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Abstract 

Catalyst degradation results in emerging pinholes in Proton Exchange Membrane 

Fuel Cells (PEMFCs) and subsequently hydrogen leakage. Oxygen starvation 

resulting from hydrogen leaks is one of the primary life-limiting factors in PEMFCs. 

Voltage reduces, and the cell performance deteriorates. Starved PEMFCs also 

work as a hydrogen pump, increasing the amount of hydrogen on the cathode side, 

resulting in hydrogen emissions. Therefore, it is important to delay the occurrence 

of oxygen starvation while simultaneously be able to diagnose the hydrogen 

crossover through the pinholes. In this work, first, we focus on catalyst 

configuration as a novel method to prevent oxygen starvation. It is hypothesized 

that the redistribution of the platinum catalyst can increase the maximum current 

density and prevent oxygen starvation and catalyst degradation. A multi-objective 

optimization problem is defined to maximize fuel cell efficiency and to prevent 

oxygen starvation in the PEMFC. Results indicate that the maximum current 

density rises about eight percent, while the maximum PEMFC power density 

increases by twelve percent. In the next step, a previously developed pseudo two-

dimensional model is used to simulate fuel cell behavior in the normal and the 

starvation mode. This model is developed further to capture the effect of the 

hydrogen pumping and to measure the amount of hydrogen in the outlet of the 

cathode channel. The results obtained from the model are compared with the 

experimental data, and validation shows that the proposed model is fast and 

precise. Next, Machine Learning (ML) estimators are used to first detect whether 

there is a hydrogen crossover in the fuel cell and second to capture the amount of 

hydrogen cross over. K Nearest Neighbour (KNN) and Artificial Neural Network 

(ANN) estimators are chosen for leakage detection and classification. Eventually, 

a pair of ANN classifier-regressor is chosen to first isolate leaky PEMFCs and then 

quantify the amount of leakage. The classifier and regressor are both trained on 

the datasets that are generated by the pseudo two-dimensional model. This ML 

diagnosis algorithm can be employed as an onboard diagnosis system that can be 

used to detect and possibly prevent cell reversal failures.  
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ŷ Outcome array estimated by classifier/regressor 

 

Greek Symbols  

α Charge transfer coefficient  

∝ Water transport coefficient  

ρ Density [
kg

m3] 

Қ Permeability [m2] 

Қr Relative permeability  

μ Dynamic Viscosity [
N s

m2] 

ʋ Kinematic viscosity [
m2

s
] 

∀ Volume [cm3] 

∀pore Pore volume [cm3] 



xviii 

∀total Total volume [cm3] 

λ Individual mobility  

ɛ Porosity  

τ Time constant [s] 

ϕH2  Hydrogen concentration [
mol

𝑐m3] 

ϕH2,ACH  Hydrogen concentration at anode channel [
mol

𝑐m3] 

ϕH2,ACL  Hydrogen concentration at the anode catalyst 

layer [
mol

𝑐m3] 

ϕO2  Oxygen concentration [
mol

𝑐m3] 

ϕO2,ACH  Oxygen concentration at cathode channel [
mol

𝑐m3] 

ϕO2,ACL  Oxygen concentration at the cathode catalyst 

layer [
mol

𝑐m3] 

ϕNormal  Normal oxygen concentration [
mol

𝑐m3] 

ϕO2 ,film Reduced oxygen concentration due to water 

film formation [
mol

𝑐m3]  

χ Mole fraction of species  

χH2,leak Leakage mole fraction  

η Overpotential [V] 

ηohm  Ohmic overpotential [V] 

ηact  Activation overpotential [V] 

ηact,0 Activation potential loss coefficient [V] 

ηact,DL Activation overpotential across double-layer [V] 

ρJ  Current density dependent coefficient in ohmic 

resistance formula in Equation (4-38) 

ρ0  Constant term in ohmic resistance formula in 

Equation (4-38) 

ρT  Temperature dependent coefficient in ohmic 

resistance formula in Equation (4-38) 

 

 

 



xix 

Subscripts and superscripts 

A Anode 

C Cathode 

eff Effective 

g Gas 

l Liquid 

r Relative 

H2 Hydrogen 

O2 Oxygen 

N2 Nitrogen 

H2O Water 

0 Reference or standard condition 

req Required 

sat Saturation 

 



1 

Chapter 1.  
 
Introduction 

Fuel Cells are energy conversion devices that convert chemical energy in the input fuels 

directly to electricity. Fuel cells are not restricted by Carnot efficiency and hence have 

higher efficiency compared to internal combustion engines [1]. Fuel cells have zero-

emissions and are suitable for both portable and stationary applications [1]. Moving 

towards alternative energy technologies and specifically fuel cells has been accelerated 

within the last decades due to several reasons summarized as follows:  

• Scarcity of fossil fuels: it is necessary to note that nearly seventy percent of today’s 

electricity is produced through fossil fuel combustion technologies [2]. Thus, it is 

critical to lower our dependence on fossil fuels by moving towards renewable and 

novel energy technologies. 

• Rise in pollution level: greenhouse gas emissions have been increasing 

dramatically within the last decades. For instance, the cumulative amount of CO2, 

which forms 84% of the total emissions has been increased from 50,000 million 

tonnes in 1940 to nearly 280,000 million tonnes in 2000 [3]. The projected trend 

for cumulative emissions of CO2 is provided in Figure 1-1. This figure illustrates the 

steep growth of CO2 exhaust. Utilizing fuel cells could reduce the major amount of 

pollutants by 90% since this technology potentially produces no exhaust [3].  
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Figure 1-1. Cumulative emissions of CO2 projection [3] 

• Need for higher efficiency for economic advancement: Since there is no 

mechanical component involved in converting chemical energy to electricity, the 

efficiency of fuel cells is much higher than conventional internal combustion 

engines with an average of 20% efficiency [1,4].  

Fuel cell has a multilayer structure with fuel and oxidizer stream into anode and cathode 

sides through flow channels.  Reactants move and reach the catalyst layer surface at the 

interface of the electrode/membrane. At the Anode Catalyst Layer (ACL), fuel is oxidized 

and converts into ions and electrons. Membrane electrolyte is chosen to only allow the 

flow of ions. Ions move through the membrane and reach the Cathode Catalyst Layer 

(CCL), while electrons are transferred to CCL through an external circuit to provide the 

electric work. At the CCL, electrons, ions, and reactants participate in the reduction 

reaction and complete the cell reaction. The products of the complete cell reaction are 

electrical work, chemicals, and released heat [1,5]. 

Fuel cells are usually categorized based on the material used as an electrolyte and the 

operating temperature. These categories are summarized in Table 1-1. 
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Table 1-1. Fuel cell categories [6] 

Fuel cell Types Electrolyte Operating Temperature 

Alkaline Fuel Cell 
(AFC) 

Potassium hydroxide solution 
Room temperature to 

90°C 

Proton Exchange 
Membrane Fuel Cell 

(PEMFC) 

Flexible solid  perfluorosulfonic 
acid (PFSA) polymeric 

membrane 

Room temperature to 

80°C 

Direct Methanol Fuel 
Cell (DMFC) 

Solid, hydrated sheets of 
sulfonated fluoropolymers 

polymeric membrane 

Room temperature to 

130°C 

Phosphoric Acid Fuel 
Cell (PAFC) 

Solution of phosphoric acid in 
porous silicon carbide matrix 

160°C − 220°C 

Molten Carbonate 
Fuel Cell (MCFC) 

Alkali metal 
(Li/K or Li/Na) carbonates in a 

porous ceramic matrix 
620°C − 660°C 

Solid Oxide Fuel Cell 
(SOFC) 

Solid ceramic oxide electrolyte 
(Yttria (Y2O2) stabilized zirconia 

(ZrO2)) 
880°C − 1000°C 

 

Among different types of fuel cells, Polymer Electrolyte Membrane fuel cells (PEMFCs) 

possess a compact and scalar design, work at low temperatures, and lack any corrosive 

fluids [7]. Therefore, PEMFCs are desirable for all automobile, transport, and stationary 

applications [2,7]. However, the high cost of ownership resulting from high initial cost and 

low durability has limited PEMFCs from becoming commercially viable alternatives. There 

have been significant efforts to reduce the price and increase the lifetime and durability of 

fuel cells. However, expectations have not been met yet [8]. Figure 1-2 shows the 

projection of a PEMFC cost from 2006 to 2020.  
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Figure 1-2. PEMFC projection cost [9] 

Based on the data that was released by the Department of Energy (DOE) in 2017,  the 

expected final price of the fuel cell for 2020 is $40/kW [9], which used to be a target for 

2017 [10]. The difference between these two prices emphasizes the development of novel 

methods to enhance PEMFC performance and to reduce the final cost per each kilowatt. 

However, the final price is not the only issue with PEMFCs and an adequate lifetime is 

vital to commercialize PEMFCs in both stationary and mobile applications. For instance, 

a minimum of 40,000 and 5000 hours are required for residential and vehicle PEMFCs to 

make them viable options for these applications [11]. In practice, the actual lifetime of 

PEMFCs is not sufficient due to durability and degradation issues, including various types 

of faults [8]. These faults must be detected early and sometimes needed to be estimated 

and accommodated to ensure durability and efficient performance. Hence, to assure the 

safe operation of the PEMFC systems, it is necessary to use diagnosis techniques to 

detect and isolate faults. Leakage is one of the primary faults that reduces the operating 

voltage and accelerates MEA degradation. Hydrogen leaks rise as a result of local 

starvation, where platinum catalyst degrades. Pinhole and hydrogen leaks appear in the 

MEA, and hydrogen molecules cross over to the cathode side and consume available 

oxygen molecules. As a result, hydrogen leaks intensify oxygen starvation and could result 

in more pinholes and larger amounts of leakages. Furthermore, hydrogen leaks not only 

accelerate oxygen starvation in the cathode side but also can result in the generation of 
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hydrogen molecules in case of full oxygen starvation [12–15]. In this case, PEMFC works 

as a hydrogen pump and consumes power rather than producing it. As a result, voltage 

drops, and PEMFC performance deteriorates.  

Thus, developing novel methods to enhance PEMFC efficiency, prevent oxygen 

starvation, and diagnosing the leakage is of importance. This work presents catalyst layer 

reconfiguration as a method to enhance PEMFC performance while delaying the inception 

of oxygen starvation. Redistribution of the catalyst could result in the higher maximum 

PEMFC power density with the same amount of platinum catalyst. This aspect of the 

catalyst reconfiguration would result in a lower cost per kilowatt and would accelerate the 

movement towards a $30/kW price where PEMFC can compete with other energy 

technologies. The other purpose of catalyst reconfiguration is to provide more uniform 

reactant distribution at the catalyst layer, which would result in a delay in the inception of 

oxygen starvation and MEA degradation. This aspect of the catalyst reconfiguration would 

result in higher durability of PEMFCs. To prevent further MEA degradation, a combined 

model-based and non model-based diagnosis algorithm is developed to diagnose 

hydrogen leakage and quantify the amount of hydrogen leakage flow rate, which would 

result in higher durability of PEMFCs. 

 

 

 

 

 

 

 



6 

1.1. Basic of PEMFCs 

A schematic of a PEMFC is provided in Figure 1-3. As shown in this figure, hydrogen is 

the fuel in the anode side, and oxygen or air is the oxidizer streaming into the fuel cell in 

the cathode side.  

 

Figure 1-3. Fuel cell schematic  

 

The main components of PEMFCs are provided in Table 1-2. The material used for each 

component, as well as the role of each component, is briefly explained as follows:  
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Table 1-2. PEMFC components [7] 

Component Description Common Types 

Proton Exchange 
Membrane (PEM) 

Enables hydrogen ions to travel 
from the anode to the cathode. 

Persulfonic acid 
membrane 

(Nafion 112, 115, 117) 

Catalyst Layers 
(CLs) 

Breaks the fuel into protons and 
electrons. The protons combine 
with the oxidant to form water at 

the fuel cell cathode. The 
electrons travel to the load. 

Platinum/carbon catalyst 

Gas Diffusion 
Layers (GDL) 

Allows fuel/oxidant to travel 
through the porous layer while 

collecting electrons 

Carbon cloth or Toray 
paper 

Flow Field Plates 
Distributes the fuel and oxidant to 

the gas diffusion layer 
Graphite, stainless steel 

Gaskets 
Prevent fuel leakage and helps to 

distribute pressure evenly 
Silicon, Teflon 

End Plates Holds stack layers in place 
Stainless steel, graphite, 

polyethylene, PVC 

 

Figure 1-3 shows how PEMFC operates. Hydrogen enters into the ACH and is absorbed 

onto the anode surface, where it is catalytically broken down into protons and electrons. 

Protons diffuse across the membrane, while electrons are driven through an external load. 

Protons and electrons meet again at the cathode, where they react with oxygen to produce 

water and heat. Following reactions occur in a fuel cell in normal operating conditions [1]: 

H2 → 2H + 2e−    (Reaction 1) Anode Reaction 

1

2
O2 + 2e

− + 2H → H2O   (Reaction 2) Cathode Reaction 

The kinetics of this reaction is determined by the amount of available catalyst. Combining 

these reactions would result in the following global reaction: 

              H2 +
1

2
O2 → H2O + electricity   Combined Reaction 

From this reaction, by calculating the difference between Gibbs free energy of the product 

(water) and reactants (hydrogen and oxygen gasses) as ΔG, we can calculate the 

maximum electrical energy. Therefore, the ideal voltage of the PEMFC could be calculated 

from the following equation [1]: 
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Voc =
− ∆G

2F
 

(1-1) 

F in Equation (1-1) corresponds to Faraday’s constant. ∆G also depends on species’ 

pressures and concentrations and can be derived from Equation (1-2) [1,5]. 

∆G = ∆Gf
0 − RT ln(

PH2 . PO2
0.5

PH2O
)  

(1-2) 

T is the temperature, and R is the universal constant. PO2, PH2, and PH2O correspond to 

species partial pressures. Dividing both sides of equation (1-2) by nF, we can derive the 

open-circuit voltage of PEMFC [1,5]. 

Voc = V0 +
RT

nF
ln (

PH2 . PO2
0.5

PH2O
)  

(1-3) 

Voc is the open-circuit voltage and its value is about 1.2 V for low-temperature PEMFCs 

(under 100 ℃). However, the operating voltage of a PEMFC is lower than this amount due 

to available voltage losses. These losses are usually categorized into the followings:  

• Activation losses: This is a voltage loss that drives the electrochemical reaction, and 

the value of this drop depends on the catalyst material and the micro-structure of 

MEA. Activation losses are mostly shown by a sudden drop on the open-circuit 

voltage at very low current densities. 

• Ohmic losses: This loss is associated with the resistance to charge transportation 

caused by electrodes and the electrolyte. Hydrogen ions flow through electrolyte, 

and electrons flow through the solid parts of the electrodes. The resistance to the 

movement of these charges is the ohmic loss, which is proportional to the current 

value, and the coefficient corresponds to ohmic resistance.  

• Concentration losses: These drops correspond to mass transport losses due to the 

reactant activity, structure of electrodes, and current density. 

The effect of these losses on the polarization curve is shown in Figure 1-4. 
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Figure 1-4. Different losses on the polarization curve 

By considering the PEMFC losses, PEMFC operating voltage, and PEMFC power 

density can be obtained from Equation (1-4) and Equation (1-5).  

V = Voc − ηact − η ohm − η conc (1-4) 

P =  VI = (Voc − ηact − η ohm − η conc)I (1-5) 

1.2. Leaky PEMFCs and Hydrogen Pumping 

Leaks emerge in the fuel cell membrane as a result of many processes such as MEA 

degradation, mechanical and chemical degradation, variable load changes, continual 

start-up and shut-down, operation under low humidity condition, and oxygen starvation 

[12–15]. The hydrogen leaking into the cathode results in the direct combination of H2 and 

O2 as follows: 

1

2
O2 + H2 → H2O + heat   (Reaction 3) Cathode Reaction 

Reaction (3) does not refer to the combined reaction of the anode and cathode in the 

normal operating mode. In fact, this reaction represents the direct combustion of oxygen 

and hydrogen that leaked to the cathode side and consumed the useful oxygen. This 
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reaction does not generate any current and conversely results in lower PEMFC 

performance since it lowers the amount of oxygen at the catalyst layer and accelerates 

oxygen starvation. In other words, hydrogen ions need to compete with hydrogen 

molecules to participate in the Oxygen Reduction Reaction (ORR).  

There is another interesting reaction that could happen because of hydrogen leakage and 

oxygen starvation, which is called hydrogen pumping [12–15]. Hydrogen pumping 

happens when PEMFC works under oxygen starvation conditions. In this mode, first, all 

available oxygen combines with the hydrogen ions passing through the membrane. While 

the cell becomes fully starved and the current is further increased, the hydrogen ions 

recombine with the electrons flowing through the electrical circuit and form hydrogen 

molecules in the cathode (Reaction 4). Hydrogen pumping could also happen in the case 

of high currents and small leaks [12–15]. 

2H + 2e− → H2    (Reaction 4) Cathode Reaction 

In addition, if cells are connected in series in a fuel cell stack, hydrogen will be 

accumulated over all the cells and would be a higher amount at the cathode outlet. In this 

case, the cell essentially acts as a hydrogen pump, which results in hydrogen emissions 

in the cathode outlet. This phenomenon is called hydrogen pumping, and the cell 

consumes power instead of producing it. The schematic of leaky fuel cell operation is 

provided in Figure 1-5. It is really important to understand the difference between the 

hydrogen leak versus hydrogen pumping. Through this thesis, leak and leak transfer 

corresponds to hydrogen crossover from anode to cathode side through pinholes. On the 

other hand, hydrogen pumping or pumped hydrogen corresponds to the direct reaction of 

hydrogen ions and electrons, which would result in hydrogen generation in the cathode 

side in case of full starvation. It is also necessary to mention that hydrogen pumping occurs 

mainly as a result of hydrogen leakage in a stack where cells competing with each other 

over the oxygen or airflow to produce current. However, the extremely high currents could 

result in full starvation or hydrogen pumping. This phenomenon rarely happens since 

employing a controller and adjusting the stoichiometry ratio of reactants would prevent this 

fault.  
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Figure 1-5. Schematic of a leaky PEMFC in hydrogen pumping mode 

1.3. Objectives  

The primary goal of this project is to facilitate the process of PEMFC commercialization by 

reducing the cost of ownership and improving the durability of PEMFCs. These objectives 

are realized in two phases; the first one is to find the effect of catalyst distribution on the 

performance and the inception of oxygen starvation in steady-state mode. The second 

one is to develop a diagnosis tool, which acts as a virtual hydrogen sensor. There are 

several steps defined to reach the main objectives. Research objectives are provided as 

follows:  

• Finding the effect of catalyst distribution on PEMFC performance as well as 

oxygen starvation initiation 

• Finding the optimal catalyst distribution which results in maximum performance 

and maximum delay in starvation initiation 

• Developing a fast, simple pseudo two-dimensional model to simulate steady-state 

and transient PEMFC behavior for both healthy and leaky cells by accounting for 

the effect of the hydrogen pumping   
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• Comparing the results of the pseudo two-dimensional model with experimental 

data, the comparison with experimental data illustrates the level of model 

precision.  

• Subjecting the pseudo two-dimensional model to different operating conditions and 

creating a dataset 

• Data training and building ML classifiers and regressors to detect and quantify 

the leakage  

1.4. Research Roadmap 

A roadmap, shown in Figure 1-6, was prepared to achieve the goals of this research. The 

roadmap consisted of the following main steps: 

• Developing a two-dimensional, two-phase, finite volume PEMFC computational 

fluid dynamic (CFD) model to investigate the effect of the catalyst layer distribution 

on PEMFC power density and oxygen starvation  

• Validation of the CFD model versus the experimental data 

• Multi-objective optimization of PEMFC maximum power density and minimum 

oxygen concentration along CCL to ensure the higher performance of the system 

and to delay the inception of oxygen starvation. Genetic Algorithm (GA) is used for 

the optimization purpose.  

• Developing a simple two-dimensional pseudo numerical model to simulate PEMFC 

performance under normal and starvation operating modes. The model must be 

fairly fast and precise to simulate PEMFC voltage response and hydrogen 

emissions under different current loads. The model is built on the model presented 

by Vijayaraghavan et al. [15] and includes hydrogen pumping. 

• The model is run for several operating conditions in the steady-state mode for 

different leakage amounts. Voltage values are recorded for each simulation to form 

a dataset. 
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• ANN and KNN classifiers are trained and tested on the built datasets to classify 

cells into healthy or leaky cells. The performance of these classifiers is evaluated 

based on classifier performance indexes.  

• ANN and KNN regressors are trained and tested on the built datasets to quantify 

hydrogen leakage in the leaky cells. The performance of these regressors is 

evaluated based on regressor performance indexes. 

• Presenting the final hydrogen leakage diagnosis tool and discussing future works 

 

 

Figure 1-6. Thesis roadmap 

 

PEMFC performance improvement through oxygen starvation prevention, 
modeling, and diagnosis of hydrogen leakage

PEMFC performance improvement and 
maximum delay in triggering oxygen starvation 

Diagnosis and quantifying hydrogen 
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• Steady state and Dynamic
• Driven and Driving modes
• Modeling Hydrogen pumping  

Model validation with the experimental data 
provided in the literature

Validating with Ballard experimental data

Generating a dataset by executing the  
model in steady-state mode in various 

operating conditions and different 
hydrogen leak values and recording the 

voltage values

Training and Testing different classifiers 
and regressors to choose the best tool for 

hydrogen leakage diagnosis and 
quantification

Presenting the final diagnosis algorithm 
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Chapter 2. Literature Review 

This chapter aims to summarize the current literature in six sections. In the first section 

(Section 2.1), different approaches for PEMFC modeling are explained. Section 2.2 

provides a summary of the works on starvation and specifically oxygen starvation. Section 

2.3 provides a summary of the literature on non-uniform catalyst distribution. Section 2.4 

provides a summary of the works that focused on hydrogen leakage diagnosis. Section 

2.5 explains the gap in the literature, our contributions, and the novelty of the current work. 

The chapter ends with Section 2.6, where the research motivations are stated.  

2.1. PEMFC Modeling Approaches 

PEMFC modeling has received huge attention over the last twenty years, and different 

types of models were developed for different purposes. For instance, parametric studies 

enable scientists and researchers to investigate the effect of different parameters such as 

material properties, operating conditions, and geometric parameters on the system, while 

experimental studies are employed to understand when physical phenomena are not well 

understood or difficult to model. On the other hand, analytical and lump models are more 

suitable for control purposes where computational cost matters.  

Analytical models are developed by making major assumptions and simplifying variable 

distributions so that equations can be solved analytically. As one of the early works, 

Standaert et al. [16] developed a general fuel cell model in both isothermal and 

temperature-variant modes. Although analytical models are very easy to use and can 

provide an approximation of the expected outcome, they are not beneficial in capturing 

transport phenomena in different layers of PEMFCs [17] 

Semi-empirical and empirical models utilize experimental tests to derive algebraic and 

differential equations. However, empirical and semi-empirical models require time-

consuming experiments and might not be able to provide an adequate physical 

understanding of phenomena. Therefore, mechanistic models have been developed by 

deriving differential and algebraic equations based on the physical and electrochemical 

phenomena that occur in PEMFCs. Computational and numerical solution algorithms are 

then employed to solve the derived sets of equations. Mechanistic models could be 

divided into two categories; multi-domain and single domain. Single domain models are 
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mainly used for numerical domains with the same governing equations, while multi-domain 

models couple different governing equations for different regions and solve them 

numerically [17].  

Mechanistic models can be further subcategorized into fully numerical and pseudo 

numerical models. Early mechanistic numerical PEMFC models [18–20] were one-

dimensional, steady-state, and isothermal [18–20]. More complex two-dimensional [21,22] 

and three-dimensional models [23,24] have been developed over time. Many of these 

models are CFD models to capture details of reactant transport, water management, and 

heat management in fuel cells. However, there is always a trade-off between accuracy 

and level of details with computational cost and resources. The computational intensity of 

CFD models resulted in the development of pseudo numerical models for online-

monitoring and control applications. Pseudo numerical models utilize bulk simplification or 

other assumptions to simplify the numerical procedure and to lower the computational 

cost. As an example, Vijayaraghavan et al. [15] assumed that voltage is constant across 

the cell and also used an analytical equation to calculate the concentration at the catalyst 

layer.  

It is important to note that the choice of a PEMFC model depends on the application. In 

our work, two PEMFC models are developed. The first model is two-dimensional, steady-

state, and two-phase. The purpose of this model is to simulate the effect of catalyst layer 

distribution on PEMFC performance and the inception of oxygen starvation. Therefore, the 

model is needed to be detailed enough to capture major transport and electrochemical 

phenomena that occur in the fuel cell. 

The second model is used for leakage diagnosis and online-monitoring purposes. 

Therefore, it should be fast and efficient and simulate PEMFC behavior in both starved 

and normal operating modes.  

 

2.2. Oxygen Starvation 

Starvation occurs when the catalyst layer is depleted out of reactants. Starvation can be 

divided into fuel starvation and oxidizer starvation. In PEMFC, fuel starvation is the same 

as hydrogen starvation and happens when the concentration of hydrogen reaches zero at 
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some or entire ACL. Similarly, oxidizer starvation refers to oxygen starvation when oxygen 

concentration reaches zero at some part or entire CCL. Starvation can be subcategorized 

into local starvation and complete starvation. Local starvation occurs due to the lack of 

reactants at some parts of the CL, whereas in complete starvation, the entire catalyst layer 

completely is depleted out of reactants. Starvation usually happens due to the following 

reasons [25]:  

• Non-uniform reactant distribution in the flow field due to design deficiency  

• Dynamic loads and sudden start-up/shut down procedures 

• Improper stoichiometry ratio of input fuel/oxidizer   

• Water management issues; a thin layer of water formed at the catalyst layer could 

block reactants from reaching the catalyst layer 

• Compressor control failures 

• Hydrogen crossover due to MEA degradation 

 

Fuel starvation and oxidizer starvation could result in the generation of oxygen and 

hydrogen in the anode and cathode, respectively. The latter case is named hydrogen 

pumping and was explained in Section 1.2, whereas the former one is water electrolysis 

[26]. The related chemical reactions are provided in Table 2-1.  

Table 2-1. Reactant starvation reactions  

Electrochemical reactions Type of starvation Location 

2H2o → O2 + 4H
 + 4e− 

(water electrolysis) 

Fuel (hydrogen) starvation Anode 

C + 2H2o →  CO2 + 4H
 + 4e− Fuel (hydrogen) starvation Anode 

O2 + 4e
− + 4H → 2H2O Oxidizer (oxygen) starvation Cathode 

2H + 2e− → H2 

(hydrogen pumping) 

Oxidizer (oxygen) starvation Cathode 

 

Most of the literature [27–33] has mainly focused on fuel starvation and its effect on MEA 

degradation. Table 2-2 provides a summary of these works as follows:  
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Table 2-2. Literature on hydrogen starvation 

Reference Methodology Findings 

Meyers et 

al. [27] 

Modeling They developed a one-dimensional model to simulate 

fuel starvation in PEMFCs. They inferred that the 

reverse current occurs in the fuel-starved area where 

current flows from cathode to anode. They further 

concluded that localized fuel starvation could induce 

permanent damages to the cathode by accelerating 

degradation mechanisms such as carbon corrosion. 

They suggested the implementation of the uniform fuel 

distribution along the catalyst layer through designing 

control systems to handle transient start-up and shut-

down conditions.  

Ohs et al. 

[28] 

Modeling They developed a two-dimensional, steady-state 

model. Hydrogen was diluted with nitrogen, and 

Comsol was used to perform CFD simulation. Their 

model accounted for carbon corrosion by using a 

simplified Butler-Volmer approach, and their results fit 

very well with the experimental data. They inferred that 

hydrogen starvation could result in a high cathode 

potential gradient.  

Resier et 

al. [29] 

Experimental  Their experimental setup included two connected 

electrodes. The anode of the first cell was supplied with 

hydrogen, and the second anode was fed with oxygen 

to simulate hydrogen starvation. They noticed that fuel 

starvation could result in MEA damages. 

Liang et al. 

[30] 

Experimental They characterized important parameters such as 

current distribution, anode and cathode potentials, and 

the voltage response. Their observations include water 

electrolysis, current reversal, and non-uniform current 

distribution. The highly non-uniform current density 

distribution led to the temperature increase of the 
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upstream zone of ACL, which resulted in a degradation 

of the platinum particles and platinum agglomeration. 

They noticed severe carbon corrosion in extreme 

hydrogen starvation conditions.  

Tang et al. 

[31] 

Experimental They studied the effect of PEMFC cathode carbon 

corrosion under hydrogen starvation. They inferred that 

the formation of the hydrogen/air boundary at ACL 

could accelerate the loss of active surface area of CCL 

Knights et 

al. [32] 

Experimental Knights et al. [32] studied PEMFC behavior under 

complete hydrogen starvation. They used the 

polarization curve to investigate the effect of complete 

starvation under different humidification levels and 

different temperatures. They noticed drops in voltage 

values due to the rise of anode potential. They also 

confirmed oxygen generation from water electrolysis 

when voltage became smaller than -0.55.  

Huang et 

al. [33] 

Experimental MEA was tested under the vehicle operating condition, 

and the effect of the hydrogen flow rate was 

investigated on performance. Scanning Electron 

Microscope (SEM) was employed to study the structure 

of MEA, and an increase in the average size of anode 

and cathode catalyst particles was observed. Hydrogen 

starvation caused carbon corrosion, which led to high 

surface energy agglomerate formation that 

consequently resulted in the performance drop.   

 

 

The majority of the publications [27–33] have focused on hydrogen starvation, while fewer 

works studied oxygen starvation [34–39]. Most of these works employed experimental 

methods to first confirm oxygen starvation and hydrogen pumping, and second, to 
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investigate how oxygen starvation degrades MEA. A summary of these works provided in 

Table 2-3.   

 

Table 2-3. Literature review on oxygen starvation 

Reference Methodology Findings 

N. Yousfi-

Steiner et 

al. [35] 

Review on 

catalyst 

degradation 

works 

Oxygen starvation could cause platinum dissolution 

and carbon corrosion in the catalyst layer. They 

furthermore concluded that catalyst degradation 

accelerates MEA degradation, which would 

eventually result in the formation of holes in the MEA. 

They inferred that adjusting the stoichiometry ratios 

would prevent catalyst degradation. 

Rao et al. 

[36] 

Modeling / 

Experiment 

They performed a transient study and inferred that it 

is not possible to prevent oxygen starvation by only 

adjusting the oxygen excess ratio. Based on their 

results, since the oxygen distribution is highly non-

uniform at high current densities, oxygen 

concentration could become zero adjacent to the 

outlet, and therefore oxygen starvation is inevitable. 

Feeding more oxygen may alleviate starvation, but 

oxygen starvation is still inevitable in case of 

dynamic changes due to the lag in the response 

time. They concluded that designing a non-linear 

controller is required to prevent oxygen starvation.  

Mousa et 

al. [37] 

Modeling / 

Experiment 

Mousa et al. [37] noticed that in the case of hydrogen 

cross-over leaks, fuel cell performance drops since 

hydrogen molecules directly react with oxygen 

molecules and produce water. Recombination of 

reactants would reduce the amount of oxygen at the 

catalyst layer on the cathode side, and oxygen 

starvation occurs subsequently. Also, a thin layer of 

water formed adjacent to the membrane blocks 
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oxygen molecules from reaching the reaction site 

and intensifies oxygen starvation. They noticed 

hydrogen presence in the cathode outlet in case of 

oxygen starvation and confirmed the hydrogen 

pumping effect. 

Taniguchi 

et al. [38]  

Experimental They used in situ cyclic voltammetry to measure the 

active surface area of the catalyst layer and noticed 

a noticeable reduction. They also used Transmission 

electron microscopy (TEM) to image the CCL before 

and after the cell reversal experiment for two hours. 

Significant degradation in the outlet area and 

dissolution in catalyst particles were among their 

findings. The loss of platinum surface area was 

considered as a result of sintering or recrystallization 

within the porous cathode 

Bodner et 

al. [34] 

Experimental Different area sizes of PEMFC are tested under 

accelerated stress tests. Different cycles (10 and 60-

second cycles) are chosen to investigate the effect 

of oxygen starvation on the system. Voltage 

response at the anode and cathode inlet and outlets 

were recorded. Negative voltage values were 

observed during a long starvation period. However, 

within a short cycle of starvation, the available air 

present in the gas phase and the gas lining 

compensated the negative voltage and sustained the 

cell. Thus, only small voltage fluctuations were 

observed under short cycles. Also, the highly non-

uniform current distribution was observed due to 

oxygen starvation at some parts of CCL. The 

temperature gradient was changed, and hydrogen 

was detected at the cathode outlet during the high 

starvation cycle. Computed tomography was 
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employed to study the effect of oxygen starvation on 

MEA degradation, and carbon corrosion and catalyst 

agglomeration were observed.  

Inaba et al. 

[39] 

Experimental Inaba et al. [39] studied the effect of hydrogen 

crossover on MEA degradation. Heat generation, 

hydrogen peroxide formation, and catalytic 

combustion were accounted for MEA degradation. 

They also inferred that reactive oxygen radicals 

could form in the presence of minor impurities. These 

radicals could expedite the process of membrane 

degradation  

 

Liu et al. [40] developed a model to back up their observations on the effect of reactant 

starvation on PEMFC performance. They simply deducted a constant term from inlet 

reactant concentrations to model reactant starvation. They used CFD-ACE+ V2003 to 

simulate PEMFC under steady-state operating conditions.  Concentration and current 

density distributions for anode and cathode starvations were derived and discussed. 

However, the experimental tests illustrated more interesting results. Twelve embedded 

current collectors are employed to record the current distribution. The current for each 

segment was measured with a series of 10mΩ resistances. The voltage share of each 

resistance was calculated by a computer. Polarization curves showed how subcells close 

to the outlets became starved very fast at lower current densities. For the same subcells, 

the shape of polarization curves was significantly different for oxygen starvation and 

hydrogen starvation. For hydrogen starvation, outlet subcells current densities dropped to 

zero as a result of voltage drop. Middle subcells' current densities became zero at lower 

cell voltage, while inlet subcells seemed to be impacted less. The authors concluded that 

hydrogen starvation would significantly affect the catalyst layer's outlet area while having 

less impact on the rest of the catalyst layer. On the contrary, they noticed that oxygen 

starvation would affect the current generated in the entire catalyst layer. Therefore, the 

highly non-uniform current density in hydrogen starvation is inevitable, while the current 

distribution in the case of oxygen distribution is less heterogeneous.  

By discussing the literature provided in this section, we can infer that both anode and 

cathode starvations could cause severe degradation damages to the MEA structure. 
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These damages can be summarized as carbon corrosion, platinum dissolution, catalyst 

agglomeration, catalyst combustion, catalyst poisoning, reduction in MEA thickness, 

catalyst sintering, and other chemical degradations. It is also inferred that providing a 

uniform reactant distribution at the catalyst layer could result in a delay in oxygen 

starvation and improve the durability of PEMFCs.  Also, there is a need to model hydrogen 

pumping to track the amount of hydrogen generated in the cathode side as a result of 

oxygen starvation. Eventually, developing a virtual hydrogen sensor to prevent further 

degradation of MEA due to hydrogen leakage is vital to improve the lifetime of PEMFCs.  

2.3. Non-uniform Catalyst Distribution   

Oxygen distribution in the catalyst layer is highly non-uniform, which can lead to inefficient 

use of platinum within the catalyst layer. This may lead to oxygen starvation in the cathode 

side at high current densities. Therefore, developing a novel method that could increase 

the maximum current density while improving PEMFC performance is interesting and of 

importance. The idea of conducting non-uniform catalyst distribution could result in the 

realization of both defined milestones.  

The idea of non-uniform catalyst distribution was first presented by Kulikovsky [41]. He 

developed a simple analytical model and showed that non-uniform catalyst distribution 

could improve the fuel cell performance noticeably. Several other studies also focused on 

performance improvement by applying non-uniform catalyst distribution and efficient use 

of platinum. For instance, Srinivasarao et al. [42] considered multiple ultra-thin layers 

instead of a single layer for the PEMFC catalyst layer. In their work, the effect of catalyst 

loading gradient across fuel cell layers was investigated while keeping the whole catalyst 

amount constant. They concluded that the performance of multiple catalyst layers was 

superior to that of a single catalyst layer. Roshandel et al. [43] evaluated the effect of 

catalyst loading gradient in the catalyst layer. They considered different variations of 

catalyst loading in two directions, “across the layer” from the membrane/catalyst layer 

interface to GDL and “in catalyst plane” under the channels and land areas. After 

comparing six cases of non-uniform catalyst loading distribution, they concluded that using 

non-uniform catalyst distribution could either improve or aggravate the whole performance 

of a cell. They also concluded that loading more catalysts under the channel would 

improve fuel cell efficiency.  Zhang et al. [44] managed to perform variable catalyst loading 

to improve the uniformity of local current density. In their simulation, they divided CCL into 
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three different parts with different mass catalyst loading while keeping the total amount of 

catalyst constant. They considered mass catalyst loading as three-step functions. 

Employing the Nelder-Mead Simplex method, they managed to find optimum values for 

these three-step functions. They also performed experimental tests to back up their 

theoretical findings.  

In another interesting study, Mathieu-Potvin et al. [45] developed a numerical single-phase 

model to study the effects of catalyst layer topology and catalyst layer thickness on 

PEMFC performance. In the first step, they managed to find optimum ACL and CCL 

thicknesses under two main assumptions, which are constant catalyst density and the 

fixed amount of catalyst. In the second step, they used a gradient-based method to find 

the optimum catalyst distribution in the CCL. They concluded that PEMFC power density 

increases by inserting more catalyst close to the membrane.  

Although finding the optimum catalyst distribution can improve fuel cell efficiency, it can 

also provide uniform reactant distribution at the catalyst layer. Depositing more platinum 

at the CCH entrance and less at the CCH outlet would result in lower oxygen concentration 

at the cathode inlet and higher at the outlet comparing to the case of uniform catalyst 

distribution. Generally, oxygen starvation triggers close to the CCH outlet, where the 

oxygen concentration is the lowest. Therefore, non-uniform catalyst distributions that could 

result in less oxygen consumption in the CCH outlet might be able to delay the oxygen 

starvation. Some literature [35,46,47] found that heterogeneous current distribution 

caused by negative currents produced in the starved area of the catalyst layer could be 

used as an indicator for the inception of complete starvation. However, they did not 

investigate the effect of non-uniform catalyst distribution. As a part of this research, a novel 

algorithm based on the combination of a two-dimensional fuel cell model and an 

optimization method will be developed to find the optimal catalyst distribution, which 

generates the maximum PEMFC power density and results in the maximum delay in 

starvation initiation.  

2.4. Leakage Diagnosis in PEMFC 

It is important to understand different methods of failure diagnosis before discussing the 

leakage related literature. Fault diagnosis is a very important component in various 

industries and mainly defined in the following categories [48] 

• Fault detection: In this case, the purpose of the diagnosis tool is to detect the 
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inception of the fault before it could cause significant damages. 

• Fault isolation: Different faults are localized and isolated. 

• Fault identification or fault analysis: The type of the fault and its magnitude and its 

causes are determined.  

PEMFC has a multicomponent and multiphasic structure, and therefore many types of 

faults could happen in PEMFC. Dry membrane, platinum dissolution, carbon corrosion, 

insufficient hydrogen feed, GDL crack, pinhole formation in the membrane, and hydrogen 

leakage are some examples of the faults that could occur in PEMFC. Therefore, fault 

diagnosis could help us adjust the operating condition to assure healthy performance. In 

the case of severe damage, the defected component or cell could be replaced to prevent 

the complete and hazardous breakdown of the system. 

In general, fault diagnosis methods in PEMFCs are divided into two categories; model-

based and non-model based. Figure 2-1 categorized different failure approaches in either 

model-based or non-model based diagnosis methods.  

          

Figure 2-1. PEMFC failure diagnosis approaches 

In the model-based approach, a model is required to provide a deep understanding of the 

cell and its internal phenomena. Due to the complicated and multi-physics structure of 

PEMFCs, relations between different natures (thermodynamic, electrical, electrochemical, 

and fluidic) must be derived and modeled. Model-based approaches work based on an 

online comparison between the monitored data and the data derived from precise dynamic 

simulations of the system. Here, a single residual or multiple residuals are calculated 

based on the difference between the real data and the simulated data. Large residual(s) 

would be attributed to the presence of fault/faults. These approaches are categorized into 
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two categories; quantitative and qualitative models. In the quantitive case, analytical 

models or observers are employed to predict the performance of the system and calculate 

the residual, whereas, in the qualitative methods (Black-box models), the physics of the 

system is not investigated and instead, black-box models such as neural networks and 

fuzzy algorithms are employed to simulate the system performance and eventually 

calculate the residual. The problem with black-box models is that the residual may not be 

able to classify the type of faults. For instance, let’s assume a neural network is trained 

based on temperature, current, and anode and cathode pressures to simulate the voltage 

response. Therefore, the simulated voltage does not change with a fault if that fault does 

not significantly change the mentioned parameters. However, the role of AI methods in 

fault diagnosis is inevitable. The methods provided in each sub-layer of Figure 2-1 are 

introduced and explained in detail in [35,49–52].  

On the other hand, non-model based methods work mainly based on historical data and 

a decision-making process. Therefore, there is a need for a large amount of data that can 

mainly be derived through experimental tests. This category is called non-model based 

since there is no mathematical model derived for each component and their interactions. 

The data is mainly collected through experimental tests such as voltage measurements, 

electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), polarization 

curve, spatial current density, and pressure drop measurements.  

Zhongliang Li [53] categorized these methods based on the cost and whether they can be 

used for online/offline diagnosis. Table 2-4 provides a summary of this investigation.  In-

depth explanations of non-model based approaches are provided in [35,49–52].  
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Table 2-4. An investigation of non-model based fault diagnosis models [53] 

Measurement type Variable Online/Offline Cost 

Regular 
measurement 

Cell/stack voltage Online Low/Medium 

Current Online Low 

Temperatures Online Low 

Pressures Online Medium 

Flow rates Online High 

Humidifies Online Medium 

Special 
measurement 

Polarization curve Offline Low 

EIS (Traditional) Offline High 

LSV Offline Medium 

CV Offline Medium 

 

Figure 2-1 introduces a third category of models that are based on the combination of 

model-based and non-model based methods. The data is collected through fairly simple 

and fast analytical or pseudo numerical models rather than through experimental tools in 

this category. The difference between this category and model-based approaches is in the 

level of details captured by the model. Models in the third category must capture and 

simulate the effect of different faults on PEMFC performance. These models do not 

compare the residue of normal performance and the online response to determine the 

fault type. Instead, the models in this category are subjected to different types of faults, 

and PEMFC characteristics are recorded under different operating conditions. The 

purpose of this part is to create a big dataset based on a fairly fast and precise model. 

The data further will be analyzed through artificial intelligence, signal processing, or ML 

methods to move backward and diagnose the fault. This method is not model-based since 

the model is not detailed enough for each component, and the fault is not detected by 

comparing the output of the model with the online PEMFC data. Also, it is not a non-model 

based method since there is a simple model that generates a dataset rather than 

expensive, time-consuming experimental tests or variable observations. A simple 

schematic of the third category of data is shown in Figure 2-2.  
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Figure 2-2. General algorithm of combined fault diagnosis approach 

Most of the works [54–57] that tried to identify oxygen starvation/hydrogen pumping and 

hydrogen crossover studied the dynamic behavior of PEMFC parameters such as voltage, 

current, temperature, and pressure. These works showed that voltage could drop to 

negative values during sudden dynamic changes (start-up and shut down). This is more 

identifiable when a cell is extremely starved, or there is a big leak in the MEA, and at high 

current densities. Tian et al. [54] supplied two PEMFC stacks with some electrical signals 

and measured the open-circuit voltages at different reactants' supply flow rates and 

pressures. The voltage pattern of healthy cells was compared with the ones with fault to 

investigate the abnormality of the response. In order to highlight the presence of leakage 

in the membrane, the anode compartment is pressurized with nitrogen, and the cathode 

compartment is sealed at ambient pressure. They monitored the pressure, and the 

pressure increase in the cathode side was attributed to the presence of leakage. They 

also fed stack with hydrogen and air for ten seconds and then suddenly stopped the gas 

flow. They monitored OCV and noticed that healthy cells could operate at high voltage 

(close to 0.9) for around one minute and then experience a drop in voltage while the leaky 

cell voltage drops much earlier comparing to the healthy ones. They justified their 

observations by suggesting that the buffer volumes of hydrogen are consumed much 

faster in the defected cell, which results in a fast decrease of hydrogen partial pressure at 

the reaction site. The fast hydrogen consumption at the anode could be due to hydrogen 

leak through a hole or crack in the membrane, and if that is that the case, combustion may 

be possibly diagnosed by temperature measurement at the stack outlet. Eventually, they 
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attributed a high deviation of voltage behavior to the presence of hydrogen leakage. It is 

necessary to mention that hydrogen pumping and starvation as a result of high current 

density are not discussed in their work. Also, the method presented by Tian et al. [54] is 

not suitable for the online monitoring of PEMFC when PEMFC is in operation. In fact, there 

is a need to detach the stack and conduct several tests to possibly diagnose whether the 

cell/stack is faulty or not. A very similar study is carried out by Khorasani et al. [55]. 

Niroumand et al. [56] conducted an experimental study and presented a method for 

research and development applications. In their work, the anode and cathode are supplied 

with hydrogen and nitrogen, while anode overpressure is preserved. They managed to 

identify the hydrogen leakage rate in a cell by measurement and analysis of pressure, 

temperature, humidity, flow, and OCV. Although the proposed method does not require 

any change in the stack structure, it is only limited to research and development 

applications and cannot be used for online diagnosis. In another study, Niroumand et al. 

[57] suggested that cathode output pressure oscillation around 0.14 Hz could be used as 

a diagnosis tool. PEMFC is supplied with cathode air supply step changes and pressure 

oscillation was observed in the voltage and cathode pressure. However, the type of fault 

is not discussed and error in experiment is not considered as a source of oscillation. Also, 

this method is not suitable for online failure diagnosis.  

Recently Electrochemical Impedance Spectroscopy (EIS) signature analysis has been 

found to be useful for modeling and diagnoses of PEMFC faults [58]. Yan et al. [59] used 

EIS signature analysis methods to capture the transient behavior of a PEMFC by 

analyzing both voltage and current responses to a step-change in a resistive load. Mousa 

et al. [37]  used EIS signatures for the first time to measure the amount of hydrogen 

crossover leakage in a commercial MEA at differential pressures between the anode and 

cathode. The oxygen starvation in the cathode side was detected by analyzing the effects 

of two datasets on the impedance signature. This EIS method has been extended to 

different multi-cell stack configurations to find the relationship between the hydrogen leak 

rate and reduced oxygen concentrations [60]. Eventually, Mousa [61] developed an ANN 

to obtain the amount of reduced oxygen to quantify hydrogen leakage.  

All explained works [37,54–61] utilized non-model based methods to diagnose faulty 

cells since experimental observation/measurement/experiments were involved. There are 

a few works [62–65] that used ML methods to diagnose different types of faults in 

PEMFCs. However, to the best of knowledge, there are only two works [62,64] that 

attempted to diagnose hydrogen leakage and crossover from anode to cathode side. Liu 
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et al. [62] utilized a discrete hidden Markov model based on K-means clustering to 

diagnose six types of faults, including hydrogen leakage. They [62] used 150 kW 

Fcvelocity-HD6 PEMFC stack of Ballard Power Systems Inc. to conduct experiments and 

build the dataset, which is needed for K-means clustering. The only work that utilized “the 

combined model-based and non-model based approach” is conducted by Shao et al. [64]. 

They developed a dynamic model and validated their model with the experimental data in 

the literature. They used four ANNs with different configurations to diagnose four types of 

faults, including hydrogen crossover. It is necessary to mention that hydrogen crossover 

is modeled by a drop in oxygen level or, equivalently, a drop in current density. However, 

the ANN accuracies are low, and the leakage is not quantified in their work. In our work, 

we employed KNN and ANN estimators to detect and quantify the hydrogen leakage. 

These estimators are explained in Appendix C and Appendix D, respectively. Also, 

performance metrics for evaluating these estimators are explained in Appendix E. 

2.5. Gap in Literature  

Sections 2.1 to 2.4 provided a literature review on related work to the thesis. Section 2.1 

provided a review of different PEMFC modeling methodologies and explained that 

different models are developed for different purposes and different applications. Section 

2.1 provided an understanding of why two models are developed in this work. One model 

is a CFD model, which is two-dimensional, steady-state, two-phase, and is used in an 

optimization process to obtain the optimal catalyst distribution. This model is not novel 

itself, but the combination with the optimization method is rather novel. The second model 

is a pseudo two-dimensional numerical model that can simulate fuel cell behavior in both 

driven and driving cases. The model is a continuation of the work developed by 

Vijayaraghavan et al. [15] and can model hydrogen pumping as a result of starvation for 

the first time in literature. This has the utmost importance and is a big step towards 

developing a diagnosis tool that not only can capture the hydrogen leakage but is able to 

quantify the hydrogen leakage and predict the hydrogen pumping occurrence.  

Section 2.2 provided a summary of the literature on starvation with a focus on oxygen 

starvation. This section explained conditions that trigger starvation and discussed different 

degradation damages it could cause. The provided literature is mainly based on 

experimental tests that investigated the different categories of possible degradations. 

Section 2.2 provided an understanding of why it is important to prevent and diagnose 
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starvation faults in PEMFCs.   

Section 2.3 provided a literature review on non-uniform catalyst distribution and the 

effect on PEMFC power density. So far, most of the models have investigated a few non-

uniform cases and suggested that non-uniform catalyst distribution could improve PEMFC 

performance and efficiency. Most of the works in this realm only have focused on the effect 

of non-uniform catalyst distribution on PEMFC power density, while reactant distributions 

at the catalyst layer are not discussed.  Therefore, there is a gap in the literature that 

should be covered. This work investigates the optimal catalyst distribution along the CCH 

that maximizes PEMFC power density and maximizes the minimum oxygen concentration 

along the catalyst layer. This optimization is conducted for the first time to not only 

maximize the power but delay the inception of oxygen starvation in the steady-state 

conditions.  

Section 2.4 provides a literature summary of the works that have attempted to capture 

hydrogen crossover and hydrogen transfer leaks. A new category of failure diagnosis was 

introduced, which is based on the combination of model-based and non-model based 

methods. Almost all the literature in this area utilized experimental tests to measure and 

record the PEMFC characteristics in different operating conditions. The diagnosis models 

are mostly based on the observations of negative voltage or sudden intense voltage drop 

due to PEMFC being subjected to a sudden change in current, anode/cathode pressures, 

or fuel stoichiometry ratios. Some works conducted the same experiments but tried to 

attribute an impedance signature to hydrogen crossover fault. All these works require to 

physically detach stack and cells and conduct experimental tests to observe a faulty 

behavior or provide measurements to develop an impedance signature. However, in our 

work, and for the first time, a new category of models is introduced (the combination of 

model-based and non-model based) to provide an online diagnosis tool that can capture 

and quantify hydrogen leak transfer from anode to cathode. Our pseudo numerical model 

is employed to generate a dataset of steady-state responses of healthy/leaky cells. The 

dataset could be further expanded to dynamic data. The model is validated with data 

provided by Ballard corporation and could be used to accelerate the process of dataset 

creation. Besides, for the first time, hydrogen pumping is considered in the diagnosis tool, 

and the different ML methods are investigated to choose the most accurate method. The 

developed virtual hydrogen sensor not only could detect the presence of hydrogen leak in 

the cathode outlet but is able to quantify it. Developing a virtual sensor is a significant step 

towards the durability improvement of PEMFCs.  
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To summarize, the gap in literature are listed as follows:  

• A relatively fast and precise steady-state and dynamic model that could simulate 

PEMFC behavior under the driving and driven modes by accounting for the 

hydrogen pumped to the cathode side  

• Deriving optimal catalyst distribution with two objective functions (maximum 

performance and maximum delay in the inception of oxygen starvation)  

• A novel hydrogen leak transfer diagnosis tool based on the combination of model-

based and non-model based approaches  

• Application of ML in capturing and quantifying the hydrogen leak transfer by 

considering the hydrogen pumping phenomenon 

2.6. Research Motivation 

The main motivation of this thesis is to offer novel solutions that could remove or alleviate 

some of the current barriers, including the high cost of the ownership as well as insufficient 

lifetime and durability. The present study aims to address the gap in the literature listed in 

Section 2.5. by offering two solutions.  The first solution is catalyst reconfiguration that 

could improve PEMFC performance and delay the oxygen starvation, and the second 

solution is to develop a combined model-based and non-model based virtual hydrogen 

sensor that detects the advent of a significant hydrogen leak causing potentially flammable 

emissions or smaller crossover leak levels to inform service staff that repairs are needed. 

Right now, it is possible to detect hydrogen leak transfer by placing a specific type of 

hydrogen sensor (e.g., KI Instruments Model FHD-752 (0–4%) hydrogen concentration 

sensor) in the cathode outlet. However, this sensor is expensive and is not reliable for long 

term use [61]. The big picture of this work is to build an add-on system for PEMFC devices 

to perform online monitoring of the system and to alarm the user in case of any fault, 

including hydrogen leakage. That would allow the user to change the defected cell and 

prevent further cell degradation and increase the lifetime of the fuel cell. 
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Chapter 3.  
 
Optimal Catalyst Distribution as a Method to 
Enhance Performance and Durability 

The power density of PEMFCs is affected by many parameters such as porosity, 

catalyst loading, liquid saturation, and operating conditions such as anode and cathode 

pressures, temperatures, fuel and oxidizer flow rates, and oxygen distribution along the 

active layer. The amount of available oxygen at the CCL is one of the key factors that 

determine the performance of the PEMFCs since oxygen molecules participate in ORR 

reaction and complete the electrochemical reactions, i.e., water generation. The oxygen 

distribution along the CCL is non-uniform due to the limitation of mass transfer 

mechanisms. At the CCH inlet,  the oxygen concentration is higher, and a higher amount 

of oxygen molecules can diffuse through the CGDL and reach the CCL while the 

concentration of oxygen at the CCH outlet is lower and, therefore, a lower amount of 

oxygen molecules reach the CCL. Catalyst loading is another key factor that affects the 

ORR rate. Higher catalyst areas would result in a higher ORR rate while the less surface 

area would result in lower performance. Hence it would be possible to obtain the optimal 

catalyst distribution that could improve PEMFC power density while increasing the 

minimum oxygen concentration along the CCL through multi-objective optimization. This 

chapter starts with a two-dimensional, steady-state CFD model of the PEMFC cathode to 

calculate PEMFC power density and oxygen distribution along CCL. This model will be 

used in an optimization process to calculate the optimal catalyst distribution. The 

comparison indicates that non-uniform catalyst distribution could improve PEMFC power 

density. 

3.1. Mathematical Modeling 

The numerical domain is shown in Figure 3-1. The numerical domain includes 

CCH, CGDL, and CCL. The humidified air enters the CCH from boundary AD with a 

constant velocity (uin) and reactant gasses leave the numerical domain from boundary 

BC.  
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Figure 3-1. Numerical domain 

Oxygen from the air diffuses through the CGDL to reach CCL. At the CCL, oxygen 

reacts with hydrogen ions coming from the anode side and produces water. This water is 

transported back through the CGDL. As the production of water increases, there is a 

potential for the water to saturate CGDL. Thus, the oxygen transfer resistance rise, and 

the electrochemical reaction rate drops. Hence the thesis uses a two-phase flow model to 

calculate PEMFC power density and oxygen distribution along the CCL. The multiphase 

mixture method is used to model the two-phase flow where the main idea is to model the 

mixture as a whole, rather than modeling each phase separately. Multiphase flow can be 

modeled by mass-averaging the mixture velocity and diffusive flux. The diffusive flux 

represents the difference between each phase velocity and the mass-averaged mixture 

velocity [66–69]. The model is developed based on the following assumptions:  

• Anode side voltage losses are considered negligible comparing to the cathode 

side.  

• Owing to the low velocity and low Reynolds number, the flow is laminar. 

• The fuel cell is assumed to be in a steady-state condition. 

• The catalyst layer is considered as an ultra-thin layer and only acts as a 

source/sink term in the electrochemical reaction. 

• CGDL is considered as isotropic media. 

• Half of the heat generated in CCL is transferred to the cathode side, while the other 

half is transferred to the anode side. 
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3.1.1. Governing Equations 

In this section, the mathematical formulation of the multiphase mixture model will 

be discussed. In a multiphase mixture, a control volume contains both phases, and flow 

is modeled by a mass average mixture velocity and a diffusive flux. This kind of modeling 

offers several benefits, including [68,69]:  

• The model is very similar to the single-phase theory, which would result in easier 

handling of both analytical and numerical solutions. 

• The model requires fewer non-linear differential equations.  

• In this model, equations are not developed for each phase separately. Therefore, 

there is no need to track the phase change interfaces. 

• This model is very suitable for PEMFCs since equations in different layers are 

highly coupled. 

We start the mathematical modeling by providing equations in each domain. 

3.1.1.1. CCH Equations:  

The continuity equation is provided as follows [70]:  

ε
∂ρ

∂t
+ ∇. (ρu⃗⃗) = 0 

(3-1) 

Any reduction in the mass due to condensation is nearly equal to the increase in the liquid 

phase mass.  Therefore, there is no source/sink term required in Equation (3-1). Since the 

model is developed for steady-state mode, ∂ρ/ ∂t = 0, and the continuity equation reduces 

as follow [70]: 

∇. (ρu⃗⃗) = 0 (3-2) 

The Navier-Stokes equation in the CCH is presented as follows [70]: 

∂(ρu⃗⃗)

∂t
+ u⃗⃗. ∇(ρu⃗⃗) = −∇P + ∇. (∇μu⃗ ) 

(3-3) 

Once again, the transient term ∂(ρu⃗⃗) ∂t⁄ = 0. Hence Equation (3-3) becomes: 
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u⃗⃗. ∇(ρu⃗⃗) = −∇P + ∇. (∇μu⃗ ) (3-4) 

Here, u⃗⃗. ∇(ρu⃗⃗) represents the convention term. On the right-hand side, ∇P represents the 

pressure gradient and ∇. (∇μu⃗ ) represents the viscous term. It is important to note that ρ 

is the mixture density and u⃗⃗ is the mixture velocity vector.  

3.1.1.2. CGDL Equations:  

The continuity equation for CGDL is the same as the CCH and is expressed by Equation 

(3-2). A generalized Darcy’s law [71] is used for the momentum conservation in the 

CGDL and is expressed by the following equation: 

∂(ρu⃗⃗)

∂t
+ u⃗⃗. ∇(ρu⃗⃗) = −∇P + ∇. (∇μu⃗ ) −

μ

K
(εu⃗⃗) 

(3-5) 

In the steady-state, the equation becomes:  

u⃗⃗. ∇(ρu⃗⃗) = −∇P + ∇. (∇μu⃗ ) −
μ

K
(εu⃗⃗) (3-6) 

3.1.1.3. Species conservation Equations:  

In order to obtain multiphase mixture equations, it is assumed that the control volume 

includes liquid, solid, and gaseous phases. The following parameters are used to 

derived unified conservation equations for all the domains [66,67].  

ε =
∀pore

∀total
 

(3-7) 

sl =
∀l
∀pore

 
(3-8) 

sg =
∀g

∀pore
 

(3-9) 

∀tot= ∀pore + ∀solid (3-10) 

∀total is the volume of the control volume. ∀pore is the void volume that can be filled by 

liquid and gaseous phases. ∀l and ∀g  are the volume of the pore that is filled with liquid 

and gas phases respectively. ε is porosity and defined as the ratio of pore volume the total 



38 

volume of the control volume. Liquid and gas saturations correspond to the volume ratio 

of the pore that is filled with liquid and gas, respectively. Mixture properties could be 

obtained from these parameters, as explained in Table 3-1.  

You [72] utilized the parameters in Table 3-1 and derived the following equation for 

species conservation in the steady-state: 

∇. (γρu⃗ C) =         ∇. (ερD∇C)

+ ∇. ε[(ρlslDl(∇Cl − ∇C) + (ρgsgDg(∇Cg − ∇C)]         

− ∇. [Cl j⃗l + Cgj⃗g] 

(3-11) 

Equation (3-11) must be written for oxygen, nitrogen, and water. In this equation, γ is the 

correction factor that modifies the species velocity by changing it from u⃗⃗ to γu⃗⃗. γ is 

calculated from the following equation [71,73,74]: 

γ =         
ρ ∑ λkk Ck
∑ ρkk skCk

 
(3-12) 
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Table 3-1. Mixture properties equations, k denotes liquid and gas phases [67,71,73,74] 

Mixture density ρ=∑ρ
k

k

sk (3-13) 

Mixture concentration 

(mass concentration) 
C =

∑ ρkk skCk
ρ

 (3-14) 

Mixture velocity u⃗⃗ =
∑ ρkk u⃗⃗k

ρ
 (3-15) 

Mixture enthalpy h =
∑ ρkk skhk

ρ
 (3-16) 

Liquid enthalpy hl = ¢plT (3-17) 

Gas enthalpy hg = ¢pgT (3-18) 

Effective conductivity Ϗeff = (1 − ε)Ϗsolid + sεϏl + ε(1 − s)Ϗg (3-19) 

Mixture diffusion 

coefficient 
D =

∑ ρkk sk Dk
α

ρ
 (3-20) 

Mixture viscosity ʋ =
ʋlʋg

Қrlʋg + Қrlʋl
 (3-21) 

Liquid phase mobility λl =
Қrlʋg

Қrlʋg + Қrlʋl
 (3-22) 

Gas phase mobility λg =
Қrgʋl

Қrlʋg + Қrlʋl
 (3-23) 

Relative liquid phase 

permeability 
Қrl = sl

3 (3-24) 

Relative gas phase 

permeability 
Қrg = sg

3 (3-25) 
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jk is diffusive max flux of phase (k) and can be formulated based on the traditional mixture 

theory that is provided as follows: 

ρgu⃗⃗g = j⃗g + λgρu⃗⃗ (3-26) 

ρlu⃗⃗l = j⃗l + λlρu⃗⃗ (3-27) 

Also j⃗l can be expressed as a function of capillary pressure [66,67]:  

j⃗l = Қ
λl. λg

ʋ
(∇Pc) 

(3-28) 

Capillary pressure is a difference between gaseous pressure and liquid pressure and 

can be expressed as an empirical function of saturation as follows [66,67]:  

Pc = σ cos(θc) (
ε

Қ
)
0.5

J(sl) 
(3-29) 

where Қ is absolute permeability and J(sl) is Leverett function [66,67]:   

J(sl) = {
1.147sg − 2.12sg

2 + 1.263sg        
3 θc < 90

1.147sl − 2.12sl
2 + 1.263sl

3      θc > 90
 

(3-30) 

where θc is the contact angle.  

Now that all the parameters in Equation (3-11) are explained, we can write this equation 

for each species separately. We assume that the only liquid phase comes from water and 

the liquid mass fraction of water is one [66,67].  

Cl
O2 = 0 (3-31) 

Cl
N2 = 0 (3-32) 

Cl
H2O = 1 (3-33) 

Substituting Equation (3-31), Equation (3-32), and Equation (3-33) into Equation (3-11), 

we can derive the following equations for oxygen, nitrogen, and water conservation.  
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∇. (γO2ρu⃗ C
O2) = ∇. (ερDg

O2∇CO2) − ∇. [Cg
O2 j⃗g] (3-34) 

∇. (γN2ρu⃗ C
N2) = ∇. (ερDg

N2∇CN2) − ∇. [Cg
N2 j⃗g] (3-35) 

∇. (γH2Oρu⃗ C
H2O)

=    ∇. (ερDH2O∇CH2O)

+ ∇. [ερlslDl
H2O(−∇CH2O) + ερgsgDg

H2O(∇Cg
H2O − ∇CH2O)]

− ∇. [−j⃗g + Cg
H2Oj⃗g] 

(3-36) 

We can simplify these equations further by investigating the gas-liquid phase equilibrium. 

Water condenses when the vapor partial pressure exceeds the saturation pressure at the 

specific temperature. The saturation pressure could be obtained as follows [72]: 

log10 Psat = −2.1794 + 0.02953T − 9.1837 × 10
−5T2 + 1.4445 × 10−7T3 (3-37) 

Based on the saturation pressure, different cases can be defined. If the water pressure is 

smaller than saturation pressure, water only exists in gaseous form. Phase change occurs 

when water pressure exceeds the saturation pressure. The summary of all cases are 

provided  as follows:  

sl = o                                                             if PH2O < Psat (3-38) 

CH2O = Cg
H2O                                                if PH2O < Psat 

(3-39) 

sl =
ρCH2O − ρgCg

H2O 

ρl − ρgCg
H2O

                               if PH2O > Psat  
(3-40) 

ρCH2O = ρg(1 − sl)Cg
H2O + ρlsl             if PH2O > Psat  

(3-41) 

and since Cl
O2 = Cl

N2 = 0, oxygen, and nitrogen concentrations could be derived as 

follows:  

ρCO2 = ρgsgCg
O2             (3-42) 
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ρCN2 = ρgsgCg
N2             (3-43) 

Using Equation (3-37)-Equation (3-43), we can simplify Equation (3-34)-Equation (3-36) 

for the two-phase flow as follows [72]:  

∇. (γO2ρu⃗ C
O2) = ∇. (ερDg

O2∇CO2) − ∇. [
ρ

ρgsg
CO2 j⃗g] 

(3-44) 

∇. (γN2ρu⃗ C
N2) = ∇. (ερDg

N2∇CN2) − ∇. [
ρ

ρgsg
CN2 j⃗g] 

(3-45) 

∇. (γH2Oρu⃗ C
H2O)

=    ∇. (ερD𝑔
𝐻2𝑂∇CH2O) − ∇. (ερ𝑙D𝑔

𝐻2𝑂∇𝑠𝑙)

− ∇. [(
ρv
H2O

ρg
− 1) j⃗g] 

(3-46) 

where the gas mixture density is 

ρg =
PMg

RT
 

(3-47) 

 

3.1.1.4. Energy Equation:  

The energy equation is provided as follows [75]: 

∇. (γhρu⃗⃗h) = ∇. (Қeff∇T) + ∇. [∑(hkj⃗k)] 

k

] + q̇ 
(3-48) 

γh is the correction factor for energy advection and is defined as [75]: 

γh =        
ρ ∑ λkk hk
∑ ρkk skhk

 
(3-49) 

q̇ describes the heat release or adsorption due to phase change (i.e., condensation or 

evaporation) and is given by: 
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q̇ = hfgṁfg = hfg∇. (ρlu⃗⃗l) (3-50) 

ℎ and Қeff are given from Equation (3-16)-Equation (3-19). 

 

3.1.1.5. Electrochemical equations:  

The electrochemical current density is modeled through the traditional Butler-Volmer 

equation as follows [76–78]:  

J = (1 − sl)asJC
ref (

CO2

Cref
O2
) [e

αCnFη
RT − e

−(1−αC)nFη
RT ] 

(3-51) 

where CO2 is the oxygen concentration at the catalyst layer interface and Cref
O2  is the 

reference oxygen concentration. (1 − sl) represents part of the pore that is filled with liquid, 

and η represents overpotential. Output voltage (V) and open-circuit voltage (Voc) are 

calculated as followings: 

V = Voc − RohmJ − η (3-52) 

Voc = 1.23 +
RT

4F
ln (

PH2PO2
0.5

PH2O
) 

(3-53) 

 

3.1.2. Boundary Conditions:  

Boundary AD is the cathode flow inlet, and velocities, temperature, and concentrations 

are known. These boundaries are listed as follows: 

u = uin, v = 0, T = T0, CH2O = Cin
H2O, CO2 = Cin

O2 ,

CN2 = Cin
N2 

(3-54) 

Boundary BC is the cathode flow outlet, and outlet flow conditions are specified. 
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∂u

∂x
= 0,

∂v

∂x
= 0, P = Pref, T = T0,

∂CO2

∂x
= 0,

∂CH2O

∂x
= 0 (3-55) 

Boundaries DE and FC are walls. No-slip and symmetry boundary conditions are chosen. 

It is assumed that all the walls are kept in constant temperature, and the mass fluxes are 

equal to zero. 

u = v = 0, T = T0,
∂CH2O

∂x
=
∂CO2

∂x
= 0  (3-56) 

Similar boundary conditions are set for boundary AB (the horizontal wall) 

u = v = 0, T = T0,
∂CH2O

∂y
=
∂CO2

∂y
= 0  (3-57) 

Continuous boundary conditions are chosen between CGDL and CCH. At boundary EF, 

the horizontal component of velocity is assumed to be zero (u = 0), and oxygen and water 

mass fluxes are calculated based on the current generated at the catalyst layer. These 

fluxes can be calculated as follows:  

ṄO2 =
MO2
4F

 J 
(3-58) 

ṄH2O =
−MH2o(1 + 2 ∝)

4F
 J 

(3-59) 

∝ is the water transfer coefficient and is taken as ∝= 0.25 [74]. The mixture vertical velocity 

can be calculated as follows: 

 ρεv = ṄO2 + ṄH2O (3-60) 

The species concentration gradient can be calculated as follows [74]:  

−D
∂(ρCO2)

∂y
= ṄO2 − γρεvCO2 

(3-61) 
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−D
∂(ρCH2O)

∂y
= ṄH2O − γρεvCH2O 

(3-62) 

With regards to the thermal boundary condition, it is assumed that half of the heat 

generated due to voltage losses is transferred from the cathode to the anode side.  

Ϗeff
dT

dy
=
1

2
(Voc − V)J 

(3-63) 

   

3.1.3. Numerical Approach  

The governing equations for continuity, momentum, and species equations were 

discretized by the finite volume method (FVM) [70]. The SIMPLE algorithm, TDMA solver, 

and the hybrid scheme [70] were employed to couple the gas mixture pressure-velocity 

equations. A two-dimensional C++ code is developed to conduct the simulations. 

Governing equations are then solved iteratively to satisfy the convergence criteria and to 

find the average current density and voltage. By changing the overpotential incrementally, 

different current densities and the polarization curve is obtained. A staggered grid is used 

to eliminate any unphysical oscillation in the pressure and velocity field. A mesh size with 

21,600 cells (240*90 in x-y directions) is selected. Appendix A provides more information 

about the solution method and explains the SIMPLE algorithm and the hybrid scheme.  

The numerical algorithm is provided in Figure 3-2. 
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Figure 3-2. Numerical algorithm 
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Table 3-2. Supporting equations for the two-dimensional, two-phase cathode model 

CCH length (cm) 7 

CCH width (cm) 0.1 

CGDL thickness (cm) 0.03 

Gas diffuser porosity 0.4 

Air velocity (m/s) 0.35 

Air pressure (kPa) 304 

Hydrogen pressure (KPa) 101 

Catalyst surface area (cm−1) 1.4 x 105 

Exchange current density (A cm-2) 4.84 x 10-8 

Cathode transfer coefficient 0.5 

Ohmic resistance (Ω) 0.115 

 

3.1.4. Model Validation and Grid Independency 

Model validation is performed by comparing the polarization curve with the experimental 

data derived by You et al. [67].  
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Figure 3-3. Validation of the two-phase model 

As Figure 3-3 shows, the model is in good agreement with the experimental data. The 

difference between the model and the experimental data has several sources. For 

instance, the anode side is not modeled, and anode losses are not considered. Also, 

membrane and water transport in the membrane are not modeled, and the value of net 

water transport α is assumed rather than be calculated. Nonetheless, the model is able to 

predict the PEMFC behavior with good precision. In addition, the simulation is conducted 

on different mesh sizes to assure that that the results are grid-independent. Figure 3-4 

depicts current density distribution along the CGDL/CCL interface for different mesh sizes. 

As it is shown in this figure, by changing the grid size from 240*90 to 480*128, the results 

do not change, and the red line lies on the blue line. In addition, it has been seen that by 

changing the mesh size from 240×90 grid to 480 ×128 grid, the maximum power density 

is changed by less than 0.1%. Table 3-3 provides the grid independency analysis for 

different overpotential values. The values for current density and power densities are 

provided and compared.   
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Figure 3-4. Effect of mesh size on current density distribution at the CGDL/CCL interface at η=0.33 V 

 

Table 3-3. The grid independence test  

Grid size 120×60 240×90 480 ×128 

η=0.2 V 

J=0.0011 
A

cm2 J=0.011 
A

cm2 J=0.011 
A

cm2 

P=0.011 
W

cm2 P=0.011 
W

cm2 P=0.011 
W

cm2 

η=0.4 V 

J=1.139 
A

cm2 J=1.241 
A

cm2 J=1.242 
A

cm2 

P=0.618 
W

cm2 P=0.620 
W

cm2 P=0.621 
W

cm2 

η=0.8 V 

J=1.281 
A

cm2 J=1.284 
A

cm2 J=0.285 
A

cm2 

P=0.266 
W

cm2 P=0.267 
W

cm2 P=0.267 
W

cm2 
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3.2. Catalyst Distribution Modeling 

Now that the model is validated, it can be used to investigate the effect of non-uniform 

catalyst distribution on oxygen distribution and the generated power density. In order to 

model the effect of non-uniform distribution, a nonlinear term will be added to the Butler-

Volmer equation, i.e., Equation (3-51). In this equation, as represents the total catalyst 

surface area per unit volume of cathode CCL. This value is related to catalyst loading 

(mpt), which is the amount of platinum used in the area unit. The relation between as and 

mpt is provided as follows: 

as = a0 mpt (3-64) 

In Equation (3-64), a0 represents the total catalyst surface area per unit mass of catalyst. 

Replacing Equation (3-64) into Equation (3-51), Equation (3-65)  is derived.  

JC = (1 − sl)a0 mptJC
ref (

CO2

Cref
O2
) [e

αCnFη
RT − e

−(1−αC)nFη
RT ] 

(3-65) 

It is assumed that the catalyst loading is proportionally related to the amount of platinum 

used in the catalyst layer. Therefore, the non-uniform catalyst loading is modeled by 

multiplying catalyst loading in a non-linear function (h(x̅)). Therefore, Equation (3-65)  can 

be written as follows:  

JC = (1 − sl)a0 mpth(x̅)jC
ref (

CO2

Cref
O2
) [e

αCnFη
RT − e

−(1−αC)nFη
RT ] 

(3-66) 

where x̅ is the dimensionless length and can be obtained as follows:  

x̅ =
x

𝑙
  (3-67) 

𝑙 is the length of the CCH and is equal to 70mm in the model. The distribution function is 

assumed as a polynomial function and can be written as: 

h(x̅) = fnx̅
n + fn−1x̅

n−1 +⋯+ f1x̅ + f0 (3-68) 
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In the case of uniform catalyst distribution, f0 = 1 and  fi = 0 for i > 0. There are two 

constraints on the distribution function that are stated as follows:  

• The fixed total amount of catalyst; in order to compare the effect of non-uniform 

catalyst distribution, it is important to fix the total amount of catalyst. This 

constraint can be modeled as follows: 

∫ h(x̅)
1

0

dx = 1 
(3-69) 

Equation (3-69) assures that the total amount of catalyst loading is kept constant. 

Substituting h(x̅) from Equation (3-68) into Equation (3-69) would give us the 

following equation: 

∫ (fnx̅
n + fn−1x̅

n−1 +⋯+ f1x̅ + f0)
1

0

dx = 1 
(3-70) 

This yields the following relationship: 

f0 =∑
−fk
k + 1

n

1

 
(3-71) 

• Positive catalyst distribution; negative catalyst distribution does not have any 

physical meaning and therefore: 

h(x̅) ≥ 0 (3-72) 
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3.3. Effect of Non-Uniform Catalyst Distribution 

In this part, the effect of non-uniform catalyst distribution for two cases is investigated. The 

purpose of this investigation is to see how non-uniform catalyst distribution could affect 

oxygen concentration and current density distributions. The main idea is based on the fact 

that the oxygen concentration distribution along the CCH is non-uniform, and since the 

oxygen concentration is higher at the CCH input, loading more catalysts at the flow inlet 

and less at the outlet could improve efficiency and also increase the minimum oxygen 

concentration. As a result, the non-uniform catalyst distribution could increase the 

maximum current density and delay oxygen starvation. At low current densities, the 

species mass transfer losses are not highly remarkable. However, at high current 

densities, concentration reduction along the CCH is higher, and the loss is more 

noticeable. The first case is the uniform catalyst distribution where h(x̅) = 1 and the 

second case is the linear function where h(x̅) = 1.5 − x̅ which indicates more catalyst 

loading at the entrance and less at the outlet. Figure 3-5 and Figure 3-6 provied the oxygen 

distribution contours for uniform and non-uniform catalyst distribution cases, respectively. 

The activation overpotential for both cases is η=0.33. 

 

Figure 3-5. Oxygen mass fraction distribution for uniform catalyst distribution at η=0.33 V 
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Figure 3-6. Oxygen mass fraction distribution for non-uniform catalyst distribution at η=0.33 V 

Figure 3-5 shows that even in uniform catalyst distribution, oxygen distribution at 

CCL/CGDL is non-uniform, and the mass fraction changes from about 0.14 to 0.07. The 

oxygen concentration distribution is a decreasing function due to mass transfer limitations.  

Since the oxygen concentration is higher at the CCH inlet, it is easier for oxygen particles 

to diffuse through CGDL and reach CCL. Figure 3-6 shows a different oxygen distribution 

at the CCL. The distribution is less non-uniform, with a maximum of 0.125 at the CCH inlet 

and a minimum of 0.08 at the outlet. That is because loading more catalysts at the CCH 

inlet results in more oxygen participating in ORR, and therefore the concentration drops 

from 0.14 to 0.125 while at the outlet, less oxygen participates in ORR and therefore the 

less oxygen is consumed and the minimum oxygen mass fraction increases from 0.07 to 

0.08. Figure 3-7 provides a comparison between oxygen profiles at the catalyst layer for 

both cases as follows: 
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Figure 3-7. Comparison of oxygen distributions at CCL for two cases of catalyst distributions (𝜂 = 0.33 𝑉) 

Looking at Figure 3-7, the average oxygen mass fraction along the CCL is lower for the 

non-uniform case; however, the minimum oxygen mass fraction is increased. Figure 3-8 

provides a comparison between the current density distributions between these two cases: 

 

Figure 3-8. Current density distributions at CCL for two cases of catalyst distributions (𝜂 = 0.33 𝑉) 

In this figure, the average current density for non-uniform catalyst distribution is 1.27 
A

cm2 

and is higher than the average current density for the uniform catalyst distribution 
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(1.18 
A

cm2). In fact, we can compare the average current densities by comparing the area 

under each curve. Figure 3-9 shades three different areas to illustrate a comparison 

between the uniform and non-uniform catalyst distribution.  

 

Figure 3-9. current density distributions Comparison between two cases of catalyst distributions (𝜂 = 0.33 𝑉) 

As it is seen in Figure 3-9, Area 1 indicates the increase in the current density due to 

inserting more catalyst at the CCH entrance, while Area 2 indicates the current density 

reduction due to inserting less catalyst at the end of the CCH. Area 3 is common between 

both cases. Since area 1 is slightly larger than area 2, it can be inferred that using a non-

uniform catalyst layer can improve PEMFC efficiency and, at the same time, increases the 

minimum oxygen concentration along the catalyst layer, which increases the maximum 

current density and delays the inception of oxygen starvation. Another interesting 

observation is that flattening the current density profile would not necessarily improve the 

system performance while flattening oxygen distribution might result in better 

performance.  

In the next step, we compare the values of the maximum liquid saturation obtained from 

the model. The reason for this comparison is the presence of (1 − sl) term in the Butler-

Volmer equation (Equation (3-51)). The presence of liquid water reduces the active 

surface area of the catalyst layer, and it is modeled by (1 − sl). Maximum liquid water 

saturation in the case of uniform catalyst loading (case 1) is found to be about 0.033, while 

this is increased to more than 0.037 in the case of employing a non-uniform catalyst 

Area 1

Area 2Area 3
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loading. The average liquid water saturation slightly increases, but it does not significantly 

deteriorate the performance of PEMFC due to the formation of the two-phase flow. 

Figure 3-10 provides a comparison between temperature distribution between the two 

introduced cases. Saturated water pressure highly depends on temperature, and 

therefore, it can influence liquid water distributions. Besides, the increasing temperature 

would decrease activation loss and hence improves PEMFC efficiency. On the other hand, 

very high temperatures can harm the membrane and reduce its lifetime. Therefore, it is 

important to monitor PEMFC temperature and conduct proper heat management to assure 

PEMFC high-performance. As Figure 3-10 shows loading more catalysts at the CCH 

entrance would result in higher temperatures due to a higher ORR rate. However, the 

temperature gradient does not change significantly, which means that the non-uniform 

catalyst distribution would not result in a noticeable change in the temperature profile.  

 

 

Figure 3-10. Temperature  distributions Comparison between two cases of catalyst distributions (𝜂 = 0.33 𝑉) 

In the next section, an optimization procedure will be defined to find the optimal catalyst 

distribution that results in maximum PEMFC power density and, at the same time, 

maximizes the minimum oxygen mass concentration at the CCL in the 

longitudinal direction.  

https://www.sciencedirect.com/topics/engineering/two-phase-flow
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3.4. Optimization of Catalyst Distribution 

In this section, the numerical model and genetic algorithm are combined in order to find 

the optimal catalyst distribution. Catalyst distribution is assumed as a polynomial function 

with unknown coefficients, and these coefficients are found through the optimization 

procedure. The first objective function is the maximum PEMFC power density. The second 

objective function is the minimum oxygen concentration along the CCL at the current 

density that maximum PEMFC power density occurs. The optimization problem is to 

maximize both objective functions by finding the optimal catalyst distribution coefficients. 

Objective functions, constraints, and decision variables are defined as follows:  

Maximize (objective function 1 and objective function 2)
fkϵR

∶ 
 

Objective function 1 = MaximumPEMFC power density for J = 0 to Jlim (3-73) 

Objective function 2

= Minimum oxygen concentration @CCl for JMaximum PEMFC power density  

(3-74) 

Constraints = {

CFD model, Equation 3 − 1 to  Equation 3 − 66 
Equation 3 − 69
Equation 3 − 72

          
 

 

Decision variables: fk, k = 1,2,… , n  

Figure 3-11 provides the optimization algorithm:  
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Figure 3-11. Optimization procedure to find the optimal catalyst distribution 

 

A brief explanation of the GA algorithm is provided in Appendix B. The parameters that 

are used in the genetic algorithm are defined in Table 3-4.  
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Table 3-4. Optimization algorithm parameters 

Parameters Value 

Population size  For three unknown or less=100 

For more than three unknown= 500 

Lower bound -20 for all parameters 

Higher bound 20 for all parameters 

Number of variables 2 to 6 

Elite count 0.05*population size 

Crossover ratio 0.8 

Mutation ratio 0.05 

Selection function Roulette  

Mutation function Uniform 

Function tolerance  1e-6 

Time limit - 

 

Following considerations are made to assure that the constraints are satisfied: 

• The constant coefficient (𝑓0) is found based on Equation (3-71) to assure that the 

total amount of catalyst is kept constant.  

• Two strategies are chosen to ensure that the catalyst distributions stay positive. 

The first scenario is to simply replace the sample point that violates this constraint 

with another random point. The second scenario is to set the objective function 

value to a positive number equal to the area under the x-axis. Since the objective 

function values of feasible points are negative, setting a positive value for infeasible 

points reduces the chance of that point to move to the next generation. 
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Both of these scenarios are attempted, and GA has run many times to assure that the 

obtained answer is the optimum answer. Pareto frontiers are found for linear and quadratic 

polynomial distributions. However, only one optimal answer is found for third and higher 

degree polynomials. For linear and quadratic polynomials, the optimal answer that 

resulted in maximum power density is chosen and along with other results, are reported 

in Table 3-5. The improvement percentages are provided based on the comparison of 

each case with the base case (uniform distribution). Figure 3-12 also provides the optimal 

catalyst distributions. As Figure 3-12 shows, increasing the degree of the polynomial 

function from five to six does not change the optimal distribution. By calculating the area 

under the optimal catalyst distribution, it can be inferred that the amount of catalyst used 

in the first half of the CCL is almost two times larger than the amount of the catalyst loaded 

in the rest of CCL. Figure 3-13 and Figure 3-14 provides a comparison between oxygen 

mass fractions and current distributions along the CCL at  η=0.33. 
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Table 3-5. Optimal catalyst distribution functions and improvement percentages 

Polynomial 

degree 
Coefficients 

Maximum 

PEMFC power 

density 

improvement 

Minimum 

oxygen 

concentration 

improvement 

Maximum 

current 

density 

improvement 

Linear 𝑓1 = −2,

𝑓0 = 2 

7% 18.1% 4.4% 

2nd order 𝑓2 = 2.214 ,

𝑓1 = −3.845,

𝑓0 = 2.185 

10% 27.5% 6.2% 

3rd order 𝑓3 = −1.66 ,

𝑓2 = 4.68,

𝑓1 = −4.76 ,

𝑓0 = 2.24 

11% 33% 6.9% 

4th order 𝑓4 = 5.53,

𝑓3 = −12.6,

𝑓2 = 11.36,

𝑓1 = −6,

𝑓0 = 2.26 

12 % 36.5% 7.45% 

5th order 𝑓5 = −1.9,

𝑓4 = 9.44,

𝑓3 = −15.1,

𝑓2 = 11.8,

𝑓1 = −6,

𝑓0 = 2.27  

12.6% 42% 7.8% 
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6th order 𝑓6 = 0,

𝑓5 = −3.66,

𝑓4 = 13.88,

𝑓3 = −19,

𝑓2 = 13.23,

𝑓1 = −6.2,

𝑓0 = 2.27 

12.6.% 42% 7.8% 

 

 

 

Figure 3-12. Optimal catalyst distributions 
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Figure 3-13. Comparison of current distribution between uniform and optimal catalyst distributions at 𝜂 =
0.33 𝑉 

 

Figure 3-14. Comparison of oxygen mass fraction distributions between uniform and optimal catalyst 
distributions at 𝜂 = 0.33 𝑉 

Calculating the area under the current density distributions in Figure 3-13. shows that the 

amount of current generated at η=0.33 is about 12% higher compared to the uniform case, 

which is a noticeable improvement in PEMFC power density. At the same time, Figure 

3-14 indicates that oxygen distribution is flattened, and the minimum amount of oxygen 

mass fraction is increased from 0.07 to 0.1, which is almost 42%. This noticeable increase 

in the minimum oxygen mass fraction along the catalyst layer indicates that the maximum 

current density would increase, which means that oxygen starvation occurs in higher 
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current densities. Figure 3-15 and Figure 3-16 provide a comparison between polarization 

and power density curves in uniform and optimal case. The maximum current density 

improves from 1.28
 𝐴

𝑐𝑚2 to 1.38 
 𝐴

𝑐𝑚2 which is about 7.8%. improvement.  

 

Figure 3-15. Comparison between polarization curves between uniform and optimal 

catalyst distribution cases 

 

Figure 3-16. Comparison between polarization curves between uniform and optimal 

catalyst distribution cases 
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3.5. Chapter Summary  

In this chapter, a two-dimensional, two-phase, steady-state model is developed to 

investigate the effects of platinum loading distribution on oxygen distribution at CCL and, 

therefore PEMFC power density. In the first step, two cases of catalyst distributions are 

introduced, and an increase in the minimum oxygen concentration and maximum PEMFC 

density is observed. Next, an optimization procedure is introduced to find the optimal 

catalyst distributions. Objective functions, constraints, and variables are explained, and 

GA is selected as the optimizer. Catalyst distributions are modeled as polynomials with 

unknown coefficients. These coefficients are obtained through the optimization procedure, 

and the following results are observed:  

• In the optimal case, maximum PEMFC power density is improved by 12.6%. 

• In the optimal case, the minimum oxygen mass fraction along the CCL is increased 

by 42% 

• In the optimal case, the maximum current density is increased by 7.8%. 

• In the optimal case, the oxygen mass fraction is flattened along the CCL.  

• The optimum answers for both objective functions are the same, which results in 

one optimal distribution than a Pareto frontier. 

• Loading more catalyst in locations with higher reaction rates improves PEMFC 

power density.  

• The amount of catalyst used in the first half of the catalyst layer is almost twice of 

the other half.  

• An unlimited increase of the platinum mass loading at the CCH inlet and an unlimited 

decrease in the CCH outlet would not result in the maximum PEMFC power density.  

• The increase in the maximum current density in the optimal case indicates that 

oxygen starvation would occur at a higher current density.  

Also, the results are consistent when pure oxygen is used for the simulations [79]. In the 

next chapter, a simple pseudo two-dimensional model is developed as a based model for 

diagnosis purposes.  
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Chapter 4.  
 
Developing a Base Model for Leakage Diagnosis  

Transfer (crossover) leaks initiated by the physical and chemical deterioration of the MEA 

are among the primary life-limiting factors in PEMFCs. The leaks result in reduced oxygen 

levels in affected cells, which could result in hydrogen pumping and hydrogen emission in 

case of complete oxygen starvation. This chapter builds on previous work presented in 

Vijayaraghavan et al. [15], that had developed a unified fuel cell model to predict cell 

voltage behavior under driving (normal) and driven (oxygen-starved) conditions. This work 

explicitly includes hydrogen pumping and emissions release when operating under 

oxygen-depleted conditions. The developed model would be used as a base model for the 

diagnosis tool that will be used to detect and quantify leakage in PEMFC. The based model 

must be fairly fast and precise since we plan to run this model for a wide range of operating 

conditions and for different leakage values to make a considerably large dataset. The 

dataset would be used to train ML estimators to predict and quantify the amount of leakage 

based on current, voltage, and other operating conditions. Therefore, the computational 

cost is a very important factor that must be considered. Using the CFD model from the 

previous chapter would result in a huge computational cost and could result in weeks of 

processing time. It is also important to note that the ultimate purpose of this work is to 

include the effects of other faults in the model. Therefore, the dataset must be generated 

again, and ML methods must be trained again to isolate and quantify the new faults added 

to the model along with the previous faults. In this case, using a detailed CFD model is 

not a feasible option, and that is why the pseudo numerical model is introduced and 

developed. Developing this hybrid analytical-numerical model reduces computational 

complexity noticeably and improves computational efficiency. 

4.1. Mathematical Model  

This section presents the mathematical model of the fuel cell that will be used in a finite 

element solver in Section 4.2. The numerical domain is shown in Figure 4-1. 

https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/cell-voltage
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/cell-voltage
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Figure 4-1. Numerical domain of the pseudo two-dimensional model developed for diagnosis purposes 

The main model assumptions are listed as follows:  

• Model is pseudo two dimensional and single phase. 

• Model is developed for both steady-state and dynamic operating conditions. 

• Model is developed for PEMFC in normal-mode (Section 4.1.2) and the starved-

mode (Section 4.1.3). 

• PEMFC voltage is assumed to be constant everywhere. 

• The hydrogen concentration gradient along the Y direction is assumed to be 

negligible. 

• Owing to the low velocity and low Reynolds number, the flow is assumed laminar. 

• The catalyst layer is considered as an ultra-thin layer which only acts as a 

source/sink term in electrochemical reactions 

• CGDL is considered as isotropic media  

• Modal analysis is used to estimate the effective oxygen concentration at the CCL.  

• The cell is divided into 𝑁𝑒𝑙𝑒 elements along the X-axis (along the CCH) while 

variations along the Z direction (cell depth) are neglected 

The first step in the model is to calculate the effective reactant concentrations. This step 

would help us to understand whether the cell is producing or consuming power. Section 

4.1.1 introduces a novel method of calculating the effective reactant concentrations at ACL 

CCH

CGDL

CCL

Y

X

PEM

ACL

AGDL

ACH
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and CCL. Section 4.1.1 discusses the modal analysis and explains how effective species 

concentrations across CGDL are calculated. Section 4.1.2 provides the governing 

equation for normal operating mode (driving mode), while Section 4.1.3 discusses the 

governing equations for the starved mode (driven mode). Section 4.1 ends with Section 

4.1.4, where species concentrations along the CCH are calculated. Hydrogen pumping is 

also calculated in the same section.  

4.1.1. Effective Reactant Concentration at CCL and ACL  

4.1.1.1. Prior model [15]:  

Due to the fast diffusion of hydrogen in anode comparing to oxygen diffusion rate in the 

cathode, hydrogen concentration gradient across AGDL is neglected [15]:  

𝜙𝐻2,𝐴𝐶𝐿 = 𝜙𝐻2,𝐴𝐶𝐻 (4-1) 

The modal analysis is used to determine the effective oxygen concentration along the Y-

axis. To calculate the effective oxygen concentration at CCL, first and second Fick’s laws 

are used as follows [15]: 

𝛤 = −𝐷
𝑑𝜙𝑂2
𝑑𝑦

 
(4-2) 

𝜕𝜙𝑂2
𝜕𝑡

= 𝐷
𝜕2𝜙𝑂2
𝜕𝑦2

 
(4-3) 

𝛤 is oxygen flux, D is the oxygen diffusion coefficient, and 𝜙𝑂2 is oxygen concentration. 

Modal analysis is used to convert this equation to a differential equation in time. 

Differentiating Equation (4-3) with regard to y and defining 𝜙𝑂2  
′ =

𝜕𝜙𝑂2
𝜕𝑦

, the following 

equation is derived [15]:  

𝜕𝜙𝑂2
′

𝜕𝑡
= 𝐷

𝜕2𝜙𝑂2
′

𝜕𝑦2
 

(4-4) 

The consumption rate of oxygen across the electrode is estimated based on Faraday’s 

Equation (4-5): 

https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/anode
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/concentration-gradient
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𝛤(𝑦=𝑙) =
𝐽

𝑛𝐹
 

(4-5) 

Replacing oxygen flux from Equation (4-5) into Equation (4-3), the following equation is 

obtained.   

𝜙𝑂2 (𝑦=𝑙) 
′ = −

𝐽

𝑛𝐹𝐷
 

(4-6) 

Equation (4-6) is one of the boundary conditions for Equation (4-4). Homogenization of 

Equation (4-4) at y=l would result in an easier procedure for the solution. Therefore, a new 

variable is introduced as follows:  

 ƃ = 𝜙𝑂2  
′ + 𝜙𝑂2 (𝑦=𝑙) 

′  (4-7) 

Calculating 𝜙𝑂2  
′ from Equation (4-7) and replacing it in Equation (4-6), Equation (4-8) is 

obtained as follows: 

𝜕ƃ

𝜕𝑡
= 𝐷

𝜕2ƃ

𝜕𝑦2
 

(4-8) 

In the next step, the method of separation of variables is used to solve Equation (4.8) 

where Ƴ is a function of y and Ʈ is a function of t: 

ƃ(𝑦, 𝑡) = Ƴ(𝑦). Ʈ(𝑡) (4-9) 

Substituting Equation (4-9) into Equation (4-8) and dividing both sides to Ƴ(𝑦). Ʈ(𝑡), the 

following equation is derived [15]:  

𝑑Ʈ/𝑑𝑡

Ʈ
= 𝐷

𝑑2Ƴ/𝑑𝑦2

Ƴ2
=  𝜉 

(4-10) 

where 𝜉 is a constant number. 𝜉 should be a negative number so that the time function 

becomes a finite function. Therefore (𝜉 = −𝜆2) and Ƴ is calculated as follows:  

Ƴ = 𝐴′ 𝑠𝑖𝑛[𝜆(𝐿 − 𝑦)] + 𝐵′𝑐𝑜𝑠 [𝜆(𝐿 − 𝑦)] (4-11) 

A’ and B’ are calculated based on the boundary conditions and since (ƃ(𝑦=𝑙) = 0), Then 

𝐵′ = 0 and Ƴ can be written as:  
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Ƴ = 𝐴′ 𝑠𝑖𝑛[𝜆(𝐿 − 𝑦)] (4-12) 

As a result, ƃ and 𝜙′ are written as:  

ƃ = 𝐴′ 𝑠𝑖𝑛(𝜆(𝑙 − 𝑦))Ʈ(𝑡) (4-13) 

𝜙𝑂2  
′ = ƃ − 𝜙𝑂2 (𝑦=𝑙) 

′ = 𝐴′ 𝑠𝑖𝑛(𝜆(𝑙 − 𝑦))Ʈ(𝑡) − 𝜙𝑂2 (𝑦=𝑙) 
′  (4-14) 

The oxygen concentration in CCH/CGDL interfaced is assumed as the oxygen 

concentration in the CCH (𝜙𝑂2 (𝑦=0) = 𝜙𝑂2 ,𝐶𝐶𝐻). Thus, the oxygen concentration is 

calculated as follows:  

𝜙𝑂2 = 𝜙𝑂2 ,𝐶𝐶𝐻 − 𝜙𝑂2 (𝑦=𝑙) 
′ 𝑦 +∑

𝐴′𝑚
𝜆𝑚

𝑐𝑜𝑠(𝜆𝑚(𝑙 − 𝑦))Ʈ𝑚(𝑡) 
(4-15) 

and 𝜆𝑚 could be obtained as follows:  

𝜆𝑚 =
(2𝑚 + 1)𝜋

2𝑙
,𝑚 = 0,1,2,3, . . 

(4-16) 

In order to calculate 𝐴′𝑚, Equation (4-15) is substituted into Equation (4-3) and multiply 

both sides by 𝑐𝑜𝑠(𝜆𝑛(𝑙 − 𝑦)) and integrate across CGDL width results in the following 

equation: 

𝐴′𝑛𝐿

2𝜆𝑛
(Ʈ̇𝑛 +

1

𝜏𝑛
Ʈ𝑛) =

(−1)𝑛 1𝜙̇𝑂2,𝐶𝐶𝐻

𝜆𝑛
+
𝜙′̇ 𝑂2,(𝑦=𝑙)

𝜆𝑛
2  

(4-17) 

where 

𝜏𝑛 =
1

𝐷𝜆𝑛
2 

(4-18) 

𝜆𝑛 = 𝜆0(2𝑛 + 1) (4-19) 

𝜏𝑛 =
𝜏0

𝐷(2𝑛 + 1)2
 (4-20) 

By considering the first mode (n=0) and taking Laplace from both sides of Equation (4-17), 

the following equation is derived [15]:   
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Ʈ𝑛 ×
𝐴0
′

𝜆0
=

𝜏𝑛𝑠

𝜏𝑛 + 1
 ((−1)𝑛 1

4𝜙𝑂2 ,𝐶𝐶𝐻

𝜋(2𝑛 + 1)
−
8𝑙𝜙𝑂2 (𝑦=𝑙) 

′

𝜋2(2𝑛 + 1)2
) 

(4-21) 

Substituting 𝜙𝑂2 (𝑦=𝑙) 
′ from Equation (4-6) into Equation (4-21), the following equation is 

derived.  

Ʈ𝑛 ×
𝐴0
′

𝜆0
=

𝜏𝑛𝑠

𝜏𝑛 + 1
 ((−1)𝑛 1

4𝜙𝑂2 ,𝐶𝐶𝐻

𝜋(2𝑛 + 1)
−

−8𝑙
𝐽

𝑛𝐹𝐷
𝜋2(2𝑛 + 1)2

) 

(4-22) 

D is estimated from limiting current density as follows:  

𝐷 = 
𝐽𝑙𝑖𝑚𝑙

𝑛𝐹𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
 

(4-23) 

Replacing D from Equation (4-23) and Ʈ𝑛 from Equation (4-22) into Equation (4-15), the 

following equation is derived.  

𝜙𝑂2,𝐶𝐶𝐿 = 𝜙𝑂2 ,𝐶𝐶𝐻 −
𝐽𝑙

𝑛𝐹𝐷
−∑

𝜏𝑛𝑠

𝜏𝑛 + 1
 ((−1)𝑛

4𝜙𝑂2 ,𝐶𝐶𝐻

𝜋(2𝑛 + 1)
−

8
𝐽

𝑛𝐹𝐷
𝜋2(2𝑛 + 1)2

) 

(4-24) 

Vijayaraghavan et al. [15] simplified Equation (4-24) further and derived Equation (4-25) 

as follows:  

𝜙𝑂2,𝐶𝐶𝐿

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
=

𝜙𝑂2 ,𝐶𝐶𝐻

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
−

𝐽

𝐽𝑙𝑖𝑚
−

 

4𝜏0𝑠
𝜏0𝑠 + 1

× 𝜙𝑂2 ,𝐶𝐶𝐻

𝜋𝐶𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙

+

4
𝜏0
9⁄ 𝑠

𝜏0
9⁄ 𝑠 + 1

× 𝜙𝑂2 ,𝐶𝐶𝐻

3𝜋𝐶𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
+

8𝜏0𝑠
𝜏0𝑠 + 1

× 𝐽

𝜋2𝐽𝑙𝑖𝑚
 

(4-25) 

Equation (4-25) could be simplified as follows:  

𝜙𝑂2,𝐶𝐶𝐿

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
=

𝜙𝑂2 ,𝐶𝐶𝐻

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
−

𝐽

𝐽𝑙𝑖𝑚
−
4

𝜋
 

ℎ𝑝𝜙𝑂2 ,𝐶𝐶𝐻−0

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
+
4

3𝜋

ℎ𝑝𝜙𝑂2 ,𝐶𝐶𝐻−1

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
+
8

𝜋2
ℎ𝑝𝐽

𝐽𝑙𝑖𝑚
 

(4-26) 

where  
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ℎ𝑝𝜙𝑂2 ,𝐶𝐶𝐻−0 =
𝜏0𝑠

𝜏0𝑠 + 1
𝜙𝑂2 ,𝐶𝐶𝐻

 
 

(4-27) 

ℎ𝑝𝜙𝑂2 ,𝐶𝐶𝐻−1 =

𝜏0
9⁄ 𝑠

𝜏0
9⁄ 𝑠 + 1

𝜙𝑂2 ,𝐶𝐶𝐻

 

 

(4-28) 

ℎ𝑝𝐽 =
𝜏0𝑠

𝜏0𝑠 + 1
𝐽 (4-29) 

𝜏0 =
4𝑛𝑙𝐹𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙

𝜋2𝐽𝑙𝑖𝑚
 

(4-30) 

4.1.1.2. Model enhancement 

It is necessary to mention that oxygen mass transfer limitation due to a thin water formation 

adjacent to the CCL is neglected in Equation (4-26). Water is generated when hydrogen 

reacts with oxygen at the Cathode. This water diffuses to the surface of the CGDL. When 

PEMFCs operate at temperatures below the boiling point of water (i.e., below 100 °C), this 

water may form at the surface of the CGDL. Such a water film has been empirically 

observed in fuel cells. While it is possible to include the water transport model to estimate 

the thickness of the water layer, such detailed modeling of water transport would 

noticeably increase the computational cost of the model, which is not aligned with the 

purpose of this model. Since the film is absent at no load and the maximum film 

thickness would be limited, the thickness of the film will be modeled using a sigmoid 

function with a half-value point at a current density 𝐽𝑚𝑖𝑛.Therefore, following empirical 

equation is used to model the reduction in oxygen mass transfer limitation due to water 

formation: 

𝜙𝑂2 ,𝑓𝑖𝑙𝑚 = 𝜙𝑂2 ,𝐶𝐶𝐻 − 𝑅𝐴−𝑓𝑖𝑙𝑚 ×
1

1 + 𝑒−𝑅𝐵−𝑓𝑖𝑙𝑚(𝐽−𝐽𝑚𝑖𝑛)
 

(4-31) 

where 𝑅𝐴−𝑓𝑖𝑙𝑚 represents the magnitude of the concentration drop. 𝑅𝐵−𝑓𝑖𝑙𝑚 represents the 

current scaling factor in the sigmoid function. It must be noted 𝑅𝐴−𝑓𝑖𝑙𝑚 and 𝑅𝐵−𝑓𝑖𝑙𝑚 must 

only be estimated one for a given kind of a PEMFC. To account for this concentration 

drop, 𝜙𝑂2 ,𝐶𝐶𝐻 is replaced with 𝜙𝑂2 ,𝑓𝑖𝑙𝑚 in Equation (4-26)-Equation (4-29) and the following 

equations are derived: 

https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/materials-science/film-thickness
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/materials-science/film-thickness
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/sigmoid-function
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/sigmoid-function
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𝜙𝑂2,𝐶𝐶𝐿

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
=

𝜙𝑂2 ,𝑓𝑖𝑙𝑚

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
−

𝐽

𝐽𝑙𝑖𝑚
−
4

𝜋
 

ℎ𝑝𝜙𝑂2 ,𝑓𝑖𝑙𝑚−0

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙
+
4

3𝜋

ℎ𝑝𝜙𝑂2 ,𝑓𝑖𝑙𝑚−1

𝜙𝑂2 ,𝑛𝑜𝑟𝑚𝑎𝑙

+
8

𝜋2
ℎ𝑝𝐽

𝐽𝑙𝑖𝑚
 

(4-32) 

where  

ℎ𝑝𝜙𝑂2 ,𝑓𝑖𝑙𝑚−0
=

𝜏0𝑠

𝜏0𝑠 + 1
𝜙𝑂2 ,𝑓𝑖𝑙𝑚

 
 

(4-33) 

ℎ𝑝𝜙𝑂2 ,𝑓𝑖𝑙𝑚−1 =

𝜏0
9⁄ 𝑠

𝜏0
9⁄ 𝑠 + 1

𝜙𝑂2 ,𝑓𝑖𝑙𝑚

 

 

(4-34) 

ℎ𝑝𝐽 =
𝜏0𝑠

𝜏0𝑠 + 1
𝐽 (4-35) 

4.1.2. Governing Equations for PEMFC in Driving Mode [15] 

Driving mode is a mode that PEMFC produces power rather than consuming it. In this 

mode, the cell voltage is calculated as follows:  

𝑉 = 𝑉𝑜𝑐 − 𝜂𝑜ℎ𝑚 − 𝜂𝑎𝑐𝑡 
(4-36) 

𝑉𝑜𝑐  is open-circuit voltage and is obtained from the following equation 

𝑉𝑜𝑐 = 𝑉0 + 𝐵𝑐𝑜𝑛𝑐 ln [(𝜙𝑂2,𝐶𝐶𝐿)
0.5
. (𝜙𝐻2,𝐴𝐶𝐿)] 

(4-37) 

where 𝐵𝑐𝑜𝑛𝑐 is an effective coefficient to account for kinetics and is in the range of 0.02 to 

0.06 [5]. 𝜙𝐻2,𝐴𝐶𝐿 and 𝜙𝑂2,𝐶𝐶𝐿 are calculated based on Equation (4-1) and Equation (4-32) 

respectively. The ohmic loss (𝜂𝑜ℎ𝑚) is a nonlinear function [80] and can be written as 

[68,80]:   

𝑅𝑜ℎ𝑚 = 𝜌0 + 𝜌𝐽𝐽 + 𝜌𝑇(𝑇 − 298) (4-38) 
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𝜂𝑜ℎ𝑚 = 𝐼𝑅𝑜ℎ𝑚 (4-39) 

The activation loss (𝜂𝑎𝑐𝑡) can be obtained from the Tafel equation, which can be written 

in the following form [68,80]  

𝜂𝑎𝑐𝑡,𝐷𝐿 = 𝑤1 +𝑤2(𝑇 − 298) + 𝑤3𝑇𝑙𝑛(𝐽𝑅𝑎𝑐𝑡) (4-40) 

The double-layer effect is accounted for in Equations (4-40). The layer of charges at the 

electrode/electrolyte interface results in the storage of both charge and energy, and it acts 

as a capacitor. 𝐽𝑅𝑎𝑐𝑡 indicates the part of the current that goes through the double-layer 

resistance and is calculated through the following equations. 

𝜂𝑎𝑐𝑡,𝐷𝐿 = 𝜂𝑎𝑐𝑡 =
1

𝐶𝐷𝐿
∫(𝐽 − 𝐽𝑅𝑎𝑐𝑡)𝑑𝑡 

(4-41) 

𝑑

𝑑𝑡
𝐽𝑅𝑎𝑐𝑡 =

𝐽𝑅𝑎𝑐𝑡𝐴

𝑤3𝑇𝐶𝐷𝐿
(𝐽 − 𝐽𝑅𝑎𝑐𝑡) 

(4-42) 

The next section discusses the governing equation for the driven mode.  

4.1.3. Governing Equations for PEMFC in the Driven Mode [15] 

As oxygen concentration at CCL drops, open-circuit voltage approaches zero. In this case, 

oxygen concentration drops to the equilibrium concentration, and as a result, open-circuit 

cell voltage becomes zero (𝑉𝑜𝑐 = 0). When the cell becomes fully starved, the ORR does 

not occur anymore, and the activation loss comes from the hydrogen decomposition 

reaction at the anode side. Anode activation loss is calculated through the Butler-Volmer 

formula as follows: 

𝐽 = 𝐽𝐴
𝑟𝑒𝑓
[𝑒𝑥𝑝(

𝛼𝜂𝑎𝑐𝑡
𝜂𝑎𝑐𝑡,0

) − 𝑒𝑥𝑝 (
−(1 − 𝛼)𝜂𝑎𝑐𝑡

𝜂𝑎𝑐𝑡,0
)] 

(4-43) 

where  
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𝜂𝑎𝑐𝑡,0 =
𝑅𝑇

𝑛𝐹
 

(4-44) 

𝐼𝐴
𝑟𝑒𝑓

is the exchange current density, and α is the transfer coefficient and is assumed to 

be equal to 0.5. Thus 𝜂𝑎𝑐𝑡 is calculated based on the following simplifications: 

𝐽 = 𝐽𝐴
𝑟𝑒𝑓
. [𝑒𝑥𝑝 (

0.5𝜂𝑎𝑐𝑡
𝜂𝑎𝑐𝑡,0

) − 𝑒𝑥𝑝 (
−0.5𝜂𝑎𝑐𝑡
𝜂𝑎𝑐𝑡,0

)] 
(4-45) 

𝐽

𝐽𝐴
𝑟𝑒𝑓

= 2𝑠𝑖𝑛ℎ (
0.5𝜂𝑎𝑐𝑡
𝜂𝑎𝑐𝑡,0

) 
(4-46) 

𝜂𝑎𝑐𝑡 = 2𝜂𝑎𝑐𝑡,0𝐴𝑟𝑐𝑠𝑖𝑛ℎ (
𝐽

2𝐽𝐴
𝑟𝑒𝑓
) 

(4-47) 

Taking 𝑤4 = 2𝜂𝑎𝑐𝑡,0,  activation losses can be found from Equation (4-48). 

𝜂𝑎𝑐𝑡 = 𝑤4𝐴𝑟𝑐𝑠𝑖𝑛ℎ (
𝐽

2𝐽𝐴
𝑟𝑒𝑓
) 

(4-48) 

Considering the double layer effect, Equation (4-47) is modified to:  

𝜂𝑎𝑐𝑡,𝐷𝐿 = 𝑤4𝐴𝑟𝑐𝑠𝑖𝑛ℎ (
𝐽𝑅𝑎𝑐𝑡

2𝐽𝐴
𝑟𝑒𝑓
) 

(4-49) 

𝑑

𝑑𝑡
𝐽𝑅𝑎𝑐𝑡 =

√(2𝐽𝐴
𝑟𝑒𝑓
)
2
+ (𝐽𝑅𝑎𝑐𝑡)

2𝐴

𝑤4𝐶𝐷𝐿
(𝐽 − 𝐽𝑅𝑎𝑐𝑡) 

(4-50) 

Ohmic loss is calculated by Equation (4-38) and Equation (4-39), and cell voltage is 

calculated as follows:  

𝑉 = −𝜂𝑜ℎ𝑚 − 𝜂𝑎𝑐𝑡 (4-51) 
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So far, the governing equations across CGDL are obtained while the species 

concentrations gradient along the CCH is not discussed. Section 4.1.4 develops equations 

to calculate the species concentration along the CCH. The hydrogen pumping 

phenomenon is discussed in the same section, and a formula for the hydrogen pumped 

into the cathode side is developed. 

4.1.4. Species Concentration Along the CCH 

4.1.4.1. Prior model [15]:  

Let’s assume there is a mixture of two species (A and B) in a flow, with respective mole 

fractions 𝜒𝐴 and 𝜒𝐵. Let’s assume that the total molar flow of the mixture is 𝑁̇. Therefore, 

the molar fractions of A and B could be calculated as follows:  

𝑁̇𝐴 = 𝜒𝐴𝑁̇ (4-52) 

𝑁̇𝐵 = 𝜒𝐵𝑁̇ = (1 − 𝜒𝐴)𝑁̇ (4-53) 

Therefore, the ratio of molar fluxes could be obtained as follows: 

𝑁̇𝐴

𝑁̇𝐵
=

𝜒𝐴
1 − 𝜒𝐴

 
(4-54) 

Let’s assume that the mole fraction of species A changes from 𝜒𝐴 to 𝜒𝐴
′  due to 

consumption or removal from the mixture. The next mole fraction (𝜒𝐴
′ ) as follows: 

𝜒𝐴
′

1 − 𝜒𝐴
′ =

𝑁̇𝐴 − ∆𝑁̇𝐴

𝑁̇𝐵
=

𝜒𝐴
1 − 𝜒𝐴

−
∆𝑁̇𝐴

𝑁̇𝐵
 

(4-55) 

𝜒𝐴
′ = 1 −

1 − 𝜒𝐴

1 −
𝛥𝑁̇𝐴
𝑁̇𝐵

(1 − 𝜒𝐴)

 
(4-56) 

Over a (small) area 𝐴𝑒𝑙𝑒,  
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𝐼𝑒𝑙𝑒 = 𝐽𝐴𝑒𝑙𝑒 (4-57) 

Hydrogen is consumed at 𝛥𝑁̇𝐻2 =
𝐼𝑒𝑙𝑒

2𝐹
 at the anode in either mode. Hence the hydrogen 

mole fraction at the next anode element is calculated as follows: 

𝜒𝐻2,𝐴(𝑜𝑢𝑡) = 1 −
1 − 𝜒𝐻2,𝐴(𝑖𝑛)

1 −
𝐼𝑒𝑙𝑒

2𝐹𝑁̇𝐵,𝐴
(1 − 𝜒𝐻2,𝐴(𝑖𝑛))

 
(4-58) 

At the cathode, 𝛥𝑁̇𝑂2 =
𝐼𝑒𝑙𝑒

4𝐹
 and therefore, the oxygen mole fraction at the next cathode 

element is calculated as follows:  

𝜒𝑂2,𝐶(𝑜𝑢𝑡) = 1 −
1 − 𝜒𝑂2,𝐶(𝑖𝑛)

1 −
𝐼𝑒𝑙𝑒

4𝐹𝑁̇𝐵,𝐶
(1 − 𝜒𝑂2,𝐶(𝑖𝑛))

 
(4-59) 

As long as there is sufficient oxygen, 𝜒𝑂2,𝐶(𝑜𝑢𝑡) can be calculated using Equation (4-59). 

When the fuel cell is oxygen-starved, all of the oxygen would be consumed and 𝜒𝑂2,𝐶(𝑜𝑢𝑡) 

will become negative. Physically, the mole fraction of oxygen 𝜒𝑂2,𝐶(𝑜𝑢𝑡) cannot be 

negative and this situation corresponds to the oxygen concentration reaching zero and the 

inception of hydrogen generation. Using this fact and by writing the equations in the 

concentration form, 𝜙𝐻2,𝐴(𝑜𝑢𝑡) and  𝜙𝑂2,𝐶(𝑜𝑢𝑡) will be obtained by Equation (4-60) and 

Equation (4-61), respectively.  

𝜙𝐻2,𝐴(𝑜𝑢𝑡) =
𝑃𝐴
𝑅𝑇

(

 
 
1 −

𝑃𝐴
𝑅𝑇 − 𝜙𝐻2,𝐴

(𝑖𝑛)

𝑃𝐴
𝑅𝑇 −

𝐼𝑒𝑙𝑒
2𝐹𝑁̇𝐵,𝐴

(
𝑃𝐴
𝑅𝑇 − 𝜙𝐻2,𝐴

(𝑖𝑛))
)

 
 

 

(4-60) 

𝜙𝑂2,𝐶(𝑜𝑢𝑡) = 𝑚𝑎𝑥

[
 
 
 
 
𝑃𝐶
𝑅𝑇

(

 
 
1 −

𝑃𝐶
𝑅𝑇 − 𝜙𝑂2,𝐶

(𝑖𝑛)

𝑃𝐶
𝑅𝑇 −

𝐼𝑒𝑙𝑒
4𝐹𝑁̇𝐵,𝐶

(
𝑃𝐶
𝑅𝑇 − 𝜙𝑂2,𝐶

(𝑖𝑛))
)

 
 
, 0

]
 
 
 
 

 

(4-61) 
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4.1.4.2. Model enhancement through the effect of hydrogen pumping 

We will now model the hydrogen pumping that was neglected in the previous model. From 

Faraday’s law, the total number of moles of hydrogen transported is given by  

𝑁̇𝐻2(𝑔𝑒𝑛) =
𝐼𝑒𝑙𝑒
2𝐹

 
(4-62) 

Each mole of oxygen entering the element will consume two moles of hydrogen. Hence 

𝑁̇𝐻2(𝑜𝑢𝑡) =
𝐼𝑒𝑙𝑒
2𝐹

−
2𝜒𝑂2,𝐶  (𝑖𝑛). 𝑁̇𝐵,𝐶

1 − 𝜒𝑂2,𝐶  (𝑖𝑛)
 

(4-63) 

The hydrogen concentration at the end of the element on the cathode side in the starvation 

mode can be obtained by Equation (4-64), Equation (4-65), and Equation (4-66).  

𝜒𝐻2,𝐶(𝑜𝑢𝑡) = 1 −
1 − 𝜒𝐻2,𝐶(𝑖𝑛)

1 +

𝐼
2𝐹 −

2𝜒𝑂2,𝐶  (𝑖𝑛). 𝑁̇𝐵,𝐶
1 − 𝜒𝑂2,𝐶  (𝑖𝑛)

𝑁̇𝐵,𝐶
(1 − 𝜒𝐻2,𝐶(𝑖𝑛))

 
(4-64) 

𝜒𝐻2,𝐶(𝑜𝑢𝑡) = 𝑚𝑎𝑥[𝜒𝐻2,𝐶(𝑜𝑢𝑡), 0] (4-65) 

𝜙𝐻2,𝐶(𝑜𝑢𝑡) =
𝑃𝐶
𝑅𝑇
𝜒𝐻2,𝐶(𝑜𝑢𝑡) 

(4-66) 

So far, the species concentration gradients along the CCH and across the CGDL were 

discussed for both driven and driving modes in Section 4.1. Section 4.2 discusses the 

numerical algorithm and provides validation versus experimental data.  

4.2. Numerical Algorithm 

In this section, the numerical algorithm used to solve the governing equations is explained.  

As mentioned earlier, the entire cell is divided into 𝑁𝑒𝑙𝑒 elements along the X-axis (along 

the CCH) where 𝑖𝑡ℎ element connects nodes 𝑖 and (𝑖 + 1). Figure 4-2 shows the type of 

mesh used for the numerical algorithm. (It may be noted that the size of the mesh has 
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been exaggerated in this figure). Each element is a rectangle that includes both CCH and 

CGDL for anode and cathode sides.  

  

Figure 4-2. Mesh type used the pseudo, two-dimensional model developed for diagnosis purposes 

Important model inputs are listed as follows:  

• Required current (𝐼𝑟𝑒𝑞) 

• Inlet species concentrations (𝜙𝐻2,𝐴(𝑖𝑛), 𝜙𝑂2,𝐶(𝑖𝑛))  

• Inlet species flow rates (𝑁̇𝐻2(𝑖𝑛), 𝑁̇𝑎𝑖𝑟(𝑖𝑛)) 

• Anode and cathode pressures (𝑃𝐴, 𝑃𝐶) 

• Number of mesh elements(𝑁𝑒𝑙𝑒 = 50) 

• Convergence criterion (𝑒𝑝𝑠 = 0.001)  

A triple nested algorithm is used to obtain the polarization curves. In this algorithm, the 

current is model input, and an initial voltage is guessed as cell voltage. Cell voltage is 

assumed to be constant for all the elements. At the first step, oxygen and hydrogen 

concentrations are set as inlet concentrations. Then, the current density is iterated to find 

the cell voltage equal to the assumed cell voltage. Reactant concentrations are calculated 

based on whether the segment operates in normal or starved mode, and the values are 

updated for the next cell. By integrating the current densities produced in all segments, 

the total current density can be calculated and compared with the model input. If the 

difference between the calculated current and the input current is noticeable, a new cell 

voltage will be guessed, and the whole algorithm repeated until the calculated current 

become equal to the model input. The complete algorithm is provided in Figure 4-3.  

CCH

GDL

CCL

Y

X

PEM

ACL

GDL

ACH
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Figure 4-3. Numerical algorithm of the pseudo, two-dimensional model developed for diagnosis purposes 
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4.3. Model Validation 

The experimental work by Wang et al. [68] is used for validating the fuel cell. The cell 

parameters are as follows: 

Table 4-1. Model parameters [68] 

Parameter Value 

Bconc 0.05 

CDL 0.1 F 

F 
96485 

C

mol
 

JA
ref 

100 
A

m2
 

Jlim 
79.88 

A

m2
 

Nele 100 

R 
8.314 

J

K.mol
 

Rohm 0.0347 Ohm 

Troom 298 K 

ρJ 0.0058  

ρ0 3.9 × 10−5 

ρT 4.94 × 10−5  

w1 0.4170  

w2 −2.9090 × 10−3 

w3 1.0417 × 10−4  

w4 1.723 × 10−4 

PA 1.5 atm 

PC 1 atm 

 

Figure 4-4 compares the polarization curve obtained from the numerical data with the 

experimental results derived by Wang et al. [68]. Figure 4-5 compares the dynamic voltage 
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response to the step current change from 5 A to 10 A. The maximum error in both Figures 

is less than 0.2 percent.  

 

Figure 4-4. Validation of pseudo, two-dimensional model based on the polarization curve 

 

Figure 4-5. Validation of pseudo, two-dimensional models based on the transient response to a step-change 
in current from 5 A to 10 A 

 

Also, the grid independency test is conducted on grids with 50 and 100 cells, and it has 

been seen that by changing the mesh size from 50 to 100, the maximum change is less 

than 1 percent. In the next section, simulation results are discussed and compared versus 

the data collected at Ballard Power Systems Inc. 
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4.4. Experimental Observations of Oxygen Starvation 
and Comparisons with Model  

Numerical results are compared with the results of five different experimental tests that 

were conducted in three different cell configurations at Ballard Power Systems' research 

and testing facility in Burnaby, BC, Canada. Section 4.4.1 and Section 4.4.2 utilizes the 

experimental data obtained from a 9-cell Mk1100 stack with an estimated limiting current 

of 1260 A. Section 4.4.3 and Section 4.4.4 report the experimental data obtained from a 

10-cell Mk902 stack with an estimated limiting current of 1260.7 A, and eventually Section 

4.4.5 compares the numerical results obtained from the model versus the experiment 

results from a 20-cell Mk903 stack with an estimated limiting current of 780 A.  

It is necessary to mention that all gas flows are measured in standard cubic centimeters 

per minute (sccm), which corresponds to gas flow at the standard pressure and 

temperature. In addition, standard liter per minute (slm) represents another unit for the 

gas volumetric flow rate at standard conditions. 

Hydrogen leak is simulated by hydrogen injection in the inlet of the cathode flow field of a 

cell. Also, a hydrogen sensor is used to measure the hydrogen flow rate at the end of the 

CCH. The model assumes that the oxygen concentration in the cathode entrance is 

reduced due to the direct combustion of hydrogen and oxygen. The simulations are 

conducted with the modified oxygen concentration values, which can be calculated from 

Equation (4-67).  

𝜙𝑂2−𝐶𝐶𝐻
𝑒𝑓𝑓

=
𝑃𝑐(𝜒𝑂2,𝑎𝑚𝑏 − 0.5𝜒𝐻2,𝑙𝑒𝑎𝑘)

1 − 0.5𝜒𝐻2,𝑙𝑒𝑎𝑘
 

(4-67) 

In this equation, 𝜒𝑂2,𝑎𝑚𝑏 is the ambient oxygen mole fraction (20.96%) and 𝜒𝐻2,𝑙𝑒𝑎𝑘 is the 

ratio of the injected hydrogen flow rate to the airflow supplied to the cathode flow field. 

This parameter could be calculated as follows:  

𝜒𝐻2,𝑙𝑒𝑎𝑘 = 
𝐹𝑅𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑_ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛

𝐹𝑅𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑_ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 + 𝐹𝑅𝐶𝑎𝑡ℎ𝑜𝑑𝑒_𝑏𝑒𝑓𝑜𝑟𝑒_𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 

(4-68) 

https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/ballard
https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/chemistry/cubic-space-group
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where FR stands for flow rate. Also, it is necessary to mention that Hydrogen Emission is 

considered as hydrogen molar fraction at the end of the CCH. This concentration is 

calculated based on the numerical model. 

4.4.1. Steady-State Model Validation for a Leak in a Single Cell of the 
First Commercial Fuel Cell Stack, a 9-Cell Short Stack 

Two experiments were conducted at steady-state to validate the model at a current of 10 

A and 20 A, respectively. The active area of the fuel cell was provided by Ballard based 

on a confidentiality agreement between authors and Ballard. The parameters for the tests 

are provided in Table 4-2, with the exception of the active area. All other parameters for 

the fuel cell were taken from Wang et al. [68]. 

Table 4-2. Experimental steady-state tests parameters for hydrogen injection in just one cell 

Airflow 

(liters/min) 

Hydrogen 
flow 

(liters/min) 

Inlet air 
pressure 

(psig) 

Inlet 
hydrogen 
pressure 

(psig) 

PEMFC 
temperature 

(°C) 

Limiting 
current 

(A) 

Active area 
(cm2) 

1.03 0.66 6.24 8.27 68 1260 confidential 

 

Hydrogen leak is simulated by hydrogen injection in the inlet flow field of a cell, as shown 

in Figure 4-6. Also, a hydrogen sensor is used to measure the hydrogen rate at the end of 

the CCH. An RKI Instruments Model FHD-752 (0 – 4%) hydrogen concentration sensor 

was used to measure the hydrogen emissions. It must be noted that the readings from the 

hydrogen sensor were scaled appropriately by Vijayaraghavan et al. [15] to account for 

downstream dilution of the stack cathode outlet flow with dry air. Figure 4-6 shows the 

schematic of the setup. 
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Figure 4-6. Schematic of the setup used for testing first commercial fuel cell stack, a 9-cell short stack 

As shown in Figure 4-7 and Figure 4-8, by increasing the hydrogen leak rate (hydrogen 

flow rate injected at the CCH entrance), at some point, the hydrogen sensor can detect 

hydrogen at the end of the cathode flow field, and that is where full starvation happens. 

The model is able to predict this transition point as well as hydrogen emission (hydrogen 

mole fraction) at the end of the cathode flow field. Comparing Figure 4-7 and Figure 4-8 

illustrates that full starvation occurs at a lower hydrogen leak rate when current increases 

from 10 A to 20 A. When a higher current is taken from the fuel cell, the higher amount of 

oxygen participates in the ORR, which means by injecting less hydrogen (~18% at 20A 

versus 23% molar concentration of hydrogen at 10A), the oxygen concentration becomes 

zero in some parts of the catalyst layer, and as a result, starvation happens sooner. From 

Figure 4-9 and Figure 4-10, it is clear that hydrogen pumping has an important effect on 

the emission, and the current model is better able to predict the emission relative to a 

model purely based on the hole size. Furthermore, the pumping effect increases 

significantly at higher load currents.  
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Figure 4-7. Voltage and hydrogen emission versus hydrogen injection at 10 A in a leaky single cell of 9-cell 
short stack 

 

 

  

Figure 4-8. Voltage and hydrogen emission versus hydrogen injection at 20 A in a leaky single cell of 9-cell 

short stack 
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Figure 4-9. Hydrogen emission versus hydrogen leak rate at 10 A 

 

 

Figure 4-10. Hydrogen emission versus hydrogen leak rate at 20 A 
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In the next step, the current is incremented from 0A to 50A, and the hydrogen leak rate 

that triggers hydrogen pumping is calculated in Figure 4-11. Our model illustrates that less 

hydrogen leak rate is required to fully starve the stack at higher current values.  

 

 
Figure 4-11. Hydrogen pumping triggering leak at different currents in the entire stack of the 10-cell short 

stack 

4.4.2. Transient Model Validation for a Leak in a Single Cell of the 
First Commercial Fuel Cell Stack, a 9-Cell Short Stack   

In this experiment, the hydrogen leak is increased multiple times in steps of 50 sccm. For 

the transient simulation, a forward Euler solver with a time step of 0.5 s is utilized. Each 

step increase in hydrogen leak simulates a sudden onset of a leak. While there may not 

be such a sequential of leaks in a real PEMFC, the experiment illustrates the model's 

ability to predict a strong transient behavior. Figure 4-12 shows that there is an offset 

between the transient model response and the experimental data. Similar to steady-state 

results, voltage and hydrogen emission obtained by our model are higher than 

experimental data. Despite these differences, the transient responses of the model are in 

good agreement with the experiment data. The current is 10 A in the simulation and the 

experiment.  
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Figure 4-12. Transient model validation for a sudden increase in a leak in a single cell of a 9-cell short stack. 

 

4.4.3. Steady-State Model Validation for a Leak in the Entire Stack of a 

Second Commercial Fuel Cell Stack, a 10-Cell Short Stack 

The steady-state experiments from Section 4.4.1 are repeated for a 10-cell fuel cell stack. 

In the experiments performed in Section 4.4.1, hydrogen was injected into the inlet of the 

cathode flow field of only one cell, while here, hydrogen is injected into the cathode inlet 

of all cells, as illustrated in Figure 4-13. In the former case, the effect of a leak in a single 

cell was investigated, while in the latter one, the effect of leakage in all cells was simulated. 

There were three different tests conducted, and the results were provided in Figure 4-14 

to Figure 4-16. Test parameters for each experiment are provided in Table 4-3.  

Table 4-3. Experimental steady-state tests parameters for hydrogen injection in the whole stack 

Test Airflow (slm) Current (A) Limiting 
current (A)  

Other 
parameters 

Case 1 6.73 0 1260 Same as [68] 

Case 2 6.73 8 1260 Same as [68] 

Case 3 60 0 1260 Same as [68] 

 

https://www-sciencedirect-com.proxy.lib.sfu.ca/topics/engineering/fuel-cell-stack
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Figure 4-13. Schematic of the setup used for testing first commercial fuel cell stack, a 9-cell short stack 

From Figure 4-14 to Figure 4-16, we can observe that for a leak in the entire stack, the 

model matches well with the experiments under low-flow no-load condition. However, the 

model deviates from experimental results at higher currents and higher flow rates, 

particularly close to the point of full-starvation. 

  

Figure 4-14. Voltage and hydrogen emission response under hydrogen injection at 6.73 slm airflow and 0 A 
for a leak in the entire stack of the 10-cell short stack 
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Figure 4-15. Voltage and hydrogen emission response under hydrogen injection at 6.73 slm airflow and 8 A 
for a leak in the entire stack of the 10-cell short stack 

 

  

Figure 4-16. Voltage and hydrogen emission response hydrogen injection at 60 slm airflow and 0 A for a 

leak in the entire stack of the 10-cell short stack 

  
 

4.4.4. Test on a Real MEA Transfer Leak in the Second Commercial 

Fuel Cell Stack Model 

In this section, a leaky PEMFC is tested at 8 A. Different leak rates for the numerical model 

are calculated based on the different anode and cathode differential pressures. Since the 

calculation of the exact hydrogen crossover to the cathode side is difficult, an equivalent 
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hydrogen leak is calculated proportionally to the differential pressures. This assumption is 

also confirmed by Mousa et al. [60,61]. Figure 4-17 shows a very good match between 

simulation and experiments, suggesting that the model, coupled with a simple expression 

for hydrogen flow versus hole sizes and anode-to-cathode pressure difference, could be 

used to determine cell voltage response as the hole grows. It should be noted that 

conducting more experiments and deriving a generic empirical relation between pressure 

difference and leak size could equip this model to be used as a diagnosis tool to simulate 

not only the amount of leakage but the growth of the hole.   

 

Figure 4-17. Actual hydrogen transfer leak test simulated by different differential pressure 

 
 

 

 

 

4.4.5. Starvation Point Determination on a Third Commercial Fuel Cell 

Stack 

The purpose of this section is to understand the relation between the current and hydrogen 

leak rate that results in triggering full starvation and hydrogen pumping. It is clear that at 

higher currents, a lower hydrogen leakage rate would result in full starvation and, 

consequently, hydrogen pumping. A commercial fuel cell stack (an Mk903 stack) with 

vehicle operation airflow rate was used in this experiment. The current was set to zero at 

first and then was increased through several steps. At each step (each specific current), 

hydrogen was injected at the inlet of all cathode flow fields. Then hydrogen flow rate was 
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increased from zero to the point that the hydrogen sensor could detect hydrogen at the 

outlet of all cathode flow fields. This point is a transition point to the full oxygen starvation 

mode, and the value recorded for the injected hydrogen flow rate is the hydrogen leak rate 

for that specific current. Figure 4-18 was obtained by performing this experiment for 

different current values. In the simulation, another loop is used to gradually increase 

hydrogen leakage from zero to the point that voltage becomes equal to zero. Other 

parameters are the same as Wang et al. [68]. Figure 4-18 shows that numerical results 

underestimate the values for hydrogen leak, and this difference might be due to the fact 

that there are errors in voltage measurement in the starvation mode. Constant cell voltage 

is not quite a correct assumption, as mentioned before. Also, there are uncertainties in the 

actual airflow to individual cells at starvation. Nonetheless, the model shows a good 

agreement with experimental data.   

 

Figure 4-18. Full starvation model results on the third commercial fuel cell stack  

 

 

4.5. Chapter Conclusion  

In this chapter, a pseudo two-dimensional, steady-state, and dynamic model is presented 

to simulate PEMFC performance in case of normal operating conditions and complete 

starvation. Model’s results are compared with experiments, and good agreement between 
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numerical data and experimental results was observed. The model employs a novel modal 

analysis to account for the transient response of the fuel cell. The separation of variables 

and modal analysis illustrates that three high pass filters must be included in the transient 

part to accurately compute the effective concentration at the CCL. The double-layer effect 

is also considered in the model, and the oxygen mass transfer losses due to the formation 

of a thin layer of water are also calculated based on an empirical equation. Hydrogen 

pumping is added to the model, and the model can accurately predict hydrogen emission 

at the cathode outlet caused by leakage and hydrogen pumping phenomenon. The model 

is solved iteratively through a triple-nested loop algorithm. Euler solver with a forward 

difference scheme is used to model the transient response. Validation of the model is 

performed versus experimental data obtained by Wang et al. [68] and Ballard corporation's 

test data. The Ballard experimental data is provided for three commercial PEMFC stacks 

and one leaky cell. In the first stack, leakage is simulated by first injecting hydrogen flow 

to once cell, while in the other test, hydrogen is injected in the flow fields of all cells. For 

both cases, voltage response and hydrogen emission values are compared with the 

model, and results are in good agreement with the data. However, negative voltages are 

not observed in the experimental data. This might be due to the experimental error since 

the author has limited information about how the experiment is conducted. Also, the 

injection of hydrogen into one flow channel would affect the airflow in the neighbor cells, 

and the effect is not clear yet, and in-depth experimental studies are required to clear out 

the problem. In the next step, the model is subjected to step changes in hydrogen injection 

at the cathode side. Voltage response and emission response is recorded and compared 

with the experimental data of the first commercial stack.  Although this incident does not 

happen in PEMFC, the numerical results could illustrate its effectiveness as a base model 

for diagnosis purposes. In addition, model results are compared with the results of a leaky 

MEA in a second commercial stack. Eventually, the model is executed for different leak 

rates with a fixed current to calculate the hydrogen leak rate led to the third commercial 

stack's full starvation. The current is incremented from 0 to 300 A and the fully-starvation 

led hydrogen leakage is recorded. The difference in data seems to be related to the 

constant cell voltage assumption in the model and the uncertainties in the experiments. 

The model underestimates the value of hydrogen leaks in this experiment.  

The inclusion of the hydrogen pumping, double-layer effect, and thin-layer water formation 

in the model and comparing the results with experimental data shows that the pseudo, 
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two-dimensional model could be used as a base model for diagnosis purposes. The 

precision and computational effectiveness of the model makes this model a strong 

candidate to diagnose different faults and eventually used in a controller.  
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Chapter 5. Leakage Diagnosis and Quantification 

The development of ML algorithms has resulted in the noticeable development of 

diagnosis methods. These methods are mainly employed as black-box models in model-

based diagnosis methods to calculate the residual of the predicted performance versus 

real performance. More recently, non-model based diagnosis scholarly works have 

employed ML methods to train the experimental data derived from EIS, CV, and other 

experimental setups to diagnose different PEMFC faults. In this chapter, a combined 

model-based and non-model based approach is proposed to detect and quantify leakage 

in PEMFCs. The combined approach utilizes the model that is developed in Chapter 4 to 

create a dataset in steady-state mode. In the first step, two different classifiers are 

developed and used to classify PEMFC into normal and leaky categories. Next, In the 

case of leaky PEMFCs, two types of regressors are employed to quantify the amount of 

leakage and to predict the current that results in full starvation and the inception of the 

hydrogen pumping phenomenon. KNN and ANN estimators are selected and compared 

for both classification and regression parts. KNN estimator is discussed in Appendix C, 

and ANN classifier is explained in Appendix D. The performance of classifiers are 

evaluated based on different metrics such as accuracy, precision, F1-score, and recall, 

while the performance of regressors are compared based on 𝑅2 score, Mean Squared 

Error (MSE) and Mean Average Error (MAE). The performance indexes are explained in 

detail in Appendix E. Employed estimators are tuned mainly based on grid search [81] and 

cross-validation [81] methods, and best estimator parameters are selected. The purpose 

of developing the leakage diagnosis tool is to detect and quantify leakage before hydrogen 

pumping occurs, and voltage drops to negative numbers.  
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5.1. Approach Principle 

There are several types of learning, as provided in Figure 5-1. However, in general, the 

learning process could be categorized into supervised and unsupervised learning.  

 

Figure 5-1. ML types [81] 

Supervised learning refers to the development of a model that maps input data to output 

results. In this type of learning, we use both input and output data to train and test the 

estimator. However, in unsupervised learning, a model is built solely based on the input 

data without any connection to the target outcomes. Classification and regression 

algorithms are considered as supervised learning methods. Classification refers to a 

problem that data are labeled into different categories, whereas a numeric label is 

predicted in regression. The proposed problem is a supervised learning problem since we 

can label and categorize data in the dataset into leaky and healthy PEMFCs, and in the 

case of leaky PEMFCs, the amount of PEMFC leakage can be obtained by using 

regressors [81]. Leakage diagnosis and quantification methodology are provided in Figure 

5-2.  
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Figure 5-2. Diagnosis methodology [81] 

Two classifiers and two regressors are evaluated in this work for developing the diagnosis 

tools.  KNN and ANN are chosen since they are both non-linear estimators and are more 

appropriate to address the non-linearity in PEMFC data.   

5.2. Dataset Generation in Steady-State 

The pseudo two-dimensional model that is used in Chapter 4 is run based on different 

parameters to build the base dataset. The cell information is the same as a cell in an 

MK1100 commercial stack. Eight parameters, including current, hydrogen leakage flow 

rate, oxidizer type (air or pure oxygen), anode hydrogen mole fraction, cathode inlet flow 

rate, fuel cell temperature, anode, and cathode pressures are varied based on the values 

in Table 5-1. The voltage value is recorded for each simulation and the data collection is 

completed by recording all the voltage values. It is necessary to note that the upper bound 

value for current (50 A) is chosen in a way that even in the case of zero leakage, PEMFC 

becomes fully starved at high current values. Therefore, the upper bound is high enough 

to include the current that led to complete oxygen starvation (or the inception of hydrogen 

inception) for each leakage value. This is beneficial in the case of hydrogen pumping 

prediction.  
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Next, input and output arrays are rearranged to form the required datasets for ML training. 

Dataset 1 includes all the data, while dataset 2 only includes the rows corresponds to 

positive leakage values. The process of dataset generation for ML training is shown in 

Figure 5-3. 

 

Table 5-1. Range of different features used for generating the basic dataset 

Parameters Range of values Units 

Current (I) [0,50] with 2A increments A 

Cathode flow rate (FRC)   [1,1.5] with 0.1 slm increments slm 

Leak flow rate (FRleak)   [0,400] with 20 sccm  
increments 

sccm 

Cathode inlet oxygen mass 
concentration (XO2,in) 

0.21 and 1 − 

Anode inlet hydrogen concentration 
(XH2,in) 

0.9, and 1 − 

Fuel cell temperature (T) 58.5 , 68.5, 78.5 °C 

Cathode pressure (PC) 1,2,3,4 atm 

Anode pressure (PA) 1,2,3,4 atm 
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Figure 5-3. Dataset formation for ML estimators 

Figure 5-4 shows the roadmap for developing ML leakage diagnosis estimators. The first 

step in this figure illustrates the process for developing the classifier that categorizes 

PEMFCs into healthy and leaky groups. The input array (X) is formed based on the values 

of current, voltage, cathode flow rate, anode hydrogen inlet concentration, cathode oxygen 

inlet concentration, PEMFC temperature, anode, and cathode pressures. The output array 

(y) is formed by binary values. If there is a leakage in the system, the y value would be 

equal to one, and for healthy PEMFCs, this value is equal to zero. Therefore, Dataset 1 is 

used for fault detection.  KNN and ANN classifiers are trained based on input and output 

arrays to develop a leakage detection model. If leakage is detected, the second step and 
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third step would be conducted to quantify the leakage value and predict hydrogen pumping 

current values.  

The purpose of the second stage is to quantify the amount of leakage. Since PEMFCs are 

already classified into leaky and healthy groups, the rows correspond to the healthy 

PEMFCs or zero leakage values are eliminated from the dataset, and dataset 2 is used 

for this purpose.  The input array (x) is filled with the same parameters as those in the first 

step but only for leaky PEMFCs, while the output array (y) is filled with non-zero numeric 

values correspond to the leakage values. ANN and KNN regressors are trained based on 

the new dataset to quantify the amount of leakage.  

In the last step, the leakage amount found by the regressor in the second step, along with 

other operating conditions, would be passed to the pseudo numerical model to predict the 

hydrogen pumping current.  

 

Figure 5-4. Leakage detection quantification, and hydrogen pumping prediction roadmap in steady-state 
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5.3. Preprocessing and Data Cleaning in Steady-State 

According to the data presented in Table 5-1, the input variables take various values that 

some of them are significantly different in magnitude. For instance, cathode pressure 

changes from 1 atm to 4 atm, while hydrogen leak flow rates changes from 0 to 400 sccm. 

The ML algorithm does not understand the physics of the problem and solely works based 

on the input-output data that they receive. Several factors affect the performance of ML 

algorithms, and data preprocessing is the first and one of the most important steps [82]. 

ML algorithms might exhibit poor performance if the features do not look alike in terms of 

their magnitude and range. Z-score normalization or standardization [82] is employed to 

standardize the data. In this work, features are standardized using the following formula 

[82]: 

𝑥𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑥 − 𝑥̅

𝜎
 (5-1) 

where 𝑥̅ and 𝜎 represent the mean and standard deviation of the set. In this work, we 

employed the “StandardScalar” library in python to standardize the data. An example of 

scaled data is provided in Table 5-2.  

Table 5-2. Sample of scaled data 

Data type 𝐼 (𝐴) 𝑉 (𝑉) 𝑃𝐶  (𝑎𝑡𝑚) 𝑃𝐴(𝑎𝑡𝑚) 

Raw  21 0.4 1 4 

Scaled -0.174163 -0.881828 -1.42551 1.4254 

Data type 𝑋𝑂2,𝑖𝑛 𝑋𝐻2,𝑖𝑛 𝐹𝑅𝑙𝑒𝑎𝑘 (𝑠𝑙𝑚) 𝐹𝑅𝑐𝑎𝑡 (𝑠𝑙𝑚) 

Raw 0.21 0.9 340 1.2 

Scaled -0.79898 -1.412 0.74804 -0.581488 

It is also necessary to clean and preprocess the data so that only useful information can 

be passed to the estimators and prevent noises that could disturb the learning process. 

The process is conducted as follows:  
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• The initial amount of data in the raw dataset is 628,992 data points (rows). 

Separating the leaky PEMFC data from healthy ones, 29,952 rows are allocated 

for the healthy fuel cells while the rest (599,040 rows) are allocated to leaky 

PEMFCs. Thus, the amount of information for leaky PEMFCs is about 20 times 

bigger than those for healthy PEMFCs. This issue would cause a serious problem 

for the classification process. For instance, if we label all rows as leaky data, that 

would result in 0.952 accuracy even though all the healthy PEMFCs are labeled 

incorrectly. To prevent this issue, we must ensure that the amount of data for both 

classes is not significantly different. Therefore, another 500,000 distinct data 

points are generated for healthy PEMFCs with no leakage to assure there is no 

bias in the dataset.  

• Rows correspond to negative voltage values are eliminated from the dataset. This 

step is conducted since the intention is to diagnose leakage before it causes 

complete starvation and hydrogen pumping.  

• For the classification problem, all data points are being used to train the estimator. 

The output will be “zero” if the cell operates in normal condition, while leaky cells 

are labeled as “one”. On the other hand, only data points corresponding to the 

leaky PEMFCs are used to train the regressor. The reason for employing a pair of 

classifier-regressor instead of one regressor is the fact that the ML regressor 

might not be able to exactly predict zero as an outcome, and therefore most of the 

PEMFC data, including the healthy ones, would be incorrectly labeled as leaky 

PEMFCs. In this case, employing a pair of classifier-regressor would allow us to 

separate healthy PEMFCs and leaky ones and then quantify the amount of 

leakage for leaky PEMFCs. Python 3.7 was employed in the current work to 

implement data preprocessing and data training. 

5.4. Training/Testing Process in Steady-State 

In this section, the training and testing procedure of steady-state data is explained for both 

classification and regression tasks. Different tuning strategies are explained, and 

performance indexes are investigated for each estimator. As mentioned earlier, KNN and 

ANN estimators are used and evaluated for both classification and regression purposes.  
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5.4.1. Classification (Leakage Detection) 

The purpose of this section is to develop a classifier for leakage diagnosis.  KNN and ANN 

classifiers are trained and tuned to predict the presence of leakage in PEMFC. Array y 

values are updated based on the following condition.   

𝐵𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 = [
1 𝐹𝑅𝑙𝑒𝑎𝑘 > 0
0 𝐹𝑅𝑙𝑒𝑎𝑘 = 0

 
(5-2) 

The binary value assists us in labeling data into two categories, negative and positive, 

which correspond to healthy and leaky fuel cells, respectively. We first discuss the results 

for the KNN classifier.  

KNN classifier  

Cross-validation and grid search methods are used to find the best parameters as well as 

the best setting for the KNN method. First, data is shuffled into five folds as [𝑋𝑖 , 𝑦𝑖] where 

i changes from 1 to 5. For each fold, we train all the other folds and test the model in a 

round-robin fashion, as illustrated in Figure 5-5. Grid search parameters are conducted by 

varying the number of neighbors from 3 to 21. Manhattan and Euclidean distances are the 

taken hyperparameters for the search grid method. Grid search method tries different 

possible combinations of model settings to find the combination that would result in the 

best model performance. 

 

Figure 5-5. Cross-validation scheme 

 

Cross-validation and grid search methods show that using seven neighbors and 

Manhattan distance can result in the best result. The best accuracy score is 0.957 in this 
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case. In order to investigate other performance indexes such as recall, F1-score, and 

precision, we divide the whole dataset into training and testing datasets. The training 

dataset forms 75% of the dataset, while the testing dataset includes the other 25%. The 

confusion matrix for the testing dataset is provided in Figure 5-6. 

 Predicted class 

Actual class 

Classes Healthy PEMFCs Leaky PEMFCs 

Healthy 

PEMFCs 
118039 5186 

Leaky 

PEMFCs 
3485 77852 

Figure 5-6. Confusion matrix for KNN classifier 

 

From Figure 5-6, the performance indexes can be obtained. These values are listed in 

Table 5-3.  

Table 5-3. Performance indexes for KNN classifier 

Precision Accuracy F1-Score Recall True Negative 

Rate  

0.957 0.957 0.964 0.971 0.937 

 

To ensure that k=7 is the best result and we are not overfitting the model, testing accuracy 

is plotted for k values between 3 and 22. As Figure 5-7 indicates, using more than seven 

neighbors would result in a decline in the accuracy, and therefore k=7 is the best value for 

the classification purpose.  
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Figure 5-7. Learning curve for KNN classifier 

 

ANN classifier 

ANNs are strong estimators due to their capabilities in training, parallel computation, and 

noise tolerance and therefore are beneficial in complex and non-linear problems. This kind 

of estimator can be used for both classification and regression problems. In this work, we 

employed a feed-forward neural network with a backpropagation algorithm that is used to 

minimize the cost function. The Cross-entropy cost function, which is chosen for the 

classification problem, is provided as follows: 

𝐶𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = −∑𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦̂𝑖)

𝑖

 (5-3) 

𝑦̂𝑖 is the predicted label and y𝑖 is the correct label. A schematic of the ANN classifier is 

shown in Figure 5-8. There are eight inputs, as discussed earlier. Two hidden layers with 

seven neurons each are shown in this figure. The activation functions for the middle layers 

are “ReLU” and the activation function for the last layer is “Sigmoid” that provides the 

probability of PEMFC being leaky. If the probability is larger than 0.5, PEMFC is 

categorized as leaky, whereas probabilities smaller than 0.5 corresponds to healthy 

PEMFCs. During training an ANN, all the weights are randomly initialized. It is necessary 

to mention that feed-forward ANN structure, activation functions, cost functions, and the 

optimization method are explained in detail in Appendix D.  
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Figure 5-8. Neural network schematic 

To find the best configuration for the ANN classifier, the grid search method is conducted 

to find the required number of neurons in each layer. Two hidden layers are chosen for 

the grid search method, and the number of neurons in each layer is varied from a minimum 

of four to a maximum of eight. ANN is trained with “Adam optimizer”, which is explained in 

Appendix D. ANN is run for 100 epochs for each case, and the accuracy of each ANN is 

recorded and illustrated in Figure 5-9. 

 

Figure 5-9. Accuracy of ANN classifier based on the number of neurons in each hidden layer 
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best results. Nonetheless, performing the grid search method on the number of neurons 

in each layer provides the initial insight on how to choose the number of neurons in hidden 

layers.  Figure 5-9 shows that increasing the number of neurons to values more than seven 

in each layer does not have any significant effect in increasing the accuracy of the model. 

The recorded accuracy for seven neurons in each hidden layer is 0.97. Therefore, seven 

neurons are chosen for each hidden layer, and the following strategies are taken to tune 

the ANN classifier and increase the accuracy of the model.  

- ANNs tend to overfit easily. Therefore, from the whole dataset, 56.25% is used to 

train the model, 18.75% is used for evaluating the ANN performance and tuning the 

parameters. Eventually, 25% of the data is used to test the model report 

performance indexes.  

- Keras library with Tensorflow backend is employed to form the neural network. 

Adam optimizer is chosen for adjusting the weight and bias values. Cross-entropy 

function is utilized for model validation and tuning. Tensorboard is used to monitor 

the validation loss and validation accuracy graphs. The model graph is provided in 

Appendix D.  The training accuracy, training loss, validation accuracy, and validation 

loss plots are provided in Figure 5-10. The initial learning rate is set to 0.01. At 

epochs=750, when there is no improvement in validation loss, the learning rate is 

decreased to 0.001, and the batch size is increased from 35 to 75. This change 

resulted in a jump from 0.985 to 0.995 and stabilization of the validation loss.  

Repeating the same strategy did not result in any improvement in the validation, and 

all the metrics are flattened. The maximum validation accuracy is 0.997.  
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Figure 5-10. ANN classification metric plots 
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The confusion matrix on the test dataset is provided in Figure 5-11. 

 Predicted class 

Actual class 

Classes Healthy PEMFCs Leaky PEMFCs 

Healthy 

PEMFCs 
124345 69 

Leaky 

PEMFCs 
367 79781 

Figure 5-11. Confusion matrix for ANN classifier 

From Figure 5-11, the performance indexes can be obtained. These values are listed in 

Table 5-4.  

Table 5-4. Performance indexes for ANN classifier 

Precision Accuracy F1-Score Recall True Negative 

Rate  

0.997 0.999 0.998 0.997 0.999 

 

Comparing KNN, and ANN shows that KNN can compete with ANN in fast model 

development. However, if ANN is tuned properly, it outperforms KNN and detects leaky 

PEMFCs with very high accuracy.  

5.4.2. Regression (Leakage Quantification) 

After the leaky PEMFCs are detected, we need to quantify and estimate the value of the 

leakage flow rate. KNN and ANN regressors are trained and tuned to quantify the leakage. 

For quantification, the data that corresponds to healthy PEMFCs is dropped from Dataset 

1, and only the data for leaky PEMFCs are saved. This step is done since healthy PEMFCs 

are already detected and found in the classification stage. The new dataset has 321250 
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rows (data points). Dataset is shuffled and scaled and divided into training (75%) and test 

sets (25%).  

KNN regressor  

Similar to classification, cross-validation and grid search methods are used to find the best 

parameters as well as the best setting for the KNN method. Grid search parameters are 

conducted by varying the number of neighbors from 3 to 21 neighbors. Manhattan and 

Euclidean distances are the taken hyperparameters for the search grid method. Cross-

validation and grid search methods show that using five neighbors and Manhattan 

distance can result in the best 𝑅2 score, and MSE. The leakage value is then found by 

taking the average values of the neighbor data points. Several performance indexes are 

chosen to investigate the performance of the regressors. These indexes are 𝑅2 score, 

MSE, and MAE. Figure 5-12 shows the learning curve for the KNN regressor based on 

the number of neighbors.  

 

Figure 5-12. Learning curve for KNN regressor 

As Figure 5-12 shows, the test accuracy slightly drops for k values higher than five. In fact, 

by taking k values bigger than five, some neighbors would aggravate the regression 

process. The regressor performance value indexes are provided in Table 5-5.  



112 

Table 5-5. Performance indexes for KNN regressor 

R2 score MSE MAE 

0.976 232.98  11.47 

 

ANN regressor  

Although the inputs are the same as the inputs in the ANN classification problem, the 

output and the activation function are different. The output for the regression problem is 

the hydrogen leakage flow rate, which is a numeric value. The activation function for the 

output layer is changed to “ReLU” since the output layer must generate positive numeric 

numbers. The best configuration for the ANN regressor is found based on the grid search 

method. Two hidden layers are chosen, and the number of neurons in each layer is varied 

from a minimum of six to a maximum of twelve. ANN is trained with “Adam optimizer”, and 

validation is conducted based on the MSE loss function for all cases. ANN is run for 100 

epochs, and the MSE score is recorded for each configuration.  The results are provided 

in Figure 5-13.  

 

Figure 5-13. MSE of ANN regressor based on the number of neurons in each layer for leakage quantification 

 

M
SE
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Similar to the ANN classifier, ANN regressor could converge to different values, and 

therefore, the MSE values might differ even with the same setting if we rerun the model.  

Therefore the regressor must be tuned to provide the best results. Nonetheless, 

performing the grid search method on the number of neurons in each layer provides the 

initial insight on how to choose the number of neurons in hidden layers.  Based on Figure 

5-13, the number of neurons in the first and the second layer is set to nine. Figure 5-13 

shows that increasing the number of neurons to values more than nine in each layer does 

not result in a significant reduction in MSE values. 

To further tune the ANN regressor and to prevent overfitting following strategies are taken:  

- Like classification problem, 56.25% is used for training the model, 18.75% is used 

for evaluating the ANN performance and tuning the parameters, and eventually, 25% 

of data is used to test the model and report performance indexes.  

- Keras library with Tensorflow backend is employed to form the neural network. 

Adam optimizer is chosen for adjusting the weight and bias values. MSE loss 

function is used for model validation and tuning. Tensorboard is used to monitor the 

validation loss and validation accuracy graphs. The model graph is similar to the one 

provided in Appendix D.  The plots for training MSE loss and validation MSE loss 

are provided in Figure 5-14. The initial learning rate is set to 0.01. At epochs=100, 

the learning rate is changed to 0.001 with the same batch size. At epochs=600, the 

learning rate is set to 0.0001, and the batch size is increased from 35 to 75. Further 

decrease in learning rate and increase in batch size did not result in significant 

improvement in model performance. The minimum validation loss is 13.77.  
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Figure 5-14. Training and validation loss plots for ANN regressor 

After the ANN regressor is trained successfully, it is tested on the testing data, and 

performance indexes are provided in Table 5-6. The MSE and MAE values are noticeably 

smaller compared to the KNN regressor, which indicates that the ANN regressor is doing 

a much better job in leakage quantification. 

Table 5-6. Performance indexes for ANN regressor 

R2 score MSE MAE 

0.9987 13.77 2.85 

5.4.3. Leakage Detection and Quantification Case Study 

In the previous section, ANN and KNN estimators are developed to detect and 

quantify the leakage crossover through membrane pinholes or cracks. Comparing the 

performance indexes of these estimators illustrates that using a pair of ANN classifier- 

regressor would result in the best estimation. In this section, we will demonstrate how the 

leak detector would be used on a real fuel cell. The fuel cell, whose parameters are listed 

in Table 4-2, is assumed to operate at a constant load of 10A. It is further assumed that a 

small leak appears at t=20s and gradually progresses to a large leak, where at t=90s, the 

leak is saturating at 325 sccm as shown in Figure 5-15. The response of the fuel cell to 

this leak is provided in Figure 5-16. It may be noted that although the leak changes with 

time, the time-scale of the change in the leak rate is much smaller than the time-scale of 
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the dynamics of the fuel cells. Hence the steady-state leaks detection algorithm developed 

earlier can be used.  

 

 

Figure 5-15. Customized leakage profile 

 

Figure 5-16. Voltage response to the customized leakage pattern at I= 10 A 

In the next step, the voltage response along with the other operating conditions, 

are fed to the pair of ANN classifier-regressor to detect and quantify the amount of 

leakage. A comparison of the predicted leakage values versus the exact introduced values 

is provided in Figure 5-17.  
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Figure 5-17. Comparison of the introduced leakage values and the predicted leakage values 

As Figure 5-17 shows, the introduced pair of ANN classifier- regressor is able to predict 

the amount of leakage values. There is only one wrong prediction out of 25 predictions, 

which means the ANN classifier has an accuracy of 96% in this specific case. Putting 

aside the wrong prediction, the MSE and 𝑅2 score values of the ANN regressor are 1.417 

and 0.999.  

5.4.4. Hydrogen Pumping Prediction 

The purpose of this section is to find the current values that could result in the 

inception of hydrogen pumping in leaky PEMFCs. The previously developed regressors 

could be employed to predict the value of the leakage flow rate. By obtaining the amount 

of leakage flow rate, it is possible to find the current density that led to hydrogen pumping 

at each data point by using the pseudo numerical model. All the parameters are passed 

to the numerical model while current is increased incrementally to the point that voltage 

drops to the negative values. The algorithm is shown in Figure 5-18.  
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Figure 5-18. Hydrogen pumping prediction algorithm 

The 𝑅2 score between hydrogen pumping currents and the predicted values is 0.9987, 

and MSE is found to be equal to 1.43.  

5.5. Chapter Summary  

In this chapter, the pseudo numerical two-dimensional model that was developed 

and validated in Chapter 4 was used to build two considerably large datasets to detect 

and quantify hydrogen leakage in PEMFC. Thanks to the very fast and accurate 

performance of the pseudo numerical model, we manage to build two datasets with eight 

features, including voltage, current, cathode flow rate, cathode and anode pressures, 

oxygen mole fractions in the cathode, hydrogen mole fraction at the anode, and PEMFC 

temperature.  The first dataset contained more than 1 million data points with an almost 

equal portion for leaky and healthy PEMFCs. The dataset was used for leakage detection 

and classification. The second dataset contains about 500,000 leaky PEMFC data points 

and is used for leakage quantification. Building these two datasets enabled developing 

accurate ML estimators to develop a hybrid model for leakage diagnostics. First, the 

presence of the leakage is examined through binary classifiers, and in case of a leakage, 

a regressor was employed to quantify the amount of leakage and predict the current value 

that leaky PEMFC experience hydrogen pumping. ANN and KNN estimators were used 

Regressor 
1

Leakage quantification

Leakage amount 
( )

Dataset 2 
Only leaky datapoints Datapoints

Pseudo 
numerical 

model

No

YES
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for both classification and regression problems. These two models are used to address 

the non-linear nature of PEMFCs.  The following conclusions are made: 

• By employing the grid search method and cross-validation, the KNN classifier can 

acquire accuracy of 0.957. KNN tuning process is easy and is not time-consuming. 

Using seven neighbors would result in the best performance, and F1-score is equal 

to 0.964.  

• ANN classifier requires precise tuning, and the tuning process might be tricky and 

complex. It is important to observe the training and validation loss through the 

training process to prevent overfitting and to change the optimization parameters 

when needed. Two hidden layers are sufficient to achieve high accuracy of 0.999. 

The number of neurons in each layer is found by using the grid search method and 

cross-validation. Seven neurons in each layer are utilized for the classification 

problem.  

• Although the difference between KNN and ANN accuracy seems to be very 

negligible (about 4 percent), the KNN classifier misclassifies about 8500 data 

points while ANN misclassifies only about 450 data points. The noticeable 

difference between these two numbers indicates that even a small improvement in 

performance indexes in a very large dataset is very important.  

• KNN regressor works based on memorizing the training dataset. Increasing the 

number of neighbors to higher values than five resulted in the involvement of some 

bad neighbors in the estimation process. Employing five neighbors could result in 

the best performance of KNN regressor. 

• ANN regressor with two layers and nine neurons in each layer would result in the 

best performance of the regressor. 

• The pair of ANN regressor-pseudo model can be used to successfully predict the 

current that would trigger the hydrogen pumping phenomenon in PEMFCs. 

• The pair of ANN classifier-regressor introduced in this work successfully acts as a 

virtual hydrogen leakage sensor for online tracking of the hydrogen leakage and 

to assure that the PEMFC current will not exceed the hydrogen pumping current. 
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Chapter 6. Conclusion and Future Work  

In this study, several novel solutions were offered to enhance the PEMFC 

performance by improving the maximum power density, preventing oxygen starvation, 

modeling, and diagnosis of hydrogen leakage. This work is done in three parts, and the 

findings and suggested future works for each part are explained in the following sections.  

6.1. Part One: Non-Uniform Catalyst Distribution  

Non-uniform catalyst distribution along CCL was proposed as a method of improving the 

maximum PEMFC power density that also could provide a more homogeneous oxygen 

distribution at the CCL. The presence of oxygen molecules along the CCL at higher current 

densities resulted in the prevention of oxygen starvation and the improvement of maximum 

current density. A two-dimensional, two-phase, steady-state model was developed to 

investigate the effects of platinum loading distribution on oxygen distribution at CCL and 

therefore, PEMFC power density. Next, an optimization procedure was introduced to find 

the optimal catalyst distributions. The CFD model, constant amount of catalyst, and 

positive catalyst distribution formed the constraints, while decision variables were the 

coefficients of polynomial distributions. The employed optimization method was GA, and 

the unknown coefficients were obtained through the optimization procedure. The following 

findings were inferred:  

- In the optimal case, maximum PEMFC power density was improved by 12.6%. 

- In the optimal case, the minimum oxygen mass fraction along the CCL was 

increased by 42%. 

- In the optimal case, the maximum current density was increased by 7.8%. 

- Loading more catalyst in locations with higher reaction rates improved PEMFC 

power density.  

- The amount of catalyst used in the first half of the catalyst layer was almost twice of 

the other half.  
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- An unlimited increase of the platinum mass loading at the CCH inlet and an unlimited 

decrease in the CCH outlet would not result in the PEMFC power density 

improvement.  

- The increase in the maximum current density in the optimal case indicated that 

oxygen starvation would occur at a higher current density.  

The following suggestions are provided for future works: 

- Finding the optimal catalyst distribution using a three-dimensional, non-isothermal, 

and two-phase model.  

- Conducting experimental studies to back up the optimization results. Conducting 

non-uniform catalyst deposition using nanofabrication methods and PEMFC power 

density measurements are amongst the suggestions for future works. 

6.2. Part Two: Pseudo Two-Dimensional Modeling of a 
PEMFC  

A novel pseudo two-dimensional, steady-state, and dynamic model was presented to 

simulate PEMFC behavior under both driving and driven modes. The model was 

developed and was used as a base model in the leakage diagnosis part. The model results 

were validated versus the experimental data in the literature as well as the data provided 

by Ballard corporation. The hydrogen pumping effect was considered in the model, and 

the model results fit very well with the experimental data, which illustrated its capability for 

diagnosis purposes. The precision and computational effectiveness of the model make 

this model a strong candidate to be used as a base model in a diagnosis tool. 

There are several suggestions for the further development of the model, which can be 

listed as follows:  

- Inclusion of other faults such as drying, flooding, and fault in hydrogen delivery 

system 

- Considering the temperature change as a result of oxygen combustion due to 

hydrogen leakage  
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- In-depth experimental tests on the effect of leakage on airflow distribution between 

cells and the way cells compete. As a suggestion, voltage measurements could be 

done in several locations in the stack and along each cell to understand the 

underlying phenomenon.  

6.3. Part Three: Leakage Diagnosis, Quantification, 
and Hydrogen Pumping Prediction in Steady-State 

A novel combined model-based and non model-based diagnosis method was used to 

predict the presence of leakage in a PEMFC and quantify it. The combined method utilized 

the pseudo numerical model to simulate the effect of leakage on PEMFC voltage. The 

proposed method resembles model-based approaches since a PEMFC model is 

developed to simulate the effect of different leakage sizes on the voltage. However, the 

model was not used to calculate the residual directly and to determine if PEMFC was leaky 

or healthy. Instead, the model was used to create two big datasets of information. Different 

leak sizes along with seven other features (current, cathode flow rate, anode and cathode 

pressures, inlet oxygen mole fraction in the cathode, inlet hydrogen mole fraction in the 

anode, and fuel cell temperature)  were passed to the model, and the voltage value was 

recorded for each data point. These datasets were then used to predict and quantify the 

leakage, and that was where the combined model resembled the non-model based 

approaches. The difference between the proposed method and non-model based 

approaches was related to the way that the datasets were formed. Datasets were not 

formed through experimental data, and they were generated through a fast, precise, and 

validated PEMFC model.  

A pair of classifier-regressor approach was developed to first detect leakage and then 

quantify the amount of the leakage. KNN and ANN estimators were used as estimators 

for both classification and regression purposes. These two types of estimators were 

chosen since they were non-linear classifiers/regressors and could handle the non-linear 

nature of PEMFCs. The performance of developed classifiers was investigated using the 

performance indexes such as accuracy, precision, recall, and F1-score, while the 

performance of the developed regressors was investigated by 𝑅2 score, MSE, and MAE 

values. Following results were obtained 

- KNN classifier accuracy was 0.958, while ANN classifier accuracy was 0.997.  



122 

- KNN regressor 𝑅2 score was 0.976 while 𝑅2 score for ANN regressor was 0.994.  

- For fast tuning and prediction of leakage, KNN could compete with ANN. However, 

proper tuning of ANN would lead to a better performance of the estimator. 

- The pair of ANN classifier-regressor could successfully isolate leaky PEMFCs and 

quantify the amount of leakage. 

- The combined ANN regressor-pseudo numerical model could successfully predict 

the hydrogen pumping current for leaky PEMFCs.  

The followings are very interesting suggestions for future works: 

- Developing a similar pair of classifier-regressor to detect and quantify the leakage 

values in a PEMFC in dynamic mode; As an initial suggestion, voltage response 

under different types of loads (step current, linear, etc.) could be recorded and 

sampled for creating the dataset. 

- The effect of other faults (drying, flooding, etc.) could be added to the numerical 

model to create a bigger dataset of information containing the information of different 

types of faults and their effects on voltage or other characteristics. The developed 

dataset could be used for a multi-class classification problem where the data is 

categorized under different faults.  

- Conducting online leakage detection and quantification on commercial stacks and 

experimental data  
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Appendix A. SIMPLE Method and Hybrid Scheme 

In this appendix, we explain the numerical scheme used in Chapter 3 of the 

thesis in more detail. We start the discussion about the staggered grid by considering 

the governing equations for a two-dimensional laminar flow in steady-state [70]: 

𝜕

𝜕𝑥
(𝜑𝑢𝑢) +

𝜕

𝜕𝑦
(𝜑𝑣𝑢) =

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑢

𝜕𝑦
) −

𝜕𝑝

𝜕𝑥
+ 𝑆𝑢 

(A-1) 
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𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑦
) −

𝜕𝑝

𝜕𝑦
+ 𝑆𝑣 

(A-2) 

𝜕

𝜕𝑥
(𝜑𝑢) +

𝜕

𝜕𝑦
(𝜑𝑣) = 0 

(A-3) 

𝑆𝑢 and 𝑆𝑣 terms are source/sink terms. The problem with these sets of equations is that 

the convection term is non-linear, and all three equations must be coupled together. The 

main problem is related to the pressure gradient terms that appear in the first two 

equations, but there is no separate equation to solve for this term. The mentioned 

problems can be resolved by employing methods such as SIMPLE, SIMPLER, and 

SIMPLEC [70]. Similar to other methods, the finite volume method starts with the 

discretization of equations. First, it is important to select the locations of saving velocity 

components. Numerical problems might occur If we define velocities at the same nodes 

that scalars such as temperature and pressure are defined. Here we provide an example 

from famous checker-board pressure filed in a structured mesh in Figure A-1. Pressures 

at node w,n,s, and e are calculated by interpolation between W, N, S, and E. Thus, the 

pressure gradients can be calculated as follows:  

𝜕𝑝

𝜕𝑥
=
𝑝𝑒 − 𝑝𝑤
𝜕𝑥

=
(
𝑝𝐸 + 𝑝𝑃
2 ) − (

𝑝𝑃 + 𝑝𝑊
2 )

𝜕𝑥
.=
𝑝𝐸 − 𝑝𝑊
2𝜕𝑥

 

(A-4) 

𝜕𝑝

𝜕𝑦
=
𝑝𝑛 − 𝑝𝑠
𝜕𝑦

=
(
𝑝𝑁 + 𝑝𝑃
2 ) − (

𝑝𝑃 + 𝑝𝑆
2 )

𝜕𝑦
.=
𝑝𝑁 − 𝑝𝑆
2𝜕𝑦

 

(A-5) 
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Figure A-1. Checkerboard pressure field 

Therefore, the pressure at node P does not appear in pressure gradients, and substituting 

the values into these equations would result in zero pressure at all nodes and divergence 

of the solution. Therefore, it can be seen that defining velocities and pressures at the same 

node would result in infeasible pressure gradient values. One of the efficient solutions for 

this problem is using a staggered grid for velocity components [70].  

 

Figure A-2. Staggered grid 
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Pressure, temperature, and scalar products are stored in nodes marked with solid black 

circles. u velocity components are stored where horizontal arrows are located. Similarly, 

v velocities are located where vertical arrows are located. In other words, horizontal 

velocities are stored in (i,J) nodes. Vertical velocities are stored in (I,j) nodes, and scalars 

are stored in (I,J) nodes. Looking at u-cell and v-cell control volumes, we can see that 

these control volumes are not only different from each other but are different than scalar 

control volumes. In a staggered grid network, horizontal pressure gradients are calculated 

based on u-velocity control volumes, while vertical pressure gradients are calculated 

based on v-velocity control volumes. These gradients are shown as follows:  

𝜕𝑝

𝜕𝑥
=
𝑝𝑃 − 𝑝𝑊
𝜕𝑥𝑢

 
(A-6) 

𝜕𝑝

𝜕𝑦
=
𝑝𝑃 − 𝑝𝑆
𝜕𝑦𝑣

 
(A-7) 

Now, if we calculate these pressures for the checker-board example, we can see that 

the pressure gradients will not be zero anymore and are noticeable values.  

To proceed with the SIMPLE algorithm, we need to guess the initial pressure field. To 

discrete momentum equations, we can either use backward/forward staggered grids. 

The provided staggered grid is backward since the i location of horizontal velocity (𝑢𝑖,𝐽) 

is at a distance −
1

2𝛿𝑥
 from node (I,J). Discrete momentum equations are in the following 

form [70]:  

𝑎𝑖,𝐽𝑢𝑖,𝐽
∗ =∑𝑎𝑛𝑏 𝑢𝑛𝑏

∗ + (𝑝𝐼−1,𝐽
∗ − 𝑝𝐼,𝐽

∗ )𝐴𝑖,𝐽 + 𝑏𝑖,𝐽 
(A-8) 

𝑎𝐼,𝑗𝑣𝐼,𝑗
∗ =∑𝑎𝑛𝑏 𝑣𝑛𝑏

∗ + (𝑝𝐼,𝐽−1
∗ − 𝑝𝐼,𝐽

∗ )𝐴𝐼,𝑗 + 𝑏𝐼,𝑗 
(A-9) 

The values for 𝑎𝑖,𝐽 and 𝑎𝐼,𝑗, and 𝑎𝑛𝑏 are calculated based on the proper differencing 

methods such as upwind, hybrid, and Quick discretization methods. In our simulation, 

the hybrid method is used. In order to calculate ∑𝑎𝑛𝑏 𝑢𝑛𝑏
∗ , we need to calculate F and D 

values for n,w,e,s as follows: 
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𝐹𝑤 = (𝜌𝑢)𝑤 =
𝐹𝑖,𝐽 + 𝐹𝑖−1,𝐽

2

=
1

2
[(
𝜑𝐼,𝐽 + 𝜑𝐼−1,𝐽

2
)𝑢𝑖,𝐽 + (

𝜑𝐼−1,𝐽 + 𝜑𝐼−2,𝐽
2

)𝑢𝑖−1,𝐽] 

(A-10) 

𝐹𝑒 = (𝜌𝑢)𝑒 =
𝐹𝑖 1,𝐽 + 𝐹𝑖,𝐽

2
=
1

2
[(
𝜑𝐼 1,𝐽 +𝜑𝐼,𝐽

2
)𝑢𝑖 1,𝐽 + (

𝜑𝐼,𝐽 + 𝜑𝐼−1,𝐽
2

)𝑢𝑖,𝐽] 
(A-11) 

𝐹𝑠 = (𝜌𝑣)𝑠 =
𝐹𝐼,𝑗 + 𝐹𝐼−1,𝑗

2

=
1

2
[(
𝜑𝐼,𝐽 + 𝜑𝐼,𝐽−1

2
)𝑣𝐼,𝑗 + (

𝜑𝐼−1,𝐽 + 𝜑𝐼−1,𝐽−1
2

)𝑣𝐼−1,𝑗] 
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𝐹𝑛 = (𝜌𝑣)𝑛 =
𝐹𝐼,𝑗 1 + 𝐹𝐼−1,𝑗 1

2

=
1

2
[(
𝜑𝐼,𝐽 1 + 𝜑𝐼,𝐽

2
)𝑣𝐼,𝑗 1 + (

𝜑𝐼−1,𝐽 1 + 𝜑𝐼−1,𝐽

2
)𝑣𝐼−1,𝑗 1] 

(A-13) 

𝐷𝑤 =
𝛤𝐼−1,𝐽

(𝑥𝑖 − 𝑥𝑖−1)
 

(A-14) 

𝐷𝑒 =
𝛤𝐼,𝐽

(𝑥𝑖 1 − 𝑥𝑖)
 

(A-15) 

𝐷𝑠 =
𝛤𝐼−1,𝐽 + 𝛤𝐼,𝐽 + 𝛤𝐼−1,𝐽−1 + 𝛤𝐼,𝐽−1

4(𝑦𝐽 − 𝑦𝐽−1)
 

(A-16) 

𝐷𝑛 =
𝛤𝐼−1,𝐽 1 + 𝛤𝐼,𝐽 1 + 𝛤𝐼−1,𝐽 + 𝛤𝐼,𝐽

4(𝑦𝐽 1 − 𝑦𝐽)
 

(A-17) 

𝑎𝑊 = 𝑚𝑎𝑥 [𝐹𝑤 , (𝐷𝑤 +
𝐹𝑤
2
) , 0] 

(A-18) 

𝑎𝐸 = 𝑚𝑎𝑥 [−𝐹𝑒 , (𝐷𝑒 −
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2
) , 0] 

(A-19) 
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𝑎𝑆 = 𝑚𝑎𝑥 [𝐹𝑠, (𝐷𝑠 +
𝐹𝑠
2
) , 0] 

(A-20) 

𝑎𝑁 = 𝑚𝑎𝑥 [−𝐹𝑛, (𝐷𝑛 −
𝐹𝑛
2
) , 0] 

(A-21) 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝐹𝑒 − 𝐹𝑤 + 𝐹𝑛 − 𝐹𝑠 (A-22) 

Similarly, F and D values for v control volumes are calculated as follows:  
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(A-27) 
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(𝑦𝑗 1 − 𝑦𝑗)
 

(A-30) 

𝑎𝑊 = 𝑚𝑎𝑥 [𝐹𝑤 , (𝐷𝑤 +
𝐹𝑤
2
) , 0] 

(A-31) 

𝑎𝐸 = 𝑚𝑎𝑥 [−𝐹𝑒 , (𝐷𝑒 −
𝐹𝑒
2
) , 0] 

(A-32) 

𝑎𝑆 = 𝑚𝑎𝑥 [𝐹𝑠, (𝐷𝑠 +
𝐹𝑠
2
) , 0] 

(A-33) 

𝑎𝑁 = 𝑚𝑎𝑥 [−𝐹𝑛, (𝐷𝑛 −
𝐹𝑛
2
) , 0] 

(A-34) 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑆 + 𝑎𝑁 + 𝐹𝑒 − 𝐹𝑤 + 𝐹𝑛 − 𝐹𝑠 (A-35) 

After the momentum equation is solved and 𝑢∗ and 𝑣∗ fields are obtained, new variables 

will be defined to address the difference between the correct answer and the results 

obtained based on the guessed pressure fields.  

𝑝 = 𝑝∗ + 𝑝′ (A-36) 

𝑢 = 𝑢∗ + 𝑢′ (A-37) 

𝑣 = 𝑣∗ + 𝑣′ (A-38) 

Replacing  𝑝∗,𝑢∗, and 𝑣∗with their equivalent terms in Equations (A-36) – Equation (A-

38) and substituting them into discrete momentum equation would result in the following 

equations:  

𝑎𝑖,𝐽𝑢𝑖,𝐽
′ =∑𝑎𝑛𝑏 𝑢𝑛𝑏

′ + (𝑝𝐼−1,𝐽
′ − 𝑝𝐼,𝐽

′ )𝐴𝑖,𝐽 
(A-39) 

𝑎𝐼,𝑗𝑣𝐼,𝑗
′ =∑𝑎𝑛𝑏 𝑣𝑛𝑏

′ + (𝑝𝐼,𝐽−1
′ − 𝑝𝐼,𝐽

′ )𝐴𝐼,𝑗 
(A-40) 
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To simplify Equation (A-39) and Equation (A-40), ∑𝑎𝑛𝑏 𝑢𝑛𝑏
′  and ∑𝑎𝑛𝑏 𝑣𝑛𝑏

′  terms are 

dropped. The elimination of these terms is the main idea of the SIMPLE algorithm. 

Therefore, the simplified equations are [70]:  

𝑢𝑖,𝐽
′ = 𝑑𝑖,𝐽(𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
′ ) (A-41) 

𝑣𝐼,𝑗
′ = 𝑑𝐼,𝑗(𝑝𝐼,𝐽−1

′ − 𝑝𝐼,𝐽
′ ) (A-42) 

where 𝑑𝑖,𝐽 =
𝐴𝑖,𝐽

𝑎𝑖,𝐽
  and 𝑑𝐼,𝑗 =

𝐴𝐼,𝑗

𝑎𝐼,𝑗
.  The corrected velocities could be obtained as follows 

[70]:  

𝑢𝑖,𝐽 = 𝑢𝑖,𝐽
∗ + 𝑢𝑖,𝐽

′  (A-43) 

𝑣𝐼,𝑗 = 𝑣𝑖,𝐽
∗ + 𝑣𝑖,𝐽

′  (A-44) 

Substituting the modified velocities into discrete continuity equation would result in the 

following equations: 

𝑎𝐼,𝐽𝑝𝐼,𝐽
′ = 𝑎𝐼 1,𝐽𝑝𝐼 1,𝐽

′ + 𝑎𝐼−1,𝐽𝑝𝐼−1,𝐽
′ + 𝑎𝐼,𝐽 1𝑝𝐼,𝐽 1

′ + 𝑎𝐼,𝐽−1𝑝𝐼,𝐽−1
′ + 𝑏𝐼,𝐽

′  (A-45) 

where  

𝑎𝐼,𝐽 = 𝑎𝐼 1,𝐽 + 𝑎𝐼−1,𝐽 + 𝑎𝐼,𝐽 1 + 𝑎𝐼,𝐽−1 (A-46) 

𝑎𝐼 1,𝐽 = (𝜑𝐴𝑑)𝑖 1,𝐽 (A-47) 

𝑎𝐼−1,𝐽 = (𝜑𝐴𝑑)𝑖,𝐽 (A-48) 

𝑎𝐼,𝐽 1 = (𝜑𝐴𝑑)𝐼,𝑗 1 (A-49) 

𝑎𝐼,𝐽−1 = (𝜑𝐴𝑑)𝐼,𝑗 (A-50) 
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𝑏′𝐼,𝐽 = (𝜑𝑢
∗𝐴)𝑖,𝐽 − (𝜑𝑢

∗𝐴)𝑖 1,𝐽 + (𝜑𝑣
∗𝐴)𝐼,𝑗 − (𝜑𝑣

∗𝐴)𝐼,𝑗 1 (A-51) 

Pressures corrections (p’) can be obtained by solving Equation (A-45), and therefore the 

modified pressure can be obtained by 𝑝 = 𝑝∗ + 𝑝′, p values tend to diverge if they are 

not under relaxed. Therefore, pressures and velocities must be relaxed to prevent 

divergence [70].  

𝑝𝑛𝑒𝑤 = 𝑝∗ +𝜔𝑝(𝑝
′) (A-52) 

𝑢𝑛𝑒𝑤 = 𝜔𝑢𝑢 + (1 − 𝜔𝑢)𝑢
(𝑛−1) (A-53) 

𝑣𝑛𝑒𝑤 = 𝜔𝑣𝑣 + (1 − 𝜔𝑣)𝑣
(𝑛−1) (A-54) 

𝜔 values are under relaxation factors for pressures and velocities. 𝑢(𝑛−1) and 𝑣(𝑛−1) are 

solutions from the previous step. The under relaxation factors that are used for u,v,p are 

0.8,0.8, and 0.6, respectively. The general schematic of the SIMPLE finite volume is 

provided as follows:  



139 

 

Figure A-3. SIMPLE algorithm flowchart [70] 

 

Start

Solve the discrete momentum equations (Equation A-8 
and Equation A-9)  and update  (𝑢∗ , 𝑣∗)

Solve pressure correction equation (Equation A-45) 
and obtain p’ 

Update velocities, pressure and 
other scalar values

(𝑝∗ = p, , 𝑢∗=𝑢, 𝑣∗=v,  =  ∗)

Stop
Stopping criterion 

reached?

Yes
NO

Correct pressure and velocities (Equations A-36, 
Equation A-37, and Equation A-38) and find p,u,v

Solve other discretized equations

Initial guess of velocities, pressures and other scalars 
values  (𝑝∗ ,𝑢∗, 𝑣∗,  ∗)
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Appendix B. GA Algorithm 

Genetic algorithm (GA) is a global optimization method inspired by the evolution 

theory. This theory is first presented by J. Holland in 1975 [83]. GA does not necessarily 

result in the exact optimal solution; however, evidence has shown that the obtained 

solutions are acceptable if the simulation is repeated several times. GA efficiency 

competes with other combinatorial optimization algorithms such as hyper-climbing, 

simulated annealing, and sequential search methods. GA does not know any information 

about the search space, and that is the reason that GA is largely used in different 

optimization problems in various scientific fields.  

GA encodes the optimization variables into a string of one of the followings [83]: 

• Binary bits 

• Characters 

• Real numbers 

Each bit in the string is called a gene, and a complete set of genes forms a chromosome, 

string, or individual. Changing genes would result in changing the chromosome, which 

would result in a new variable in the space. In our problem, genes are catalyst distribution 

function coefficients, and the whole chromosome represents a non-uniform distribution 

function. The optimization process starts with the initialization of a specific number of 

chromosomes, which is called the first generation. Each chromosome is generated 

through a random process, and the performance of each chromosome is evaluated with 

the fitness function(s). In this project, fitness functions are the maximum PEMFC power 

density and minimum oxygen distribution at CCL. The calculation of fitness functions is 

conducted by the PEMFC CFD model. The optimization process starts by evaluating the 

first generation so that GA understands how strong each chromosome performs in the 

solution space. 

The next step is to form the next generation. This process starts by selecting parents to 

mate and produce the next generation. This process is called selection and gives more 

opportunity to strong chromosomes to be chosen as parents. However, the selection 

process does not entirely ignore the week genes to prevent premature convergence. Once 
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parents are chosen, the new generation is formed based on the crossover of genres, and 

the new individuals are formed by different combinations of genes. The new generation of 

children is then evaluated through the fitness function(s). Selection and crossover 

operators tend to preserve the combination of the parameter values that obtain a better 

result in the optimization process. However, if the optimization process only relies on these 

two processes, it might miss some spaces in the solution area. This issue happens when 

there are not enough parameter values in the previous generation, or the chromosomes 

are concentrated in a specific part of the solution space. This problem is resolved through 

the mutation process inspired by biology evolution. In fact, random mutations would help 

to not get stuck around the local minimum and leads the optimization algorithm towards 

the global optimal answer. However, it is essential to set the mutation rate to a small 

number to prevent data loss and not change it to a random search.  

Optimization would continue by forming new generations, evaluating chromosomes, 

selecting parents, and producing the next generation through crossover and mutation 

operators. It is also suggested to send some of the strong chromosomes in each 

generation to the next one. This number must be small enough to prevent immature 

convergence. The general optimization procedure is shown as follows:  

 

Figure B-1. GA algorithm 

Start

Create initial generation

Evaluate fitness values

Selection operation 

Mating pool Form next generation

Optimal solution
Stopping criterion 

reached?

Crossover operation Mutation operation

Yes

NO
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Appendix C. KNN Estimator 

KNN algorithm is a very simple ML method that works based on memorizing the 

training set. The label of any new data is predicted based on its closest neighbors. The 

primary assumption is that close neighbors own similar labels. KNN is also known as a 

non-parametric lazy instance-based algorithm that does not explicitly model the data-

generating process but directly models the posterior probabilities. The algorithm for this 

method is provided as follows:  

 

Figure C-1. KNN estimator algorithm 

The famous distance metrics in the KNN algorithm is Minkowski and can be obtained from 

the following equation.  

Start

Initialize i=1

Compute distance between x and 𝑥𝑖

Assign the label based on the 
label of majority of the 

neighbors

Are K-nearest 
neighbors determined?

YesNO

Search and find 𝑥𝑖 closer to x than any 
previous nearest neighbor 

Input sample x

Set K 
(1≤K≤n)

i ≤K?

• Delete the farthest of the K-nearest neighbors
• Include  𝑥𝑖 in the set of K-nearest neighbors

i=i+1
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𝑑(𝑥[𝑎], 𝑥[𝑏]) =∑ √(𝑥𝑗
[𝑎]
− 𝑥𝑗

[𝑏]
)𝑞

𝑞

 
(C-1) 

𝑥[𝑎] is the ath data point and 𝑥[𝑏] is the bth data point. d and j correspond to the distance 

and feature, respectively. When q is equal to one (q=1), the distance metric is Manhattan 

distance, and q=2 corresponds to Euclidean distance.   

In the classification problem, the label of new data is determined based on the majority of 

neighbors. For example, in our classification problem, seven neighbors (K=7) resulted in 

the highest accuracy, which means that the seven closest neighbors determine whether 

PEMFC is leaky or healthy. In the regression problem, the numeric label is calculated by 

the average of the five nearest neighbors. The problem with the KNN algorithm is the 

curse of dimensionality. In ML, the curse of dimensionality refers to the presence of high 

dimensional data and a high range of features in the training examples. In other words, 

with the high dimensional data, a larger portion of hypervolume must be taken into 

consideration, and even, in that case, the KNN estimator might not be particularly close to 

the query point. Therefore, alternatives must be developed to be used in case of the poor 

performance of the KNN estimator in high dimensional data.   

KNN method has a time complexity of O(n.m), where n is the number of training examples, 

and m is the number of features in the training set. If n>>m (similar in our case), then the 

algorithm has O(n) time complexity.  
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Appendix D. ANN Estimator 

ANNs are derived based on the biological concept of brain cell structures, i.e., 

neurons. Neurons are connected by synapses that generate electrical signals. When the 

electrical signals surpass the threshold of neural excitation, the information would be 

propagated to the other neurons. With the huge number of neurons in the human brain, 

we can receive information and knowledge, process, and understand them. The neuron 

structure used in this work is the most common and is shown as follows:  

 

Figure D-1. A neuron structure in feed-forward ANN 

Multiple input values (𝑥) are multiplied by different weight values (w), and the values are 

summed up and stored in 𝑣. 𝑣 is the input value for the activation function (f), and the 

output of the activation function is the neuron outcome (𝑦̂). There are four famous 

activation functions: sigmoid, tanh, reLU, and linear. The equations for these activation 

functions are provided in Figure D-2. The sigmoid function is mainly used in the output 

neurons for classification purposes since it generates the probability of different classes. 

On the other hand, ReLU is used when the output is numeric and positive. A detailed 

explanation of different activation functions can be found in [84]. 

 

 

 

∑𝑥𝑖𝑤𝑖

𝑛

𝑖=0

= 𝑣 𝑓(𝑣) = 𝑦̂

𝑥 1
𝑥 2
𝑥 3
𝑥 4

...
𝑥 𝑛

𝑥 5
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Figure D-2. Different activation functions for neurons 

In this work, we used feed-forward neural networks to obtain the desired information. As 

the name indicates, the information flows through the model to calculate the loss function. 

The loss function measures the difference between the real outcomes and the predicted 

outcomes. We used cross-entropy and MSE to calculate the cost (loss) function for the 

binary and numeric estimators. The equations for these cost functions are listed in Table 

D-1. A detailed explanation of different cost functions can be found in [84]. 

Table D-1. Cost function definitions 

Cost function Equation 

cross-entropy 𝐽(𝑦, 𝑦̂) = −∑𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦̂𝑖)

𝑖=1

 

MSE 𝐽(𝑦, 𝑦̂) =
1

𝑁
∑|(𝑦𝑖 − 𝑦̂𝑖)

2|

𝑁

𝑖=1
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The loss function is the prediction error that must be minimized. An example of a feed-

forward neural network is provided in Figure D-3.  

 

Figure D-3. Schematic of a feedforward ANN 

In a feed-forward algorithm, information flows from input to the output. The initial weight 

and bias values are initialized, and the output predicted values are calculated. Once the 

output values are calculated, the cost function would be calculated. In the ideal case, the 

cost function must be equal to zero, which is equivalent to the case that all the estimations 

are correct. Therefore, the values of weights and biases must be tuned to minimize the 

cost function. This step requires the calculation of the derivative of the cost function with 

respect to the model parameters, including weights. This process is done based on the 

chain rule and is called backpropagation. The intensive mathematical background for the 

backpropagation process is provided in [85]. Once all the derivatives are calculated the 

weight values could be changed based on the optimizer. “Batch Gradient Descent”, 

“Stochastic Gradient Descent”, “Gradient Descent”, and other optimization methods are 

proposed for this purpose.  However, the most famous optimizer used for this purpose is 

“Adam optimizer”, which computes the adaptive learning rates for each parameter. Adam 

optimizer tracks the exponentially decaying average of past gradients as well as their 

squared values. The former one is called the first moment (𝑚𝑡) and the latter one is called 

the second moment (𝑣𝑡). 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (D-1) 
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𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2  

β1 and β2 are arbitrary numbers and are usually taken as 0.9 and 0.999. Since the 

calculation of mt and vt requires information about the previous iteration, they are 

initialized as 0 in the first iteration. Therefore, at the early steps of the algorithm are, these 

two momentums are biased toward zero. Thus the following corrections are conducted to 

remove the bias. 

𝑚̂𝑡 =
𝑚𝑡

1 − 𝛽1
 (D-2) 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
 (D-3) 

Eventually, the model parameters (𝜃) are updated as follows:  

𝜃𝑡 1 = 𝜃𝑡 −
𝜆 𝑚̂𝑡

√𝑣𝑡 + 𝜀
 

(D-4) 

λ is the learning rate and is usually taken as a small value (0.01 or 0.001). ε is a constant 

and is equal to 10−8. Figure D-4 shows the algorithm for Adam optimizer. It is necessary 

to mention that it is possible to use only a portion of the training dataset to calculate the 

cost function. This is extremely important when the amount of data is very high, and the 

computational cost is expensive. Using a subset of the training dataset would result in 

lower computational cost and a quicker convergence. However, a very small batch size 

might result in the instability of cost function and its gradient.   

Keras library with TensorFlow backend provides a simple implementation of feed-forward 

neural networks with several layers and different optimizers. Our ANN classifier structure 

graph is visualized by the Tensorboard library and is provided in Figure D-5 to Figure D-

9. The ANN regressor has a similar structure with MSE as a cost function.  
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Figure D-4. Adam optimizer algorithm 
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Figure D-5. General graph for ANN classification graph 

 

 

 

Figure D-6. Adam optimizer structure 
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Figure D-7. Structure of Sequential layers  

 

Figure D-8. Loss calculation graph 

 

Figure D-9. Metric calculation graph 
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Appendix E. Classifier and Regressor 
Performance Indexes 

The performance of classifiers in ML is mainly evaluated based on a confusion 

matrix. Let’s assume that there are two classes of information. We distinguish these 

classes by labeling them as positive and negative classes. The confusion matrix for such 

a simple two-class (binary) problem is shown in Figure E-1. 

 Predicted class 

Actual class 

Classes + - 

+ True positive (TP) False negative (FN) 

- False positive (FP) True negative (TN) 

Figure E-1. Confusion matrix for a binary class 

The elements in the confusion matrix are listed as follows [86]: 

• True positives (TP): The number of data points that correctly labeled as the positive 

class 

• True negatives (TN): The number of data points that correctly labeled as the 

negative class 

• False positive (FP): The number of data points that incorrectly labeled as the 

positive class 

• False negative (FN): The number of data points that incorrectly labeled as the 

negative class 

The performance indexes are defined as follows [86]:  

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 𝑇𝑁

𝑇𝑃 𝐹𝑃 𝐹𝑁 𝑇𝑁
, Accuracy is the proportion of total correct predictions 

and represents the overall performance of the classifier. 

• Recall / True positive rate =  
TP

TP FN
, Recall measures the fraction of positive 

examples that the classifier can capture. The recall index is important in cases that 



152 

capturing one class is extremely important. As an example, we can refer to data 

for healthy and cancerous cells.  

• 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑁

𝑇𝑁 𝐹𝑃
, This index measures the fraction of negative 

examples that the classifier can capture.  

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 𝐹𝑃
, Precision is a proportion of the records that were positive from 

the group that the classifier predicted to be positive 

• 𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙
, F1-score is a measure that evaluates the performance 

of classifiers based on both precision and recall criteria.  

Performance of regressors are obtained based on the following performance indexes [86]:  

• MSE =
1

N
∑ |(yi − ŷi)

2|N
i=1 , where N is the number of samples, yi is the exact value 

and ŷ is the predicted value.  

• 𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦𝑖 − 𝑦̂𝑖)|
𝑁
𝑖=1  

• R2 score = 1 − 
∑ |(yi−ŷi)

2|N
i= 

∑ |(yi−yi̅)
2|N

i= 

, where y̅ is the mean value of y samples. 

 


