonstationary, i.e.
time varying, in nature, e.g. high frequency and mobile
communications channels. As a consequence it is necessary to
utilise adaptive equalisation techniques to overcome this
probiem and easure robusi communication at the required data
rate.  Existing adaptive equaliser structures [1] although
adequate for many applications suffer a degraded performance
under the more severe conditions which can occur. This can be
attributed to several causes, the adaptive algorithms lack spectral
robustness or suffer from numerical instabilities, the equaliser
structures fail to approximate the inverse of the channel
accurately, or propagation of decision errors in the structure. In
this paper apn attempt is made to overcome some of these
problems with a novel equaliser structure which consists of an
equaliser with decision feedback and utilises a least mean square

(LMS) algorithm for chananel sstimation in a manner similar to -

that discussed in [2].

This equaliser provides several benefits over existing structures, .

in particuiar it offers a means of modei order reduction. This is
achieved by using the residuals of the LMS to provide
information on the unmodeiled paths in the communicaticn
channel and incorporating this information as observation noise
in the Kalman structure. Also, the aumber of taps required by
the LMS for chanael estimation will normally be less than that
required by either a lincar equaliser or of a conventional
decision feedbiack equaliser (DFE), thus reducing the number of
taps requiring to be adjusted adaptively. The structure is also
more robust 10 decision error propagation than a conventional
DFE because the channel estimator has fewer taps and due to
the inherently robust nature of the LMS. .

Simulation resuits are presented in the paper showing the
equatisers’ mean squared error (MSE) performance compared to
that of a conveational DFE which uses a Godard-Kalman
adaptive algorithm with exponential windowing for a
nonstationary channel. )

EQUALISER STRUCTURES

Research over the last twentv years has produced a large
body of literature, {1} and references therein, and there are
many types of equaiiser structure, however, thev may be-
summarised as follows:

a) Linear transversal equalisers which in general
suffer from an inability to represent the inverse of the channel
impulse response adequately.

b) Conveniional decision feedback equalisers which,
although providing a better performance than linear equalisers.
suffer from a degraded performance due to error propagation in
the feedback section.

¢) Maximum likelihood sequence estimation is a
technique which is not considered in this paper but whose main
disadvantage would appear to be its computational compiexity.
However considerable effort is being expended in developing
more efficient implementations.

In general most equalisers operate by generating an
estimate of the inverse flter which when convoived with the
channel response allows the transmitted data sequence to be
reconstructed accurately, as in the linear equaiiser ilustrared in
Figure 1. For the case of conventional DFE’s, a feedback filter
is inserted after the decision device. (as in Figure 2a), and is
used 1o cancei out any trailing intersymbol interference (1S1) by
using previously detected symbols, which are assumed o be
correct.

A range of adaptive aigorithms are used in adaptive
equalisation, the two most common being the LMS and RLS
algorithms {3]. The LMS offers an easily impiementable
atgonithm but lacks the spectrai robustness and fast convergence
of the RLS, which unfortumately is relativelv compiex to
implement. The conclusions of {4.5,6] would appear 0 suggest
that when operated as a channel sstimator. as opposed (0 an
equaliser, the LMS$ offers a simiiar if nor berter performance
than the RLS on channels which are time-varying. These
results have provided some of the motivation for the novel
structure considered here, in that the data scquence 2stimation
and chanpel impulse response estimation processes are
separated.

The conventional DFE structure differs, as has been stated
carlier, from the linear structure by the addition of a feedback
section which is used to cancel out the ISI associated with these
symbols, The feedback section allows a greater freedom for the
linear section in selecting tap weight coefficients. Conventional
DFE's of this type have been found to operate very well over
wire line channels but in rapidly time-varying environments the
performance appears to be degraded by error propagation in the
fesdback section (7).

In this paper the algorithm which was used to adjust the
tap weight coefficients of the equaliser was the algorithm
postulated by Godard [8] in 1974 in which ke chose not to
replace the equaliser with a conventional Kalman filter, but
rather adopted a transversal equaliser structure and used the
Wiener solution for the optimal tap weights as a starting point.



The algorithm offers very fast initial convergence and is
spectrally robust but suffers from a relatively high level of
compiexity. To apply it to the DFE, the observation vector
contains both the feedforward and feedback coefficients. The
soiution obtained by Godard was for a stationarv channel and
its application was extended to slowly time-varying channels by
means of exponential data windowing.

In [2] Mulgrew and Cowan presented a novel equaliser
structure, the derivation of which may be summarised as
follows. Initially. a chanoel model based on a FIR filter was
postuiated and- the constraint that the optimum transversal
equaliser for such a channel, which requires minimisation of its
MSE subject to the impulse response being finite. casual and
stable is rejaxed. The new relaxed constraint requires only that
the filter be casual and stable. this results in the solution to the
minimisation problem being provided by a Wiener infinite
impulse response (R} filter.

The Wiener [OR filter offers advantages over the
conventional linear (FIR) ecqualiser in. terms of the order
required for the same level of performance for minimum phase
channels, However, the realisation of such a filter would
require 3 minimum phase spectral factorisation, this would
present a major difficuity. The solution adopted in {2] was to
use a Kalman filter to realise the solution since, if the procasses
are stationary and the observation noise white. then the steady
state Kalman and Wiener IR flters are identical. The FIR
flter model of the communications channel in common usage
[1,2] aithough readily adapted to a state space representation,
and hence to a-Kalman filter, requires care in the selection of
states which will constitute the state vector.

In order to deal with aon-minimum phase chaanels, a
fixed lag smoothing [9] form of the Kalman fiiter was used.
Normaily this would imply that for a fixed lag, 4, a state vector
augmented to,

[27 (k) sT(k-1) ..... i (k—d) .

However, this is uneccessanly complex because the state
transition matrix g is simply a shift matrix, thus the state vector
is augmented to contain 4 + 1 ciements {2],

£Fk) = [s{k)s(k—1) .. s(k-M+1) - s(k=d)],

where 4 is the fixed lag and M is the aumber of taps in the
channel. The state transition equation then becomes,

(k) = gz(k-1) + (),

where g is a (d+1) % (d+1) shift mawix and b is a vector
with (a + 1) slements,

8T =1100..0]
The observation squation is clearly,
x{k) = g7k} + nik),
where 7 is a column vector with (4 + 1) elements,
" ={hghy -+ iy, 00 ---0).

That is the channel tap weight vector augmented to (d+1)
clements by the addition of some zeros.

The problem still remains however of making the equaliser
adaptive, since knowiedge of the channe! impuise response is
required and this is achieved by using an LMS algorithm as a
channel estimator to provide the required estimate. Some
measure of the observation noise in the system is also required
ior the Kalman structure and this is achieved by the recursion
shown below; the derivation of which is detailed in [2].

GHE+1) = (1 - UM )6Xk) + eX(k+1WM,

where ¢ (k+1) is the error obtained from the LMS. The above
recursion also effectively provides a measure of the model
uncertainty in the system and therefore offers a means for
model order reduction by using the residuals o provide some
information onr any paths not modeled by the LMS. The main
" point to note about the general structure of this equaliser is the
separation of the state and channel estimation processes, and
this approach is extended in the next section, the structure of
the equaliser is ilustrated in figure 2b.

AN ADAPTIVE KALMAN DECISION FEEDBACK
EQUALISER

As in the development of the previous equaliser [3] the
structure of the channel model is again the starting point, the
channel is considered as a FIR filter which can represenied in
the state space form shown beiow, )

Lik+1) = Olk+1h)s(k) + n(k).

WhCI:C <D(k-f1;k) represents the state space transition matrix
associated with the channel and £(k) is the input vector, The

follewing observation equaticns can be associated with this
model,

k) = 4Ts(k) + nik)
and

xq0k) = g{k—d).

The first equation represents the channel output, as in the
conventional DFE sructure, and the second represents a
decision feedback term. It is worth noting at this point that it
would be possible to have many similar observation equations o
the second one, that is ‘eed back many decisions, but
preliminary investigations suggested that aothing would be
gained in terms of performance for a considerable increase in
cbginplexi:y. The twe observation equations can be combined as
ow,

Ltk) = Helk) + N (k).
d being a (d +1) x 2 matrix as shown below,

h'.h,.._h,,_lﬂ(l...o
00 ... 0 00...1

It is clear that the problem presented herc is identical to
that of the previous section, the difference lying in the

observation equations. It is necessary them to generate the
Kalman filter which provides the solution given these particular
observation equations. With the definitions above it is possibie
to write down the Xalman filter equations which are detaiied in-
table 2. Note that the inversion of the innovations now requires
the inversion of a 2 r 2 matrix. The LMS channel estimator is
used in exactly the same way as the previous structure to.
provide the ap weight vector estimate and a measure of the
observation noise. The detailed structure of the equaliser is
shown in figure 2c.

The quesnon remains as to how many states are required
for the equaliser to operate efficientlv, and clearly
M = d + 1 + 1. That is. the estimation with lag delay is
d + 1 and there is one feedback term.

Tobie 1 - A0 Adaplive Kziman Decivion Feedback Eqoaliser

TehoE) = T (kA1) + K (k) |t} ~H itk -1y |
) k=) = a s(k~Lk 1)
Kek) = Vikok =UHT {HV(kek =1} + o2 |
Vikk—1) = g V{k -k =1)a” + bbFa?

Vik/) = {1 - Kk |V (kik -1)
where the Kalman gain vecwor is as below,

xﬂ.ll K').l o
Ko Koy o

LE P
. Kl‘-l

The LMS system identification being,

Atk+1) = Jigk) + 2u 3k +Deth +1)

elk=1} = xik+1) - T (k) sth+1)



The eéstimated t1ap weight vecior i{k} being used in the 4 element vector /1 as below.

Ay by .
0 0 ..

e, 00 .. .0
0 00 .. .1

ALGORITHM COMPLEXITY CONSIDERATIONS

A breakdown of ‘the computation rcqu:red to process each
of the three algorithms considered here is presented in this
section. Tables 2 and 3 present the computation required for
each process in the algorithm given particular values of the lag
d and the aumber of taps in the chanpel.

For the amulations presented in this oapcr the number of
taps in the channel was M =3 with the lag for bath the adaptive
Kalman structures being d =5. The Godard-Kaiman driven
DFE bhad 5 feedforward and 2 fesdback taps. This results in
the adaptive Kalman DFE requiring 123 multiplications and 99
additions/subtractions per iteration to carry out the tests
performed in this report. The adaptive Kaiman equaliser
required 47 muitiplications and 37 additions/subtracticns and is
clearly less compiex, the conveational DFE using the Godard
Kalman required 133 operations per iteration which is
comparable with the adaptive Kalman equaliscr '

It is aiso worth remembering that more computationally
efficient implementations are possible by uullsmg standard
. matrix algebra techniques as has been demonstrated in [0]

PERFORMANCE RESULTS

The results presented in this section detail the performance
of the three squalisers on time varving channels. The channel
has 3 time varying taps, gencrated by fiitering random white
noise sequence through a 2nd order filter as in [10], the data
rate being 100kbit/'s and a Doppler spread of 100Hz, in ail cases
the signal-to-noise ratio was 50dB. The tests were carried out
for 50% training, that is only 50 out of every 100 symbols is
known a-prioni the rest of the time the equaliser is operating in
a deciston-directed mode, this is more akin to normal operation
of the equalisers. All tests were simulated in the 'C’ language
on a Sun 3/50 workstation.

It is clear from the results presented in figures 3-5 that the
best performance, in terms of finali MSE, is offered by the
adaptive Kalman DFE structure the final MSE being lower than

Adaplive Kaiman Eqgwalicer Complenity

n0. of states = g+ 1

no of channel taps = M

operation mul. addfsub.
¥ikok =1y Jik} diM =1+ 1 | diM -2)
FHT k) pLhm =1) Hik) + ol M M
x{k) = H7 (k) ilhsk -1} M-l M-l
BRA-1) @) (M) YikA -1 BK) + ai ] 441
Q=10 & (K} ctk) = QTR S(kek —1) ) d+1 d
47 4 ‘
Kth) @7 (kYV (krk —1) T+7
# 4
Yk -1y — K (k) H7(k) Yik/E~1) %
v(k) = &7 (k=1) z{k) M M
o a(k) {x(k) ~ &7k =1) 5{k)) Ml
k=1 + 2az{i){¥(k) = RT{k -T2 x(h)) M
. N T ¢"1k!
(1= ) elte-1+ S0 3 1

Table 2

that a;hieved by the conventional DFE by some 5-10dB.

aperation muil. add/sub. -
Ykse=1) H(%) d+ 1M 2d + 1MM -2
Adaplive Kalman DFE Compienity
R k) ¥ (k-1 k) + gl ' M M -4
no. of states = d+2
£(k) ~ @ tk) 2k ~1) UM ~L+2d* ) -2
no. of channel taps = M
lksk=1) H(k) [ Q7 (k) ¥ (kik=1) H{k) + af |~ Ad 11+ d Ha + 131
Table 3
i(k/k~1) + K (k)| x(k) — H"(k) $(ksk~—1) ] Ud+1) Ad+ 1) .

K(EYH (k) V(kik-1) '-'(d+l)lf2+(d+l)’

2d + )M -2} +id + 1Y
2

Y(k/E=1) — K (&) AT (k) Z(kik~1) e
yEk) — AT (k1) z(k} M M
2watk) (yik) - &7k -1) 2(8) ) M1

B + 2w 2(k) (5(k) = 47 (k=1) (k) ) M

(1-L - [L(3]
(1 M)éf(t 1) + v k]

LINEAR EQUALISATION
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