930 research outputs found

    A review of aircraft auxiliary power unit faults, diagnostics and acoustic measurem

    Get PDF
    The Auxiliary Power Unit (APU) is an integral part of an aircraft, providing electrical and pneumatic power to various on-board sub-systems. APU failure results in delay or cancellation of a flight, accompanied by the imposition of hefty fines from the regional authorities. Such inadvertent situations can be avoided by continuously monitoring the health of the system and reporting any incipient fault to the MRO (Maintenance Repair and Overhaul) organization. Generally, enablers for such health monitoring techniques are embedded during a product's design. However, a situation may arise where only the critical components are regularly monitored, and their status presented to the operator. In such cases, efforts can be made during service to incorporate additional health monitoring features using the already installed sensing mechanisms supplemented by maintenance data or by instrumenting the system with appropriate sensors. Due to the inherently critical nature of aircraft systems, it is necessary that instrumentation does not interfere with a system's performance and does not pose any safety concerns. One such method is to install non-intrusive vibroacoustic sensors such that the system integrity is maintained while maximizing system fault diagnostic knowledge. To start such an approach, an in-depth literature survey is necessary as this has not been previously reported in a consolidated manner. Therefore, this paper concentrates on auxiliary power units, their failure modes, maintenance strategies, fault diagnostic methodologies, and their acoustic signature. The recent trend in APU design and requirements, and the need for innovative fault diagnostics techniques and acoustic measurements for future aircraft, have also been summarized. Finally, the paper will highlight the shortcomings found during the survey, the challenges, and prospects, of utilizing sound as a source of diagnostics for aircraft auxiliary power units

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study

    Biomass Combustion Control in Small and Medium-Scale Boilers Based on Low Cost Sensing the Trend of Carbon Monoxide Emissions

    Get PDF
    The effect of the nitrocarburizing process in pastes with heating in a chamber furnace on the struc-ture and strength characteristics of 09Cr15Ni8Al corrosion-resistant steel was investigated. The tech-nology of chemical-thermal treatment was developed, which included nitrocarburizing in pastes with heating in a chamber furnace at different holding times. The thickness of the diffusion layer and its microhardness were determined after nitrocarburizing. To determine the efficiency and select the modes of chemical-thermal treatment, tests were carried out for the investigated steel's strength characteristics. The main feature of the structure of the diffusion layers of valve steels, obtained by nitrocarburizing in the nitrogen-carbon paste, is the presence of an inhomogeneous layer with clearly distinguished zones

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Heat Transfer in Energy Conversion Systems

    Get PDF
    In recent years, the scientific community’s interest towards efficient energy conversion systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which appears to have increased by 0.76 °C with respect to pre-industrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and this trend has not yet been stopped. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, since this phenomenon has been proven to result in irreversible and potentially catastrophic changes. These climate changes are mainly caused by the emissions of greenhouse gasses related to human activities, and can be drastically reduced by employing energy systems, for both heating and cooling of buildings and for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the journal Energies, includes 12 contributions from across the world, including a wide range of applications, such as HT-PEMFC, district heating systems, a thermoelectric generator for industrial waste, artificial ground freezing, nanofluids, and others

    PEMFC performance improvement through oxygen starvation prevention, modeling, and diagnosis of hydrogen leakage

    Get PDF
    Catalyst degradation results in emerging pinholes in Proton Exchange Membrane Fuel Cells (PEMFCs) and subsequently hydrogen leakage. Oxygen starvation resulting from hydrogen leaks is one of the primary life-limiting factors in PEMFCs. Voltage reduces as a result of oxygen starvation, and the cell performance deteriorates. Starved PEMFCs also work as a hydrogen pump, increasing the amount of hydrogen on the cathode side, resulting in hydrogen emissions. Therefore, it is important to delay the occurrence of oxygen starvation within the Membrane Electrode Assembly (MEA) while simultaneously be able to diagnose the hydrogen crossover through the pinholes. In this work, first, we focus on catalyst configuration as a novel method to prevent oxygen starvation and catalyst degradation. It is hypothesized that the redistribution of the platinum catalyst can increase the maximum current density and prevent oxygen starvation and catalyst degradation. Therefore, a multi-objective optimization problem is defined to maximize fuel cell efficiency and to prevent oxygen starvation in the PEMFC. Results indicate that the maximum current density rises about eight percent, while the maximum PEMFC power density increases by twelve percent. In the next step, a previously developed pseudo two-dimensional model is used to simulate fuel cell behavior in the normal and the starvation mode. This model is developed further to capture the effect of the hydrogen pumping phenomenon and to measure the amount of hydrogen in the outlet of the cathode channel. The results obtained from the model are compared with the experimental data, and validation shows that the proposed model is fast and precise. Next, Machine Learning (ML) estimators are used to first detect whether there is a hydrogen crossover in the fuel cell and second to capture the amount of hydrogen cross over. K Nearest Neighbour (KNN) and Artificial Neural Network (ANN) estimators are chosen for leakage detection and classification. Eventually, a pair of ANN classifier-regressor is chosen to first isolate leaky PEMFCs and then quantify the amount of leakage. The classifier and regressor are both trained on the datasets that are generated by the pseudo two-dimensional model. Different performance indexes are evaluated to assure that the model is not underfitting/overfitting. This ML diagnosis algorithm can be employed as an onboard diagnosis system that can be used to detect and possibly prevent cell reversal failures

    Second Annual PhD Workshop, Zagreb, July 1, 2016. : PhD study of mechanical engineering, naval architecture, aeronautical engineering and metallurgical engineering : book of abstracts

    Get PDF

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Aeronautical engineering: A continuing bibliography with indexes (supplement 291)

    Get PDF
    This bibliography lists 757 reports, articles, and other documents introduced into the NASA scientific and technical information system in May. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore