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Abstract
This thesis discusses the development of an Artificial Neural Network (ANN) based 

Flame Monitoring and Control System (FMCS) to optimise the combustion of a 

pulverised coal flame.

A series of experiments were conducted on a 150 kW pulverised fuel burner rig based at 

Casella CRE Ltd. in the United Kingdom. These experiments systematically varied the 

burner swirl number and the secondary airflow rate over a significant range for two 

different coals so that both "satisfactory" and "poor" combustion conditions were 

obtained. The infrared emissions from the flame, the combustion noise and the acoustic 

emission generated in the burner body were measured with appropriate sensors, as were 

the fuel and airflow rates and pollutant emissions. The signals from the sensors were 

analysed using signal processing techniques to yield a number of features. These in turn 

were employed to train a neural network to predict the gaseous emissions, such as NOx 

and CO, from the rig.

In a separate set of experiments, the combustion process was placed in a poor condition, 

and the sensors together with the neural models were incorporated into an intelligent 

control system, which was able to alter the excess air level to improve the combustion 

process. In this fashion simultaneous lower NOx and CO levels were achieved with both 

coal types. The technique uses relatively low cost sensors and artificial intelligence 

techniques to control the combustion of the pulverised fuel burner. It is envisaged that 

this technique will be particularly attractive for multiple burner installations that are often 

fed from a common air supply manifold, so that the individual burner performance is 

often not known and cannot be optimised.
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Chapter 1 Introduction
Coal continues to have the largest reserves of all the fossil fuels making it a viable fuel in 

many geographical areas of the world [Shimoda et al., 1990]. The largest coal user is the 

power generation industry [Doherty et al., 1994]. On a global scale, the demand for 

power is expected to double between now and 2030 and it is expected that coal will 

become cheaper than gas for power generation [IEA, 2002]. The scale of operation, 

costs, and the need for reliability in new power plant, will make it difficult to 

accommodate the large-scale introduction of new, unproven (e.g. biomass cofiring 

burner), and essentially small-scale energy technologies such as wind wave and solar 

power. In addition, biomass ash can be high in sulphur or halides [Ringe et al., 1998], 

which can cause legal and other problems for its subsequent disposal. Therefore, it is 

clear that coal must continue to play a significant role if security and diversity of supply 

is to be met.

The EU has strict regulations covering the control of emissions from power generation 

plant, as set out in the Large Combustion Plant Directive (LCPD). Even more stringent 

emissions limits will come into force in 2008, and will fully apply to both new and 

existing plant from 2016 onwards. Thus from an environmental perspective, the 

development and deployment of advanced Clean Coal Technologies (CCTs), with higher 

efficiencies and better environmental performance, are seen as key enabling steps in 

achieving these limits in the medium to long-term development of lower emission power 

plant.

Europe is a leader in the development of advanced, clean power generation systems. 

Historically, the EU has supplied 50 % of the global market for power plant and has a 

reputation for innovation in the development of advanced systems and components due 

to previous investment in Research and Development (R&D) in CCTs [PowerClean, 

2003]. This reputation represents a major market opportunity for EU industry to supply 

export markets. However if similar efforts are not continued, there is a risk of losing the 

international market share since both the USA and Japan have long-term strategic plans



to meet future domestic and export market requirements. Therefore, there is a need for 

the EU to continue the R&D programmes in coal utilisation for power generation.

Pulverised fuel (PF) plant is the most commonly used coal-fired technology for power 

generation. Fluidised bed combustion systems offer an alternative to PF plant but cannot 

provide the economy of scale provided by the larger plant. Coal gasification provides a 

route for producing large amounts of hydrogen and the use of Integrated Gasification 

Combined Cycles (IGCC) 1 with complete containment of undesirable pollutants within 

the system. However, it must be emphasised that IGCC is not yet a proven technology 

and much work remains to be done to resolve technical issues. In contrast, conventional 

coal-fired plant is inherently large scale and reliable in operation. Recent cycle 

improvement has led to increases in efficiency. Undoubtedly, research into CCTs has led 

to the development of environment-friendly coal utilisation technology for PF boilers.

Larger utility coal-fired boilers emit Nitrogen Oxides (NOx) and Sulphur Dioxide 

which contributes to acid rain, hi addition, NOx may undergo photochemical oxidation 

and react with sunlight to form smog [Stanmore et al, 2000; Singer, 1981]. For these 

reasons, the European Union has introduced more stringent legislation for the control of 

emissions for these pollutants. Unlike SOj emissions that are dependent on the sulphur 

content of the coal, there is no simple correlation between coal nitrogen and nitrogen 

oxide emissions. Good operating practice has played an important role in the abatement 

of NOx. However even when the overall stoiehiometry of the boiler is maintained at the 

desired ratio in multi-burner installations, each individual burner may operate at a 

different excess air level as a result of air-fuel mal-distribution. This can lead to the 

inefficient use of fuel and the emission of high levels of NOx from individual burners. 

Moreover if uncorrected it can lead to burner operation under extreme reducing 

conditions which can in turn promote serious problems such as burner slagging and 

boiler tube corrosion. Although measurement of flue gas composition in the stack is

1 Gasification or partial oxidation makes it possible to produce a fuel gas from solid or liquid carbonaceous 
feedstocks that can be cleaned and burned in a gas turbine. The resulting gas must be of such a quality that 
no damage (e.g. corrosion, erosion) is caused to the gas turbine whilst maintaining the high efficiency and 
low emissions of the combined cycle plant.



routine in modern boilers, this provides only the average values and so characterisation 

of individual burners is not readily achieved [Kay, 1994]. As a result, the present project 

is concerned with the development of a Flame Monitoring and Control System (FMCS) 

for individual burners. To maximise the boiler efficiency each burner should operate with 

the minimum excess air, which ensures virtually complete combustion. Moreover the 

NOx emissions from the burner should be within satisfactory levels. Consequently, the 

proposed monitoring system aims to provide carbon monoxide (CO) levels as a measure 

of the completeness of combustion together with the NOx concentration in the flame. 

These emission levels cannot be measured directly but are functions of combustion 

parameters such as the air-fuel ratio, the flame temperature, and the turbulence in the 

flame.

The objectives of the present project are therefore: -

1. To develop an effective and low cost flame-sensing system for the monitoring of 

individual burners.

2. To optimise a burner based on the information derived from monitoring the flame 

signature.

The project therefore employed (a) an infrared (IR) radiation detector, (b) a microphone 

(MIC) and (c) a probe, which measures Acoustic Emission (AE), for an individual burner 

since they are sensitive to the combustion parameters mentioned earlier. The intensity of 

radiation from a flame increases sharply as the flame temperature increases as well as 

being related to the air-fuel ratio. The electromagnetic radiation was measured at the root 

of the coal flame where the combustion is initiated [Clausen, 1995]. A broadband IR 

sensor was therefore used instead of measuring the UV radiation since this later 

component can be masked by un-burnt fuel [Jackson et al, 1987]. Also, flame flickering 

effects are thought to be due to the fluctuation in the combustion rate of the coal as well 

as the turbulence in the flame. This makes it essential to study the temporal information 

in the flame signal [Khesin et al, 1997]. Abugov (1980) measured sound emissions from



an open flame and claimed that the noise from the flame results from a direct coupling 

between the combustion and the sound created by the airflow. This occurs because the 

amplitude of the sound varies with the combustion rate, which is in turn, related to the 

air-fuel ratio and turbulent mixing. This sound amplitude can be measured by a 

broadband microphone [Gaydon, 1978]. Acoustic emission is a name given to stress 

waves that are generated within solids due generally to microcrystalline events, which 

can be detected by a sensor. Traditionally, AE has been applied on boilers to monitor 

events such as soot blowing, tube leaking and valve operations [Steven et al, 1984; 

Kalyanasundaram et al., 1992]. However, AE from a flame probably arises from 

inhomogeneity in the initial air-fuel mixture in the turbulent combustion zone causing 

fluctuations in the local rate of combustion even though the average combustion rate 

remains constant [Abugov, 1978]. Consequently, these fluctuations together with 

changes in flame turbulence can generate AE within the burner so that measurement of 

the stress waves at the rear of the burner was selected as a possible technique in this 

project.

It was decided to analyse the raw signals from the sensors in both the time domain (e.g., 

Mean value, Kurtosis and Skewness), and the frequency domain through an estimation of 

the Power Spectral Densities (PSD) via the Fast Fourier Transform (FFT) and also 

Wavelet Analysis. The average of these measurements over a short time period yielded 

features that were compared with the measured NOx, CO and 62.

The relationships between these features and the gaseous emissions were complex and 

nonlinear so that Artificial Neural Networks (ANNs) were employed to learn the 

relationship. ANNs have the ability to analyse large classes of nonlinear relationships 

with acceptable accuracy and are particularly useful where analytical models are difficult 

to use. In control applications, ANNs offer the advantage of being able to handle a large 

class of nonlinear control problems with essentially the same algorithm, which can be 

customised, through minor code modifications [Jaques et al, 1998]. In this project, the 

outputs of the ANNs can be considered as "software sensors" which predict the gaseous 

emissions, hence the proposed system is similar to a Predictive Emissions Monitor



(PEM) as defined by Sloss [IEA, 1997]. Recursive networks, which have ability to retain 

temporal information from the sensors [Jarmulak et al, 1997; Gencay et al, 1997] were 

employed since the use of "previous" values of the feature as well as current values were 

found to provide better predictions. The degree correlation of computed features with the 

combustion gases varies substantially from feature to feature. Consequently, selection of 

the most appropriate features was also undertaken prior to their use by the neural 

networks.

Low emissions of NOx can be achieved by regulating the excess air level [Rodriquez et 

al, 2001; Grant, 1980]. The NOx and CO levels in the burner in the current project were 

controlled through identification of the burner condition by means of the sensors and 

neural network. The air supply was then adjusted by standard a set of rules, which were 

formulated to achieve appropriate NOx and CO levels.

Changes in the combustion conditions in the boiler can result from differences of coal 

properties, slag/soot deposits, and ageing of the plant [Booth et al., 1998]. For these 

reasons, online retraining of the ANNs may be required. This retraining procedure can be 

achieved as long as sufficient plant data is available. However, it will be important to 

have a mechanism to detect when the response of the plant changes. As a result, this 

thesis discusses how a Self-Organising Map (SOM) neural network can be employed to 

detect when the original recursive network will require retraining.

The thesis is divided into 8 chapters. Chapter 2 reviews the literature relating to 

pulverised coal-fired systems and includes a discussion of the formation of various 

gaseous emission pollutants and low NOx technologies. Chapter 2 also discusses 

possible monitoring techniques and their limitations together with relevant ANN models 

and possible control schemes. Chapter 3 describes the combustion test facility, the sensor 

development, and the data acquisition system. Chapter 4 discusses the development of 

the monitoring system as well as the signal processing techniques, which employed. 

Finally compares individual features with gaseous emissions. Chapter 5 concentrates on 

methods for finding the best network for prediction of NOx and CO. Chapter 6 describes



the application of the Flame Monitoring and Control System (FMCA) and its testing on 

150 kW combustion test facility. Chapter 7 discusses the use of Wavelet Signal Analysis 

(WA) and ANN &-steps model. Also, Chapter 7 discusses how SOM can be used to 

indicate when the burner characteristics have changed so that the original recursive 

network can be retrained. Finally, Chapter 8 draws conclusions corresponding to the 

work conducted and is followed by recommendation for nature work.



Chapter 2 Literature Review
Chapter 2 reviews the basic operation of pulverised fuel (PF) boilers, combustion related 

emissions, and control techniques. The limitations of existing monitoring of coal-fired 

burners are highlighted and the application of Artificial Neural Networks for burner 

optimisation is discussed.

2.1 Coal & Pulverised Coal System
Coal is formed as a result of natural chemical processes in which plants absorb carbon 

dioxide from the atmosphere and convert it into a compound consisting of sugar, starch, 

cellulose, lignin and other complex substances. This compound is then converted into the 

different types of coals depending on the formation conditions.

2.1.1 The Formation of Coal

Organic matter such as woody fragments of stems, roots, and bark first changes to peat 

which when buried is cut-off from the oxygen in the air resulting in a slow bacterial 

action that prevents decay of the organic matter. The weight of more vegetation, rock, or 

water forming on top of the peat helps to compress and solidify the peat, which then 

changes into coal.

The term "coal" refers to a wide range of naturally occurring heterogeneous materials 

from brittle anthracites to brown fibrous lignites, which are closer to the original plant. 

These forms can be determined by their maceral information. The maceral is defined by 

their morphology and by the coals reflectance or colour when viewed under a 

microscope, and indicates the degree to which they have been metamorphosed [Singer, 

1981]. Higher rank 1 coals are generally found in regions that have been under high 

pressure. Other factors such as time, heat, organic substances, and geological changes 

change (e.g., earth folding and mountain formation) have an important influence in this 

natural chemical evolution.

1 The coal rank increases as the amount of fixed carbon increases and the amounts of moisture and volatile 
matter decrease.



2.1.2 Coal Analysis

Two types of coal analysis are generally used: the Proximate Analysis (PA) and the 

Ultimate Analysis (UA), in which the compositions are expressed as percentage by mass. 

The Proximate Analysis (ASTM Standard, D3172), by reference to four major 

constituents: (a) heating value, (b) mineral impurity, (c) volatile matter, and (d) moisture. 

The Ultimate Analysis (ASTM Standard, D3176), on the other hand, gives the chemical 

composition of the coal in terms of hydrogen, oxygen, carbon monoxide, methane and 

other hydrocarbons and that portion of moisture that is formed by chemical combination 

during thermal decomposition of the coal substance. Generally, the dry or wet and 

mineral-matter-free bases for analysis are used. [Singer, 1981]

Both Proximate and Ultimate Analyses are used to determine coal rank, which in 

descending order is as follows: -

1. Anthracite, which is hard, brittle, and shiny black with a homogeneous structure. 

It has a high percentage of fixed carbon and low volatile matter. It is ideal for 

domestic applications.

2. Bituminous, which is greyish black and distinctly granular in structure. When it is 

subjected to heat, it reduces to a cohesive binding, sticky mass. It has a higher 

calorific value and volatile matter but less carbon content as compared to 

Anthracite. Bituminous coals are further categorised into low, medium, and high- 

volatile bituminous coal according to their physical properties.

3. Sub-bituminous coal are brownish black and homogeneous with smooth surfaces. 

They have high moisture content and can produce an audible noise of 

disintegration ("crack") when exposed to air.

4. Lignite is brown and has a laminar structure in which the remnants of woody 

fibres can be seen under microscope. Its origin is mostly from plants rich in resin,



so it is high in volatile matter and has a low heating value. Lignite coals are hard 

but will loose moisture rapidly and disintegrate at room temperature.

5. Peat tends to be used only rarely as a commercial fuel. It contains high moisture 

content and has the lowest heating value. It is a heterogeneous material consisting 

of partially decomposed organic matter and inorganic materials.

2.1.3 Pulverised Coal System

In the process of steam generation in large boilers, the fuel burning system should 

provide a controlled, efficient conversion of the chemical energy of the fuel into heat 

energy and this in turn, is transferred to the heat absorption surfaces of the steam 

generator. Lump coal is pulverised and transported with the primary air stream, which 

directs it to the furnace where the fuel is consumed. Changes in the primary air stream 

and its velocity will affect the rapidity and stability of the ignition process. The fuel- 

burning system introduces the fuel and air for combustion into the boiler where they are
*

ignited to produce a flame and the products of combustion. The rate and degree of 

completion of the chemical reactions are greatly influenced by the temperature, 

concentration, preparation, and distribution of the reactants, by catalysts, and by 

mechanical turbulence.

Figure 2.1 shows a low NOx pulverised fuel burner, in which coal and primary air are 

introduced tangentially to the coal nozzle, thus imparting a swirl within the nozzle, with 

adjustable inlet vanes also imparting swirl inside the wind box. The degree of swirl, 

coupled with the flow-shaping contour of the burner throat, establishes a recirculation 

pattern extending several throat diameters into the furnace. The hot products of 

combustion within the boiler chamber are directed back toward the nozzle to provide the 

ignition energy necessary to sustain stable self-ignition of the incoming coal.
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Figure 2.1 Pulverised Coal Burner

The velocity of the primary air and coal are generally held at approximately 25 m/s with a 

temperature of 75 °C (under preheat condition). The velocity of the primary air plus the 

pulverised coal stream of the nozzle must exceed the speed of flame propagation in order 

to avoid flashback. The optimum stoichiometry 2 (air-fuel ratio) in the fuel rich 

combustion zone has been found to be approximately 0.7 [IEA, 2000] and the mean 

particle size of the pulverised coal is about 25 ^im. [Singer, 1981]

Utility boilers can generally be grouped into three major categories: (a) Horizontal firing 

(front wall), (b) Horizontal firing (opposed wall), and (c) Tangential firing boilers, as 

shown in Figure 2.2

2 The theoretical amount of air required to burn a fuel completely to combustion products is defined as 
stoichiometric air.
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Figure 2.2 Burner Arrangement in PF-fired Boiler 

(a) Front wall firing (b) Front and Opposed walls firing (c) Tangential firing

2.2 Pollutant Emissions in Pulverised Fuel Boilers
Legislation affecting coal-fired power stations has created a market opportunity for 

commercially viable technology aimed at the control of pollutant emissions. Nitrogen 

Oxides (NOx) and Sulphur Dioxide (SO2) are the main agents contributing to the 

formations of acid rain and tropospheric ozone3 . In the UK, the Environmental Protection 

Agency (EPA) has requested utility boilers to operate below 320 ppm of NOx from 1995 

[IEA, 1997].

3 Ozone is an important trace gas in the troposphere. It is not directly emitted into the troposphere, but 
chemically produced by NOx, CO, CH4 and other hydrocarbons. These ozone precursors are emitted in 
large quantities due to human activities such as traffic and industry
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2.2.1 The Mechanisms of NOx Formation

Nitrogen oxides from the combustion of coal comprise about 95 % nitric oxide (NO) and 

about 5 % nitrogen dioxide (NCh), plus less than 1 % of nitrous oxide (N2O). NOx is a 

by-product of coal combustion and originates from both the coal-bound nitrogen and 

nitrogen from air. There are three generally recognised formation mechanisms for NOx: -

1. Fuel NOx due to the oxidation of coal-bound nitrogen compounds at a 

temperature > 750 °C and these dependent on the nitrogen content of the coal.

2. Thermal NOx arising from reactions between oxygen and nitrogen in the 

combustion air at a temperature > 1300 °C in oxidizing atmosphere. This is 

largely dependent on flame temperature and residence time at high temperature.

3. Prompt NOx from the fixation of atmospheric (molecular) nitrogen by 

hydrocarbon fragments in a reducing atmosphere. This is formed in the early 

stages of all PF coal flames, i.e. in the ignition region.

The contribution of fuel and thermal NOx to the total NOx emission can be of the order 

of 80 % and 20 % respectively for a bituminous coal with high nitrogen content. The 

effect of prompt NOx is small and it is often neglected. Modelling of coal combustion is 

usually based on the assumption that the conversion of coal can be divided into two steps 

[ffiA, 2000]: -

1. Pyrolysis of the raw coal and combustion of volatiles, and,

2. Char burnout.

The Visona and Stanmore model, which demonstrates the formation path for fuel NOx, 

can be seen in Figure 2.3. NOx is first liberated during the primary de-volatilisation as 

tars in the coal flame. Additional fuel nitrogen is released from the char as HCN and 

sometimes as NH3 and NH, on time scales that are considerably longer than those for tar

12



formation are. At the same time, the volatiles undergo secondary reactions in the hot, fuel 

rich gaseous phase, which converts the nitrogen contained in the tar into HCN with some 

of the tar being subsequently converted into soot. The char and soot formed are then 

oxidised and these liberate additional nitrogen by chemical conversion to NO or by 

thermal dissociation induced at the high temperatures associated with char combustion. 

Numerous chemical reaction routes have been proposed which involve a series of 

intermediate species such as CN, CHO and NH radicals and compounds. These are 

produced from fuel nitrogen, which can then form gaseous nitrogen or NOx depending on 

oxygen availability. A detailed explanation of the chemical reactions is presented in 

Appendix A.

Figure 2.3 Reactions for Fuel NOx Formation [Visona and Stanmore, 1995]

2.2.2 Factors Affecting NOx Formation in a PF system
Having discussed the chemical paths of NOx formation, the overall physical and 

chemical characteristics governing the production of NOx can be summarised as: -

13



1. Coal properties such as, coal rank, volatiles, and moisture contents and coal 

particle size.

2. Burner parameters and the combustion parameters such as flame temperature, de- 

volatilisation rate, air-fuel ratio, swirl intensity, input air temperature, and firing 

load.

3. Furnace geometry and setup, for example, a tangential boiler tends to have lower 

NOx emissions. In addition, the coal and air distribution in the boiler will affect 

NOx.

The rate of emission of NOx generally increases as the coal nitrogen content increases 

[Mitchell et al., 1982]. However, O'Connor (1999) showed that for given nitrogen 

content the NOx produced in low NOx burners decreased as the volatile matter content 

increased. O'Connor suggested that NOx decreased at low fuel ratio4and the reduction of 

NOx is due to the following reasons: -

1. The release of fuel nitrogen in a reducing environment generating N2, as opposed 

to NO.

2. Lower retention of fuel nitrogen in the char inhibits the formation of NO from 

char oxidation.

Besides these, the boiler configuration, type, and geometry have remarkable influence on 

the formation of NOx. As such, the operational characteristics of two boilers will not be 

the same even with the same coal [O'Connor. 1999].

2.2.3 Low NOx Technology in PF Boilers

A variety of low NOx technologies, including, (a) Low NOx Burner (LNB), (b) the use of 

Overfire Air (OFA), (c) Reburn, (d) Flue Gas Recirculation (FOR), and (e) Burner Out of

4 Fuel ratio is defined as the fixed carbon over the volatile matter in the coal.
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Service (BOOS), are available on a commercial basis. One common feature amongst 

these techniques is that they are all based on staging of the combustion air, or fuel. Post 

combustion techniques such as catalytic conversion are also widely used. The working 

principle for these low NOx technologies as aforementioned in the above are summarised 

as follows: -

1. The design of a low NOx burner aims to reduce the flame temperature and to 

stage the oxygen distribution in the flame. Approximately 20 % of the combustion 

air is supplied as primary air [Borman et al., 1998] with the rest split between 

secondary and tertiary supplies (Figure 2.1). The primary air is mixed with the 

fuel, producing a low temperature oxygen deficient fuel rich zone. This helps to 

reduce the formation of fuel NOx by promoting the conversion of the fuel 

nitrogen to molecular nitrogen. The use of a low NOx burner changes the flame 

temperature profile as well as the chemistry of the combustion. With 

"conventional" burners, the conversion of volatile nitrogen to NO is more 

efficient than the conversion of char nitrogen to NO. Consequently, an increase in 

the volatile and nitrogen content of the coal gives rise to higher emissions with 

un-stagedconditions. [Smarted al, 1993]

2. The use of overfire air burner achieves lower NOx levels in a similar way to that 

of a low NOx burner. The overfire air is injected above the primary combustion 

zone to achieve complete combustion using a special wind box with overfire 

nozzles mounted above the top level of the burners. Stowe et al (1996) reported a 

50 % reducing in NOx by the combination of LNB and OFA. In a burner out of 

service system on the other hand, some of the burners are operated under sub- 

stoichiometric conditions with the supply of air for complete combustion provided 

through adjacent non-firing burners. Hence, the boilers effectively operated with 

air-staging [IEA, 2000].

3. Rebum operation involves the staged supply of fuel and combustion air in the 

furnace, to create three distinct combustion zones - primary, reburn and burnout.
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In the primary zone, coal is fired with some excess air, producing NOx from both 

fuel-bound and combustion air nitrogen. A secondary fuel (reburn fuel), which 

can be natural gas, coal or oil, is injected above the primary zone to create the 

reburn zone. Hydrocarbon radicals released from the reburn fuel in this zone react 

with NOx formed in the primary zone to reduce it to molecular nitrogen. Finally, 

the remaining combustion air is injected above the reburn zone, i.e. in the burnout 

zone to complete combustion [DTI, 2000].

4. Flue Gas Recirculation is achieved by having part of the flue gas re-circulated in 

the furnace in order to modify the conditions in the combustion zone. The 

resultant reduction in oxygen concentration is the treatment in achieving low NOx 

emissions. FOR may also be used as a carrier to inject fuel into the reburn zone, 

thus promoting thorough mixing.

5. In the Selective Non-Catalytic Reduction (SNCR) process, an amine based 

chemical reagent, most commonly ammonia or urea is injected as a spray into the 

flue gas which is at 900-1100 °C, reducing NOX to molecular nitrogen. NOX 

reductions of between 40-50 % can be achieved with SNCR. SNCR needs proper 

control and operation to avoid the release of ammonia to the atmosphere. So far, it 

has been applied successfully only in small to medium scale plants (up to around 

150 MW) because it is difficult to ensure proper mixing of the flue gas, the 

correct residence times and temperatures in larger boilers.

6. In the Selective Catalytic Reduction (SCR) system, vaporized ammonia is 

injected into the flue gas stream at about 300-400 °C. This is then passed over a 

catalyst, and the NOX is reduced by ammonia to molecular nitrogen. The catalyst 

is usually based on the oxides of titanium, vanadium and tungsten, although its 

actual composition, including other active metals and support materials, is varied 

to meet the specific requirements of an installation. The capital cost of SCR 

systems is high due to the use of ammonia and the need to replace degraded 

catalysts at relatively short intervals. Therefore, it is generally not cost-effective.

16



2.3 Monitoring of PF burners
Determination of the emissions of the gaseous combustion products provides useful 

information on complex combustion processes taking place inside a boiler. All power 

stations monitor their stack emissions as well as other performance indices, such as heat 

rate, auxiliary consumption, pollution concerns and slagging [EPRI, 1986; Kay, 1994] as 

part of the economics and legislative commitments. Different plants will have their own 

way of carrying out monitoring, and often the information is used to undertake 

improvements to the boiler. Monitoring systems that accurately reflect the status of 

individual burners are also important for advanced boiler management. Accurate 

monitoring of individual burners is even more important for advanced low NO burners 

because these burners are typically more sensitive to changes in operating parameters and 

feed system variations than conventional burners [Timothy, 2003].

2.3.1 Limitations of Existing Monitoring Methods

Although there are a large number of commercially available instruments for monitoring 

combustion applications, the difficulties of obtaining detailed information in a large 

utility boiler due to problem related to inaccessibility have been reported [Rodriquez et 

al., 2001]. Conventional intrusive probes (e.g., water-cooled probes, suction pyrometers 

and other thermocouples), which allow for direct measurements inside the furnace 

through boiler inspection ports, have limited application. This is because they are 

restricted to the limited areas where direct access is viable.

Measurements of gaseous and particulate flows (e.g., electrostatic and acoustic emission 

techniques) and temperatures prior to the burner (i.e. so-called pre-combustion 

measurements) can be used to determine the individual inputs of air and fuel. However, it 

is expensive to apply to individual burners in large utility boilers and measurements of 

the flow to groups of burners whilst limiting their usefulness. In addition, they are the 

indirect measurements of the real combustion process that tends not to be as reliable 

because the reading can be easily masked by the complexity of the process itself.
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Post combustion analysis systems such as flue gas analysis and laboratory based thermal 

gravimetric analysis to measure sample carbon-in-ash contents, also have limitations. For 

example, flue gas analysis system is often located some distance from the region so that 

mixing of the products from individual flames prevents the characterisation of individual 

burners [Greaves, 1999; Kay, 1994]. In addition, extractive gas sample based post 

combustion analysis systems can be subjected to the effects of particulate stratification 

and air leakage, which may lead to significant errors. Gas analyses by wet chemical 

methods, for example, gas chromatography5, are time consuming and demand high-level 

technical skills.

Alternative non-intrusive techniques use sensors mounted on the boiler walls to detect 

changes in burner operation. These so-called non-intrusive instruments can be of two 

classes as follows [Larrimore et al, 1997]: -

1. Active systems, which consist of an emitter and a receiver. The signals generated 

by the emitters are modified during their transmission through the furnace and 

hence can yield information on boiler characteristics.

2. Passive systems, which determine the properties of the flame directly using flame 

detectors such as, IR pyrometers, cameras, or heat flow sensors.

With rapid increases in available computing power, the facility to build ever more 

"intelligent" control systems appears to be limited to some extent by the sensor 

technology [DTI, 2003]. Because of this, the current project emphasised in the 

development of effective flame monitor and control system for PF burners.

5 Chromatography is a powerful separation process: it can separate components that have only slightly 
different properties. Therefore preparative chromatography is mainly used for difficult separations and for 
separation of sensitive products.
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2.3.2 Some Techniques for the Diagnosis of Combustion

There is a growing interest in the study of flame radiation in PF systems. Pastor (2000) 

suggested that flame radiation monitoring is one of the most appropriate ways of 

examining the condition of the burner. This is because they are non-intrusive and due to 

the luminosity of the flame, any change in combustion process will be revealed in the 

flame itself. Kay (1994) acknowledged the importance of the flame information for 

burner diagnostics and improvements. Flame detectors are composed of a light receiver 

for detecting and converting light into an electrical signal. In the past, flame detectors 

were employed mainly as a safety feature to detect the presence of a flame. However, due 

to increased computational capacity and the development of advanced signal processing 

algorithms the pulsating frequency of the light emitted can be analysed to yield useful 

flame information [Willson et al, 1985; Martin, 1993]. hi another respect of flame 

monitoring, Lu et al (1999) demonstrated the possible use of vision-based optical devices 

to characterise flame in a gas-fired boiler and other similar combustion systems. 

Undoubtedly, the use of optical method for monitoring of industrial flame has become 

popular gradually. This is in fact influence by the evolution of low cost silicon based 

optoelectronics, which promises enhanced sensitivity to any industrial flame monitoring 

applications [Martin, 1993].

Industrial combustion consists of light contributions of continuum radiation from the 

dispersed phase following Planck's law 6 and of band emissions from the gas-phase 

chemiluminescence [Leipertz, 1996]. The intense chemical reactions close to the flame 

front release energy as Ultraviolet (UV), Visible (VIS) and Infrared (IR) electromagnetic 

radiation [Jackson et al., 1987; Willson et al, 1985]. The variation of the radiation 

intensity versus wavelength differs for the different fossil fuels [Singer, 1981]. See 

Figure 2.4.

6 The Planck law gives the intensity radiated by a blackbody as a function of frequency (or wavelength), 
see http://scienceworld.wolfram.com/physics/PlanckLaw.html
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Figure 2.4 Spectral Distributions of Flame Radiations for Common Fossil Fuels

[Bryant, 1980]

Refractory materials emit both UV and IR radiation with the radiation intensity 

increasing sharply with increasing temperature inside the furnace. Leipertz (1996) used a 

UV based spectroscopy7 for the early detection of NOx generated flame radicals with the 

results suggested that OH, (H)CN, NH and CH can be identified as possible precursors 

and indicators to the NOx. Glasheen (1998) in his experiment used UV sensors to 

determine flame temperature and frequency information that corresponded to boiler 

parameters such as flame quality and emission concentrations.

Even though a UV photocell is capable of discriminating flame under supervision and its 

adjacent one, or the background radiations, they have been found not sensitive to the 

variations in the flame resulted from different burner settings. Apparently, UV tends to be 

blocked or absorbed by oil-mist, water vapour, carbon particles, and other combustion 

by-products. Consequently, this prevents a reliable measurement of the sensor signal 

being obtained [Ballard, 1984; Bryant, 1980].

7 A spectroscope equipped with a photoelectric photometer to measure radiant intensities at various 

wavelengths
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The emission of IR radiation takes place as molecules undergo transition from one 

vibration-rotation state to another [Kay, 1994]. IR resists absorption and contamination 

by the combustion by products and is preferred for the use in coal-fired system [Willson 

et al., 1985; Jackson et al, 1987]. Many successful applications, for example, Ballard 

(1984) and Daw (2002) assessed flame quality in the visible and IR parts of the spectrum. 

Once again, the attribute of low cost CMOS in the range of IR wavelengths improve the 

number of applications in monitoring of combustion flame [Bendisciol et al, 1988, 

Martin, 1993]. Other advance flame monitors such as IR spectrometer, Fast Fourier 

Transform IR (FTIR), Multicolour pyrometer [Shepard et al, 1993, Michel et al, 2001; 

DTI, 2003], are currently available for different applications. Furthermore, both Jackson 

et al (1987) and Martin (1993) confirmed that specific wavelengths corresponding to CO, 

CO2, NO, NO2 and SO2 can be found predominantly at the flame root.

Despite all advantages as aforementioned, the issue in relation to the discrimination 

between a flame and the glowing refractory remains a problem. The glowing refractory 

was found to emit radiation at the end of the UV wavelength region and is increasing 

smoothly to the maximum in the IR region. If IR sensor is to be used, some 

distinguishable features between the flame and glowing refractory or nearby flames have 

to be found [Ballard, 1984; Jackson et al, 1987]. hi principle, this can be achieved 

through identifying the flicker characteristics of the flames. The radiation emission of the 

flame is irregular due to the back flash behaviour hence manifesting itself through 

intensity fluctuation. In contrast, background radiation appears to be a largely steady 

component.

In general, the pulverised coal flames fluctuate more intensely in comparison to those of 

oil and gas flames [Willson et al, 1985]. The frequency of these pulsations or flame 

flicker is dependent on a number of factors such as fuel type, burner configuration, firing 

load, viewing area and distance of viewing from the flame. These serve to be vital 

information for flame monitoring. According to Jackson et al (1987) and Hashimoto et al
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(1992) the temporal change in the flame pulsation (i.e. the frequency of flame flicker) of 

IR radiation correlates with combustion intensity at different loads and swirl numbers.

Typically, an IR detector for measuring flame flicker should be located at the back of the 

burner, thus viewing along a line roughly parallel to the flame front [Jackson et al, 

1987]. This avoids error due to the sensor picking up emissions radiating from the 

refractory at the burner mouth. However, this position may not always be accessible in 

existing boilers. As such, Willson (1985) and Bendisciol (1988) proposed the use of a 

high pass filter (i.e. cut-off frequency of > 250 Hz) to eliminate the lower frequency 

signal emitted by the background radiation from the burner quarl arc. Alternatively, 

Booth et al (1998) suggested the use of two photocells looking at different regions (one at 

the flame and the other at the refractory) and both signals were then compared using 

cross-correlation technique. In conclusion, the study of the oscillations in the radiation 

intensity can indicate the combustion efficiency [Huang et al., 1999].

Another area of flame monitoring that attracted much consideration in recent years relates 

to vision-based imaging technique. Lu (2000) and Yan (2002) assessed both gas and coal 

flames using CCD cameras. They concluded that flame images can provide both 

qualitatively and quantitatively information corresponding to combustion performance. 

The same approach was used by [Shimoda et al, 1990], [Durbin et al, 1996] and [Wang 

et al, 2002] with agreement that flame images are well correlated to the flame parameters
o

such as temperature, radiant energy, flame velocity and flame geometry. Tomographic is 

another imaging technique designed for estimating flame temperature that involves 

Planck's law was proposed by Leipertz (1996). The experimental result shows that the 

estimated temperature was somewhat close to the readout from a suction thermocouple. 

Evident enough, the vision-based system has been found feasible for flame monitoring. 

Nevertheless, one must bear in mind that the process of digital imaging demands 

considerable computational power and storage. Besides, the CCD camera is more

8 A number of optical modalities (i.e. physical processes that can be experimentally quantified by 
measurements of optical radiation) based on various interactions between matter and the electromagnetic 
field, have been identified, assessed, and utilized. Among these, optical absorption has emerged as a 
simple, well-studied, chemically selective (by optical wavelength) and comparatively easy to interpret 

modality
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expensive to setup and tends to undergo degradation under high temperature condition. In 

addition, CCD requires large aperture in order to sustain a sufficiently large view into the 

furnace and consequently boiler modification. One way to get pass the installation 

problem is to made use of fibre optic. Jackson (1987) suggested that a fibre optic image 

sensing system could provide good accessibility to the flame. The output images could 

transmit meters away thus lowering the temperature the sensor is exposure to.

It is evident from the previous paragraphs that installing an optical sensor was highly 

recommended in this project. Examples for the commercial flame monitor and burner 

diagnostic systems are as follows: -

1. FLAMANCO is a flame monitor developed by MK Engineering Incorporation, 

USA. The idea is based on the flame flicker information for determining 

important burner parameters. [Khesin et al, 1997].

2. OPTICOM operates in a similar way to an optical pyrometer. It is mostly use for 

measuring flame temperature and gaseous emissions. OPTICOM is developed 

under a joint research programme between Ingenieria Energetica y de 

Contaminacion, Spain. (INERCO) and University of Seville, Spain (AICIA). 

[INERCO (2003) - http://www.inerco.com/en/products/opticom.html; Last 

Accessed 10 March 05; Rodriguez et al., 2002].

3. Flame Doctor is known as flame scanner designed for discriminating flame 

patterns with has in-built software that can autonomously determining 

mathematical functions between the emissions and combustion settings [Timothy 

et al, 2003; Daw et al., 2002; Flame Doctor (1996) - http://www.babcock.com 

/pgg/ps/flame/doctor.html; Last Accessed 10 March 05]
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Industrial flames generate audible sound from a range of sources and overall, this can be 

observed as "combustion noise" [Smith, 1963; Giammar, 1970]. The pulsation frequency 

associated with combustion instability affects combustion chamber pressure, due to 

irregular heat release, and is well correlated to the combustion noise [Warren, 1978]. 

Combustion noise occurs when fuel and air enter a flame pocket where the mixture 

becomes flammable and burning continues, increasing the volume of the pocket that 

displaces the air and fuel streams, forming a non-flammable pocket again. This cycle 

continues the on-off nature of the combustion can be seen as pressure fluctuations. In 

conclusion, the turbulence of the combustion gases produces sound pressure related noise 

[Pinderet al., 2004].

Combustion noise has been identified as an important source of information for industrial 

furnaces. In general, the total noise is making up of two main sources: (a) direct 

combustion noise, which arises due to unsteady combustion process, and (b) indirect 

combustion noise that generated by increased air velocity at a density that differs from 

the bulk density of its surroundings under highly turbulence and swirl conditions [Xu et 

al, 1997]. Abugov (1978) claimed that the noise generated by the flow of cold jets is 

dependent on the turbulence characteristics, which greatly amplified as the turbulence 

intensity increases. As such, this is also known as turbulence-combustion interaction 

noise [Warren, 1978].

The characteristic acoustic frequencies in an enclosed combustion chamber are related to 

its dimensions and the velocity of sound through the burning gases [Abugov, 1980]. 

Gaydon (1978) observed experimentally that the sound pressure signal follows the 

radiant intensity of the flame with a delay. This delay was thought to be due to the time 

taken for the sound to reach the microphone. Gaydon concluded that the sound pressure, 

the variation in light intensity, and the combustion rate are interrelated, hi addition, 

Abugov (1978) suggested that the noise generated in a turbulent flame can be viewed as 

arising from a collection of burning elements in the combustion gases and is equivalent to 

a collection of monopole sound sources. Abugov claimed that pulses from monopole 

source tend to interfere with each other and the total noise intensity (dipole) will fluctuate
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in the flame due to fluctuation in the combustion process. Based on his explanation the 

existence of spatial and temporal inhomogeneity in the state of the initial fuel mixture in 

the turbulent combustion zone ultimately causes fluctuations leading to the generation of 

noise even though the average combustion rate remains constant. This indicates a direct 

coupling between combustion process and the emission of sound.

There is also evidence of the measurement of noise of industrial systems with 

microphone sensors, hi combustion, Zukowski (1999) and Xu (1997) both used a 

microphone to measure sound intensity in Fluidised Bed Combustor (FBC). The 

generated noise was found to be related to fluidisation of the solids by a gas and was 

connected with the movement of solid particles and the formation and movement of 

bubbles or slugging in the bed. Even though the noise from other equipment such as air 

pumps and the sound generated while the fluid flowed through the pipeline and the coal 

feeder are potential contributors to the measured noise, the change of phase (i.e. 

formation of vapour from liquid and solid fuels, which occurs during combustion) 

effectively produces many monopole sources. These noises can dominate the overall 

sound effects. Consequently, qualitative and quantitative changes in the acoustic signals 

emitted from a FBC can be used to obtain information about the combustion process.

Michel (2001) reported the possible use of acoustic method in measuring flue gas flow 

rate in a boiler. Tretnikov (1987) suggested the need for making a definitive identification 

of a source of noise using a microphone, for instance, to determine the noise level 

(interdependent spectrum) of each boiler and characteristics of boilers when the boiler 

house and the machines hall are link acoustically to within the overall noise level of the 

boiler house, hi addition, Kidin (1984) established the link between noise intensity 

(sound spectrum) and burning rate using a microphone and concluded that they were in 

proportion.

Even though the task of recognising combustion noise of an individual burner within a 

burner bank can be hardly achieved, a cylindrical pipe can be installed as waveguide to 

attenuate any unwanted noise arising from unrelated sources [Willson et al, 1985]. hi
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addition, the microphone should also be placed close to the burner because maximum 

noise level occurs near the area where combustion takes place [Tretnikov, 1987]. Because 

the combustion noises changes under different working conditions due to changes in the 

instantaneous combustion rate, pressure, and mean temperature, a microphone sensor has 

been installed to measure the combustion generated noise in a burner.

Overall this literature review regarding the use of IR and microphone has indicated that 

these sensors can be used for combustion monitoring. Measurements of flame radiations 

appear to provide useful information on the flame characteristic and in addition "flame 

flicker" can be related to the rate of combustion and other factors, such as the swirl 

setting. The noise intensity during combustion arises from the collection of the sound 

emitted by different monopole sources within a boiler so that fluctuation in combustion 

noise can be relevant to flame characteristics. Finally, the literature review established 

that both IR detector and microphone are suitable sensors to monitor combustion process 

in the present project.

2.4 Acoustic Emission (AE)
Acoustic emission (AE) refers to the generation of elastic waves as a result of micro- 

sized releases of transient energy in a material. Monitoring these waves can provide 

fundamental information about the location and mechanism of the transient energy 

release as well as the time-stress history. Potential sources of acoustic emission include 

[Jiaa, 1990] : -

1. Crack nucleation and propagation.

2. Impulsive shock loading.

3. Micro vibration excited by stick-slip phenomena at the interface of moving parts.
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2.4.1 Introduction to AE

AE energy is attenuated and dispersed as it travels through the material both in terms of 

frequency as a result of geometrical beam spreading, energy absorption by the material, 

and wave dispersion. In principle, any impulsive event occurring within a solid or on its 

surface is capable of generating AE. For example, the breaking of pencil lead producing 

audible "clicks" contains AE with frequencies of up to 50 MHz.

The most common transducer for detecting AE is constructed from a piezoelectric 

ceramic element, composed of Lead Zirconate Titanate (PZT). The detected signals are 

often amplified, filtered and transmitted to a data logging system that stores the incoming 

signals. Figure 2.5 shows a schematic of an Acoustic Emission monitoring system.

AE Sensor

Case  

Wear Plate

Amplifier and 
Bands Pass Filter

Signal Acquisition 
and Storage

Signal Processing 
and Analysis

Active Piezeoelectric Element

Propogation Medium

Emission Source

Figure 2.5 Schematic of the Acoustic Emission Scheme

AE waves have ultrasonic frequencies and have sufficient power to make it possible to 

undertake measurements away from the AE source. Because of the high frequency, AE 

signals are free from contamination from low frequency background noise. This further 

enhances the application of AE to condition monitoring [Reuben, 1998]. The majority of 

AE signals are between 0.1 to 1 MHz, once generated AE waves can travel both as 

longitudinal, and transverse (shear) waves depending on the geometry of the structure. 

They can also suffer reflection and refraction. One of the advantages of using AE is that

27



there are a wide range of mechanisms that can generate these elastic waves including 

plastic deformation, cracking, abrasion, bubble collapse, fluid flow effects and impacts. 

Therefore, AE has a great potential in condition monitoring [Fog, 1999].

Consequently, it has been widely employed in applications such as structural integrity 

monitoring and machinery monitoring. Fog (1999) used AE to monitor the exhaust valves 

of marine diesel engines over a broad range of engine operating conditions with the aim 

of allowing maintenance to be carried out before a fault occurs. Reuben (1998) reviewed 

the use of AE not only to detect process degradation but also to trace process 

abnormality. He also explained that machinery such as gas turbines or reciprocating 

compressors have a multitude of AE sources from bearings, fluid flow, sliding contacts 

and mechanical impacts. Dimla et al (1996) reported the use of an AE sensor for tool 

condition monitoring in metal cutting and suggested that AE arises in this case as the 

work piece undergoes considerable plastic deformation as the tool removes material. This 

results in the generation and movement of a large number of dislocations. Elghamry 

(1998) demonstrated that detection of AE (the root-mean-square, rms, of the AE signal) 

can be used to provide an appropriate air-fuel ratio to prevent "knock" in gas engine. 

Elghamry also suggested that those acoustic signals were harmonics of the engine cycle, 

which made them useful for sensing mechanical and combustion processes.

Disturbances in fluid flows also generate AE so that Neill et al (1997) used AE to detect 

the onset of incipient cavitation in centrifugal pumps. Neill established that the AE 

signals were statistically different both in the time and frequency domains for the pump 

running under normal and cavitating conditions. Cavitation induces bubbles in the flow 

that cause stress waves that can be transmitted to adjacent structures such as the pump 

casing and pipe-work. In addition, the hydrodynamic pressure fluctuations in solid liquid 

two-phase flows can be a source of AE, which can be detected at the surface of the 

containment structure. Hou et al (1998) used AE with a bandwidth of 0-190 kHz to 

diagnose changes in the operating conditions of a laboratory-scale hydro-cyclone that 

was used to separate fine silica flour from water. This investigation focused on the effect 

of the turbulent flow intensity in the cyclone and spectral characteristics of the generated
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AE signals. It was found that the AE signals could be closely correlated with several 

important operating parameters such as the solids concentration, feed pressure, and mass 

flow rate. Also, chemical processes, particularly those associated with reactions and 

phase transformations have been identified to be acoustically active. For example, the 

reactions of metals in acidic solutions are often accompanied by "hissing" sounds. These 

can be detected as high frequency AE on the surfaces of the container in which the 

reaction is taking place [Cao et al, 1998].

2.4.2 Possible Use of AE to Monitor a PF Burner

The previous discussion has indicated that the measurement of AE can provide 

information on flow and chemical processes so that it has the potential to be applied in 

combustion system. However, it appears that the use of these sensors in combustion is 

limited. In fact, there is no direct evidence of using AE sensor for measuring combustion 

parameters except for detecting coal acoustic waves generated by the coal flow 

[Zadiraka,1996].

Kondakov (1992) developed a theory linking AE to the ignition and combustion of fuels 

in an enclosed compartment and claimed that AE signals can be related indirectly to the 

characteristic of the combustion process. Kondakov explained that AE can be 

transformed through micro structural deformation in the burner arising from fluctuation 

in the intensity of the combustion process of the fuel. In addition, Abugov et al (1982) 

demonstrated, in his research that there is interaction between a gas-fired combustion 

process and acoustic vibration. These authors discovered that the pressure fluctuations, 

which are a source of AE, are related to the intensity of combustion. The pressure 

fluctuations can be propagated as acoustic waves through the burner quarl and other 

sections of the chamber. Abugov concluded that the interaction between the combustion 

process and the acoustic vibrations is influenced by: -
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1. The magnitude of the standing wave9 factors in the chamber.

2. The attenuation velocities of the pressure fluctuations.

3. The ionisation current fluctuation in the chemical zone.

Therefore, from this previous work it appears that installing an AE sensor in contact with 

the burner structure may detect AE information that can be related to the combustion 

processes.

In summary, installing an AE sensor in contact with the structure outside the combustor 

may detect AE information related to characterise of the combustion processes. As a 

result, an AE sensor was chosen to be used in monitoring of combustion processes.

2.5 Mathematical Modelling of PF Process
Mathematical models are regularly developed for different purposes and applications, for 

example, for stress analysis, heat transfer and in aerodynamics. However, rigorous 

modelling of combustion plant is difficult because of the complexity of the process and 

the difficulty of obtaining plant performance data. Nevertheless, modelling is regarded as 

a valuable tool for validating plant design changes over a wide range of plant operating 

conditions without involving costly full-scale plant trials [IEA, 2000]. Modelling can also 

provide a link between laboratory scale and full size plants. It is an important simulation 

tool for plant design and overall boiler optimisation.

There are two main types of models used for analysing utility boilers, namely, the 

theoretical models establish from physical principles, and so-called "black box" models 

developed using input-output data. The former involves detailed study of the physics of

9 The standing wave (N), factor is ordinarily used to determine the wave reflection coefficients and is 
expressed in terms of the ratio between maximum and minimum pressure amplitudes. The greater the 
magnification of the flame fluctuations, the greater is the standing wave value.
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the system whereas the latter is commonly used for control design where specific input- 

output relationship is of more concern. Modelling has been used typically to: -

1. To assess the changes to plant operating conditions.

2. To predict and control pollutant and ash formations.

3. To predict the influence of furnace conditions on NOx boilers emissions and of 

coal quality in existing combustion boilers.

Theoretical models are usually based on knowledge of the physical and chemical 

relationships such as reaction kinetics, material balances, and thermodynamics. These 

models require a significant amount of empirical data and knowledge to develop 

relationships that are valid over a wide range of operating conditions. To build a model, it 

is necessary to define the boundaries. The input design parameters for power plant are 

factors such as boiler geometry and operational parameters while the outputs are the 

performance parameters such as pollutant emissions, steam pressure, temperature and 

boiler efficiency [Lu et al, 2000]. Although the models can be accurate, they are only 

applicable to the specific combustion unit for which they are developed. Besides, these 

models may fail when the dynamics of the combustion unit changes over time [IEA, 

1997].

Computational fluid dynamics (CFD) is commercially available simulation software 

specifically developed for modelling or prediction of fluid flow and heat transfer. In the 

coal utility industry, CFD is used to predict boiler and burner performance by combining 

heat transfer modelling with chemical kinetics and the fluid dynamics of the system. 

These generations of sub-models can account for gaseous species mixing, chemical 

reaction, coal particle de-volatilisation, char oxidation, and heat transfer by radiation and 

have been used successfully to predict parameters such as ash deposition, NOx emissions, 

temperature distributions, gas composition, velocity, and heat transfer. However, this 

approach requires knowledge of the coal and air inputs to the burner so that it is not
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appropriate in the current project, which aims to monitor the burner solely from output 
measurements.

An alternative, in full-scale boilers, is to model the combustion process as a "black box" 

[Rodriquez et al, 2002]. Artificial Neural Networks (ANNs) are a way of producing such 

a model. ANNs have the ability to represent highly complex nonlinear data and so they 

are suited to process where it is difficult to make use of conventional mathematical and 

empirical based modelling techniques. As a result, this feature of ANNs would appear in 

principle to make them suitable for representing a coal combustion process. Lu (2000) 

compared a mathematical model of power plant parameters, to an ANN simulation of the 

system and concluded that the ANN outperformed the mathematical model. Lu stated that 

models based on first principles tend to require detailed specific plant data, which can be 

difficult or expensive to measure. Since it is difficult to make sure that the CFD model is 

representing well the system in a constantly changing environment and therefore the 

ANN, which can be easily updated, was found to be more convenient for combustion 

applications [Zhao et al., 2004].

Alternatively, empirical models can use well-established regression techniques that can 

be employed to generate relatively simple mathematical relationships. However, a 

regression model oversimplifies the combustion process and so they tend to work poorly, 

particularly when they are required to extrapolate outside the range of application and 

therefore confidence limits must be applied [IEA, 1997; Lu et al., 2000]. Also regression 

method is often restricted to using linear functions, for example, the Multiple-Linear- 

Regressor (MLR) model [Wildman et al, 1994].

hi summary, the use of an ANN appears to be a useful modelling tool for combustion 

processes, which exhibit nonlinear and complex behaviour. Consequently, they were used 

in the present work to represent the relationships between the sensor signals and the 

concentration of gaseous species in the combustion products, hi addition, such a model 

that provides an input-output relationship will be appropriate for incorporation into a
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control system. Since these networks are employed in this project, they are reviewed in 

the next section of the thesis.

2.6 Artificial Neural Networks (ANNs)
ANNs are a range of parallel processing systems that is useful in specific types of 

complex problems. ANNs are different from conventional Von Neuman computation in 

that they "mimic" some of the fundamental properties of a biological brain [Masri et al., 

1992]. ANNs consist of massively connected networks that can be trained to represent 

complex nonlinear functions to a high level of accuracy. As such, they can perform 

complex tasks under ill-defined conditions and have been found suitable of representing 

many physical processes such as in coal combustion and biological processes [Zhu et al., 

1999; Premier et al., 1999]. The attributes of an ANN, such as the ability to learn from 

example, generalisation, redundancy, and fault tolerance, make these networks very 

suitable as an appropriate approach for "black box" modelling, hi summary, neural 

networks have the following advantages: -

1. The ability to adapt and learn from the environment means that the neural 

network models can deal with imprecise data and ill-defined situations.

2. The ability to approximate nonlinear continuous function.

3. They are suitable for multivariate system.

Learning in an ANN can be either supervised or unsupervised. In a supervised neural 

network, the network is adjusted using the input and known output characteristics of the 

process to obtain a desired output from the ANN. Multilayer Perception (MLP) and 

Recursive networks are two examples of supervised learning schemes, hi an unsupervised 

learning algorithm, the output characteristics are determined by the network itself without 

knowledge of the desired output data. The Self-Organization Map (SOM) is an 

unsupervised scheme. Both supervised and unsupervised networks will be discussed in 

the following sections.
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2.6.1 Feedforward Multilayer Perceptron (MLP) Network

The MLP network is probably the most often used member of the neural network family 

[Pacheco-Vega et al, 2000]. Other back-propagation neural networks such as the Radial 

Basis Function (RBF) and Hopfield networks have their use for different applications. 

Figure 2.6 illustrates a simple three-layer (input, hidden and output layers) network 

structural that can provide accurate estimation of general nonlinear function [Neural 

Network Toolbox - Matlab , 1998].

Weighted Connections

Input Vector l Output Vector
XI ——

Y4

Input Layer ^^\^^ OutP«t Layer 

Hidden Layer(s)

Figure 2.6 Multilayer Perceptron Network

The input neurons that together form the input layer carry out no calculations, their only 

task is to store and propagate normalised data forward into the network. The task of each 

hidden and output neuron is determined by the activity of the preceding neurons and the 

weights of the respective connections. Two calculations are performed: First, a weighted 

sum of all inputs from the neurons in the preceding layer is formed. Then, this weighted 

sum is passed through a nonlinear transfer function for which a hyperbolic tangent 

relationship (Figure 2.7) is generally used [Linko et al, 1996] because it responds to 

neuron's net input that goes from negative to positive infinity [Matlab  Neural Network 

Toolbox, 1998]. The next layer then repeats this set of calculations before giving an
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output from each of the output neurons. Other transfer functions include the radial basis 

function (RBF), hard limit or log-arithmetic.
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Figure 2.7 Neuron Transfer Functions

Figure 2.8 Computational Model of a Hidden Neuron

Mathematically, a single hidden layer network with only hyperbolic tangent and linear 

activation functions (/, F), as illustrated in Figure 2.8, can be expressed as: -

1=9

+ 6, [2.1]

where band Ware the bias and weight (in matrices), Fand /are the neuron activation 

transfer functions, x is the input vector, / and j represents 1 st and 2nd layers of the 

network respectively.
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The weights (specified by the vector 0, or alternatively by the matrices w and W) are 

adjustable parameters in the network, and are determined by comparing the network 

output predictions with the known outputs. The objective of training is to adjust the 

weights of the model connection to achieve a satisfactory representation of the training

data so that the network will produce predictions y(t), which are "close" to the actual 

training outputs y(i).

The ability of the network to represent the training data can be assessed by means of a 

prediction error, which uses the Mean-Square-Error (MSB) criterion. This MSB is 

defined as: -

MSE =
\_
N /=o

xo-xo [2.2]

Besides, the square root of the MSB (i.e. Mean Error (ME)) is also commonly used 

simply because they indicate true magnitude of the error.

The standard back-propagation algorithm, which is commonly used to modify the 

connection weights, is called Levenberg-Marquardt. Levenberg-Marquardt is one of the 

gradient descent 10(see Turner, 1996) types used for minimisation of the MSB criteria. 

The Bayesian framework developed by MacKay is recommended as a regularisation 

parameter that can be used to optimise neural network training in an automated fashion 

[Neural Network Toolbox - Matlab , 1998]. The Bayesian measures the number of 

effective network parameters (weights and biases) used by the network and promises a 

better convergence property, hi addition to regularisation as discussed, it is recommended 

to always train the network a couple of times by assuming different initial weights 

[Premier et al, 1998].

'"Gradient descent methods are the most popular method for training networks not only because of the 
rapid convergence which can be obtained but also, more importantly, due to the simplicity with which they 
can be implemented.
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Other factors that affect ANN predictions include the number of hidden layers, types of 

transfer functions, and the number of neurons in each layer. Essentially increasing the 

number of neurons and hidden layers increases network complexity thus yielding more 

accurate results. However, an excessive number of assigned neurons will lead to a 

problem called data "over-fitting" as shown in Figure 2.9. This means that the learned 

function fits very closely the training data however it does not generalise well, that is it 

cannot model sufficiently well unseen data from the same task [Linko et al., 1996]. 

Regrettably, there are only loose guidelines for selecting network parameters so that a 

neural network can only be trained on a "trial-and-error" basis. [Krishnapura et al., 

2000].

Trailing Prediction

Target 
Prediction

Figure 2.9 Over-fitting of Training data

2.6.2 Recursive Network
ANN which contains feedback connections is a recursive network (an example of which 

is an Elman network). The idea of a recursive network is that while a set of topologies of 

a feedforward networks is fairly constrained, the recursive network topology can take on 

any arbitrary topology as any node in the network may be linked with any other node 

(including itself). The output is dependent upon both the input to and the predicted output 

from the network. It is this feature, which enables a recursive network to describe time 

varying and temporal behaviour in addition to mapping spatial patterns [Swanston et al,
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1995]. However, one must bear in mind that unlike a feedforward model, the predictions 

of the two recursive networks with the same weights, biases as well as the data input for 

training, their outputs cannot be the same due to different feedback states.

In spite of the internal feedback of a recursive model, the static nature of feedforward 

network prediction can also be improved to cope with a dynamic system by presenting 

past output of the system as input to the network by means of a set of regressor vectors 

(e.g., Auto-Regressive with Exogenous Input), in which the past output and input values 

as well as a number of delays are organised accordingly before being fed into the network 

for training and validation [Van et al, 1995]. By this way, the predictor employs past 

measurements of the process output, and past as well as future values of the manipulated 

input, to forecast the future output of the process [Tan et al., 1999], which will be 

dicussesd in the following section.

2.6.3 Artificial Neural Network with Regressor of Exogeneous 

Structure (NNARX)

System Identification (SI) is concerned with creating good mathematical models of 

dynamic systems based on time and frequency domain input-output data. One effective 

way to achieve this is to employ Neural Network based System Identification (NNSI) as 

generic structure for the identification of nonlinear dynamic systems. Noorgard (2000) 

suggested that improved model predictions can be achieved through incorporating a set of 

regressor externally to an MLP network. Noorgard suggested that the basic identification 

of dynamical systems should consist of the following steps as illustrated in Figure 2.10.
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Figure 2.10 Structure of System Identification [No0rgard, 2000]

The commonly used Auto Regressive with Exogeneous input (ARX) regressor structure 

is defined as: -

[2.3]= \y(t-V)....y(t-na \u(t-nk \....u(t-na -nk +l)f

Where y and u are the output and input vectors. The number of past inputs, past output 

and delays of the data are denoted as na , nb and nk respectively. The predictor then 

becomes: -

y (t\0) = y(t\t - 1, 0) =g(0(t\6) [2.4]
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where cr(/) is a vector containing the regressor, 9 is a vector containing the weight and 

g is the function realised by the neural network. The entire structure of NNARX model 

is shown in Figure 2.10 where Pn and Poutput represent input and output vectors, t being 

the sample number and -1, or -2 indicates the number past inputs and delays.

Actual
Process P2 
Reading

Figure 2.10 Neural Network of the Auto Regressor with Exogeneous Function Model

Some understanding of the process dynamics may be required in order to correctly define 

the number of past inputs, outputs, and delays of the regressor. The Levenberg-Marquardt 

nonlinear least squares is benchmark. Also, apart from ARX regressor as in equation 

[2.3], there are other regressor forms, such as NNARXM and NNOE (see Neural 

Network Based System Identification Tool Box) that will lead to different model 

structures. Nevertheless, the ARX regressor is always preferred because it provides 

predictions without considering the feedback. Other regressor vectors may experience 

inadequate predictions in certain regimes of the network operating range [No0rgard, 

2000].
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2.6.4 Self-Organising Map (SOM) Neural Network

The SOM network has been successful applied in various engineering applications 

covering, for example, areas such as pattern recognition, image analysis, process 

monitoring and control, and fault diagnosis. It is a valuable tool in data analysis, mining 

and knowledge discovery [Simula et al, 1996; Vesanto, 1999]. The prototype vectors are 

positioned on a regular low dimension grid in an ordered fashion, making the SOM a 

powerful visualisation tool. [Vesanto et al, 2000].

Unlike supervised learning methods, the SOM can be used for clustering data without 

knowing the class memberships of the input data. The SOM algorithm performs 

topology-preserving mapping from the high dimensional input space onto map units so 

that relative distances between data points are preserved. Data points lying near each 

other hi the input space will be mapped onto nearby map units. The SOM can thus serve 

as a clustering tool for multi-point data. It also has the capability to generalise, i.e. the 

network can interpolate between previously encountered inputs.

hi the same way to supervised networks, the SOM is trained iteratively. In each training 

step, one sample vector x from the input data set is chosen randomly and the distance 

between it and all the weight vectors of the SOM are calculated using some distance 

measure. The neuron whose weight vector is closest to the input vector x is called the 

Best Matching Unit (BMU). The distance between the BMU and newly presented data 

vectors become: -

where ||| is the distance measure, typically the Euclidian distance, k is the set variables 

of sample vector x. xk and mk are the tfh component of the sample and weight vectors.

o>k is the kf1 mask value.
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The SOM learns on a "winner-take-all" basis. The neuron in the competitive layer 
(Figure 2.12) with weights most closely resembling the current input is the winner The 
unsupervised learning network transforms /7-dimensional input patterns to a q- 
dimensional (usually q = 1 or 2) discrete map in a topological ordered fashion (e.g., 
hexagonal and rectangular). Input points that are close in the p-dimension are also 
mapped closer on the ^-dimensional lattice. Each lattice node is represented by a neuron 
associated with /^-dimensional adaptive weight vector. The best matching weight vector 
and some of its topological neighbours are then adjusted to better match the input points. 
Figure 2.13 shows the updated topology of the SOM, in which the BMU and its 
neighbour vectors have moved closer to the input vector. The use of SOM for time-series 

prediction was also documented in Simula (1996).

Competitive Layer

j\\\vi my./

n-dimensional Input Pattern

Figure 2.12 SOM with 25 Competitive Neurons on Rectangular Grid
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Figure 2.13 Updating the BMU and its neighbours towards an Input pattern x (the solid 

and dashed lines correspond to neurons position before and after updating respectively)

2.6.5 Neural Network Optimisation

Optimisation of an ANN is a prerequisite in order to achieve good prediction accuracy. 

Normalisation is a process of scaling the numbers in a data set to improve the accuracy of 

the subsequent numerical computations. For instance, if one variable has a value in the 

range of [0... 1000] and another in the range of [0... 1], the former will almost 

completely dominate the weight determining process because of its greater impact as a 

result of the magnitudes of these variables. For this reason, it is necessary to scale the 

training and simulation inputs and targets into the range -1 to 1, or zero mean and unity 

standard deviation.

Also, because the performance of the ANN is influenced by the model parameter settings, 

for example, the number of hidden layers and neurons used for training. Therefore, to 

select good model input requires considerable experience. The basic notion is to increase 

the number of neurons improves network predictions. However, the expectation can 

differ if too many neurons are added to a model structure. This is known as data "over- 

fitting" where the unseen situation is not well represented as shown in the right domain of 

Figure 2.9. In order to prevent this, two methods are recommended, namely, early 

stopping and the Optimal Brain Surgeon (OBS).
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Early stopping is a technique based on dividing the data into two subsets. The first subset 

is the training set that is used for computing the gradient and updating the network 

weights and biases and the second subset is used as the validation set. The error hi the 

validation set is monitored during the training process and training is stopped when the 

validation error starts to rise, as this is an indication that the network has started to be 

over-trained. If early stopping is used, the network should always be set to small random 

initial values, a slow learning rate, and a large number of neurons to avoid under fitting.

The advantages of early stopping are: -

1. It can be applied successfully to networks in which the number of 'weights' out 

numbers the sample size.

2. It requires a decision by the user.

The Optimal Brain Surgeon (OBS), on the other hand, prunes away any superfluous links 

and weights from the network thereby reducing computer run time, memory and cost for 

hardware implementation. Unlike early stopping, the execution of OBS entails long 

computational time and as a result, they are less popular [Lendasse et al, 2001].

In addition to this, it is always possible to improve ANN prediction effectiveness and 

reduce PC run time by pre-processing data prior to training. Principal Component 

Analysis (PCA) can be used to reduce the number of input parameters for network 

training [IEA, 2000]. Essentially, PCA eliminates those inputs that have only a marginal 

effect on the output and as a result a significantly number of inputs to a neural network 

can be reduced [Bishop, 1995]. PCA takes account of three aspects for the given data, 

that is: -
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programmers can create neural networks sophisticated enough to perform visual and 
audio recognition at the same time.

Today, there are a number of commercially developed neural network software, for 
example, NeuroSolutions [Neural Dimension - http://www.nd.com/; Last Accessed 07 
March 05], Netlab [Netlab Neural Network Software - http://www.ncrg.aston.ac.uk/ 

netlab; Last Accessed: 07 March 05] and Neural Network for Microsoft Excel [Neuro 
Network Add-in for Microsoft Excel - http://www.neuroxl.com/; Last Accessed: 07 

March 05]. If not, neural network can be programmed using Visual C++, Matlab and 
other programming platforms [Linko et al, 1996] and as such this provides the user with 
the power and flexibility in the search for the best solution for a specific problem.

In combustion systems, ANN has the following advantages: -

1. They are particularly useful in system modelling and can represent a system with 

no priori knowledge [Bing, 1997].

2. The application of ANNs is data intensive and dependent upon multiple 

interacting parameters where the function to determine solutions is unknown or 

expensive to discover.

3. An ANN is able to handle noisy and incomplete data containing errors (i.e. it is 

fault tolerant), unlike the classical expert system, which is governed by a rigid 

rule-based reasoning framework.

4. The use of an ANN tool is relatively simple to implement and can be generalised 

to all kinds of functions. Therefore, it can be easily incorporated into control 

structure.
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Both William (1992) and Reinschmidt et al (1994) demonstrated that an ANN can 

provide an adequate function to predict the NOx emissions from a boiler at all control 

settings based on a small number of measured data points. Wang et al. (2002) relates the 

NOx concentration to the flame signal using ANN and suggested that accurately 

estimations of NOx were obtained. Gabor et al (2000) reported the success of 

implementing an ANN model controller to maintain good NOx, SO2 and CO in a PF 

boiler located at the Valley Power Plant, Wisconsin, USA. ANNs have also been used to 

predict the ash fusion temperature based on ash compositions for the coal instead of 

traditional techniques such as the ternary equilibrium phase diagrams and regression 

relationships [Yin et al, 1998]. Zhu et al. (1999) demonstrated that the ANNs can be 

used to predict combustion rates of coal chars with good accuracy.

Wilson (2002) suggested that NOx reduction and increasing combustion efficiency are 

not contradictory goals. In his study, Wilson developed an ANNs based optimisation 

system to provide closed-loop control and a plant model depending on historical data. 

Wilson claimed a 10-20 % reduction in NOx emissions with no appreciable increase in 

carbon in ash could be achieved. Another successful implementation of an ANN based 

optimisation system to reduce NOx in a PF boiler was reported by Booth et al (1998). 

According to the investigators, the major challenges were the performance changes due 

to wear and maintenance activities, adjusting to fluctuations in fuel quality, and 

improving operating flexibility. Apart from the modelling of NOx and other gaseous 

emissions, ANNs have also been used to model ash deposition in which the pace of ash 

deposition is based on the coal chemical and physical characteristics, system operating 

conditions, and system design. Salehfar (1997) and Wildman (1994), on the other hand, 

developed an ANN model to determine the impurities and ash forming species in coal. 

The resultant model can be used to accurately select, blend, and forecast fuel quality for 

power plants. In other respects, ANNs are used for fault diagnosis. Sharkey (1996) 

reported the use of an ANN to monitor combustion in an diesel engine cylinder and 

established that the ANN was able to recognize faulty conditions which would normally 

require the intervention of experience engineers. Zhou et al (2004) demonstrated the use
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of an ANN combined with a Generic Algorithm (GA) to search for the best burner setting 

in order to keep NOx emissions low.

2.6.7 Artificial Neural Networks as Software Sensors

Process monitoring and control relies heavily on accurate and reliable sensor information 

and many process parameters can be measured continuously using relatively simple and 

cheap physical sensors. However, the determination of certain quantities of interest 

requires costly laboratory analyses that cannot be performed online and so many 

monitoring approaches provide indirect measurement about the condition of a system. 

The required information may, however, sometimes be inferred from available 

measurements of observable quantities using a statistical model usually known as a 

software sensor.

Examples would include the use of an ANN to predict the nutrient dynamics using online 

sensor measurements in a wastewater treatment plant [Lee et al, 1999]. The required 

process parameters were inferred from the given plant inputs based on historical data and 

the results were promising. The same approach was used by Valentin et al (2001) to 

predict the coagulation process in the water treatment plant based on physical sensor 

readings. In combustion, partly due to the complexity of the combustion process, it is 

difficult to formalise (mathematically) relationships between input settings and the 

gaseous emissions even though correlation analysis and least square based algorithms can 

be used. These statistical models were found to be relatively weak and furthermore it is 

difficult to create a good model based on only one input variable [Wojcik et al., 2003, 

Valentin et al., 2001]. In contrast, the ANN is good at capturing complex nonlinear 

relationships and suitable for description of phenomena where an exact law describing 

dependencies is unknown and was found to be more reliable than statically models 

[Cobourn et al, 2000]. Wojcik (2003) used the processed signal from the optical sensors 

as inputs to the ANN model for predicting combustion gases such as NOx and CO. Lu 

and Yan (2000) developed an ANN based intelligent vision system for monitoring and 

control of PF coal combustion flames. Wang (2002) and Krytatos et al (1999) made use 

of the same approach by using flame images to predict NOx emissions using ANNs for a
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coal-fired boiler and diesel engine of a containership respectively. Finally, Linko et al 

(1996) demonstrated that a well-trained ANN was able to estimate the production of 

enzyme by means of aerobic fermentations based on a few parameters such as CO and Q2 

production/consumption rates.

2.7. Control of a Pulverised Coal-Fired boiler
The operation of a coal-fired boiler is largely influenced by its inputs such as the coal 

quality, air-fuel ratio, burner geometry, swirl intensity, and firing rate. The overall 

objective of this work was to minimise NOx whilst ensuring CO emission remained 

acceptable. As far as a complex system of coal-fired boilers, the control of the burner 

frequently entails multiple objectives.

The abatement of gaseous pollutants by the installation of a low NOx burner, or the use 

of a catalytic converter will not achieve the best performance without the burner being 

properly tuned. Typical common control systems employ process variables such as the 

air-fuel ratio to each burner. Simply by adjusting the settings on a few poorly operating 

burners can significantly improve overall unit emissions and energy efficiency [Michel, 

2001]. High excess air levels mean additional energy losses, increased stack temperatures 

and reduced boiler efficiency and conversely, gradual supply of air to create reduction 

zones in a flame reduces the emission of gaseous pollutants [Wojcik et al., 2003]. Control 

over the flow of air is achieved either by regulating individual fans or by varying the 

entry dampers on a common manifold [DTI, 2003]. Since, automatic oxygen trim 

systems are not generally found on older industrial boilers and therefore it is desirable to 

develop a boiler management system in order to meet the national legislation.

The extraction of the experimental correlation between burner settings and pollutant 

control is a formidable task that requires sophisticated modelling techniques as well as 

human intuition and experience. Since an ANN is an empirical modelling tool, the 

integrated ANN and expert system can provide a good solution for process control. The 

ideal control system for a coal-fired burner should have the following features: -
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1. It should automatically determine the optimum plant set points.

2. It should be capable of adapting to dynamic changes by generating a set of new 

settings over time.

3. The system should require minimal a priori information and be capable of 

handling time delays.

4. The controller should be capable of handling multi-variable decisions.

Conventional control techniques are usually implemented by means of a good 

understanding of the dynamics of the process. These techniques fail however, to provide 

satisfactory results when applied to ill-defined processes such as coal-fired systems. For 

simple dynamic plants, a linear control theory was found appropriate [Krishnapura et al, 

1999]. However, a large class of industrial problems are nonlinear (or at least partially 

nonlinear) [Tan et al., 1999] and for the linear or linearised model based prediction 

methods may fail if the nonlinearity of the process is severe [Ahmed, 1999; Tan et al., 

1999]. hi addition to nonlinearity, a more serious problem is that of the time-varying 

patterns in coal-fired boiler hence preventing the use of mathematical control theories, hi 

general, most existing control schemes fall within one of three classes as illustrated in 

Figure 2.14.
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2.7.1 The Adaptive, Model Reference and ANN based Controller

For an adaptive scheme, the controller parameters are adjusted in response to the 

operating conditions. This controller class is particularly useful when the variations of the 

process dynamics are predictable. An adaptive scheme requires an explicit model that 

accurately describes the system.

The Proportional-Integral-Derivative, PID, scheme is one of the popular schemes for 

industry. These types of controllers often require gain, reset-time, and dead-time 

adjustments according to the change of the process to provide satisfactory performance 

for new operating conditions. The design of the system gain, integral time and derivative 

time can be determined using the pole-placement 1 ' strategy, or through Ziegler-Nichols

11 The ideas involved in the pole-placement approach are based on the root-locus method and allow the 
poles of a closed-loop system to be placed at defined locations in the s-plane (or the z-plane).This gives a 
wide choice in selecting satisfactory performance.
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method, or other, when little is known about the dynamics of the system. Most adaptive 

controller schemes have shared common features that is: -

1. The plant must be tested in every different operating condition - this may not be 

practical for the economic and safety reasons.

2. It requires a well-defined model.

The PID, by its nature, is a Single-Input-Single-Output (SISO) controller; having more 

than one PID controller may result in a coupling effect if the control parameters are 

reversely co-dependent, and as a result, the PID scheme is unjustifiable because control 

of coal-fired burners involve multivariate decisions, hi addition, it is not always possible 

to obtain a well-descriptive combustion model as opposed to other more predictable 

processes.

Model Reference Controllers (MRC), on the other hand, are claimed to be capable of 

handling processes with unpredictable changes. This type of application is often 

encountered in Multiple-Input-Multiple-Output (MIMO) cases. The idea is to create a 

mathematical model that process dynamic characteristic are considered acceptable. This 

model thus represents a precise definition of what the closed-loop behaviour should be 

with the fundamental assumption that the plant loop can actually be forced to behave in 

the manner specified by the model. However, because the representation model in MRC 

is "static" and so constant updating of the model and controller parameters to reconcile 

with unpredictable changes within a system, may be required. Consequently, this give 

rise to a requirement for a considerable amount of computational power, especially when 

a higher order discrete model is being used to represent the system as well as the 

convergence of the model is not always guaranteed [Krishnapura et al, 1999]. Even 

thought adaptive and model reference theories are well established, their applicability to 

nonlinear problem has found to be restricted [Saha et al., 1998].
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One area in ANN research that has recently received a great attention is the inverse 

identification. This is because the use of inverse model of a system has an immediate 

utility for control. An example of a commercial application of an ANN controller to 

control of Pressure Support Ventilators (PSV) that assists patients who are unable to 

breathe on their own. The adaptive block makes use of online data collected during the 

operation for retraining of the model, and this is then used to update the existing 

controller weights (Figure 2.15) which modify themselves to the breath differences of 

patients [Neural Ventilator (Introduction to Adaptive Inverse Control) - 

http://www.nd.com/ventilator/aic.htm; Last Accessed 07 March 05].

Training and
verification of the

new controller
weights

Figure 2.15 Pressure Support Ventilators (PSV)

In combustion, both Reinschmidt (1994) and Booth (1998) demonstrated the use of 

inverse dynamics of boilers as functions to decide good operating parameters. In a similar 

event, Saha et al. (1998) reported the development of inverse dynamics based model 

controller for optimising boiler settings. Other control applications that involve inverse 

dynamics model of the plant can be found in [Reifman et al, 1998] and [William, 1992]. 

Essentially, the training of an inverse model required a good representation selection of 

the training set for the correct identification of the process inverse dynamics than it is for 

the estimation of the forward model [Bittanti et al, 1997]. However, one downside of 

using inverse identification is that they lack robustness. This is due to an absence of 

feedback related to persistency of excitation, and the possibility that an incorrect or even 

unstable, inverse might be modelled [Luh et al, 2000; Pham et al, 1999]. Nevertheless,
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the specialised learning approach used in the Internal Model Controller (IMC) was 

designed to overcome this problem of generalised inverse method [Irwin et al, 1995]. A 

specialised scheme trains an inverse neural network controller using the error between the 

plant output and trained ANN model located in parallel with the plant. The training 

effectively learns the identity mapping across the inverse model and the feedforward 

model as shown in Figure 2.17. Because the use of IMC scheme involves both data 

collection and training of the controller consequently anticipated longer setup time.

Reference

Figure 2.17 Specialised Inverse Model (Internal Model Controller)

2.7.2 ANN based Expert Scheme for Boiler Control

To optimise a coal-fired boiler requires MIMO scheme and as far as MIMO controller is 

concerned, the controller have complicated dynamic coupling behaviours and so the 

decoupling for controller design is frequently unachievable [Huang et al, 2000]. Also, as 

boilers grew bigger in capacity, with correspondingly increased complexity, the single 

input single output (SISO) independent control schemes have become inadequate [Saha 

et al, 1998]. Unlike in the assessment of boiler performance that may require 

consideration of multiple factors such as NOx and CO readings, the operation of a burner 

can be effectively controlled by the air input to the boiler. For this reason, to optimise a 

burner based on oxygen trimming can be largely achieved by formularising a sequence of 

rules and decisions.
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To generate "rules for conditions" is fundamental to control, for example, a rule-based 

controller was designed to assess fouling in a heat exchanger where the rules were 

derived from the definition of plant data such as hot and cold stream flow rates 

corresponding to fouling thickness measurements [Afgan, et al, 1995]. Also because an 

ANN is ideal for the generation of knowledge information and therefore to unite both 

ANN and rule-based schemes formed a new class of controller [Jam, 1999; Patino et al, 

2000]. As such, an expert system that uses neural network rules as the knowledge base is 

so-called a neural network based expert system [Wang, 1996]. In combustion, for 

example, a neural network based expert scheme known as Generic NOx Control 

Intelligent System (GNOCIS) was developed for targeting NOx and carbon-in-ash levels. 

GNOCIS uses previous plant data to train an initial plant model which is used to indicate 

the overall accuracy of the modelling and to highlight potential difficulties. Based on the 

predictive model obtained, a control strategy can be formed by taking combustion 

specialist, and plant engineer advice on what information should have been given to an 

operator to prompt any desired control action [Allison et al., 1996]. With the same notion 

in mind, ANNs can be used to model gaseous emissions corresponding to individual 

burners using sensor readings, whereas rules and decisions command can be formularised 

as generic strategy to improve burner condition, were implemented. In addition, it is well 

informed that ANNs are relatively flexible for online retraining and so this allows 

updating of the model that corresponds to plant aging, changes in coal quality and/or 

slagging and fouling to be achieved. The implementation of dynamic optimisation, as 

integration to an online solution in control, offers the opportunity for greater emissions 

reduction, fuel savings, and the ability to respond rapidly and flexibly to changes in 

operating conditions, compliance regulations and the market environment [Eakle et al, 

1998].
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2.8 Summary of Chapter 2
In summary, Chapter 2 has reviewed the topics relevant to the present project. These 

include the general features of coal, PF boiler operation, existing monitoring and 

emission control techniques, the adoption of ANNs in combustion processes, and the 

improvement of individual burners.

Coal properties, burner parameters and boiler types are factors affecting NOx emissions. 

Although system retrofit techniques, such as installing low NOx burners and over-fire air 

in existing plants can result in improvements, the boiler will never achieve its best 

performance without the burners being properly tuned. This implies there is a need to 

develop a monitoring and controller scheme to maintain good operation of burners within 

a full-scale boiler.

One obvious challenge in coal combustion plant is the lack of suitable monitoring 

devices. Partly, this is due to the poor deterministic and complex nature of combustion 

parameters. Other factors include limited accessibility of the sensor probes in measuring 

boiler parameters, gaseous stratification, and air leakage hence preventing emissions of 

individual burners to be identified. Slow response time and high operation cost are others 

reasons, particular in wet chemical analysis processes. For these reasons, IR, microphone, 

and AE sensors were proposed. The flame emits electromagnetic radiation at different 

wavelengths. This allows the light source of the flame to be measured, hi addition, it was 

identified that the combustion noise is made up by a series of monopole sources that are 

generated during the combustion of the coal in the flame. Constant perturbations of 

combustion products and pressure fluctuations were the source of AE, which can be 

measured outside the burner body.

Modelling is regarded as a tool for validating plant design. System modelling can be 

achieved from either the first principles or empirical methods. First principal modelling 

demands specific knowledge and data that makes them unsuitable for modelling complex 

processes. CFD is a computational based modelling and although CFD can be applied to 

combustion, inaccurate predictions were reported because of unknown characteristics
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such as the rate of coal de-volatilisation. Both least square based curve-fitting and 

Multiple Linear Regressor (MLR) models have their associate limitations, as most of 

them use linear functions as the "approximator" and therefore the deviation can be 

significant when undertaken nonlinear modelling. In distinction to these, ANNs have the 

capability to adapt and learn from their environment. In addition, they are able to deal 

with imprecise data and handle multivariate functions. ANNs can be useful in system 

control for the situation where input-output relationships are of more concern.

MLP is a simple feedforward network capable of approximating any continuous 

nonlinear functions. Recursive networks, on the other hand, take account of temporal 

information of a system and achieve better predictions. Self-Organising map (SOM) is an 

unsupervised ANN and is best known as a data classifying and visualisation tool. As a 

result, the possible idea to integrate the supervised and unsupervised schemes of ANNs 

can be seen as: (a) for gaseous predictions (b) to identify the change of the burner 

resulted from the reason such as ash deposition and fuel variation.

Good control design is usually accompanied by good understanding of process dynamics. 

FED is a popular adaptive scheme that proved to be able to deliver precision control only 

if a well-defined mathematical model is available. As combustion processes tend not to 

have a well-defined model and the control of combustion plants involve multiple 

objective decisions, these prevent the use of a SISO controller scheme. MRC, on the 

other hand, claims to be capable of handling unpredictable change. Nevertheless, constant 

updating of model weights and parameters require extreme computational power and as 

well convergence is not always guaranteed. Since ANNs can offer knowledge-based 

information and rule-based expert system was found suitable for handling imprecise data. 

The integration of both salient features generated a new class of controller, which is 

capable of handling ill-defined and complex problems more elegantly and naturally [Jain, 

1999].
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Chapter 3 Combustion Test Facility and 

Experimental Methodology
The experiments hi this project were undertaken on a pilot-scale PF combustion test 

facility (CTF) located at Casella CRE, Stoke Orchard, Cheltenham, UK. This chapter 

therefore provides a description of the facility as well as of the existing instrumentation 

and the new sensors, which were installed, and finally, a description of the experimental 

work is provided.

3.1 The Combustion Test Facility

Figure 3.1 portrays the 150 kW experimental test facility, which was designed to 

represent a scaled down version of a single burner in a typical front-wall fired utility 

boiler. In broad overview, the whole system can be divided into three main sections (a) 

the coal handling system, (b) the burner, and (c) the combustion chamber.
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Figure 3.1 The 150 kW Combustion Test Facility
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3.1.1 Coal Handling System

In any PF firing process, accurate fuel feed control is required to correctly maintain the 

air-fuel ratio and ensure complete combustion with the optimum level of excess air. 

Because coal is a blended mixture of coarse and fine particles and exhibits dramatic 

changes in flow density (i.e., the material bulk density under flowing conditions) with 

small changes hi the surface moisture, gravimetric feeding by weight is more effective 

than the alternative volumetric method [Stock Equipment Company - Gravimetric Feeder 

Description, http://www.stockequipment.com/about2.asp, Last Accessed 03 March 05]. 

Figure 3.2 is a schematic of the test facility coal handling system, which used the 

gravimetric method. The pulverized coal was discharged into the upper hopper by a 

vacuum suction pump. The upper hopper acts as the main storage and can hold 

approximately 350 kg of coal. The coal was then transferred from the upper hopper to a 

bottom hopper where it was weighed and subsequently discharged into the feeder by the 

screw feed mechanism. The feeder delivered the coal at a pre-defined rate by 

progressively changing its rotational speed in accordance with the mass lost from the 

bottom hopper. The coal was then discarded onto a vibrating tray to smooth out any 

irregularity in the feed mechanism. Finally, the pulverised coal was carried away by the 

primary cold air stream via a flexible hose into the burner. Pulverised coal-fired systems 

have coal feeders which are generally gravimetric to measure the rate of coal fed to the 

pulveriser. The correct functioning of these coal feeders is essential to efficient and safe 

operation. Feeders are mechanical devices having a weighing system and a conveyor 

system, and they are required to be maintained for most efficient combustion [Wojcik et 

al., 2003].

During normal operation, the bottom hopper nominally held 20 kg of coal. The hopper 

was refilled by activation of a rotary valve when the coal mass fell below 17 kg through 

an independent control system. The main controller continuously recorded the weight- 

loss from the bottom hopper and attempted to provide a constant coal feed rate. The 

controller compared the target feed rate with the rate of weight loss. The difference in 

these rates was used as a feedback signal in order to adjust the screw feed rotational 

speed. Unfortunately, the refilling of the hopper with coal and the regulation of the coal
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feed rate could not be conducted simultaneously. When refilling was required, the screw 

feed mechanism was temporarily set to a constant speed. In addition, during the discharge 

of coal from the upper hopper, the dynamics led to an increase in the coal passed through 

to the screw feeder. The consequence of this was a small fluctuation of the coal fed to the 

burner, which was manifested by corresponding small fluctuations in the emissions and 

performance of the burner.
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Figure 3.2 The Pulverized Coal Handling Unit

3.1.2 The Low NOx Burner

Figure 3.3 illustrates the low NOx burner installed in the test rig. It included a natural gas 

gun to provide primary ignition and once the ignition was achieved, the gas gun was 

retracted and switched off. The pulverised coal was carried by the primary air stream 

travelling at constant velocity. The wind box was cylindrical in shape and internally fitted 

with adjustable swirl vanes, which allowed the incoming air to be imparted with "swirl". 

Swirling assists in providing a homogenous air distribution for better mixing and hence 

the combustion efficiency can be improved.
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The allowable swirl settings were from 0 (no swirl) to 10 (maximum swirl). The 

relationship between the swirl settings and the actual swirl number provided by the 

burner manufacture is presented in Figure 3.4. The secondary air could be preheated to a 

temperature up to 250 °C and was introduced tangentially to the coal/primary air stream 

with the facility to regulate the swirl according to the user's requirement. The 

contribution of the primary air to the overall flow rate is relatively small as compared to 

the secondary airflow. The secondary air therefore represented the main combustion 

airflow and was adjusted to maintain the desired flue gas oxygen concentration.
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Coal + Primary 
Air

Figure 3.3 The Low-NOx burner of the Experimental Rig
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3.2 The Combustion Chamber
The burner fired horizontally into the combustion chamber that had a cross-section of 0.4 

m2 . The chamber was 2 metres long and an array of observation ports were positioned 

along the sidewalls. These ports enabled any external instrumentation to be installed. At 

the exit of the combustion chamber, the velocity of combustion products was increased to 

a level typical to that found at the furnace exit in a full-scale boiler. The flue gas then 

passed through a cyclone where fly ash was collected before final discharge into the 

stack.

3.2.1 Burner Management System
The test facility had controlled by a burner management system, which aimed to ensure 

safe start-up, operation, and shutdown. The burner management system was located 

inside the test facility boiler house, to provide easy access to the operator. The system 

included two fail-safe IR flame detectors to detect the existence of a flame. Other input 

components included the control of the gas igniters and a low fuel alarm.
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3.2.2 Existing Plant Instrumentation

The test facility has a permanent data logging system consisting of a Field-1000 Series 

DAQ board mounted in a Pentium II233 MHz PC. The system has a total of 24 analogue 

input channels and the process measurements were acquired at an interval of 10 second.

The flue gas was sampled at the furnace exit and was extracted through a sintered steel 

filter. The gas then passed to a gas-conditioning unit (ADC TYPE WA-517) for the 

removal of water vapour and any remaining particulates by a heated filter with two 

parallel drying units. The heated filter operated in a condensation mode and was suitable 

for the sampling gases that are relatively insoluble in water such as the 62, CC>2 and CO. 

Measurements of the concentration of other gases were based on the use of semi- 

permeable membrane capillaries operated in a partial vacuum and were best suited to 

water soluble gases such as SO2. The sampled flue gases were transferred through a small 

diameter PTFE tube to a bank of 5 gas analysers for O2, CO2, CO, SO2, and NOx. These 

analysers included: -

1. ADC RF Series infrared gas analysers for O2 and CO in the range 0-25 % and 0- 

1000 ppm respectively.

2. ADC 7000 Series infrared gas analyser for CO2 in the range 0-20 %.

3. 4000 Series (Signal Instrument Company Limited) NOx gas analyser in the range 

0-1000 ppm.

4. URAS 10E Series (Mannesmann, Hartmann & Braun, NDIR-Industrial 

photometer) SO2 gas analyser in the range 0-2000 ppm

hi addition to measurement of the concentrations of the gases, the following burner input 

parameters were logged during the tests: -
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1. Coal feed rate (kg/h) through direct measurement of the mass.

2. Secondary airflow rate (m3/h) by mean of flow sensor.

3. Secondary air temperature (°C) by a thermocouple inserted in the supply ducting.

4. Primary air pressure at 65m bar (constant). 

The following temperatures and pressures were also recorded throughout the test: -

1. Combustion products temperature (°C) at the convergent section of the rig using 

thermocouples.

2. Burner quarl temperatures (°C) at 8 equally spaced points around the burner using 

Type-K thermocouples inserted near the surface of the refractory (see Figure 3.5).

3. Heat flux through to the slag panel (kW/m2) by measuring the flow rate and rise 

in temperature of the cooling water flowing though the panel.

4. Combustion chamber pressure (mbar) by mean of a pressure transducer.

64



Burner Quarl

1 o o
2 O / \ O 6w ' Burner x w 

Mouth O 7 

O O"

8 equally spaced thermocouples

Figure 3.5 Burner Quarl Thermocouple Insets (Burner front View)

3.3 Additional Test Instrumentation
Given the overall objectives of this work, it was necessary to fit additional 

instrumentation to characterise the PF flame as discussed previously. An infrared (IR) 
sensor, a microphone to detect audible combustion noise and a high frequency sensor to 

measure acoustic emission were required. The details of this additional instrumentation 

are as follows: -

1. The IR Detector consisted of a lead sulphide photocell connected into a C7015A 

series IR flame detector mount (Honeywell Ltd.). The IR sensor operated on the 

principle that when the photocell was exposed to flame radiation, its resistance 

value decreased in proportion to the intensity of the radiation. The maximum 

operating temperature of this sensor was 71°C and it responded to radiation with 

wavelengths between 700 and 1000 nm.

2. The Microphone. This was a TCM100 Series omni-directional Electret-Condenser 

microphone with a maximum operating temperature of 43 °C. The maximum 

frequency response of this microphone was 16000 Hz.
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3. The Acoustic Emission (AE) sensor. The AE sensor was a MICRO-808 (Physical 

Acoustics Corporation) device, with a pre-amplifier, which had a selectable gain 

of 20, 40, or 60 dB and a frequency response in the range 100-1200 kHz.

Selection of a suitable location for the sensors to obtain reliable measurements was 

restricted by the availability of suitable access points. Both the IR and Microphone 

required a direct view of the flame. For this reason both these sensors were mounted at 

the end of straight cylindrical pipes that were in turn located in separate sight ports 

perpendicular to the flame. This not only resulted in attenuation of any unwanted 

surrounding noise which could arise from unrelated sources instead of the flame but also 

shielded the microphone from high temperature, or radiation. Moreover, it avoided 

contamination of the IR lens from particulate matter in the flame. The best position for 

mounting the AE sensor was identified to be on the back of the gas lance since the flow 

induced AE shoula be readily propagated from the tip of the coal nozzle to this surface. 

Also, to protect the AE sensor the interface material had a low heat conductivity and also 

ensured good contact with the gas lance. The position of the sensors is illustrated in 

Figure 3.1 and Figure 3.6 shows photographs of the sensors mounting.
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(a) IR Detector (b) Microphone

(c) AE sensor
(d) Overview of the test facility and 

the data acquisition system

Figure 3.6 Mounting of the Sensors during the Tests

3.3.1 Signal Conditioning and Acquisition

Signal conditioning of the IR sensor involved the use of a resistance to electrical voltage 

converter and an amplifier, before the signal was fed into the DAQ board. The 

Microphone output was a voltage so that only amplification was necessary. Both of the 

amplifiers for the IR and Microphone sensors were ac-coupled with the intention of 

removing dc component in the signals, and had an adjustable gain factor from 1 to 11. 

The circuits for the resistance-to-voltage converter and the amplifiers are shown in Figure 

3.7.
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Figure 3.7 Electrical Circuits for Signal Conditioning 

(a) Resistance-to-Voltage Converter (b) ac-couple Amplifier

Low-pass filters were used to limit the bandwidth of the sensor responses to reduce 

aliasing effects while still retaining most of the useful information contained in the 

signals. Several authors [Willson et al., 1985; Timothy et al, 1996; Hashimoto et al, 

1992] have suggested that the useful frequency range for the IR radiation from the flame 

is restricted to 1000 Hz. Also, Abugov et al (1978) have shown that the combustion 

pressure fluctuations can be correlated with the IR radiation signal. Consequently, it can 

be argued that the frequency range associated with useful information from the 

microphone signal would approximately coincide with the frequencies of the IR signal. 

Nevertheless, two higher frequency low-pass filters were implemented in this case to 

ensure adequate coverage so that all appropriate information was obtained. These 4th 

order continuous time active Bessel filters had a cut-off frequency of 1800 Hz. The 

advantage of using a Bessel filter is that it provides minimum phase distortion. The actual 

response of the Bessel filter is given in Figure 3.8. For the AE sensor, the full frequency 

response of 100-1200 kHz was taken into consideration and as the result no additional 

filters were required.
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Figure 3.8 Actual Response of the 4th order Low Pass Bessel Filter

Two data acquisition boards, one for the IR and microphone signal and the other for the 

AE sensor, were installed in a stand-alone Pentium III 550MHz PC. Both boards were 

programmed with LabView  Virtual Instruments Software (National Instruments 

Corporation) and were run within this environment. Details of the sampling rate and other 

parameters are presented for each sensor in Table 3.1 and technical information for the 

data acquisition boards can be seen in Table3.2
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Figure 3.9 Schematic of the Signal Conditioning and Data Acquisition System

Table 3.1 Acquisition of the Sensors Signal from the Sensors

Sensors

IR

Microphone

AE

Signal Type

Analogue

Waveform

Analogue 

Waveform

Analogue

Waveform

Sampling 

Rate

8192Hz

8192Hz

5MHz

Number of

Samples

Acquired

32768

32768

32768

Duration of 

the Signal

4s

4s

6.55 ms
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Table 3.2 Technical Information for the DAQ Boards

DAQ Boards

AT-MIO-16L 
(National Instruments)

COMPUSCOPE 1250 
(GaGe)

Number of 

Input 

Channels

8 (Differential 
Mode)

2

Maximum Sampling 

Rate

100 kHz -s- number of 
inputs

25, 10, 5MHz

ADC

Resolution

12-Bits

12-Bits

3.4 Experimental Details
This section describes the overall experimental work undertaken on the test facility at 

Casella CRE. Two different coals, namely, Daw Mill coal from the U.K. and so-called 

Cerrejon Columbian coal were used in the tests. The ultimate analyses of these coals 

together with their stoichiometric combustion air requirement can be found in Appendix 

B (Table Al and A2).

The test facility was operated at the maximum thermal input of 150 kW to ensure a more 

stable flame. This was maintained nominally constant by changing the feed rate of the 

coal to accommodate the differences in calorific value of the two coals, see Table 3.3.

Table 3.3 Calculation of Coal Feed-Rate

Coal Type

Cerrejon

Daw Mill

Calorific Value

(MJ/kg)

27.98

25.00

Burner Load (kW)

150

150

Coal feed-rate (kg/h) =

( Burner Load ^          x 3600
^Calorific Value )

19.3
21.6

The primary air pressure was set to its maximum value of pressure of 65 mbar and 

maintained constant for the whole period of the experiments. The only two input 

variables, which were changed during the experiments, were the secondary air flow-rate 

and the burner swirl setting. The secondary air flow-rate dictates the amount of excess air
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since the primary airflow rate is constant consequently variations in these parameters 

affect the concentration of NOx, CO, and O2 in the flue gases. The flame characteristics 

combustion intensity and hence position of the flame front5 can also depend on the degree 

of swirl supplied to the secondary air. The degree of swirl influences the flame stability 

and flue gas emissions particularly NOx and CO emissions.

Initial trials were used to determine the allowable operating range for the secondary 

airflow rate and the burner swirl setting. The operation of the test facility was governed 

by fail-safe devices, which detected the presence of a flame during the tests and the 

emission monitoring instrumentation for NOx and CO, which saturated at 1000 ppm. 

Consequently the upper and lower limits of the secondary air flow rate and burner swirl 

settings were selected to avoid a burner trip and to prevent saturation of the 

instrumentation.

The allowable secondary airflow rates were found to lie between 130 and 160 m3/h 

corresponds to overall excess air levels varying from approximately 1 to 22 %. A step 

change of airflow of 10 m3/h was performed as shown in Figure 3.10 every 20 minutes. 

The burner swirl settings were 3, 4, 5, and 6 which corresponded to swirl numbers of 0.3, 

0.5, 0.8, and 1.2 (refer to Figure 3.4). The calculation of the excess air for each secondary 

air setting is presented in Appendix B (Table A3).

5 The flame front refers to the location where the PF starts to ignite relative to the coal nozzle, and it is an 
important factor in the flame stability. A stable flame should have a flame front that is well rooted in the 
burner mouth.
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Figure 3.10 Operating Profile of the Secondary Airflow Rate for each Test

During the tests, the emissions, plant process parameters, and the sensors signals were 

monitored as discussed earlier in this chapter. Initially 8 tests were undertaken to gather 

representative data for a range of burner operating conditions. However the control 

experiments, which will be reported later in Chapter 6, were restricted to a single swirl 

number for each of the coals.

Table 3.4 Summary of the Combustion Tests

Experiment

Test 1

Test 2

TestS

Test 4

TestS

Test 6

Test?

TestS

Swirl Number

0.3

0.5

0.8

1.2

0.3

0.5

0.8

1.2

Coal Type

Daw Mill

Daw Mill

Daw Mill

Daw Mill

Cerrejon

Cerrejon

Cerrejon

Cerrejon
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3.5 Summary of Chapter 3
This chapter provides an overview of the test facility at Casella CRE together with the 

novel sensors used in the experiments. The operating boundaries were governed by the 

fail-safe devices on the system and the saturation of emission analysers. The range of test 

conditions is presented and limitations in the test facility are discussed.
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Chapter 4 Experimental Results and Analysis
This chapter presents the results gathered during the experiments conducted on the pilot 

scale 150 kW PF burner. Initially the discussion starts by showing the concentrations of 

the gases NOx, CO and O2 at different secondary airflow rates and swirl numbers as 

defined in Chapter 3. This information is important as it allows an understanding of how 

the combustion test facility operation affects the combustion process. The discussion will 

then move to consider the signal processing of the "raw" IR, microphone, and AE sensor 

signals into a set of useful features that may be related to the combustion characteristics 

and gaseous emissions.

4.1 The Flue Gas Concentrations

The experiments were conducted by varying burner parameters such as the secondary 

airflow rate and the secondary air swirl setting, so that a workable range of burner 

operating conditions were studied. The experiments were arranged so as to enable the 

optimum settings to be identified, and provide the information required for the design of 

the controller as will be presented in Chapter 6.

To reduce NOx emissions whilst maintaining low CO concentrations has been an on 

going requirement for the utility industry. Although NOx is the major concern, high CO 

emissions which are associated with a reduction in boiler efficiency should not be 

overlooked. One can reduce NOx by minimising the excess air but the consequences can 

include reduced thermal efficiency, boiler tube corrosion, and poor electrostatic 

precipitator performance. For these reasons, optimising a PF boiler requires skill, 

experience, and careful consideration. Under growing pressure from increasingly 

stringent legislation, significant efforts are underway in the search for advanced burner 

monitoring and control techniques. Ultimately, the research objective is to reduce NOx 

so as to comply with the relevant legislation without sacrificing boiler efficiency. It is 

envisaged that an adequate burner controller scheme will increasingly needed for existing 

and newly built boilers.
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4.1.1 Gaseous Emissions for Daw Mill and Cerrejon Coal at 

different Swirl Settings

As outlined in Table 3.4, a series of experiments were conducted by operating the burner 

at different swirl settings (i.e., swirl numbers 0.3, 0.5, 0.8, and 1.2). Each of the 

individual tests was repeated using a standard secondary air profile as illustrated in 

Figure 3.11. These tests therefore covered a representative combination of the secondary 

airflow rate and swirl setting for the test burner. The same procedure was also repeated 

for the two coal types, namely, Daw Mill and the Cerrejon Coals.

Figure 4.1 shows the NOx, secondary airflow rate, CO, and O2 for Test 1. The 

experiment fired Daw Mill coal with a swirl number of 0.3. The initial operating 

condition started with a secondary airflow rate of 160 m3/h and resulted in high NOx (> 

500 ppm) and low CO (< 75 ppm) concentrations. As the test proceeded, the NOx 

emissions reduced as the secondary airflow rate decreased while the CO remained low. 

However, once the secondary airflow rate reduced to 130 m3/h, the concentration of CO 

rose rapidly. This suggests that insufficient O2 was available to achieve complete 

combustion and hence the combustion efficiency was subsequently reduced and this 

would need to be corrected in practice.

One can notice in Figure 4.1 (b) that the secondary airflow rate and hence the oxygen 

concentration affects both NOx and CO levels. Oxygen is an indication of the amount of 

air present and was therefore considered as one of the significant monitoring parameters 

as presented as a blue line (Figure 4.1 (b)). It is clear in Test 1 that although the 

combustion airflow remained constant, all three gases (i.e., NOx, CO and O2) showed 

"regular" periodic fluctuations. Similar behaviour was also observed in all the other tests 

and this itself, was associated with fluctuations in the coal feed rate of ± 2.5 kg/h around 

the set point. Consequently, this coal feed rate fluctuation resulted in periodic variations 

in the air-fuel ratio and hence in the flue gas emissions. A description of the coal feed 

mechanism can be found in Section 3.1.1
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Time
-02 - Secondary Airflow Rate

Figure 4.1 Measurements of (a) NOx, CO and Secondary Airflow Rate, (b) O2 and 

Secondary Air flow rate, when firing Daw Mill Coal at a Swirl Number of 0.3 (Test 1)

In Test 2 (Figures 4.2 (a) and (b)), the burner was configured with a swirl number of 0.5. 

The NOx, CO and O2 emissions behaved in a similar way to that observed in Test 1, with 

the NOx decreasing as the secondary airflow rate was reduced. A peak CO of 1000 ppm 

was observed for the lowest secondary airflow rate, which was approximately 200 ppm 

higher than hi the previous Test 1.
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Figure 4.2 Measurements of (a) NOx, CO and Secondary Air Flow Rate, (b) 02 and 
Secondary Airflow Rate, when firing Daw Mill Coal at a Swirl Number of 0.5 (Test 2)

The NOx in Test 3 (swirl number of 0.8) (Figure 4.3 (a)) varies relatively little as the 
secondary airflow rate reduces in contrast to the other tests. The CO remained relatively 
stable even at a secondary airflow rate of 130 m3/h. This suggests that the swirl number 

of 0.8 provides the most stable combustion condition.
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Figure 4.3 Measurements of (a) NOx, CO and Secondary Airflow Rate, (b) O2 and 
Secondary Airflow Rate, when firing Daw Mill Coal at a Swirl Number of 0.8 (Test 3)

Figure 4.4 presents the gaseous emissions for Test 4 with a burner swirl number of 1.2. 

The average CO concentration is the highest observed throughout Tests 1 to 4 with the 
Daw Mill coal. In Test 4, the level of CO constantly "saturated" the gas analyser, 

particularly with the low secondary airflow rates of 130 and 140 m3/h. Also, the O2 level

79



under these conditions was the lowest observed throughout Tests 1 to 4. Hence, for 

example, at the lowest airflow rate the oxygen concentration was approximately 1.2 %. 

Red arrows are included in Figure 4.4 (a) and (b) to highlight when the combustion test 

facility was automatically shut down due to burner "tripping", when the safety sensors 

(consisting of two IR detectors) failed to detect the flame. It is known that the flame 

shifts towards the burner quarl (i.e., shorter flame is produced) as the swirl number is 

increased [Martin, 1993] and on occasion it appears that the visible flame may lie outside 

the field of view of the sensors at this high swirl number of 1.2.

(a)

1000 200

0:00:00 0:30:00 1:00:00 1:30:00 2:00:00 2:30:00 3:00:00 3:30:00
Time

NOx - CO ——— Secondary Airflow Rate
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Figure 4.4 Measurements of (a) NOx, CO and Secondary Air Flow Rate, (b) O2 and 

Secondary Airflow Rate, when firing Daw Mill Coal at a Swirl Number of 1.2 (Test 4)

Observation of Figures 4.1 to 4.4 indicates that at each secondary airflow rate, the 

average O2 concentration varies as the swirl number was varied. This is illustrated more 

clearly in Figure 4.5 which presents the average concentrations of the flue gases for a 

secondary air flow rate of 130 m3/h. The O2 concentration varied from 1.2 % to 2.3 % 

and this suggests that the air-fuel ratio varied from test to test despite the nominal excess 

air remaining constant. This variation is probably due to variations in coal quality and 

moisture content, and as the airflow was controlled by appropriate setting of a butterfly 

valve there is likely to be variations due to change in the ambient temperature and 

humidity. Consequently, the variations in NOx and CO observed in Figure 4.5 are due to 

changes in the excess air level as well as changes in swirl number.
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Figure 4.5 Average NOx, CO and O2 correspond to the Secondary Airflow Rate of 130 

m3/h for Swirl Numbers of 0.3, 0.5,0.8, and 1.2

For Tests 5 to 8, the combustion test facility was fired with Cerrejon coal and Figures 4.6 

and 4.7 illustrate the concentrations of the combustion gases of NOx, CO and ©2 in the 

flue for Tests 5 (swirl number 0.3) and 6 (swirl number 0.5) respectively. The Cerrejon 

coal has a higher calorific value than the Daw Mill and hence required a lower coal feed 

rate for the same thermal input as indicated in Table 3.3. Therefore, the test facility could 

achieve a thermal input of 150 kW with a coal feed rate of 19.3 kg/h. Generally, these 

tests at the lower swirl numbers, with Cerrejon coal yielded lower NOx emissions than 

the corresponding Daw Mill tests. This is evident by comparing Test 1 (Daw Mill) and 5 

(Cerrejon) for the same swirl number in which the highest NOx concentrations were 500 

and 300 ppm respectively.

The flue gas emissions with the Cerrejon coal were different to that observed in Tests 1 

to 4. In general, there were smaller changes in the magnitude for the gaseous 

concentrations when the combustion test facility was subject to the nominal air 

variations. Test 6 (Figure 4.7 (a)) shows a marginal improvement over the Test 5 (Figure
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Figure 4.7 Measurements of (a) NOx, CO and Secondary Air Flow Rate, (b) O2 and 
Secondary Airflow Rate, for Cerrejon Coal at a Swirl Number of 0.5 (Test 6)

Figure 4.8 presents the emissions of Test 7 where a swirl number of 0.8 was used. This 
was acknowledged to be the optimal setting for the Cerrejon coal. The burner achieved 
the lowest NOx (approximately 200 ppm for a secondary airflow rate of 130 m3/h) with 
no excessive increase in CO throughout the test. Two red arrows are included in Figure
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4.8 (b), at approximately 00:40 and 1:45 respectively of the test duration, to highlight 

either spurious reading made by the 62 analyser.

(a)

0:00:00

0:30:00 1:00:00 
Time

1:30:00 2:00:00

——— Nox - CO —— Secondary Airflow Rate

(b)

0:30:00 1:00:00 

Time

1:30:00 2:00:00

-O2 - Secondary Airflow Rate

200

200

Figure 4.8 Measurements of (a) NOx, CO and Secondary Air Flow Rate, (b) O2 and 

Secondary Airflow Rate, when firing Cerrejon Coal at a Swirl Number of 0.8 (Test 7)
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A further increase in the swirl number to 1.2 resulted in the highest NOx values observed 

throughout Tests 5 to 8 with reasonable emissions of CO (Figure 4.9)
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Figure 4.9 Measurements of (a) NOx, CO and Secondary Air Flow Rate, (b) O2 and 

Secondary Airflow Rate, when firing Cerrejon Coal at Swirl Number 1.2 (Test 8)
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The average concentrations of NOx, CO and O2 for the Cerrejon tests at a secondary 
airflow rate of 130 m3/h are presented in Figure 4.10. In general, the O2 and hence excess 
air levels were higher than those for the Daw Mill tests and consequently the CO 
emissions were lower. Furthermore the NOx concentration tended to be lower with this 
coal despite its high nitrogen content. Again, the emissions are a function of both swirl 
number and excess air.
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Sw irl Nun-tier 0.3 Swirl Number 0.5 Sw irl Number 0.8 Swirl Number 1.2 
(Test 5) (Test 6) (Test 7) (Test 8)

Figure 4.10 Average NOx, CO and O2 corresponded to the Secondary Airflow Rate of 
130 mVh for Swirl Numbers of 0.3, 0.5, 0.8, and 1.2

The purpose of these tests was to provide data so that the sensor signals can be compared 
with the flue gas concentrations. It can be observed that a suitable range of gaseous 
emissions were obtained for this purpose with significant "spread" so that the sensors can 

be tested over the range likely to occur in practice.
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4.2 Signal Processing
Any physical variable representing a message in a communication system is termed a 
"signal". In this work, the physical properties which were monitored were the infrared 
intensity, combustion noise, and acoustic emissions (AE). Since these signals are a 
function of time and were sampled at high frequencies, large amounts of data were 
collected. One way to quantify these data is to represent them by a number of parameters 
known as "features" generated from both time and frequency domain signal analysis 
techniques [Lynn, 1989; Khesin et al, 1997]. Consequently, this section reviews the 
signal processing techniques and discusses the use of these features for representing the 
concentrations of the combustion gases.

4.2.1 Complex Signals
A periodic signal is one which repeats itself exactly every T seconds, where T is called 
the period of the signal waveform. The treatment of periodic waveforms assumes that 
this exact repetition is extended throughout all time, both past and future. Simple 
periodic signals can be described by using mathematical notations, for example, a sine 
wave. However, the raw signals of the IR, Microphone and AE were considerably more 
complex (Figures 4.11 (a), (b) and (c)), with fluctuations possibly related to irregular air- 

fuel mixing and heat release in the flame [Abugov, 1978].
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Figure 4.11 Raw (a) IR, (b) Microphone, and (c) AE, signals

4.2.2 Statistical Description of the Data
One way to describe complex signals is to calculate the statistical properties of the data. 

Some of the best known statistics are the Mean (X\ Median (X,ned \ variance (a2) and 

the standard deviation (a ). Higher moments can be used to help classify the actual shape 
of the distribution function. Higher moments require calculation of quantities like 

X* and^4 , resulting in a third central moment, and so on.

Skewness (skew), or third moment is a measure of the asymmetry of the distribution. A 
positive value for skew reflects a distribution that stretches out farther to the right 
(values greater than*) than to the left; the converse is true for a negative skew. It is 

defined as:
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Skewness: skew = — x,-x
[4.1]

The Kurtosis (kurt\ or fourth moment is a measure of the "pointiness" of the 
distribution.

Kurtosis:
X: -X

-3 [4.2]

A large positive value of hurt suggests a very sharp, even cusplike, peak to the 
distribution. A large negative value represents a distribution with a broad, relatively flat, 
peak. A value of 3 is subtracted in the definition so that a Gaussian distribution 1 has a 
distribution of zero.

Although moments of higher order than the second are not often used, it is worth noting 
two things: firstly, if the probability distribution is symmetrical in form, the third and 
higher odd order central moments must be zero, and therefore such moments give an 

indication of asymmetry or " skew " in a distribution, and secondly, moments of higher 
order pay increasing attention to the extreme values of a signal (i.e., if a signal has outlier 
points, the validity of the using higher moments will seriously diminished).

In addition, it is also possible to describe the spread of the data by means of Root-Mean- 
Square (rms) of the signal. Physical scientists often use the term rms as a synonym for 
standard deviation when they refer to the square root of the mean squared deviation of a 
signal from a given baseline or fit. In addition, the rms is a measure of the "energy" of a 

signal. The rms is defined as: -

' As far as signal theory is concerned, any random signal, which is caused by a number of contributing 
processes is likely to have a Gaussian (normal) amplitude distribution.
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Root-Mean-Square: rms = V—————— [4.4]

The number of times the signal amplitude changes its sign, i.e., the number of zero 

crossings (zrcs) can be counted as a further statistic. Unlike the description of the 

amplitude distribution, this feature characterises the time structure of the signal, and is a 

measure of the frequency content of the signal. Thezrasis defined as: -

N

Number of zero crossings: zcrs = £ 1 if sign (XM *Xi )a negative [4.5]

Most of the statistical descriptions of data discussed under this section need not take 

account of any time information (i.e., assuming that the data were equally spaced, and the 

sequence of the data). However, the number of zero crossing ( zrcs ) that requires time 

information must be performed without changing the order of the sequence.

4.2.3 Frequency Domain Analysis
Signals can also be quantified by frequency domain analysis. Spectral analysis seeks to 

describe the variation in properties of a signal at different frequencies. The basic concept 

of spectral analysis is that a waveform of any complexity may be considered as the sum 

of a number of sinusoidal waveforms of suitable amplitude, periodicity, and relative 

phase [Dwight, 1995; Lynn, 1998]. Therefore the Power Spectral Density (PSD) is 

concerned with the distribution of the signal power over an appropriate frequency range. 

It can be estimated by either parametric2 or non-parametric techniques. Welch's method 

is a non-parametric Fast Fourier Transform (FFT) technique for estimating the PSD. The 

advantages of employing FFT are [Borse, 1997]: -

2 Parametric modeling techniques find the parameters for a mathematical model describing a signal, a 
system, or process by finding the coefficients of a linear system that models the system.
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1. It has the ability to filter data (i.e., to remove large portions of the noise or other 
undesirable data segments).

2. It is a fast accurate method to estimate the power spectrum of a signal.

Figure 4.12 shows examples of the calculated PSD for the IR, microphone and AE 
signals, for specific ranges of frequency.

5 800 

"!§ 600
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200

o i
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1? 1000

•2 500
a

(a)

200 400
(b)

600 800 1000 
Frequency (Hz)

400 600 
(c)

800 1000 
Frequency (Hz)

200 400 600 800
o
OH

1000 1200 
Frequency (Idiz)

Figure 4.12 The Power Spectral Density of the Sensor Signals: (a) 0-1000 Hz of IR 
signal, (b) 0-1000 Hz of Microphone signal, and (c) 200-1200 kHz of AE signal

Both Willson (1985) and Timothy (1996) suggested that the information carried by the 
IR and Microphone signals is contained within frequencies less than 1000 Hz. These 
findings are supported by the data presented in Figures 4.12 (a) and (b). For AE signals, 
most of the information was presented in the range of 100-1200 kHz.
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The PSD represents the Power, U versus the Frequency,/. It can also be defined in 

terms of the proportion (or probability) of total power occurring at a particular frequency. 

The treatment of the PSD in a probability context is analogous to the amplitude 

probability distribution in the time domain [Chung et al, 2000]. The proportion or 

probability, Pt at a particular frequency can be defined as: -

[4-6]F-
N

where, Z/^ = 1 satisfies the condition that any probability density function must have a
i

unit area [Lynn, 1989]. This procedure normalises the data to the total power of the 

signal in order to ignore spurious trends such as the attenuation of the light signal by 

contamination by dust [Timothy, 1996], It is also possible to calculate the proportion of 

the PSD in a particular frequency band. The probability or proportion of the PSD for the 

IR and Microphone signals was determined for frequency bands of (a) 0-200 Hz, (b) 200- 

400 Hz, (c) 400-600 Hz, (d) 600-800 Hz and (e) 800-1000 Hz. In addition, the PSD of 

the AE was divided into (a) 100-200 kHz, (b) 200-300 kHz ........up to 1100-1200 kHz,

see Table 4.1.

The Entropy (S) of the signal is commonly used to indicate the relative similarity of the 

PSD for two signals [Dwight, 1995; Tzanakou, 1999]. In other words, it is a measure of 

the distribution pattern of the PSD, and is given by: -

Entropy: S = -ZPi logPi [4-7]

where Pt is the probability of the signal power as defined in Equation 4.6.
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One way to compute the average frequency is to find the Centriod (ego), which is based 
on the first moment of the signal power. It is defined as the magnitude of the sum of the 
product of the power and the frequency over the whole spectrum PSD.

Centroid: £"• [4.12]

The last feature which was used is known as the Shape Factor and can be defined as the 
standard deviation of the power normalised in terms of the mean power [Tang et al., 
1999], is given by: -

Shape Factor: SF =

IN _ I——I(t/,-t/) 2

u [4.13]

Where, U = mean of the power

A summary of the signal processing algorithms which were used in this project is 
presented in Table 4.1.
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Table 4.1 Signal Processing Algorithms

Sensors Selected Features

IR detector
X, Xmed a, a 2 , zrcs, rms, skew, kurt, S, SF, cga,

P P p p p P•MO-200tfz] > 1 [200-400Wr]' ^[400-600 Hz} > ^[600-SOOHz] ' r[SOO-\OOOHz] > ^[0-1000 Hz]

Microphone
X, Xmed a, a 2 , zrcs, rms, skew, kurt, S, SF, cga,
P P P P P Pr[0-200Hz]' 1 [200-400 Hi] ' L [400-600 Hz] > r[600-800 Hz]' •'[800-1000 Hz] ' r[0-1000 Hz]

AE sensor

X, Xmed a, <j 2 , zrcs, rms, skew, kurt, S,SF, cga,

•*[100-200W/z)' /7[200-300ArW2]' P[300-400kHz] ' *(400-500kHz] » *[ 500-600 kHz] ' *[600-100kHz] 

M700-800tWz]' PiSOO-900kHz]' P [900-1000 kHz] ' -^[1000-1100A//z]' "(1 100-1200W/z]' -"[100-12004//Z]

4.3 The Effect of Ensemble Averaging
Due to the complex nature of combustion the underlying information of the acquired 
sensor signals were averaged so that more representative values could be found. The 
motivation behind ensemble averaging of the data was two fold:

1. The ensemble average helps to reduce signal noise.

2. The ensemble average helps to replace large data sets with a few representative 
points.
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Figure 4.13 shows the signals of (a) gaseous CO, (b) AE feature, (c) 10 point ensemble 
average of the AE feature, and (d) after 30 point ensemble average of the AE feature

Figures 4.13 (a) and (b) show the CO concentrations and a typical AE feature. Figures 
4.13 (c) and (d) demonstrate 10 and 30 point averaged results and it can be observed that 
as the number of averaging points increases, the signal becomes a slightly better 
representation of the CO concentrations.

4.4 Comparing the Signal Features with Flue Gas 
Emissions
During the data collection phase, the flame monitoring system was operated together 
with the gas analyser which measured the concentrations of the flue gases. The raw 
sensor signals were then processed to yield the features of Table 4.1, which were then 
compared with the gaseous emissions. The idea of the procedure was to evaluate the
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relationship between the features and the gaseous concentrations. Since a considerably 

large number of features were generated, only a selection of features from each sensor 
are compared with the swirl number, excess air level and gaseous emissions for each 
coal in this thesis.

4.4.1 Comparison of Typical IR Features with the Flue Gas 

Concentrations and Secondary Airflow Rate
Figure 4.14 below compares the NOx concentrations with the RMS and Kurtosis of the 

IR sensor signals. It was found that the trends of the sensor features were in reasonable 
agreement with the trends in NOx emissions. However, there are "differences" in 

individual cases, see Figures 4.14 (c), (d) and (j), where large discrepancies are 
highlighted by the red arrows.

In Figure 4.15, NOx emissions are compared with the Average Energy in the bands of 

400-600 and 600-800 Hz. Again the trends in the features are comparable with the trends 

in NOx. It was found that the sensor features were unable to cope with the large step 

change in NOx that are highlighted by the two red circles (Figures 4.15 (a) and (b)). 

Other poorly correlated examples can be seen in Figures 4.15 (f) and (j), and also Figure 

4.14 (p) shows the feature progressively diverging from the NOx as the test proceeded.

It should be noted that some features are actually plotted on an inverse and/or a 

logarithmic scale as those features exhibited an inverse as well as a nonlinear relationship 

with the NOx readings. Overall, many of the other features analysed were found to be 

reasonably well related to the NOx in addition to these shown in both Figures 4.14 and 

4.15. Nevertheless as can be seen from these figures, there is considerable scatter in the 

relationships for individual data points so that any single feature cannot be used to 

predict the flue gas concentration.
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NOx (vppm) vs. P(400-600) Hz NOx (vppm) vs. P(600-800) Hz

10 20

Data Points

Figure 4.15 NOx and the Average Energy in the bands of 400-600 and 600-800 Hz

for the IR sensor
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The trends in the RMS and Kurtosis of the IR signals and the secondary airflow rate are 

similar, see Figure 4.16 below. Again, there is considerable scatter with the trends 

predicted better in particular tests, see Figure 4.16 (k) for example, which presents the 

data at a swirl number of 0.5 when burning the Columbian coal.

Similar relationships with a relatively high degree of scatter are observed using the 

Average Energy in the 400-600 and 600-800 Hz frequency range, see Figure 4.17. Once 
more these figures indicate that a combination of features may be required to predict the 

secondary airflow rate at particular burner conditions.
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Secondary Airflow Rate (m3/h) vs. RMS Secondary Airflow Rate (m3/h) vs. Kurtosis

10 20

Data Points Data Points

Figure 4.16 Secondary Airflow Rate and the RMS and Kurtosis for the IR sensor
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Secondary Airflow Rate (m3/h) vs. P(400-600) Hz Secondary Airflow Rate (m3/h) vs. P(600-800) Hz

Data Points Data Points

Figure 4.17 Secondary Airflow Rate and the Average Energy in the bands of400- 
600 and 600-800 Hz for the IR sensor
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The trends in the RMS and Kurtosis features of the IR are compared with the variations in 

CO concentration in Figure 4.18. CO has a very nonlinear relationship with excess air, 

and was found to be one of the most difficult gases to accurately monitor and therefore 

larger differences were anticipated. In order to overcome this, a longer averaging period 

would be required so that the process feature would that resemble the red curve in Figure 

4.18 (p) which then provides a reasonable representation of the CO emissions.

The Average Energy in the bands of 400-600 and 600-800 Hz of IR sensor are compared 

to the CO with the mostly related being Figures 4.19. As usual, significant differences 

are highlighted, as shown in Figures 4.19 (e) and (j).
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CO (vppm) vs. P (400-600) Hz CO (vppm) vs. P (600-800) Hz

Data Points
10 20

Data Points

Figure 4.19 CO and the Average Energy in the bands of 400-600 and 600-800 for the IR

sensor
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The RMS and Kurtosis features for the IR sensor are compared to the 02 concentrations 

with the best representations of the trends being found in Figures 4.20 (b), (c), (d), (e), 

(f), (g), (h), (j), (k) and (1). However, there were also cases where the agreement was less 

obvious and regions with substantial differences are highlighted.

The Average Energy, in the bands of 400-600 and 600-800 Hz for the IR sensor, are 

compared with the flue gas C>2 in Figures 4.21. As in previous cases, Figures 4.21 (a) and 

(b) indicate that these features do not detect a step change as shown by the red circles. 

Figures 4.21 (c), (d) and (f) are good examples of instances when the features are closely 

correlated to the Ch. Once more, a longer averaging time would be required to reduce the 

difference as indicated as a red curve (Figures 4.21 (1)).
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4.4.2 Comparison of Typical Microphone Features with the Flue 
Gas Concentrations and Secondary Airflow Rate
This section is concerned with the microphone features. Again RMS, Kurtosis, and the 
Average Energy in the bands of 400-600 and 600-800 Hz were compared with the NOx, 
secondary airflow rate, CO and O2 respectively.

Figures 4.22 (a), (c), (e), (f), (g), (m), (n), and (o) below illustrated cases in which the 
RMS and Kurtosis of the microphone signals were reasonably related to the NOx. Major 
differences are highlighted using red arrows and circles as shown in Figures 4.22 (a), (g), 
and (n). In addition, the trends in the Average Energy in the bands of 400-600 and 600- 
800 Hz which also correlated with the NOx are presented in Figures 4.23 (a), (b), (i), (m) 
and (n). The microphone features appear to be able to follow step changes in combustion 
conditions as illustrated in Figure 4.22 (a), and Figures 4.23 (a) and (b). This 
complemented one of the major limitations of using the IR sensor especially when trying 
to estimate the combustion gases.

Overall, reasonable correlations existed for every swirl number and coal type, except for 
the Cerrejon test data at a swirl number of 0.5. It is also worth nothing that some of the 
other features (not presented in this part of the thesis) can also make reasonable 
predictions of the NOx emissions although all features exhibit scatter in the individual 

measurement points.
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NOx (vppm) vs. P(400-600) Hz NOx (vppm) vs. P(600-800) Hz

: ss z 400
8 1

] - '" 300 
20 ,_. 30 40 50 ; ,=

10 20

Data Points
1C 20

Data Points

Figure 4.23 NOx and the Average Energy in the bands of 400-600 and 600-800

Hz for the Microphone
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The similarity of the variation in the secondary airflow rate to the NOx has led a similar 

set of results. It was established that good correlations existed in Figures 4.24 (a), (e), 

(g), (i), (k), (1), (m) (n) and (o) in which the RMS and Kurtosis of the microphone are 

compared to the secondary airflow rate. Deviations are highlighted by red arrows as 

shown in Figures 4.24 (a), (e), (g), (k), and (n). Also, the RMS and Average Energy of the 

microphone have gracefully followed the large step change (Figures 4.24 (a), and Figures 

4.25 (a) and (b)). Figures 4.25 (k), (1), (m), (n), and (o) were among the best features.

Overall, the microphone features have effectively followed the secondary air profile for 

every swirl number and coal type, except for the Daw Mill data with a swirl number of 

0.5. Nevertheless, good correlations were achieved through the computation of other 

features (Table 4.1).
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Secondary Airflow Rate (m3/h) vs. RMS Secondary Airflow Rate (m3/h) vs. Kurtosis
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Figure 4.24 Secondary Airflow Rate and #MS and Kurtosis for the Microphone
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Secondary Airflow Rate (m3/h) vs. P(400-600)Hz Secondary Airflow Rate (m3/h) vs. P(600-800)Hz
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Figure 4.25 Secondary Airflow Rate and the Average Energy in the bands of 400-600

and 600-800 Hz for the Microphone
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The large peak CO values that were experienced for some of the swirl numbers during 

the experiments have contributed to the larger differences as the features did not exhibit 

such a large variation. However, the RMS and Kurtosis of the microphone signal (Figures 

4.26 (a), (b), (e), (f), (g), (i), (j)> (k), (m), (n), (o), and (p)) exhibited a similar variation to 

the CO. As usual, red arrows are used to highlight differences. Also, Figures 4.27 (a), 

(b), (e), (f), (i), (j)> (k), (1), (n) and (o) show examples of the Average Energy in the 400- 

600 and 600-800 Hz frequency range that are related to the microphone and target CO.

Despite large differences in these results, features of the microphone signal can be related 

with CO for most swirl numbers and coal types, except for the Daw Mill test data at a 

swirl number of 0.5. Still, there were also other features that were representative of CO 

for this swirl number that are not presented here.
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CO (vppm) vs. RMS CO (vppm) vs. Kurtosis
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Figure 4.26 CO and the RMS and Kurtosis for the Microphone
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CO (vppm) vs. P (400-600) Hz CO (vppm) vs. P (600-800) Hz
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Figure 4.27 CO and Average Energy in the band of 400-600 and 600-800 Hz for

the Microphone
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The RMS, Kurtosis and Average Energy in the bands of 400-600 and 600-800 Hz 

features that exhibited good results for the microphone and 62, were found in 4.28 (a), 

(b), (c), (d), (e), (f), (i), 0), 00, (1), (m), (n), (o) and (p) and Figures 4.29 (a), (b), (e), (f), 

(k), (1), (j)» (m)> (n) and (°)- Tne differences for both Figures 4.28 and 4.29 are 

highlighted and ideally there appear to be good microphone features for every swirl 

number and coal type.
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4.4.3 Comparison of Typical AE Features with the Flue Gas 
Concentrations and Secondary Airflow Rate
Fundamentally, AE occurs at high frequencies and so the Average Energy in the bands of 
300-400 and 700-800 kHz were compared. In a similar manner to the previous results, 
the AE were plotted against the NOx, secondary airflow rate, CO and O2 respectively.

The results of the RMS and Kurtosis of the AE that can be related to the NOx are 
presented in Figures 4.30 (d), (e), (f), and (j). Unfortunately, only a limited number of 
statistical features were found related, in comparison to the IR and microphone features. 
The results of the Average Energy in the bands of 300-400 and 700-800 kHz of the AE 
sensor that can be related to the gaseous NOx are presented in Figures 4.31 (a), (b), (f), 
(i), (1) and (p). The results suggest that the AE features were not related to the NOx for 
every swirl number and coal type. This also emphasises the importance of considering 
more features to increase the chance of relating the AE signals to NOx. In addition, AE 
was insensitive to the step change of the NOx (Figures 4.30 (a) and (b) and Figure 4.31 
(a) and (b)). Other matters of interest include the presence of larger fluctuations (Figures 
4.30 and 4.31) which would required a longer averaging time to achieve a better 
representation as illustrated by the red curve in Figure 4.31 (p).
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NOx (vppm) vs. RMS NOx (vppm) vs. Kurtosis
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Figure 4.30 NOx and the /?M5 and Kurtosis for the AE sensor
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NOx (vppm) vs. P(300-400) kHz NOx (vppm) vs. P(700-800) kHz
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Figure 4.31 NOx and the Average Energy in the bands of 300-400 and 700-800 kHz for

the AE sensor
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For the secondary airflow rate, the RMS of the AE signal for the Cerrejon coal data with 

a swirl number of 0.3 was the only feature that exhibited a corresponding variation 

(Figure 4.32 (i)). Figures 4.33 (a), (i), (j)> and (m) show the Average Energy of the AE 

which appeared to be more related to the secondary airflow rate. Differences are 

highlighted by red circles although none of the AE features responded to the step change 

in the secondary airflow rate (Figures 4.32 (a) and (b), and Figures 4.33 (a) and (b)). In 

general, fewer features were observed to be related, meaning that more features would 

have to be analysed in the hope of finding related features for every swirl number and 

coal type.
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Secondary Airflow Rate (m3/h) vs. RMS Secondary Airflow Rate (m3/h) vs. Kurtosis
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Figure 4.32 Secondary Airflow Rate and the RMS and Kurtosis for the AE

sensor
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Secondary Airflow Rate (m3/h) vs. P(300-400) kHz Secondary Airflow Rate (m3/h) vs. P(700-800) kHz

a Points Data Points

Figure 4.33 Secondary Airflow Rate and the Average Energy in the bands of 300- 

400 and 700-800 kHz for the AE sensor
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The results of RMS and Kurtosis of the AE that were related to the CO are presented in 

Figures 4.34 (d), (e) (f), (g), (i) and 0) and the Average Energy in the bands of 300-400 

and 700-800 kHz of the AE signal which correlated with the CO variations are presented 

in Figures 4.35 (a), (e), (f), (g), (j) and (o). In reality, the acceptable results were limited 

to the Daw Mill test data for swirl numbers of 0.5, 0.8, and 1.2, and the Cerrejon test data 

for swirl numbers 0.3 and 1.2. This implies that the AE features were not as good at 

representing the CO as IR and the microphone. However, this should not lead to 

abandoning the use of AE for monitoring combustion because good features could still 

exist when other analysis is undertaken.

In the final presentation, the results of the RMS and Kurtosis features of the AE that were 

found to correlate with Oi are presented in Figures 4.36 (b), (d), (f) and (p) and the 

Average Energy in the bands of 300-400 and 700-800 kHz of the AE were correlated 

with the O2 in Figures 4.37 (a), (b), (e), (f), (g), (h), (j) and (1). Correlated features were 

found exist for almost every swirl number and coal type. This is certainly an improved 

result compared with the previous two sections where the secondary airflow rate and CO 

corresponding to AE features were discussed.
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CO (vppm) vs. RMS
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Figure 4.34 CO and the RMS and Kurtosis for the AE sensor
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CO (vppm) vs. P (300-400) kHz CO (vppm) vs. P (700-800) kHz
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Data Points

Figure 4.35 CO and the Average Energy in the bands of 300-400 and 700-800 kHz for the

AE sensor
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Figure 4.36 O2 and the RMS and Kurtosis for the AE sensor
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O2 (%) vs. P (300-400) kHz O2 (%) vs. P (700-800) kHz
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Figure 4.37 O2 plots against Average Energy in the bands of 300-400 and 700-800 kHz for

the AE sensor
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4.5 Summary of Selected Features Analysis
Even though a large number of features were selected (Table 4.1), it was impossible to 
present every feature response to every swirl number and coal type. As a result, a 
selection of features (specifically two time and frequency domain features) for the 
different swirl numbers, coal types, and sensor type were presented. The arrangement of 
the results in sections 4.4.1, 4.4.2, and 4.4.3 has enabled the consistency of the chosen 
features to be compared for each swirl number and coal type.

It was found that every set of results exhibited different degrees of correlation. The 
features of the IR and microphone sensors had the greatest consistency at representing 
the gaseous emissions for each swirl number and coal type. This suggests that the AE 
sensor was the least capable sensor because the correlation of the AE features to some 
operating condition of the burner was not achieved.

One can conclude that a "universal" feature that consistently estimated the gases for 
every swirl number and coal type did not appear to exist. Other interesting observations 
were that the microphone was able to detect step changes in the gases and that there were 
examples where a long average of the features allowed the feature to estimate the 

variation in the gases.

4.6 Summary of Chapter 4
Chapter 4 comprised two major discussions: firstly, it discussed a study of the gaseous 
emission profiles for different burner operating conditions as the experiments were 
conducted by varying the secondary airflow rate and swirl setting, secondly, it presented 
the search for a suitable signal processing algorithm, so that the IR, microphone, and AE 
signals could be transformed into a series of useful features that were comparable to the 

emission gases.

The purpose of these experiments as conducted in the 150 kW PF combustion test 
facility was to study the gaseous emission profiles of different coals and burner settings.
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In summary, the experiments confirmed that NOx reduced as the secondary airflow rate 
decreased. However, CO increased rapidly if there was insufficient O2 . Other factors that 
affected the dynamics of the PF burner included the swirl setting and combustion rate, 
and a swirl number of 0.8 for both the Daw Mill and Cerrejon was found to be optimal.

The techniques of signal processing both in the time and frequency domains also were 
discussed. A selection of sensor features were compared to the combustion gases with the 
conclusion being that the IR and microphone features better represent the gases for 
almost every swirl number and coal type as compared to the use of AE features. As it 
was not found to be possible to utilise one feature to estimate emissions for all swirl 
numbers and for both coals, a technique is required that brings together the "good" 
features so as to be able to make estimates over as large a range of the swirls tested as 
accurately as possible.
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Chapter 5 The Modelling of Gas Emission in 
Pulverised Coal system
It was acknowledged in Chapter 4 that there were correlations between the sensor 
features and the combustion gases. Besides, it was found that no single feature could 
represent a particular gas reading for every operating condition and so this statement led 
to the view that a combination of features using Artificial Neural Network (ANN) 
techniques would provide the best approach for the estimation of the gaseous emissions 
so that appropriate control actions could take place in real-time.

5.1 Introduction
Generally, there are two ways to perform system (process) modelling. This can either be 
through, (a) first principles, in which the physical and chemical relationships such as 
reaction kinetics, material balances, and thermodynamics are modelled, or (b) to generate 
a mathematical function where empirical relationships are of more concern. In this 
application, the approach adopted was (b) for the following reasons: -

1. Combustion systems vary significantly due to the high nonlinearity in different 
operating regions [Russell et al, 1997].

2. Models based on first principles require specific plant data, which can be difficult 
or expensive to measure.

3. There is no universal kinetic relationship which can adequately describe the 
combustion system, for example, the gasification of the nitrogen remaining in the 
char is frequently undetermined [Niska et al., 1996; Stanmore, 1999].
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Wojcik (2003) suggested that good predictive results could be difficult to obtain if the 
model is to be trained with a single variable. Ideally, the ANN is used as a "software 
sensor 1 " in which they are trained by the historical data and then used to perform online 
predictions. The trained gases models of Wojcik were integrated to a close-loop control 
framework in which they predicted gaseous emissions so that the optimisation could be 
achieved in a routine fashion. The motivation of using ANNs in this project is as follows 
[Lizarraga, 1998; Sankar etal, 1996 ]: -

1. ANN is a computational model composed of many "nonlinear" processing 
elements and so it is suitable for modelling nonlinear processes.

2. ANN has the ability to find an approximate solution to a precisely (or an 
imprecisely) defined problem in the real world which benefits from its parallel 
processing capability.

3. ANN learns by adapting its synaptic weights to changes in the surrounding 
environment and generalises from known tasks or examples to an unknown one.

Among the most popular implementations are the Hopfield, Multilayer Perceptron, 
(MLP), Elman (Recursive), Self-Organizing Feature Map (SOFM), Learning Vector 
Quantisation (LVQ), Radial Basis Function (RBF) and Adaptive Resonance Theory 
(ART) networks. Though with function approximation in mind, the MLP and Elman 
networks which can approximate any given function with arbitrary precision [Bing, 1997] 
were evaluated in this project. In addition, a "one-step-ahead" Neural Network of Auto- 
regressive with Exogenous Inputs (NNARX) structure network developed by N0rgaard 
(2000) was tested. Nevertheless, only one of these three models will be used in the 

controller experiments (Chapter 6).

Modelling with an ANN is predominantly dependent to its input signals. Wildman (1994) 
suggested the use of additional information via data fusion could improve the modelling 
result. Feature-level data fusion involves the extraction of representative features from

1 Software monitoring requires instrumenting the application source code, system libraries, or compiler. 
Software approaches are generally more portable and present information at an abstraction level closer to 
the users' way of thinking than, say, binary code, or assembly language instructions.
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multiple sensor observations, followed by combination into a single concatenated input 
before modelling. Decision-level fusion, on the other hand, assumes that features in each 
independent sensor chain are sufficient to perform independent detection. Decision-level 
fusion theory implies that simulating different networks based on one common data set 
helps in searching for a good model architecture. In summary, Chapter 5 aims to find a 
routine that could possibly achieve the best prediction using ANNs.

5.2 Why Artificial Neural Networks?
Frequently in engineering, science, and business, data is collected and plotted graphically 
in order to assess an association between the variables by connecting the "points" with a 
line. Once drawn, the line is examined and a "model", then "fitted" and used to replace 
the existing set of data points as "the appropriate model". This is often followed by 
finding the coefficients of a polynomial function through the least square2 algorithm that 
leads to an overdetermined3 system as shown: -

where a0 ,al ,a2 and a3 are unknown coefficients

The Simple Regression (SR) model is straightforward and can successfully approximate 
many processes (at least over a limited range). Since many physical processes are 
nonlinear, the exploration of other trendline functions such as exponential, power, and 
logarithmic, have become familiar. However, choosing the wrong model can lead to 
instability of the model with higher order polynomials [Linko, 1999].

For multivariate systems, Multiple Regression (MR) models have been claimed to 
provide a more comprehensive solution by assuming that if y is a function of more than

2 Least squares is a mathematical optimisation technique that attempts to find a "best fit" to a set of data by 
attempting to minimise the sum of the squares of the differences (called residuals) between the fitted 
function and the data.

33 Algebraic systems that have more equations than unknowns.
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one independent variable, the matrix equations that express the relationships among the 
variables can be expanded to accommodate additional data which can be expressed as: -

y = a0 + a,*, + a2 x2

MR solves the unknown coefficients of a0 ,a,and a2 much in the same way to SR 

model. The approximation of MR is improved by increasing the number of positive 
independent variables [Advanced Statistics (Multiple Regressions) - 
http://www.maths.ex.ac.uk/~wjk/psy6010/multregl.html; Last Accessed 10 April 2005]. 
Nevertheless, MR is fundamentally a linear model and using a linear criterion in a 
nonlinear context is far from optimal [Lendesse et al, 2002].

Artificial Neural Networks (ANNs), on the other hand, have a proven ability for handling 
nonlinear and ill-defined problems. ANN determines the input-output relationships from 
a set of good examples, much in the same way that people learn through experimentation 
and interaction with their environment [Salehfar et al, 1997]. Although the statistical 
methods such as SR and MR are still commonly used in the development of empirical 
relationships between them, this procedure is often complex and circuitous. In contrast, to 
formulate the statistical model process in an ANN is much easier and direct, for there is 
no necessity to specify a mathematical relationship between the input and output 
variables [Yin et al, 1998]. With improved computer processing power, the ANN has 
become a practical tool for regular applications [William et al, 1992] especially in the 
situation where online adaptation is required. Since there are various network types and 
architectures, the assessment of different network performances were undertaken and 

reported in the following sections.
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5.3 Modelling of Pulverised Coal-fired Systems
Combustion is regarded as a highly complex and nonlinear system and because many 

boiler characteristics are not well understood, the empirical rather than first principle 

model is preferred [Kenneth et al, 1994]. The earliest models were mainly based on 

global kinetics and these models have limitations in practical applications as they involve 

complex calculations using parameters that are not readily available and are accurate only 

to certain coals [Zhu et al, 1999]. Yin (1998) stated that although there are several 

conventional techniques for estimating, for example, ash fusion temperatures from 

chemical composition, it is a complex question characterised by a number of interacting 

factors in which the relationship between these factors is not precisely known. In 

addition, the data associated with these parameters are usually erroneous and so 

developing empirical relationships using an ANN to predict the ash fusion temperature is 

favoured [Yin et al., 1998]. From the above discussions, it is clear that the ANN is more 

appropriate for the use in combustion processes than many other mathematical based 

models.

5.4 Data Fusion
An appropriate combination of features greatly improves the chance of a good result in 

modelling whereas a poorly chosen set of features tends to lead to a poor estimation [Tan, 

2003]; for example, Sharkey (1996) claimed that the use of combined features of 

temperature and pressure data achieved better prediction of faults in a marine diesel 

engine. However, to combine features requires an assessment of the "features" fitness for 

purpose and this can be achieved through techniques such as an examination of the 

correlation coefficient of each feature, or to identify good features through visual 

inspection.

5.4.1 The Importance of Data Fusion
Methods to combine or fuse data are drawn from a diverse set of more traditional 

disciplines, including digital signal processing, statistical estimation, control theory, 

artificial intelligence, and classical numerical methods. Data fusion techniques combine 

data from multiple sensors and relate information to achieve more specific inferences
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than could be achieved using a single, independent sensor. For example, multi-sensor 
data (e.g., smell, touch, and vision) fusion is naturally performed by animals and humans 
to assess more accurately the surrounding environment and to identify threats, thereby 
improving their chances of survival.

The advantage of deploying multiple sensor fusion is to corroborate useful information 
from diverse feature vectors from different sensors. Three basic alternatives can be used 
for multi-sensor data: -

1. Direct fusion of sensor data.

2. Representation of sensor data via feature vectors, with subsequent fusion of the 
feature vectors.

3. Processing of each sensor to achieve high-level inferences or decisions, which are 
subsequently combined.

Hall et al (2000) stated that if the multi-sensor data can be derived from sensors 
measuring the same physical phenomena, such as two visual image sensors or two 
acoustic sensors, then the raw sensor data could be directly combined. Conversely, if the 
sensor data are non-commensurate, then the data must be fused at the feature/state vector 
level or decision level. Consequently, only (a) feature-level and (b) decision-level fusions 

are to be discussed here.

5.4.2 Feature-Level and Decision-Level Fusion
Feature-level fusion involves the extraction of representative features from multiple 
sensor observations followed by their combination into a single concatenated feature 
vector before input to the ANN. A schematic of a feature-level fusion based model is 

illustrated in Figure 5.1.
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Joint Identity 
Declaration

Figure 5.1 Feature-Level Fusion Model

In contrast, decision-level fusion combines sensor information after each sensor has made 
a preliminary determination of the identity of the class. This approach inherently assumes 
that the signals and features in each independent sensor chain are sufficient to perform 
independent detection before the sensor decisions are combined. Hall et al (2001) 
suggested that the final outcome of the decision-level fusion could be achieved through a 
voting technique. The output decision can be determined by selecting the least error 
model of ANN, which can be mathematically described as in Equation 5.3.

IR 
Detector

Feature 
Extraction

Microphone
Feature 

Extraction

V

AE Sensor
J

—— + Feature 
Extraction

Decision- 
Level Fusioi

Joint Identity 
Declaration

Figure 5.2 Decision-Level Fusion Model
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Final Decision = Min ME P2

lEDelecior

PI
' Microphone

P2

* AESensor

[5.3]

where P\, P2 , and P3 represent the sensor features used for training an individual ANN 
model.

It is obvious that the search for the "best" model for predicting the gaseous emissions 
resulting from combustion could involve both (a) feature-level fusion (b) decision-level 
fusion.

5.5 Gas Predictions by Artificial Neural Networks
The results in Chapter 4 show one feature can be more related to combustion gases than 
another. In addition, the correlated features varied from one swirl number to another and 
so a "universal" feature set, which can be used in every burner condition, does not appear 
to exist. Consequently, different ANN models designed for particular swirl numbers were 
used. Each swirl number was used to generate data for 6 ANN simulations corresponding 
to (a) IR, (b) microphone, (c) AE, (d) combined features from all sensors, (e) the 3 most 
highly correlated features, and (f) use of a visually inspected set of features. The 
descriptions and test results of the simulations are tabulated in Tables 5.1 and 5.2 for the 
Daw Mill and Cerrejon test data. Columns 1 and 2 indicate the swirl number and target 
gases that the ANN was being used to model. Column 3 is the simulation test number in 
systematic order, and Column 4 illustrates how the features were used in the predictions.

A MLP network with a hidden layer of hyperbolic tangent activation function neurons 
and an output layer of linear activation transfer function neurons was programmed in 
Matlab™. The choice for the hidden neurons was determined through counting the 
number of effective parameters during the training. Some 10 hidden neurons were found 
to be sufficient to the model combustion gases based entirely on the sensor features 
(Table 4.1). Levenberg-Marquardt, a gradient descent back propagation method was used 
to adjust the network during training. In addition, network regularisation by the early 
stopping routine implemented in Matlab™ (Figure 5.4) was used to optimise the training 

time (size) of the trained network [Zhu et al, 1999].
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The first half of the data set was used for training with the rest for validation (unless 
otherwise specified). The same network model was trained a number of times in order to 
avoid the effect of local minima and to obtain best network performance [Tan et al, 
1999]. Since a neural network model is directly influenced by its input it is possible to 
examine the model predictions by knowing the input signals.

Knowing that the predictions directly depended on the sensor features, high frequency 
components (noise) were modelled in addition to the underlying signal. For this reason, it 
was decided to average the predictions as a means to reduce prediction errors, rather than 
filter the features, as it was felt that there might be useful information in the high 
frequency content. The averaging of the predictions that will be discussed in Chapter 6 
shows that averaging the predictions over a sufficiently long period of time yielded a 
reliable estimate of CO and NOx. In addition, evidence of the neural network being only 
sensitive to the underlying gas signal (exclusive of its periodic oscillation) was found in 

Chapter 5.
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5.5.1 Predictions of NOx, CO and O2 for Daw Mill test data at 

Swirl Number 0.3
A feedforward MLP network was used for modelling the NOx, CO and O2 . The Mean 

Error (ME) (i.e., square root of Mean Square Error) for each simulation test was 
calculated and used as a benchmark as to how the system performed. Six separate figures 

corresponding to the 6 different ways in which the features were combined was plotted in 

Figure 5.5 (a). Also, the MEs were presented as bar charts in Figure 5.5.

For simulations 1.1 to 1.6, the first half of the data set was for training and the other half 

(the unseen data) for validation. Reasonable predictions, except in simulation 1.3 for the 

AE features which has an increased, ME of 73 ppm. The reduced predictive capabilities 

with the insufficient AE signal in predicting NOx was probably affected by reduced 

turbulent combustion conditions with the lower swirl number of 0.3.

Figure 5.5 (a) indicates every simulation generated slightly different results. The trained 

model of the IR features in simulation 1.1 predicts both the periodic oscillation and 

underlying signal trend, as this led to an increased ME when compared with simulation 

1.2 of the microphone features. In addition, simulations 1.4, 1.5, and 1.6 corresponding to 

all sensor features, the 3 most highly correlated and the visually inspected features have 

MEs of less than 54 ppm. This suggests that the use of combined features that depended 

on more than one sensor data stream could deliver better prediction accuracy.
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For the prediction of CO, the first 400 data points were used for training with the rest 

being used for validation. The idea was to make sure the data used for training and 

validation covered the entire gas range being modelled. All simulations achieved 

acceptable predictions of MEs less than 67 ppm, except simulations 1.9 and 1.11 

corresponding to AE and the 3 most highly correlated features which have increased MEs 

of 75 ppm.

In Figure 5.6 (a), there are large excursions in the CO readings between the data points 

300 and 500. The transient in the CO resulted in localised signal deviations that led to 
significant errors. This applied to all 6 cases of Figure 5.6 (a). One possible explanation 

would be that the trained model of IR features (simulation 1.7) is that the trained IR 

model was capable of representing CO much better than any other simulations in Figure 

5.6 (a). This finding is probably due to a constant flame radiation particularly with a 

lower swirl setting which yielded a more reliable signal. To operate a burner with a lower 

swirl condition, however, resulted in a less turbulent combustion condition and 
consequently reduced pressure fluctuations. Therefore, the insufficient AE signal 

prevented the trained model to predict gas CO as in simulation 1.9.
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For the O2 simulation, half of the data were used to train a network model with another 
half for validation. The fluctuation in the O2 results from the slightly uneven fuel supply 
that potentially led to an increased ME. One should take note that because O2 appears as 
a percentage (%) so the corresponding ME of O2 must also be presented as the 
percentage error.

Simulation 1.13 demonstrates the IR features offered sufficient indication to predict both 
the periodic oscillations and the underlying O2 signal. This assumption has been made 
with a belief that the IR was better than the microphone, or AE sensor in predicting O2 . 
This assertion is in agreement with the previous test results that involved both NOx and 
CO. The poor AE response, on the other hand, probably resulted from a more stable 
combustion condition led to no signal. The use of combined features from different 
sensor data streams, on the contrary, has improved the prediction efficiency.

It was learned that a relatively large signal oscillation in the O2 resulted in increased MEs 
for all 6 cases (Figure 5.7 (a)). The fluctuations in the signal were purely a disturbance 

that is of no use in the process monitoring.
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5.5.2 Simulations of NOx, CO and O2 of Daw Mill Coal at Swirl 
Number 0.5
For the Daw Mill test with a swirl number of 0.5, the first half of the data set was used to 
train the ANN followed by validating the model with the remaining data. The trained 
NOx models corresponding to simulation 2.1, 2.5, and 2.6 of the IR and 3 most highly 
correlated and the visually inspected features yielded MEs of less than 74 ppm. This 
suggests the trained IR could be better than the microphone or AE models with a lower 
swirl number of 0.5, and, the combined features offered better model prediction.

One major finding in Figure 5.8 (a) is that the NOx did not appear to be consistent when 
subject to the same secondary airflow rate at the beginning and somewhere towards the 
end in all 6 cases. Such signal deviations could have resulted from variations in the flame 
signature that was affected by factors such as the coal size distribution and moisture 
content. Also the predictions made by the trained model of the microphone features in 
simulation 2.2 have MEs as high as 104 ppm. These signal deviations, however, were 
affected by factors such as slight changes in the coal properties, or the noise generated by 
the suction pump when refilling the coal feeder.

Some green circles were added to indicate the location of errors that made significant 
contribution to the overall MEs of Figure 5.8 (a). In addition, to operate the burner with a 
low swirl number of 0.5 appears to result in a stable combustion condition and 
consequently diminished the AE signal that then yielded no prediction (simulation 2.3).
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The CO model with a swirl number of 0.5 was trained and validated in a similar way to 
the NOx model. All 6 simulations showed somewhat consistent in terms of ME 
calculated. The extremely poor predictions resulted from the set of features that failed to 
match the change in the gaseous CO (noticeable between the data points 400 and 700) 
were found in Figure 5.9 (a).

The unsuccessful prediction in simulation 2.9 was due to missing AE signal. Perhaps 
homogeneity in the combustion condition did not generate significant AE for the neural 
network. Besides, the wrongly chosen features, in simulation 2.12, have resulted in no 
prediction at all. One should pay attention to the unsuccessful predictions in simulations 
2.9 and 2.12 of the AE and visually inspected features, which have MEs as low as 82 and 
80 ppm when compared to other simulations. Such a misleading error for simulations 2.9 
and 2.12 demonstrates the need to check visually the target and prediction signals in 
addition to calculating the prediction errors.

Unfortunately, Figure 5.9 (a) demonstrates a very weak correlation. However, one may 
consider using CO models as an indicator to which "relative" rather than "absolute" 

information is of more importance.
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In the prediction of O2, the data that was used to train NOx and CO were adopted for 
training the O2 model. It can be observed that simulations 2.13, 2.17, and 2.18 (the IR, 3 
most highly correlated and visually inspected features) have lower MEs of 0.72, 0.74, and 
0.74 % respectively. This indicates the trained model of the IR outperformed the 
microphone or AE features, even though the predictions loosely followed the gas O2 .

As O2 was consistent with the same secondary airflow rate in simulation 2.14, the error 
for the trained model of the microphone features probably resulted from additional noise 
sources, for example, an audible sound generated by the suction pump when refilling the 
coal feeder. The deviations in the target and prediction signals corresponding to 
simulation 2.14 were highlighted.

Unlike the trained AE model with a swirl number of 0.5 in predicting both NOx and CO 
in simulations 2.3 and 2.9 a smaller O2 response has allowed the trained model of the AE 
features to predict the gas O2 (simulation 2.15). This implies that the predictable 
condition using a trained AE model resulted from either the increased swirl setting hence 
a greater signal, or due to a smaller O2 response, or both.

Simulations 2.17 and 2.18 of 3 most highly correlated and the visually inspected features 
have reasonable predictions. The improve predictions almost certainly resulted from a 
larger data dimension and effectively better network inference. In addition, the oscillation 
in the signal O2 in Figure 5.20 suggests these models were trained only to recognise the 
underlying O2 signal trend.
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5.5.3 Simulations of NOx, CO and O2 for Daw Mill Coal at Swirl 
Number 0.8
In the simulations where Daw Mill test data for a swirl number of 0.8 was used, the first 
800 data points were for training with the rest for validation. This arrangement applied to 
all 3 models in response to NOx, CO and O2 . Simulations 3.1, 3.4, 3.5 and 3.6 (the IR, all 
sensor features, 3 most highly correlated and the visually inspected features) (Figure 5.11 
(a)) achieved reasonable prediction with MEs of less than 30 ppm.

The signal deviations in simulation 3.2 of the microphone features (as highlighted) were 
thought to be affected by additional noise sources. This is unlikely to happen in any 
practical boiler as the auxiliary plants, for example, the forced draft fan and suction pump 
usually placed many meters away from the main boiler. For a swirl number of 0.8 the 
model trained with the AE features matched he actual NOx for the first 900 data points. 
However, the remaining data is not predicted as well which perhaps resulted from small 

changes in the airflow setting.
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Figure 5.11 (a) Simulations 3.1 to 3.6
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For the predictions of CO, the overall MEs were reasonably low (< 30 ppm) (Figure 5.12 
(b)). Such a promising simulation result benefited from CO with no large excursions. The 
increased error in simulation 3.8 of the microphone features, on the other hand, resulted 
from unexpected noise sources. This judgment was made with a reason that no such 
signal interference was found in both simulations 3.7 and 3.9 of the IR and AE features. 
In addition, simulations 3.10, 3.11, and 3.12 suggest better predictions could be obtained 
when using combined sensor features.

One remarkable finding in monitoring gas CO is concerned with the problem where the 
CO levels were different when subject to the same secondary airflow rate. The drifting in 
the CO gas analysis was probably due to some considerable unburned carbon in the fly 
ash settled around the gas sampling point after a prolonged period of operation. One way 
to alleviate this problem is to purge the CO sampling point with compressed air on a 
regular basis. However, this existing feature in the burner was disabled as the 
introduction of an air purge scheme led to an incursion of O2 and subsequently incorrect 
gas readings owing to dilution. Such inconsistency in the CO readings, therefore, refers to 

inaccuracies in the gas analyser.
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It is felt that in Figure 5.13 (a), reasonable predictions were achieved, except simulation 
3.13 and 3.15 of the IR and AE features. The high ME with the trained model of the IR 
features in simulation 3.13 resulted from an "offset" between the predicted and target O2 
as highlighted with a green circle. This offset in the readings could be due to an 
inaccuracy in the gas analyser readings due to the fact the secondary airflow rate was the 
same at the beginning and the end of the simulation. For this condition, however, the 
microphone features results in an excellent prediction therefore, there must be an aspect 
of the microphone features that has matched the C>2 signal.

The increase error in simulation 3.15, on the other hand, shows AE features were unable 
to predict gas 62. This refers to insufficient AE signal that resulted from a steady 
combustion condition. One should also pay attention to low MEs in simulations 3.16, 
3.17, and 3.18 in which the combined features have persistently improved model 
prediction accuracy.
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5.5.4 Simulations of NOx, CO and O2 for Daw Mill Coal at Swirl 

Number 1.2
Figure 5.14 illustrates a problem of monitoring CO which when subject to the same 

secondary airflow rate (i.e., 150 m3/h) different CO values were recorded at the beginning 

and end of the test. The implication being that a model trained with the first half of the 

CO data and validated with second half would have predicted values corresponding to the 

first half. This result in signal deviations when the prediction, corresponding to the 

beginning, was presented against the target CO of the second half of Figure 5.14. To 

avoid this, the CO model was trained and validated using even and odd number data from 

the same data set and the same procedure applied to all three models in response to NOx, 

CO and O2 . One may realise a high CO concentration has saturated the gas analyser so 

that the prediction made by using this data set has maximum predictions of a 1000 ppm, 

which can be considered to be a high reading.

Daw Mill Coal, Swirl Number 1.2
2000 -- 170

50

400 600 
Data Ftoints

800 1000 1200

-CO - Secondary Airflow Rate

Figure 5.14 The "off-set" effect happened to CO when subject to the same Secondary

Airflow Rate of 150 m3/h
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In simulations 4.2 and 4.4, the predictions made by the microphone and all sensor 

features have lower MEs of 53 ppm and 55 ppm. It is felt that with a high swirl number 

of 1.2, the microphone features in simulation 4.2 have become dominant consequently 

allowing better predictions, when the trained model of microphone features and 

compared with the IR features. This probably resulted from increased turbulence in the 

combustion condition and hence greater sound intensity. In addition, the increased swirl 

number also led to increase structural vibrations as the AE signal was found to be driven 

by pressure fluctuations that were generated inside a burner.

Simulations 4.4 and 4.5 of Figure 5.15 demonstrated the advantage of using the combined 

features as a larger data dimension helps the neural network match the variable signal. 

Also, the predictions in simulation 4.6 suggest the wrongly chosen feature led to a total 

failure.
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Figure 5.15 (a) Simulations 4.1 to 4.6
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Given that the CO was found to be the most unpredicted combustion parameter, it is of 
very little surprise that the MEs of as high as 377 ppm (simulations 4.7 to 4.12) were 
found. The high MEs happened for all 6 simulations in Figure 5.16 (a) and they were in 
some way affected by large signal deviations that coincided with the transients in the CO.

The increased swirl number to 1.2 resulted in a higher turbulent flame consequently 
better sound intensity (simulation 4.8). In addition, it is felt that the increased swirl 
number also accompanied by the increase in the AE signal. This in turn can be observed 
from an improved prediction in simulation 4.9 using the trained AE model.

Finally, simulations 4.10 and 4.11 of all sensor and the 3 most highly correlated features 
demonstrated reasonable predictions. One may discover the network estimates are 
sometimes higher than the maximum training value of 1000 ppm as the network predicts 
"noise" in addition to the underlying signal.
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In the predictions of O2, simulations 4.14, 4.15 and 4.16 (the microphone, AE and all 

sensors features) (Figure 5.17 (a)) have reasonable MEs not more than 0.55 %. The 

trained model of microphone features, again, offered good prediction performance as a 

result of more discriminate features. In addition, simulation 4.15 shows reasonable 

predictions of the gas O2 when using trained model of AE features, as this situation did 

not happen to other swirl numbers (i.e., 0.3, 0.5, and 0.8) where the AE features were 
involved.

Large signal deviations in simulations 4.17 and 4.18, as highlighted, were probably 

affected by the insufficient number of features being used in the modelling. Both 

simulations 4.17 and 4.18 used the same features for predicting O2 and consequently this 

led to the same ME of 0.76 %.
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Figure 5.17 (a) Simulations 4.13 to 4.18
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Figure 5.17 (b) Mean Error for Simulations 4.13 to 4.18

5.5.5 Simulations of NOx, CO and O2 for Cerrejon Coal at Swirl 

Number 0.3
In a similar way to the result for Daw Mill coal, the Cerrejon test data were used for the 
prediction of the combustion gases corresponding to swirl numbers 0.3, 0.5, 0.8, and 1.2. 
Figure 5.18 shows that the first half of the data set does not cover the entire range of the 
second half of the NOx, therefore the NOx was trained using even and odd numbers of 
the data from the same data set. This was probably due to air leaking or changes in 
temperature, as the burner started cold. In addition, in order to achieve homogeneity, this 
arrangement was applied to CO and O2 in the subsequent modelling events.
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Cerrejon Coal, Swirl Nurrber 0.3
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Figure 5.18 The Gaseous NOx corresponding to Cerrejon Coal., Swirl Number 0.3

Simulations 5.1 to 5.6 that involved the predictions of NOx have MEs of less then 13 
ppm (Figure 5.19 (b)). It is felt that the simulations based on even and odd numbers of 
the data set for training and validating, have lower errors when compared to Daw Mill 
results simply because the odd data series is analogous to the even numbers of the same 
data set. One may argue that by doing this, the generalised property of the network has 
not been tested simply because of the similarity between the training and validation data 
sets. Still, they were differences between the training and validation results thus allowing 
the different networks to be compared. Simulations 5.2, 5.3 and 5.6 show the differences 
(highlighted by green arrows and circles) which appeared to both training and validation 
hence increasing the MEs.

It is evident that the improved microphone and AE signals occurred at higher swirl 
numbers. As a result, the trained model of the AE features in simulation 5.3 and with a 
lower swirl setting of 0.3, turned out to be the poorest out of the 6 simulation tests in 
Figure 5.19. Also the trained model of the IR (simulation 5.1), at a lower swirl number of 
0.3, was slightly better than the microphone features in simulation 5.2. This is 
comparable to the simulations 1.1 and 1.2 of Daw Mill experiments. The predictions 
using combined features corresponding to all sensors and the 3 most highly correlated
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features have low MEs. In addition, the visually inspected features technique that 
persistently led to poor prediction based upon human judgement must be avoided 
whenever is possible.

IR Features (Simulation 5.1)
Cerrejon Coal, Swirl Number 0.3

Microphone Features (Simulation 5.2)

Visually Inspected Features (Simulation 5.6)3 Most Highly Correlated Features (Simulation 5.5)

O

280 200 400 600 800

Figure 5.19 (a) Simulations 5.1 to 5.6
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In the prediction of CO, simulations 5.10 and 5.11 (all sensor and the 3 most highly 
correlated features) have MEs of less than 12 ppm. This further consolidates the idea to 
combine features for better predictions. Simulations 5.7 and 5.8 of both the IR and 
microphone features achieved relatively low MEs of no more than 23 ppm and with a 
view that the trained IR model was marginally better under a lower swirl condition of 0.3. 
From this, one may confirm a well-trained model of IR features with a low swirl setting 
could result from to a homogeneous flame radiation condition. In contrast, the trained 
model of AE features has limited representation to the gas CO particularly at the lower 
gas CO region. Finally, the trained model of the visual inspection technique was once 
again found to be the weakest.

174



Cerrejon Coal;Swirl Number 0.3

JR Features (Simulation 5.7) Microphone Features (Simulation 5.8)

200 

If 150

400 600 
Test No. 

All Features (Simulation 5.10)AE Features (Simulation 5.9)
Target CO 
Predicted CO

Highly Correlated Features (Simulation 5.11) Visually Inspected Features (Simulation 5.12)

400 600 
Test No.

800

Figure 5.20 (a) Simulations 5.7 to 5.12

CO Prediction Error - Cerrejon Coal, Swirl Number 0.3

3 Most Highly 
Correlated 
Features

Figure 5.20 (b) Mean Error for Simulations 5.7 to 5.12

175



In the prediction of O2 , the simulation 5.13 of the trained model of the IR appeared to be 

better than the microphone features. This finding is effectively in agreement with 

simulations 5.1 and 5.7 involving both NOx and CO resulted from a more stable flame 

signal. Reasonable predictions from all sensors, 3 most highly correlated and the visually 

inspected features of simulations 5.16, 5.17 and 5.18, highlighted the best use of the 

combined features to ensure better prediction accuracy. Another remarkable discovery, 

which contradicted the idea where AE signal could hardly be found, when the burner 

operated at a lower swirl number, refers to a smaller O2 response. This situation has 

allowed the trained model of the AE features to predict gas O2 . As a result, this led to the 

conclusion that AE could be affected by both the swirl setting and target signal.
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Figure 5.21 (a) Simulations 5.13 to 5.18

176



0.8 -r

0.6 -

o 
5 0.4 -
c

2
0.2 

0.0

O2 Prediction Error

0.37

Simulation 5. t3

IR Features

0.55

Simulation 5.14

Microphone 
Features

- Cerrejon Coal, Swirl Number 0.3

0.60

"f
0.35 0.35 0.35

Simulation 5. 15 Simulation 5. 13 Simulation 5. 17 Simulation 5. 18

AE Features All Sensors 3 Most Highly Vision 
Features Correlated Inspected 

Features Features

Figure 5.21 (b) Mean Errors for Simulations 5.13 to 5.18

5.5.6 Simulations of NOx, CO and O2 for Cerrejon Coal at Swirl 
Number 0.5
The simulations in this section were trained and validated using even and odd numbers of 
the same data set. The sound increases as the swirl in the secondary air rises and overall 
this led to an improved microphone signal. Judging from the fact that the NOx should lie 
in the same level at the beginning and the end when subject to the same secondary 
airflow rate, thus resulted in localised signal deviations (as highlighted) in Figure 5.22 
(a). Simulations 6.1 and 6.2, on the other hand, indicate signal deviations using both the 
IR and microphone features most likely resulting from either inaccuracies in the gas 
analyser, or variations in the combustion flame.

Recognising that the position of each sensor has a slightly different signal response over 
the entire burner operation conditions, the use of the combined features could lead to a 
more complete solution in terms of prediction performance. This justification can be 
applied to simulation 6.4, where the trained model corresponding to all sensor features, 
capable of predicting upper NOx region. The unpredicted NOx in simulations 6.5 and 6.6 
of 3 most correlated and the visually inspected features, however, were most likely due to 

inaccuracies in the gas analyser.
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Figure 5.22 (a) Simulations 6.1 to 6.8
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One significant deviations in simulations 6.7 to 6.12 of Figure 5.23 (a) is that these 

trained models failed to predict the highest CO (error of 120 ppm). It is felt that as the 

flame physical changes at a different rate when compared with the gas CO so, only partial 

changes in the flame were recorded. Nevertheless, the increased microphone signal in 

simulation 6.8 led be a much better prediction with a swirl number of 0.5.

However, even with an increased swirl number the predictions using AE features in 

simulation 6.9 were not found to be much better due to insufficient AE signal features. 

Simulation 6.10 with the all sensor features, on the other hand, outperformed both 

simulations 6.11 and 6.12 of the 3 most correlated and visually inspected features and 

overall, the improved prediction using the combined features benefited from a larger data 

dimension.
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A slight increase in swirl number of 0.5 has led to improve microphone response. This 
assertion is can be evident in simulation 6.14 where the trained model of microphone 
features successfully covered the entire range in 02 gas. In addition, it was found that the 
trained model of AE features failed to predict the O2 and so this implies a further increase 
in the swirl number may be required before a satisfactory level of AE signal can be 
found. Simulations 6.16, 6.17 and 6.18 of all sensor, 3 most correlated and the visually 
inspected features, on the other hand, demonstrated some better predictions because of 
the use of multiple sensor information.
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5.5.7 Simulations of NOx, CO and O2 for Cerrejon Coal at Swirl 
Number 0.8
In the following simulations where Cerrejon test data for a swirl number of 0.8 were 
used, the first 500 data samples were used for training with the remaining being used for 
validation. It is felt that the MEs of Figure 5.25 (a) were reasonably low except 
simulation 7.3 of the AE features where no prediction was found. The missing AE even 
at an increased swirl number of 0.8 did not produce significant pressure fluctuation in the 
combustion condition of Cerrejon coal. Both trained models of the IR and microphone 
features achieved acceptable predictions. However, the localised deviations in simulation 
7.1 (as highlighted) probably resulted from unknown disturbances, for example, 
temporarily settlement of fly ash that obstructs the optical lens of the IR sensor could 
have led to some irregularity in the measurement. Other discovery includes the combined 
features that offered reliable predictions as in simulations 7.4, 7.5 and 7.6.
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The homogeneity in the combustion condition with a swirl number of 0.8 led to no 
prediction in simulation 7.7 of AE sensor. It is felt that the trained data corresponding to 
the first 500 data points did not cover the second half of the validation data set and 

overall this resulted in large signal deviations that happened to all 6 simulations in Figure 
5.26.

The use of combined features in simulations 7.10, 7.11, and 7.12 offered a less 
fluctuating prediction signal. In addition, the transients in the CO and predictions took 
place at two separate instances. The time-delay pattern has led to localised errors and so 
greater MEs.
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Figure 5.26 (a) Simulations 7.7 to 7.12
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In the prediction of O2, the models were trained in the same way to the NOx and CO. The 
missing AE signal (simulation 7.15) with a swirl number of 0.8 resulted in no prediction. 
As the O2 is different in the first and second half when subject to a secondary airflow rate 
describes the inaccuracies in the gas analyser as in simulation 7.13. Simulations 7.16, 
7.17 and 7.18 of all sensors, the 3 most highly correlated and visually inspected features, 
on the other hand, give emphasis to the combined features and hence better prediction 
accuracy.
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5.5.8 Simulations of NOx, CO and O2 for Cerrejon Coal., Swirl 
Number 1.2
The final of simulations concerns the Cerrejon test data for a swirl number of 1.2. One 
obvious statement applies to all simulation tests involving both Daw Mill and Cerrejon 
coal data is that the microphone signal increases as the swirl number increases. For this 
reason, the trained model of the microphone features in simulation 8.2 has a better 
prediction. On the other hand, simulation 8.1 of the trained model of IR features offered 
reasonable predictions. Nevertheless, evidence of insufficient AE signal even with a 
higher swirl number of 1.2 was found. This situation can be witnessed in simulation 8.3 
in which, only limited predictions were obtained and it is also felt that a swirl number 
greater than 1.2 may be required if Cerrejon coal is to be fired. Therefore, one may argue 
that the AE sensor could be more suitable to monitor other burner activities, for example, 
soot blowing entailed valve movements hence greater AE signal when compared with 
current application to monitor gases. Finally, it was learned from simulations 8.4, 8.5, 
and 8.6 that the use of the combined features has again offered much better predictions 

and was irrespective of the swirl setting.
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The CO models were trained with the first 400 data points and validated with the 

remaining data. There were cases where the trained CO models were unable to predict the 

peak CO at around data point 420. This happened due to the peak CO which was not 

included in the training and so no prediction corresponding to that upper CO region was 

found. Other discoveries included different CO readings when subject to a same 

secondary airflow rate at the beginning and the end of the experiment led to signal 

deviations, and, the use of the combined features corresponding to all sensors and the 3 

most correlated features produced some better predictions. It was also learned that the 

wrongly chosen features in simulation 8.12 corresponding to the visually inspection 

features could be the reason which led to a restricted accuracy when modelling gas CO.

Cerrejon Coal;Swirl Number 1.2 
IR Features (Simulation 8.7) Microphone Features (Simulation 8.8)
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Figure 5.29 (a) Simulations 8.7 to 8.12
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Figure 5.29 (b) Mean Errors for Simulations 8.7 to 8.12

In agreement to the previous simulation tests that involved both NOx and CO with a swirl 
number of 1.2, the high swirl setting led to increased turbulence in the combustion 
condition hence greater sound intensity, and as a result, the trained model of microphone 
features in simulation 8.14 were found to achieve better model prediction. In addition, it 
was learned that unlike in simulation 8.13, the trained model of the IR microphone 
features was insensitive to the oscillation in the gas C>2. This demonstrates a neural 
network could circumvent the unwanted signal noises of the predictions and concentrate 
on the underlying 62-

It is felt that there is very little indication of increased AE signal with a swirl number of 
1.2 and consequently only limited prediction was found in simulation 8.14. In addition, 
one may need to further increase the swirl number until sufficient AE allows reasonable 
predictions to obtain.
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5.6 Summary of Section 5.5
At lower swirl numbers, the homogeneity in the combustion condition generated a more 
steady flame and so this led to a uniform IR signal hence better predictions. In addition, 
the increase in the swirl improved the turbulence in the secondary air and this overall 
resulted in a greater sound intensity. This indicates that a trained model of microphone 
features becomes dominant as the swirl increases. This happening, however, depended on 
factors such as the coal property and swirl intensity as such transition took place in 
different swirl numbers with different coal types.

It is felt that the increased swirl number also introduced greater pressure fluctuation 
under a highly turbulent combustion condition. Consequently, this explains the increased 
AE signal particularly at a higher swirl number. However, unlike in simulations that 
involved Daw Mill coal, a distinctive AE source has not been found. This subsequently 
suggested a further increase in the swirl number may be required. Even so, one must bear 
in mind that this may not be feasible as every burner has its own operating boundary and 
to operate the burner outside this limit could lead to an adverse impact and as a result 
undesirable operation.

One may determine the best feature set by calculating the percentage errors 
corresponding to all simulations in section 5.5. Essentially, the idea is to normalise the 
MSE to a unit area so that simulations involved all 3 gases of NOx, CO and 02 in section 
5.5 could be compared. The (a) average, and (b) standard deviations, of the percentage 
errors corresponding to different swirl numbers and for both the Daw Mill and Cerrejon 
test data have been calculated. The standard deviation of the percentage errors was used 
to indicate how "reliable" a feature set was. Three separated figures consisting of both the 
average and standard deviation of the percentage errors of the network predictions for 
NOx, CO and O2 were plotted and compared (Figures 5.31, 5.32 and 5.33).

In Figure 5.31, the models trained with AE features have the highest average percentage 
errors. The use of the IR and microphone features have lower average percentage errors 
and so they were better sensors than the AE. In addition, the models of the combined 
sensors, 3 most highly correlated and visually inspected features outperformed the use of
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individual sensor features of the IR, microphone and AE for trainings. However, the 
simulation of the visually inspected features has a greater standard deviation. As a result, 
the combination of all sensor features and the 3 most highly correlated features were the 
best. Given that the Daw Mill coal (as opposite to Cerrejon coal) was more sensitive to 
the secondary airflow change, it exhibited a greater variation in the gaseous emissions 
and so a greater percentage error.

Averag: Percentage Errors of NOx for Swirl Numbers 0.3, 0.5, 0.8 and 1.2 for Daw M ill and 
2Q Cerrejon test data
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Figure 5.31 Average Percentage Errors and Standard Deviations for Modelling NOx 
corresponding to Swirl Numbers 0.3, 0.5, 0.8 and 1.2

Figure 5.32 shows the average percentage errors and standard deviations for modelling 
CO. There were mixed results but one can confirm that simulations made by all sensor 
features and the 3 most highly correlated features again have the lower average 
percentage errors. The overall standard deviation was consistent. The predictions made 
by the IR and microphone have outperformed the AE features. Visually inspected 
features, on the other hand, have a mixed performance and the average percentage error 
was very good for the Cerrejon but not for the Daw Mill test data as shown in Figure 
5.32. The percentage errors of the CO simulation, however, are commonly greater 
because of large excursions in the CO, which make them the most unpredictable 

combustion parameter.
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Figure 5.32 Average Percentage Errors and Standard Deviations for Modelling CO 
correspond to Swirl Numbers 0.3, 0.5, 0.8 and 1.2

Figure 5.33 indicates the average and the standard deviations of the percentage errors 
when modelling O2 . It was observed that the models of the IR, microphone and AE 
features have very similar results. However, the model of the microphone features has 
turned out to be the best. In addition, the models belonging to all sensors, the 3 most 
highly correlated and the visually inspected features have again achieved lower average 
percentage errors as well as no increased standard deviations being observed. Despite the 
fact that 02 behaves in a similar way to the NOx, the percentage errors of Q2 were found 
to be greater. This is because a larger response in the gas Oa to the periodic fluctuations 
of coal feed mechanism has relatively more percentage errors when compared to the 
simulations of NOx.

From this point, one may draw a conclusion signifying that the calculated percentage 
errors were effectively influenced by the transients in the target gases to be modelled. 
The signal variations as a result of the transient in the gases could happen through sudden 
incursions in the gas readings (as was happened to most CO cases), or resulted from 
significant periodic oscillations (as normally happened to 02).
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Figure 5.33 Summary of Percentage Errors for CO predictions of Swirl Number 0.3, 0.5, 
0.8 and 1.2, both Daw Mill and Cerrejon coal test data

Another major discovery is the lack of repeatability in the gas readings either due to a 
"drift" in the gas analysis as a result of high unburned carbon settled around the sampling 
point (e.g., Figure 5.14), or slight changes in the coal property (e.g., simulation 3.13). 
Other possibilities include air leaking, which resulted from incursions of air when the 
viewing port window opened for routine inspections, changes in temperature as the 
burner started up cold (e.g., Figure 5.18), and unforeseen events such as temporary signal 
disturbances, for examples, additional noise source from other plant operation (e.g., 
simulation 3.2) and settlement of fly ash obstructed the optical lens (i.e., simulation 7.1). 
Further to this, large signal deviations could also be affected by a delay in the analyser 
readings when compared with the predictions (e.g. simulations 7.7 to 7.12). Therefore, all 
the reasons described in the above led to increased percentage errors.

Knowing that these sensors have variations in terms of signal sensitivity under varies 
operating conditions. As such, this consolidated the idea to combine features in order to 
obtain signal inference. In summary, the model trained with all sensors and the 3 most 
highly correlated features consistently maintained the lowest prediction errors. For
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smaller network parameters and faster training in mind, the use of the 3 most highly 
correlated features for modelling the combustion gaseous was the best. Also, the results 
indicate the models corresponding to the IR and microphone were better than the AE for 
an instance where only one of the three sensors is installed.

5.7 Improved Model Predictions by the Recursive and 
Feedforward of Auto Regressor with Exogeneous Input 
(NNARX) Structure Neural Networks.
It should be clear by now that the feedforward (i.e., MLP) neural networks have no way 
of predicting feature outputs, as these networks are ideal for solving problems that require 
the computation of a static function (i.e., a function whose output depends only upon the 
current input and not on any previous inputs). However, in the real world, one encounters 
many problems, which cannot be solved by learning a static function because the function 
being computed changes with each input received. This situation can be catered for by 
the introduction of feedback connections within the network and so the network 
activation produced by past inputs can cycle back and affect the processing of future 
inputs. As a result, the prediction of the combustion system based on the recursive neural 
network and the "one-step-ahead" NNARX model was evaluated in the hope that one of 
these suggested models had improved results.

A series of tests were conducted (Table 5.3) where a recursive model with a hidden layer 
of hyperbolic tangent activation function neurons and an output layer with a linear 
activation transfer function was used. The numbers of hidden and output neurons were 10 
and 1 with gradient descent back-propagation and early stopping functions being 
standard. The simulation of the NNARX network had past output and input values and 
delays were set at 2, 2 and 1 respectively.

Daw Mill and Cerrejon data at a swirl number of 0.8 were used for the experiment. The 
experimental descriptions as well as the calculated percentage errors are presented in 
Table 5.3. Columns 1 and 2 show the coal test data and target gases to be modelled. 
Column 3 indicates the types of networks used in the simulation tests and columns 4 to 9
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are the calculated percentage errors for the different feature sets. The statistics indicate 
that in general, the NNARX has the lowest percentage error of less than 9 %. However, 
one should bear in mind that the NNARX requires actual gas readings from a gas 
analyser that inhibits the application of the NNARX in practice because the gas 
information per burner is generally not available. Finally, it was concluded that the 
predictions made by the recursive network outperformed the ordinary MLP.

Some example results (from Table 5.3) were plotted and presented accordingly in Figures 
5.34 to 5.39. Figures 5.34 (a) and (b) illustrate the result for the prediction of NOx of 
Daw Mill test data, swirl number of 0.8. The recursive network has a marginal 
improvement over the MLP with 3 % and 1 % reduction in error respectively. A green 
circle was used to highlight the improvement of the recursive network in prediction. 
Also, the NNARX networks have as little as 2 % errors.
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(a)
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Daw Mill Coal. Swirl Number 0.8 
Microphone Features(Feedforward Network)

Microphone Features (Recursive Network)
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Figure 5.34 The Prediction of NOx by the MLP, Recursive and NNARX networks 
based on the (a) Microphone, and (b) All sensor features, of Daw Mill test data, Swirl

Number of 0.8
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Figure 5.35 demonstrates the prediction of CO based on the Daw Mill test data, where 
a 1% of reduction in error was found using the recursive model, which indicated by a 
green arrow. The prediction made by NNARX has an outstanding result of 3 % error.

200

Daw Mill Coal, Swirl Number 0.8 
Microphone Features(Feedforward Network)

—- Target CO
Predicted CO--I--

400 600 Test No. 800 1000 
Microphone Features (Recursive Network)

200 400 600 Test No 800 1000 
Microphone Features (Feedforward with ARX structure )

200 400 600 800 
Test No.

1000 1200

Figure 5.35 Prediction of CO by MLP, Recursive and NNARX Network based on the 
Microphone features, of Daw Mill test data, Swirl Number of 0.8

Figures 5.36 (a) and (b) show the prediction of O2 based on the Daw Mill test data. 
Figure 5.36 (a) shows that the predicted signal has regions where the network has 
problems predicting the O2 (as highlighted). A significant error reduction from 41 % 
to 22 % for the MLP and recursive networks was recorded respectively. Although 
there were hardly any observable changes found in Figure 5.36 (b). An error of 5 % 
was found and for the NNARX (Figure 5.36 (c)) the error was less than 8 %.
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Figure 5.36 Prediction of O2 by MLP, Recursive, and NNARX networks based on (a) 
IR, and (b) All sensor features, of Daw Mill test data, Swirl Number of 0.8
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Figure 5.37 shows the prediction of NOx based on the Cerrejon test data for a swirl 
number of 0.8. A 4 % reduction in error was found with the recursive network as 
compared to the MLP. The region as highlighted yielded the greatest percentage 
reduction in error. Also, the NNARX had only 4 % error.
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Figure 5.37 Prediction of NOx by MLP, Recursive and NNARX networks based on 
IR features of Cerrejon, Swirl Number of 0.8

Figure 5.38 (a) shows the predictions of CO based on the Cerrejon test data. A 14% 
reduction in error was receded using the recursive network as compared to the MLP, 
even though the improvement can hardly be observed. The same observation can be 
applied to Figure 5.38 (b) for which the prediction error fell from 39 % to 26 %. The 
prediction of NNARX has only 3 % error for both Figures 5.38 (a) and (b).
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Figure 5.38 Prediction of CO by MLP, Recursive, and NNARX networks based on 
(a) Microphone, and (b) All sensor features, of Cerrejon test data, Swirl Number of

0.8
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Figures 5.39 (a) and (b) show the predictions of O2 for the Cerrejon test data. Figure 
5.39 (a) shows the prediction made by the recursive network which has an error that 
is 6 % lower than the error achieved by the MLP of 19 % error. One significant 
improvement is that the recursive network has matched the underlying dynamics of 
the O2 signal that the MLP network failed to achieve (Figure 5.39 (b)), as a result, an 
8 % reduction in error was obtained. Again, the NNARX has no more than 3 % of 
error for both Figures 5.39 (a) and (b).
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900

0 100 200 300 400 500 600 700 800 900 
AE Features (Feedforwardwith ARX structure )

100 200 300 400 500 600 700 800 900

Figure 5.39 Prediction of O2 by MLP, Recursive and NNARX networks based on (a) 
IR, and (b) AE features, of Cerrejon test data, Swirl Number of 0.8

5.7.1 The use of Predictions as Inputs to the Neural Network
As the NNARX network was the best performing it was decided to explore this 
network further. In practice, two approaches can be used to generate the inputs to the 
NNARX network model predictions: (a) using past plant outputs and (b) feeding 
back past model predictions [N0rgaard, 1995]. Obviously, the first method cannot be 
used in the application as there was no plant output (gas analysis) available and for 
this reason, a prediction can only be made using former predictions to generate the 
input vector (Figure 5.40). This arrangement was successfully used to model three 
parameters of an anaerobic digester [Esteves, 2002]. And similar approaches were 
reported by Van (1995) and Russell (1997). Only the initial measured system output 
Ya is used as an input for the model. All intermediate system outputs are calculated 
and then network is run to generate the input vector [Tan et al, 1999].
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Figure 5.40 Former Predictions as Model Input for subsequent Simulations

Figure 5.41 shows such a simulation generated by the NNARX. The setting of the 

past outputs, past inputs and number of delays can be found in Table 5.4. Even 

though it can be seen in Figures 5.41 (a), (b) and (c) that the predictions resemble the 

dynamics of the target NOx, there were considerable deviations of the two signals. 

With this approach, the subsequent simulation is affected directly by the former 

predictions, so small errors can accumulate quickly, and because of restricted 

accuracy, the NNARX with former predictions used to generate the input vector is not 

recommended in this application.

Table 5.4 The NNARX network configurations

Simulation No.

9.1
9.2 _j
9.3
9.4

Number of 
Neuron

20
20
20
20

Number of 
Past Output

1
2
4
3

Number of 
Past Input

3
4
5
1

Number of 
Delay

1
1
1
1
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Prediction Made by NNARX model with Current Predicted Output Feedback as the Model Input
(a) Simulation 9.1

200 400 Test No. 600
(b) Simulation 9.2
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450

0150

,-450

Z150

200 400 Tesl No. 600
(d) Simulation 9.4
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Figure 5.41 The Former Predictions as by the NNARX in which the predicted values 
were used as past inputs to the model for subsequent predictions.

5.8 Methods to Improve Neural Network Predictions.
Despite the discussion of ANN improvements by a correct set of combined features 
and network architectures, other methods that could certainly help to enhance 
network efficiency were the use of a software filter and the Principle Component 
Analysis (PCA) function. However, PCA is probably not judicious here because it is 
a linear projection [Lendasse et al, 2002]. Premier (1999) suggested that the use of 
Butterworth 5th order filters in both chronological directions can help to remove large 
amounts of signal noise thus improvement the modelling results. Alternatively, the 
PCA serves two purposes (a) de-correlate training vectors, (b) reduce their dimension
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by taking only the first k < n principle components, thus generating new variables of 

a smaller dimension [Maclntyre et al, 1996; Faller et al, 2000] were also 

recommended. Nevertheless, the use of both a software filter and PCA required 

modest considerations and good experience in order not to remove any necessary 

information for good network prediction [Lendasse et al, 2002].

5.9 Summary of Chapter 5
Using the features derived from the 3 sensors, an investigation of the best possible (a) 

model based on feature-level fusion, and (b) network architecture via decision-level 

fusion was undertaken.

The difficulty of modelling the combustion process from first principles has been 

evident in a large amount of literature. In addition, simple and multiple regressions 

have tendency of become ill when they performed calculations on numbers that have 

large variance consequently poor estimation. In addition, Wildman et al (1994) 

suggested that empirical models cannot identify the relationship between the 

independent variables and various cross products of the dependent variables and so 

this explains the need for an ANN in combustion.

To generate a good model requires a large amount of representative data [Simula et 

al., 1996]. In the simulation tests, the standard MLP was tested with the (a) IR, (b) 

microphone, (c) AE, (d) all sensor, (e) 3 most highly correlated, and finally, (f) 

visually inspected, features at each swirl number and coal type. The average 

percentage error corresponding to the results of different swirl numbers was 

computed both for the Daw Mill and Cerrejon test data, where it was determined that 

the predictions made by the (a) combined features and (b) 3 most highly correlated 

features, achieved the lowest average percentage errors. The 3 most highly correlated 

features technique was chosen because it has the smallest dimension while still 

preserving the most important metric relationships thus ensuring fast training and 

good network generalising properties.
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Finding a good network architecture is very important and often problem dependent. 
It was concluded that the predictions made by the recursive network, which can 
achieve temporal processing, were generally better than that achieved by the static 
MLP in the modelling of the gaseous emissions. Even though, the NNARX model has 
a remarkable performance, it has not been used because there were no online gas 
readings for the model to continue with the prediction. In addition, in the iterative 
procedure, any errors in the neural network output are fed back into the network, 
causing an accumulation of errors that can significantly degrade the network's 
prediction accuracy especially, when the prediction horizon is larger.
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Chapter 6 Neural Network based Flame Monitoring 
and Control System
This chapter will discuss the development and testing of an Artificial Neural Network 
(ANN) based flame monitoring and control system. Chapters 4 and 5 reviewed details 
including data collection, signal processing, the choice of the best features and ANN 
training. In this chapter, all these topics will be brought together in the final controller 
design.

All experiments were conducted on the 150 kW PF burner rig based at Casella CRE Ltd., 
UK. The prototype controller was commissioned, debugged, and tuned to yield a 
satisfactory performance. Although there are large combinations of settings that could be 
used to achieve good operation of the burner, probably the most effective way is to 
regulate the excess air so that the burner can always operate at near stoichiometric 
condition [Chong, 2000; Wojcik et al, 2003]. The design of the Flame Monitoring and 
Control system (FMCS) is particularly attractive to a multiple burner installation because 
it would allow individual burner performance within a boiler to be assessed.

6.1 Controller Design
Figure 6.1 shows a schematic of the Flame Monitoring and Control System (FMCS) 
devised to optimise an individual burner within a boiler. The three sensors, namely, IR, 
Microphone, and AE monitored the flame. The signals were acquired as per the system 
hardware design, which can be found in Chapters 3 and 4. The signals were passed 
through Lab VIEW™ and Matlab™ in sequence with data being acquired with an interval 
of 10 seconds. The sensor signals were transformed to yield the three most highly 
correlated features that were used to train the ANNs to estimate the CO and NOx. These 
trained ANNs were then used by the rules embedded in the controller to optimise the 

combustion.
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andO.,

Rule Based Optimisation

Figure 6.1 Neural Network Monitoring and Control System

The rules for PF burner optimisation were obtained by classifying both NOx and CO 

within one of three bands, namely, (a) low, (b) average, and (c) high. A total of nine 

states were identified with their corresponding control actions being shown in Table 6.1. 

Other design parameters that determined the overall controller performance were: -

1. Selection of higher and lower target bands for NOx and CO.

2. Increasing or reducing the amount of air.

3. Determining the change in the flow rate of air.
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Table 6.1 Nine Possible States and their correspond Suggestions for Improvement

High NOx

Average NOx

Low NOx

Low CO

7
Reduce Air by

10 mV
4

Reduce Air by 5
mV

1
Keep Air
Constant

Average CO

8
Reduce Air by

5 mV
5

Reduce Air by
2.5 mV

2
Reduce Air by

2.5 mV

High CO

9
Keep Air
Constant

6
Increase Air by

2.5 mV
3

Increase Air by 5
mV

Note: Numbers in Each Box Indicate the States

State 1 indicates both NOx and CO fall within "optimum" regions. State 2 shows that 
NOx is low and CO is slightly over the target. The priority within the controller is with 
NOx and so a small reduction of excess air can be introduced. State 3 implies serious 
incomplete combustion therefore a considerable increase in the secondary airflow rate 
was required. State 4 shows the NOx increasing so a reduction in the secondary airflow 
rate was required. State 5 implies both NOx and CO fall beyond their targets, and as the 
NOx has been given priority to a reduction of airflow is suggested. State 6 shows the CO 
was extremely high and therefore requires immediate attention by increasing the 
secondary airflow rate. State 7 suggests the NOx was high and so a considerable 
reduction of the secondary airflow rate for a better time response should be introduced. 
State 8 shows NOx was too high and will require a reduction in the secondary airflow 
rate, but on a smaller scale as compared with State 7 as the CO has increased. Finally, 
State 9 shows both NOx and CO simultaneously are very high. This, however, is unlikely 
to happen as long as the target bands have been set correctly and as a result nothing can 

be done.
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6.1.1 To Determine Good Controller Settings
In order for the settings of low and high target bands for NOx and CO to be correctly 

identified, a systematic procedure was adopted. First, the author decided on the 

concentration at which to maintain the CO. For example, if the objective were not to 

exceed 300 ppm of CO, the lowest intensity for NOx would be 450 ppm as shown in 

Figure 6.2 (a). The target bands for both NOx and CO were identified from the data 

collected for model training; alternatively, historical data corresponding to the boiler of 

interest could be used. The upper band setting could directly impinge on system 

behaviour, for example, if the upper NOx band is set too high, it is likely that the 

predicted NOx will occur between the upper and lower bands and hence a small change 

in air will be given so that the system will take a longer time to reach the target (i.e. the 

controller will have a sluggish response). This can be explained by the fact that if the 

prediction falls in the intermediate region, the signal is considered to be close to the 

lowest NOx and therefore only a small change of air will be recommended to prevent 

overshooting. On the contrary, if the distance between the upper and lower bands is 

small, most probably, the NOx will fall beyond the upper band and subsequently a large 

change in air would be introduced. As a result, the system will overshoot leading to long 

transients and combustion instability.
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6.1.2 Neural Network Training
The gas models of NOx, CO and O2 were trained using standard recursive network with 
the input features being arranged as illustrated in Figure 6.3.

NOx,, CO & O2

median

' skew

IOO-200Hz

' 800-lOOOHz

Figure 6.3 Recursive Network as the final ANN for Control Experiments

Figures 6.2 (a) and (b) highlight (arrows) inconsistent trends of CO when the burner was 

operated with the same secondary airflow (150 m3/h) at two different times. This implies 

that a model trained with input vectors from both sections (approximately between data 

points 0 to 300, and 500 to 650, of Figure 6.2 (a)), the predictions made will be 

inaccurate because of conflicting training examples. This occurred because unburned 

carbon in the fly ash settled around the gas sampling point after a prolonged period of 

operation. Continued operation even at a lower combustion rate will appear to result in 

high CO concentration. This is not likely to happen in a full-scale boiler in which air is 

purged through the sampling probes to alleviate clogging resulting from fly ash and the 

effect of particulate stratification. For this reason, the latter data were excluded from the 

training of the CO model and a regular cleaning regime for the CO sampling probe was 

recommended.

215



6.1.3 Signal Averaging
It is acknowledged that pulverised fuel and other coal combustion systems exhibit a 

relatively slow response. Conventional combustion monitoring systems provide 

information that has been averaged over several minutes or hours [Daw et al, 2002]. 

However, Wilson et al (2002) demonstrated that a 5-minute sampling period could 

adequately control a coal utility boiler without causing system instability, hi practice, 

there is no definitive control interval as numerous factors such as the furnace physical 

attributes as well as the chemistry of combustion will require different settings.

The IR, Microphone and AE signals inherited variations resulting from factors such as 

flame flicker, pressure fluctuations and flue gas turbulence that took place during 

combustion and for this reason there is a need to average the predictions. Furthermore, 

some gas signals oscillated in a sinusoidal fashion, which were found to be driven by 

small fluctuations in the coal feed mechanism. This further consolidated the need for 

signal averaging and therefore a 30-point average was used. This allowed a sample 

acquired over a control action take placed. Figures 6.4 (a) and (b) present the actual and 

averaged predictions of NOx and CO respectively, and as can be seen, the average signal 

captures the trend of the "raw" signals.
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6.2 Flame Monitoring and Control System Testing
In order to test the controller scheme, the work was undertaken in two phases: -

1. Phase 1: collection of data for ANN model training and determination of 
controller settings (target bands, decisions to increase or to decrease air, amount 
of change).

2. Phase 2: initialise the control experiment with a high excess air with the controller 
objective being to tune the burner to a good combustion condition.

6.2.1 Control Experiment 1 - Cerrejon Coal
The burner was initially set to a high secondary airflow rate of 155 m3/h. The upper and 
lower limits were 600 and 450 ppm for the NOx, and 450 and 300 ppm for the CO. The 
solutions for conditions for the controller are given in Table 6.1.

Figures 6.5 (a), (b) and (c) show the results for NOx, CO and ©2 obtained as the 
experiment proceeded. As can be observed, the gases and the predictions were in good 
agreement. The NOx reduced as the secondary air decreased (pale green). Because the 
control experiment was conducted some 12 months after the data collection phase for 
training and testing of different ANN architectures (Chapter 5) a change in the burner 
characteristics has resulted in changes to the flame signals leading to different prediction 
errors. The percentage error for the NOx and CO were 19 % (ME of 84 ppm) and 127 % 
(ME of 165 ppm) respectively. The increased percentage error for the CO was perhaps 
due to the offset between the predicted and gas analyser readouts. This arises because the 
gas sampling probes were cleaned just before the control experiment and so reduced 
emissions should be expected. Another factor included an estimation of a 5-minute time- 
delay, which occurred somewhere in between the 3rd and 5 th control intervals of Figure 
6.2 (b) (highlighted with black arrows). This introduced a significant number of local 
deviations that were associated with the ME. Both the sensors and gas analysers were
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sampled at a 10-second interval. The total duration for Control Experiment 1 was about 1 
hour and 20 minutes.

800
Control Experiment-Cerrejon

200 
Data Points

400

• NOx-P —— NOx Secondary Airflow Rate

300

Figure 6.5 (a) Control Experiment 1 - Predicted NOx

Control Experiment-Cerrejon
300

100
200 

Data Point
300 400

. co-P —— CO Secondary Airflow Rate

Figure 6.5 (b) Control Experiment 1 - Predicted CO
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Figure 6.5 (c) Control Experiment 1 - Predicted O2

Figures 6.6 (a), (b) and (c) show the ensemble averages of the predictions for the NOx 
and CO with the green and red arrows being used to indicate combustion conditions. The 
green arrows show good burner performance while the red indicates the system was out 
of tune. The desirable combustion condition refers to the time when both NOx and CO 
arrows were in the green (i.e. State 1). The results of Figures 6.6 (a) and (b) indicate the 
system achieved a good combustion condition after the 3rd control action. The controller 
achieved "good combustion" by allowing the CO to rise to just below the upper limit. 
This led to the possibility that the CO might rise above the upper threshold, possibly 
leading to hunting in the controller. However another advantage of the averaging and the 
rule-based approach to airflow adjustments is that only a sustained increase in CO will 
lead to an adjustment of the secondary airflow and then only by the pre-defmed amount.
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Figure 6.6 (c) Control Experiment 1 - Averaged Predicted O2

The black arrows in Figures 6.5 (c) and 6.6 (c) indicate a rise in the O2 reading, which 
was identified to result from a sudden incursion of air due to an inspection port being 
opened for a routine inspection. The flame monitor made predictions based solely on the 
flame measurement, which does not detect the disturbance due to the dilution of oxygen 

in the flue gases.

A summary for Control Experiment 1 is presented in Table 6.2. The prediction columns 
of Table 6.2 for NOx and CO are coloured according to low (green), average (yellow) 
and high emissions (Magenta). The system achieved the target NOx without seriously 
increasing CO after the 3 rd adjustment of the secondary airflow rate. However, as already 
mentioned, slight increases in the CO will push the reading above the upper threshold 

(points 6 and 8).

222



Table 6.2 The Summary of Control Experiment 1 (Cerrejon Coal)

Control Action

1
9

3

4

5

6

7

8

Predicted NOx 
(vppm)

622.98
609.33
568.60
429.08
406.10
383.17
426.87
410.61

Predicted CO 
(vppm)

116.44

113.25

121.25

259.70

283.03
314.91

281.33

311.25

State

7

7

4

1

1
")
Z,

1

2

Suggested Secondary 
Airflow Rate (nvVh)

155

145

135

130

130

130
127.5
127.5

Note: The colour coding is presented as follows: - (a) Magenta - High, (iy +^*~,, Average and, (c) Green - Optimum, at Indicating Emissions Concentrations inside the 
Burner.

6.2.2 Control Experiment 2 - Daw Mill Coal
The same procedure as in control experiment 1 was applied to control experiment 2 firing 
Daw Mill coal. The objective was to examine the adaptability of the FMCS under 
different coal conditions. The burner was initially set to a high secondary airflow rate of 
160 m3/h. The lower bands for NOx and CO were 500 and 350 ppm (Figure 6.7) and their 
respective upper bands were 550 and 500 ppm. Daw Mill has a lower nitrogen content 
than Cerrejon and should therefore emit less NOx. However as Cerrejon has higher 
calorific value it was fired at a lower feed rate and so NOx was lower. In addition, the 
lower volatility of the Daw Mill coal may have led to more char nitrogen retention, which 
was later converted into molecular nitrogen [IEA, 2000].
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Figure 6.7 Data for (a) Determining System Target Band Settings and (b) Gaseous
Models Training - Daw Mill Coal

It was fortunate that the solutions for conditions of Table 6.1 have proven successful in 
control experiment 1. The same set of settings was also applied to Control Experiment 2. 
Figures 6.8 (a), (b) and (c) indicate the results for NOx, CO and O2 obtained as the 
experiment proceeded. The predictions were in good agreement with the measured gases. 
The NOx reduced as the secondary air increased and the percentage errors for the 
prediction of the NOx and CO were 20 % and 62 % respectively. An improved prediction 
of CO has been observed with the NOx error remaining almost the same (Figures 6.8 (a) 
and (b)). Furthermore, because neural network tends to predict noise in addition to the 
underlying signal as well as the network responded to the region close to zero thus 

yielded negative predictions.
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Figure 6.8 (c) Control Experiment - Predicted 62

The control result is presented in Figures 6.9 (a) and (b). As before, the green (optimal) 
and red (sub-optimal) arrows are included to highlight the burner conditions. It was found 
that the system achieved good combustion after the 3rd adjustment of the secondary 
airflow rate, so a further reduction of 10 m3/h was introduced manually at the 4th control 
interval with the intention of examining the reaction of the controller towards air 
deficient conditions. Subsequently, the FMCS drove the burner out from the highly 
unburned carbon situation and settled in the optimal combustion condition at control 
interval 8. The summary of this experiment is presented in Table 6.3.
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Table 6.3 The Summary of Control Experiment 2 (Daw Mill Coal)

Control Action

1

2

3

4

5

6

7

8

9

Predicted NOx 
(vppm)

602.42
550.50
486.87
404.50

470.95

491.37

484.47

498.85

440.07

Predicted CO 
(vppm)

124.32

190.65

348.16

803.71

510.38

449.00

398.38

313.78

458.71

State

7

7

1

3

3

2

2

1
T

Suggested Secondary 
Airflow Rate (nrVh)

150

140

130

120

125

130

127.5

125

125

Note: The colour coding is presented as follows: - (a) Magenta - High, (b) Yellow - 
Average and, (c) Green - Optimum, at Indicating Emissions Concentrations inside the 
Burner.

6.3 Summary of Chapter 6
This section summarises the development of the Flame Monitoring and Controller 
System (FMCS). The successful proof-of-concept has offered a low cost Flame 
Monitoring and Control System specifically for a PF system.

One can design a good controller if the scheme is governed by sound knowledge 
concerning the process itself. Artificial Neural Networks (ANNs) are highly capable of 
modelling system input-output relationships when there is an understanding of the system 
dynamics, this makes them very lucrative especially for highly complex nonlinear 
processes. In theory, there are many neural network model based controller schemes, 
which claim to be highly adaptable to system changes. Nevertheless, they are not 
parsimonious when dealing with the updating of a very large number of weights 
[Krishnapura, 1999]. A rule-base was found to be suitable for handling the ambiguity of a 
process based on "crisp" algorithms. The integration of the salient features of both the 
ANN set of rules solved the problems more elegantly and naturally [Palakal et al, 1995].
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The IR, Microphone and AE signals were all capable of representing the gaseous 
emissions. A recursive network with one input and one output layer and with 10 hidden 

neurons was employed. ANNs were used as a "software sensor" to predict gas readings 
with the predicted values being ensemble averaged before being used through a set of 
rules to control the burner.

The Flame Monitoring and Controller Scheme (FMCS) builds on existing boiler system 
knowledge, models the process, and controls the combustion and achieves improved 
levels of performance while staying within predetermined operational constraints. The 
system has been successfully tested on the 150 kW combustion rig based at Casella CRE 
Ltd., U.K. with two sets of control experiments indicating that the FMCS is able to cope 
with the different coal types. The experiments also suggested that the flame based 
monitor has a better response than a gas analyser and hence achieves better control 

performance.
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Chapter 7 Wavelet Analysis, ANN based &-step 
Predictions, and Self-Organising Map as System, 
Novelty Detector
In this chapter three sections will be discussed, that is (a) Wavelet Analysis (WA), (b) 

an Artificial Neural Network (ANN) fc-step ahead prediction model, and (c) Self 

Organising Map (SOM) neural network. Despite traditional signal processing 
techniques such as the statistical description of data and the Fast Fourier Transform 

(FFT) algorithm, another area that has recently gained a great deal of attention from 

scientists and engineers is known as Wavelet Signal Analysis. Other techniques such 

as the use of a A:-step ANN predictor that can improve the system time response, and 

the adoption of a SOM neural network as a system fault detector is also discussed.

7.1 Discrete Wavelet Transform
Earlier chapters demonstrated the successful implementation of signal processing 

based on the statistical description of data and the Fast Fourier Transform. However, 
a disadvantage of the Fast Fourier Transform is that the time information is lost when 

the signal is converted from the time to the frequency domain. This situation may not 
be so important to a stationary signal but as most signals contain numerous non- 

stationary or transitory characteristics such as, drift, trends, and abrupt changes, the 

FFT that uses a fixed time window for all frequencies was found to be lacking.

Many signals require a more flexible approach where the window size has to be 

varied, for example, a discontinuity in a sinusoidal signal will not be shown using a 
purely frequency-based FFT analysis, whereas the exact location in time of the 

discontinuity will be revealed in the wavelet coefficients [Wavelet Tool Box - for use 

with Matlab™]. The Discrete Wavelet Transform (DWT) is capable of capturing an 

instantaneous impulse that spreads over all frequencies. The DWT uses long time 

intervals where low frequency information is highly important and vice versa for high 

frequency information. In general, the low frequency content is the most important 

part and yields the signal identity. In the filtering process of the DWT, one often 

speaks of approximations and details (Figure 7.1) of the signal.
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Low Pass Filter High Pass Filter

(a) Detail: High frequency component (b) Approximation: Low frequency component

1 r

Low Pass Filter
i r

High Pass Filter

(a) Detail

Figure 7.1 Wavelet Decomposition Tree

(b) Approximation

As can be seen in Figure 7.1 the decomposition process can be iterated, with 

successive approximations being decomposed in turn, so that one signal can be 

broken down into many lower resolution components. This is known as the wavelet 

decomposition tree. The advantage of using WA is that it is a time scale version 

where both time and frequency interaction of a signal is well preserved.

7.1.1 Wavelet Analysis of Combustion Signals
The widespread use of WA in research and engineering is motivated by the following 

two reasons: -

1. WA is capable of revealing aspects of data that other signal analysis 

techniques miss, such as, breakdown points, discontinuities in higher 

derivatives, and self-similarity.

2. WA compresses, or de-noises signals without appreciable degradation.

Suh (1999) claimed that WA is suitable for monitoring vibration signals. He 

demonstrated that the decomposed Wavelet Coefficients (WCs) were highly
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correlated to the events corresponding to the degradation of bearings in a gear box 

and later reported that the WCs can provide good estimation when combined with 

classification using ANN approaches. In another example, Zheng (1999) used WA to 

decompose a series of financial data for future time-series predictions. Both Suh and 

Zheng concluded that the predictions made by the decomposed WCs constantly 

outperformed the predictions made by the original data set. In combustion, the DWT 

was used to analyse the sensor signals that correspond to the burner conditions. The 

WCs were compared with existing features and gaseous readings followed by ANN 

predictions using the same network. Obviously, the objective is to make a direct 

comparison of both the WA and statistical, or FFT based systems.

Data corresponding to the Daw Mill coal, swirl number 0.8 of Control Experiment 2 

were used for the comparison. The number of WCs generated was determined by the 

level of decomposition. The IR signal was decomposed to the 5 th level (i.e., 32 WCs) 

using a 4th order Daubechies wavelet. Multi-resolution Analysis (MRA) [Zheng et al, 

(1998)], was used to observe WCs from each node in the decomposition tree and 

separate those that look similar to the gas signals. Figures 7.2 (a) and (b) show the 

results from a selection of features, WCs, and the gases NOx, CO and O2 .
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A recursive neural network with one hidden layer of 12 neurons with hyperbolic 
tangent activation function and an output layer with a neuron of linear activation 
transfer function was used in the prediction of NOx. The inputs were chosen to be 
those variables, which are known to be strongly influenced by that particular output. 
As a result the ANN was simulated using only the 3 most highly correlated features, 
and WCs. The same procedures were repeated for the prediction of CO and 62. The 
results are plotted in Figures 7.3 (a), (b) and (c) respectively.

(a) Predictions using statictical features and PSDs at different Frequency bands
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Figures 7.3 (a) Prediction of NOx using (a) Statistical Features and PSDs at different 
Frequency Bands, and (b) Wavelet Coefficients
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It was established from the graphical presentations that both features and WCs were 

sufficiently capable of estimating all three gases. However, there are detailed signals 

indicating that simulations based on WCs produced more accurate and less noisy 

predictions (as highlighted in Figures 7.3 (a) and (b)). Further to this, the calculated 

percentage errors in Table 7.1 suggest that WCs were slightly better features.

Table 7.1 The Percentage Errors in correspond to the Predictions of NOx, CO and 62 

for both Features, and Wavelet Coefficients

Target Gases

NOx (% Error)
CO (% Error)
O2 (% Error)

Prediction using Statistical 
Features and PSDs of the 

data

10
46
24

Prediction Using Wavelet 
Coefficients

10
43
23

7.2 Artificial Neural Network based &-step Ahead 

Prediction Model
Another area of ANN research that has already attracted a great deal of attention to 

the control community is future prediction models. The &-step prediction is concerned 

with forecasting the process output over a certain horizon into the future, based on a 

model describing the process evolution and the available information. Generally, 

there are two types, that is (a) recursive and (b) non-recursive predictors [Tan et al, 

1999]. Ironically, a Ar-step prediction model can be created externally through 

incorporating a regressor vectors (i.e., ARX and ARMA) to any static models. This 

type of arrangement is also known as the "externally recursive network" [Russell et 

al., 1997].

ANNs are very useful for nonlinear system modelling. As time goes by, the theory 

has now been extended to perform nonlinear £-step predictions into the future. The 

predictor employs past measurements of the process output, and past as well as future 

values of the manipulated input, to forecast the future output of the process over a 

rather long horizon. The schematic of a recursive £-step predictor can be found in
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Figure 5.40. The process can be described by the following nonlinear discrete time 
equation: -

y(t + 1) = f[y(t).....y(t -na + l),u(t -nk + l).........u(t -nk -nb + 1),0] [7.1]

Where na and nb are the orders of (y(t)} and {u(t)}, nk is the number of delay,
A

y is the output of the model, 9 is the parameter matrix, and / is the nonlinear input- 

output mapping. Based on this model, substitute t = / + 1 into Equation 7.1 yields: -

y(t + 2) = f[y(t + l).....y(t -na + \\u(t -nk + 2).........u(t -nk -nb + 2),0] [7.2]

In order to demonstrate the performance of A:-step predictions, IR features from the 

Daw Mill coal at a swirl number of 0.8 for Control Experiment 2 were used for 

offline simulations. The input-output variables of the system were configured in 

agreement to Equations [7.1] and [7.2]. The na , nb and n k were 3, 1, 1 respectively.

The MLP network had one hidden layer of 10 neurons of hyperbolic tangent 

activation function, and an output layer of a neuron with a linear activation transfer 

function. The first 300 data points were used for the training with the rest for 

validation. For comparability, the target signals were moved &-steps forward to ensure 

that the targets coincided with the predicted values. Figure 7.4 presents four results 

corresponding to 1,5 10 and 20 step future predictions.

It is clear that the prediction errors increased as the number of steps into the future 

increased. This is because in the iteration procedure, any errors in the ANN output are 

fed back into the network causing an accumulation of errors that degrade the 

network's prediction accuracy especially when the prediction horizon is larger [Tan et 

al, 1999].
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Figure 7.4 (a) 1-Step, (b) 5-Step, (c) 10-Step, and (d) 20-Step, ahead Predictions
using Recursive ANN Predictor

Another way to perform /c-step predictions is by the use of the non-recursive 
predictor. In the training process, the regressor vectors were pre-arranged by shifting 
the target signal a few time steps in front of the current inputs (Equation 2.3). Non- 
recursive /c-step predictors do not depend upon the recursive technique in that it 
predicts t +k steps of the process based on the available information until that time.

In a similar way to the plotting of results when simulating recursive predictors, Figure 
7.5 shows the result of the predictions made by the non-recursive /c-step predictor. 
The network dimensions and parameters remained unchanged. The regressor vectors 
were configured in agreement to Equation 2.3. One may observe in Figure 7.5 that the 
predictions are somewhat lag behind the target NOx, especially at larger /c-step 
predictions. Unlike the recursive predictor where the intermediate predictions served
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to provide adequate information for the model to estimate the final value, the lack of 
intrinsic feedback signals prevented accurate predictions to be made and as a result, a 
non-recursive predictor is only suitable to 1-step ahead predictions.

(a) 1-Step Ahead Prediction

8 200 400
(bj 5-Step Ahead Prediction

0 200 400 
(c) 10-Step Ahead Prediction

0 2CC 4CC 
|d) 2Q-Step Ahead Prediction

Data Points
1000 1200 1400

Figure 7.5 (a) 1-Step (b) 5-Step, (c) 10-Step, and (d) 20-Step, Ahead Predictions 
using Non-Recursive ANN Predictor

The exploration of ANN future predictive models serves to provide a general 
overview of how these networks could be used to improve the overall response time 
of a controller system. As in Chapter 6, the FMCS averaged the predictions over a 
sufficient length of time (i.e., 5-minute) so that this time-delay within the system had 
elapsed before an adjustment was made. If an accurate k-step predictive model could 
be devised the control decision could be made based on a set predictive values 
obtained consequently better controller response time.
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7.3 Online Model Adaptation
The application of ANNs in modelling technical processes requires not only their 

abilities to classify process states but also the possibility of monitoring changes of 

process variables over time in order to predict developing dangerous states. This, of 

course, is highly idealised in that the real plant or process is subject to disturbances 

and changing situations. For this reason, it is worth noting that in the development of 

the FMCS, the ANN modules are incorporated statically and because of that, the 

time-varying nature of the burner/boiler has not yet been addressed.

A common misconception about optimisation is that by developing accurate models 

from historical data, the optimum will be contained within the range of that model. 

However, that is seldom true when dealing with complex processes such as in PF 

systems [Eakle et al, 1998]. To discover improvements and move toward a region of 

optimal performance requires a method that can extrapolate the settings beyond the 

range of the historical data used to create the model, hi this context, it is necessary to 

retrain a new ANN model for the gases. One of the innovative aspects of the current 

project is to integrate different ANN schemes for different purposes. A Self - 

Organising Map (SOM) neural network is proposed as a tool for validating the sensor 

signals before they are fed to the ANN for predictions. In other words, the predictions 

corresponding to different flame states with respect to time, are only valid if the 

models can be updated.

The integration of ANNs in a modular architecture is common in modern 

applications. Esteves (2002) used SOM networks to classify the incoming data before 

passing them to the most suitable trained ANN controller in a combined anaerobic 

and aerobic treatment process for textile industrial effluents. Also, Valentine et al. 

(2001) used different ANNs to validate the sensor measurements performed at a 

survey station so as to provide reliable inputs to the automatic coagulation control 

system for a water treatment plant, hi the present work, an SOM can be used as a 

separated module for validating sensor signals in order that the inputs are always 

within the trained data boundaries that were used to create the model.
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The change in dynamics of a combustion system occurs due to factors such as ageing 
of the boiler, varying coal quality (i.e. surface moisture and size distribution), 
changes in ambient conditions, feed system variations, and building of an "eyebrow" 
that alters the near burner flow pattern. Man made mistakes such as plant 
maintenance and visual inspection can result in changes in the flame position and 
incursion of air respectively. Furthermore, low NOx burners are typically more 
sensitive to changes in operating parameters than conventional burners and therefore 
the change of the burner condition is important [Timothy, 2003]. For long-term 
benefit, an adaptive scheme needs to make the model of the controller change 
automatically to match those of the plant or process being monitored.

One major concern in PF fired burners is slag formation. Hanson et al. (1998) 
suggested that slag formation might take a couple of hours, or even days to become 
significant. In fact, every system can be made adaptable to changes in its environment 
if these changes can be measured, or predicted. The slow changes affecting a PF 
burner allows sufficient data to be collected for model retraining but the question lies 
as to how to identify the change as compared to the previous sample. The Self- 
Organising Map (SOM) neural network is suggested as a system novelty detector 

(Figure 7.6).
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Figure 7.6 Dynamics Optimisation

7.3.1 Self-Organising Map
The Self-Organising Map (SOM) belongs to another class of neural networks that 

learn in an unsupervised manner. It requires no target value for learning and is 

particularly useful for data clustering and visualisation. The prototype vectors are 

positioned on a low-dimensional grid of neurons in an ordered fashion. Each neuron 

is represented by a d -dimension weight vector (e.g., prototype vector, codebook' 

vector) m = [mr ......md ] where d is equal to the dimension of the input vectors. The

neurons are connected to adjacent neurons by a neighbourhood relation, which 

dictates the topology, or structure, of the map. In SOM learning, both the best- 

matching weight vector and its topological neighbours on the map are updated. The 

region around the best matching vector is stretched towards the presented training 

sample. The end result is that the neurons on the grid become ordered, neighbouring

1 The main component of Vector Quantisation is a codebook, which maps k-dimensional space to 
reproduction vectors called Codebook vectors. The mapping is done on the basis the distance measure 
between the feature vector to be quantised and code book vectors.
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neurons having similar weight vectors. Upon presenting a new data vector, the closest 
prototype vector, or Best Matching Unit (BMU) will be identified. The interpretation 
of new data can be obtained by naming its prototype vector, whose type (e.g., class) is 
known through direct inspection of the weight vectors and clusters on the map. The 
trajectory of the location on the map can be used to form a display of the operational 
states (i.e., current and past history). This allows efficient tracking of the process 
dynamics to be studied visually. In conclusion, an SOM facilitates understanding of 
processes so that several variables and their interactions may be inspected 
simultaneously [Vesanto, 1999].

Figure 7.7 (a) presents the simulation of an SOM, which was created to identify 
signals that belong to two different coal types - Cerrejon and Daw Mill coals. The 
inputs to the network were NOx, CO, CO2, Oa, secondary airflow rate and coal feed 
rate. For the simple visual presentation, the high-dimensional features space has been 
viewed in 3 principal planes using a Principal Component Projection algorithm with 
only 2-dimensions being plotted. As can be observed, both coals are scattered in two 
regions with slight overlapping.

O C€rrejcr> Coal 
O Da* Mill Coal

-03-2 -1 -0 ? 0

Principal Component 2

Figure 7.7 (a) SOM based Data Clustering - Two Different Clusters Represent

Different Coal Types
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A more comprehensive example of the application of a SOM was to classify 
experiment data corresponding to secondary airflow rates (Figure 7.7 (b)). Please also 
note that the quantisation vectors are also included.
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Figure 7.7 (b) SOM based Data Clustering - Five Distinctive Clusters with their 
corresponding Prototype Vectors ('+') of individual Secondary Airflow Rates

7.3.2 Self-Organising Map as System Novelty Detector
In a SOM, once a model is trained, the Euclidean distance of the new input to their 
closest prototype vector can be calculated. This is a measure of dissimilarity as the 
error is expected to increase with respect to time for the burner. For a simple model, 
abnormality can be identified if the new variables are identified as lying outside 
training range - extrapolation [Simula et al, 1996]. However, coal combustion 
requires the search of a complex dimensional space and so the SOM is perhaps a 

better option.
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Figure 7.8 graphically presents the concept of a SOM being used as a Novelty 
detector. B u C is the original data space in which the SOM model was trained. As 
time passes, the burner operation extends to A u B. If newly presented data appears in 
the top left corner of the region A, the Euclidean distance of this data to its Best 
Matching Unit (BMU) will be extremely large. This is realised as a novel state of 
change for the system.

Location of new input___________ __

B u C - Normal Condition 

A u B - Novelty Condition

Euclidean 
Distance

A

BM

B

Figure 7.8 Normal and Novelty Model

7.3.3 Novelty Detection Simulated Result - Coal Type
Both Cerrejon and Daw Mill coal information at a swirl number of 0.8 were selected 
for the demonstration of identifying novel conditions for the burner. Daw Mill was 
used for training and Cerrejon for testing. The magnitude of error defined by its 
Euclidean distance to its BMU, was being presented as the novelty index. A threshold 
value was required and Ko (2002) suggested that the threshold should be set 4 times 
higher than average quantisation error. Figure 7.9 (a) shows a different magnitude in 
the novel index between the training and simulation based on gaseous information, 
also, Figure 7.9 (b) was simulated with the sensor features.
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Figure 7.9 (b) The Detection for the Change in Burner Based on the Sensors Features 

that belong to Two Different Coal Types

One limitation encountered when using a SOM is that the prediction values are 

merely an indication of the change in the signal. For example, the simulation in 

Figure 7.10 shows a SOM trained with gaseous information corresponding to a 

secondary airflow rate of 120 m3/h, followed by validating the trained SOM model
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with the gaseous information of 130 m3/h, 140 m3/h, 150 m3/h and 160 m3/h. In this 
situation, the data vectors corresponding to 160 m3/h, were not found to attain the 
highest novelty index, which implies that there is no sense of magnitude in the 
network, something perhaps not to be expected.

4

•8 3

Training Testm*

120ffi3 /h

Secondary Airflow Rate (m3 /h)

Figure 7.10 The Detection for the Change in Burner based on the Sensors Features of
Different Secondary Airflow Rates

Although the simulation results of the SOM in Section 7.3 and onwards were only for 
illustration, a SOM can be trained with data sets representing well distinguishable 
states of the process. The network structure formed in this way can then be sensitised 
successively by presenting the different states. Such sensitised networks are able to 
separate even very similar states that "normal" trained networks cannot classify and 
therefore, they form an improved supporting classification and alarming module.

7.4 Summary of Chapter 7
Unlike the ordinary FFT, Wavelet Analysis uses a variable sized window technique, 
which is claimed to provide more precise interpretation of a complex signal. WA 
breaks up a signal into a shifted and scaled version of the original wavelet through 
multiple-level decomposition into many lower resolution components (WCs). This 
technique is particularly useful for the signal with an inherent instantaneous impulse
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and that exhibits a transient (non-stationary2) nature, hi addition, WA is a software 

filter. WA has the ability to separate out the noise from the actual signal, and so WCs 

can yield good prediction results.

If a process has a time-delay, one must wait until the time-delay has elapsed before 

seeing any effect of a control action and for this reason a time-delay has a significant 

influence on the degree of difficulty of control. One useful method to overcome the 

effect of a time-delay is to use a prediction approach where future predictions are 

based on past and current plant variables and on a set of future control actions [Tan et 

al, 1998]. However, the results showed that the errors increased with respect to the 

number of predictions into the future. The difference in error for both recursive and 

non-recursive simulation tests was also recorded. One must also bear in mind that the 

nonlinear &-step prediction strategies can be implemented in practice only because the 

ANNs are such powerful tools.

In general, a SOM is used to cluster data on the map and examine the relationship 

between variables [SOM Toolbox for Matlab™, 2000]. In this project, the idea of 

encoding a SOM within the main control system to deal with long-term factors or 

time-varying characteristics, such as boiler fouling was presented. From the 

experiments, the SOM has been found to be useful to identify changes in the burner. 

It is clear that the combination for both the controller and a SOM with an expert 

system could deliver "self-checking" abilities.

2 The definition of non-stationary signal components can be described as one of the three categories: - 
(a) impulsive (abrupt amplitude change with time), (b) varying wide-band (wide-band signals, with 
spectral composition changing with time) and (c) varying harmonic (signal composed of harmonic 
terms of frequency changing with time). All non-stationary signals are composed of a combination of 
all categories, but in special cases, a single category may dominate
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Chapter 8 Conclusions and Further Recommendations
This chapter seeks to draw conclusions based on the objectives set out in Chapter 1. The 
first of these set out to establish whether it was possible to use low cost sensors to 

monitor the PF flame and in conjunction with neural networks to estimate the gaseous 
emissions. The second objective was to determine a strategy that used the neural network 
predictions of the gaseous emissions to control the burner to ensure optimal combustion.

8.1 Monitoring and Control of the PF Flame using Low 

Cost Sensors
The investigation of the gaseous response to different burner settings, namely, (a) swirl 

number, and (b) secondary airflow rate, was undertaken. The analyses show the NOx 

reduced as the CO increased, and the NOx and CO were functions of the secondary 

airflow rate, hi addition, the results show no consistent reduction of CO as the swirl 

number increased. This implies that unlike the NOx, there was not direct correlation 
between CO and the swirl number. However, the burner achieved lowest NOx and CO 

simultaneously when the burner was operated at a swirl number 0.8 and secondary 
airflow rate of 130 m3/h. Since different burner designs result in different gaseous 

emission profiles, therefore it is necessary to understand them individually. The search 
for best burner performance was, however, obtained through the scoping trials. These 

results were particularly useful in the process of formulating adequate solutions for 

conditions when dealing with the controller design.

The large amount of sampled sensor data was reduced by calculating a set of features that 

included; statistics such as mean, rms, and Kurtosis, and in the frequency domain, the 

Average Energy of the Power Spectral Density (PSD) in different frequency bands. As a 

result, the sensor signals were transformed into a series of features, which were assessed 

to determine their relationship with the gaseous readings. The results confirmed that these 

sensors were capable of discriminating the changes in the flame signals that corresponded 

to varying settings.
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These signal features were then used to train ANNs that were used as software sensors to 
predict the combustion gases. This had the advantage of the prediction being based solely 
on the flame state that will not be disturbed by other unexpected changes such as the 
incursion of air.

It is believed that the corroboration of useful information from diverse sensors features 
helped to improve modelling accuracy. Feature-level data fusion allowed data at the 
feature's level to be combined before prediction and it was found that features sought by 
assessing the correlation coefficient gave the lowest prediction error. In addition, the 
search for the best ANNs and their parameter settings, which were motivated by 
Decision-level data fusion scheme, was undertaken. The analyses concluded that the 
recursive network outperformed the ordinary MLP. In addition, a model trained with the 
early stopping regularisation technique allowed better control of the network parameters 
and thus ensured the best network dimension whilst avoiding over-fitting. Other system 
identification techniques, namely, NNARX were investigated with outstanding 
performance, however, the NNARX was not used because it required past sensor 
readings, which were not available in this situation. As a result, the recursive networks 
were incorporated into the controller structure for real-time predictions in the control 
experiments.

The final control experiment results have marked the success of using the FMCS to 
control the PF system. The system recognised the high excess air condition and the 
controller brought the burner towards good combustion conditions and continuously 
assessed the burner. The responses of the controller were governed by the target emission 
bands, rate of change and to increase or decrease the airflow rate, which were carefully 

decided and amended as a set of rules

Other novel aspects such as the use of (a) Discrete Wavelet Transform technique, (b) k- 
step predictive model, and (c) SOM to deal with the time varying nature of the burner 
were discussed. DWT serves to provide an alternative route to statistical and FFT based 
signal analysis of combustion signals. The neural network £-step predictive model was
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found to be useful for situations where the time-delay of the process dynamics is of great 
concern. Since a boiler is continually subjected to fouling and plant ageing a SOM 
network could be incorporated to indicate the signal changes thus suggesting when ANN 
model is required to retrain.

8.2 Further Recommendations
The search for advanced flame monitoring and control systems for coal utility boilers is 
an on-going effort on the global scale. The methodology used to yield flame information 
in this work was via flame radiation intensity and frequency. Other areas, which might 
yield interesting information, is by the use of a vision system.

Until recently, to install a video camera for monitoring a flame would have been difficult 
as there was limited computer processing power and data storage. However, with the 
ever-increasing processing speed of modern PCs and data storage, application of vision 
systems has become easier and more cost effective. The motivation behind the use of 
flame imaging is that combustion parameters such as load and gaseous emissions are well 
correlated to the flame image (i.e., size, shape, brightness, and luminosity) [Ozanyan, 
2000 and Lu et al, 2000]. Rolla and Bethlehem (2000) used a flame image system that 
consisted of video cameras with advanced image analysis and pattern recognition 
techniques to identify flame features. Both authors concluded that the flame images are 
highly correlated with combustion parameters such as the air-fuel ratio, level of nitrogen 
oxide emissions and flame temperature. This implies that both video images and 
Artificial Intelligence techniques could derive information for optimal control of coal- 

fired furnaces.

Despite the potential of the flame imaging technique, one must bear in mind that the use 

of video cameras poses problems such as: -
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1. Using a video camera requires a sufficiently large aperture for viewing.

2. Low operating temperature.

3. High setup cost as it would usually be retrofitted.

Nevertheless, through the use of optical fibers, the signals can now be transmitted 
reliably to the signal processing system, meters away, thus lowering the temperature the 
sensor or the system is exposed to. It is envisaged that modem fibre-optic based sensing 
technology could have the following features: -

1. It can detect the flame of each burner.

2. It utilises remote sensing by optical fibre cable.

3. The flame signals correlate well with the burner parameters.

Since optical fibres are particularly useful for remote sensing, they have been widely used 
in nuclear reactors and chemical vats. As such, it is thought to be the best approach to the 
application of traditional methods of monitoring flames to achieve maximum burnout and 

fuel efficiency of the plant.

Each flame has its own characteristic type of spectrum, which correlates with the 
chemical species that are present in the flame. The radiation from the reaction zone 
(flame-front region) contains free radicals and combustion intermediate species such as 
OH, CH, CN, and C2 [EPRI, 1986]. Both Gaydon (1957) and Clausen (1995) suggested 

those strong bands of CO and CO2 appear at 4.50 p,m, and 2.88 jum, and 2.7, 4.3 and 15 

|j,m respectively. Also, strong bands for the NO, NO2 and O2 , were found at 

approximately 0.22, 0.48 and 0.18 |am respectively. Otherwise, it is possible to determine 

CN and NH bands, which can be used as the early indicators of NOx [Leipertz, 1996]. It
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is obvious that more specific signals can be acquired by using a narrow band optical 
filters in a spectroscopy system thus yielding better signal definitions.

A correct way to combine features ensures good model predictions hence better control 
decisions. Commonly, the method used in the search for connected features for modelling 
is based on correlation analysis, which is fundamentally a linear model. Another 
computational search method to obtain a best-combined feature set is the use of Genetic 
Algorithm (GA). GA is a search algorithm that is modelled on evolution and can provide 
a robust approach in situations where there is little or no a priori knowledge about the 
process to be controlled.

Figure 8.1 outlines how the approach could be applied to the current work where the 
search starts by randomly initialising the input features. The objective function is then 
evaluated based on the ANN with the selected features and the first generation is 
produced. If the optimization criteria are not met, the creation of a new generation starts 
(Figure 8.1). The cycle is continuous until the best-combined feature set is reached. It 
was learned that GA has become a popular tool in the search for the "fit" of variables 
over large data dimensions in modelling.

Start

Generate New 
Population

Figure 8.1 Structure of a Single Population Evolutionary Algorithm
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Appendix A - Reaction of Gas Phase Nitrogen
The following describes the mechanism for the evolution of coal-bound nitrogen. During 

the primary de-volatilisation of coal, nitrogen is released as HCN, NH3 , and N2 or is 

contained in aromatic compounds present in the tar. As the pyrolysis temperature 

increases, non-nitrogenous volatiles are released thus increasing the content of nitrogen in 

the tar. The evolution of nitrogen from tar is governed by a much slower reaction than the 

initial de-volatilisation.

The major forms of gas phase nitrogen released are HCN and NHs, and can be formed 

from three nitrogen sources via the following mechanisms: -

1. Thermal NO* oxygen atoms formed from the dissociation of C>2 react with 

nitrogen molecules at temperatures greater than 1573 K (with an almost 

exponential with increases in the peak flame temperature). The following reaction 

mechanism was identified as "Zeldovich Mechanism" as shown in the Equations 

Al and A2.

N [Al] 

N + O2 <-> NO + O [A2]

Under fuel-rich conditions, OH and H radicals also take part in the oxidation 

reactions during combustion: -

N + OH^NO + H [A3]

H + N2 <-»N2H [A4]

N2H + O O NO + NH [A5]

265



2. Fuel NOx coal-bound nitrogen is the major contributor to NO formation in PF 

combustion. During de-volatilisation, nitrogen is liberated in the primary 

combustion zone into a tar of heavy aromatic compounds, before being converted 

primarily to HCN and NHs through oxidative pyrolysis, which may be secondary 

products from the pyrolysis of primary tar. Under fuel-lean conditions, HCN 

reacts with oxygen atoms to form oxy-cyanogens and amine intermediates, which 

are later oxidised to form NO. Under fuel-rich conditions, NX formation is more 

favourable due to the reaction of additional hydrogenated amine species and NO. 

At the same time, NO is destroyed by hydrocarbon radicals, producing more HCN 

to continue the cycle. Theses products enter a series of homogeneous gas phase 

reactions as follows: -

Reactions between amine intermediates, hydrocarbon radicals and NO: - 

NH2 + NO -» N2 + H2O [A6] 

CH.+NO-»HCN + O [A7] 

Nitric oxide formed may be reduced by HCN to molecular nitrogen as follows: 

HCN + O -» NCO + H [A8] 

NCO + OH -> NO + CO + H [A9] 

NCO + NO -» N2O + CO [A10] 

NO+NH2 -> N2 + H20 

H->N2 +OH
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3. Prompt NO\ Occurs in fuel-rich environments whereby hydrocarbon radicals 
(mostly CH) react with atmospheric nitrogen. The conversion of prompt NOx can 

be found in the equations A13, A14 and A15. The concentration of CH radicals is 
fewer and their formation may be more concentrated in "hot spots". Its 

significance to NO formation however, is minuscule in comparison to the 
influences of thermal and fuel NO.

N2 <->HCN + N [A13]

+ NHoCO [A14]

O<->NO + H [A15]

Relatively little information exists on the conversion of char nitrogen into NO. 

Furthermore, a simplified reaction scheme for the production of NO from chars is yet to 

be developed. Goel et al (1996) discovered that char nitrogen conversion in the absence 

of oxygen, is independent of de-volatilisation times. Goel also concluded that NO 

produced from the combustion of char nitrogen is not formed via the oxidation reactions 

of HCN. Most experiments carried out to date have been under slow heating rates and 

relatively low temperatures, conditions that do not apply in PF combustion. 

Consequently, it is difficult to use this particular research considering the importance of 

thermal history to char reactivity.
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Appendix B - Combustion Air Calculations
The ultimate analysis of coal is used to calculate the total stoichiometric combustion air. 
The ultimate analysis of the coals on the "as received" basis and the total stoichiometric, 
which determined by the chemical balance based upon the combustible constituents of 
the coal are presented in Table Al and A2 accordingly.

Table Al Ultimate Analyses of the Coals (% by Weight)

Element

Carbon

Hydrogen

Nitrogen
Sulphur
Oxygen

Moisture

Ash

Molecular Weight 
(kg/mole)

12
2
28

32

32
-

-

"As Received" basis
Cerrejon

67.9
4.2

1.3
6.9
3.6
4.9
11.2

Daw Mill
65.2

3.6

1.1

1.5

4.8

5.1

18.7

Table A2 Combustion Air Calculations

Coal 
Constituent

Carbon
Hydrogen

Nitrogen

Sulphur
Oxygen

Moisture

Ash

Total

Cerrejon Coal

Mass per 
kg of coal

0.679
0.042
0.013

0.069
0.036

0.049

0.112
1

The required 
stoichiometric 
O2 (kg/kg of 

coal)
1.810

0.336
Nil

0.069

-0.036

Nil

Nil

2.251

Daw Mill Coal

Mass per 

kg of coal

0.652

0.036

0.011

0.015

0.048

0.051

0.187

1

The required 
stoichiometric 

02 (kg/kg of 

coal)

1.740

0.288

Nil

0.015

-0.048

Nil

Nil

1.995
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hi combustion calculation2 it is common to consider air to consist of (by weight) 77% 

nitrogen and the remaining 23% as oxygen with the density of air at atmospheric pressure 
of 1.225 kg/m . Hence, the total stoichiometric air for Cerrejon and Daw Mill coals are 
(2.251/0.23/1.225) = 7.98 m3 and (1.995/0.23/1.225) = 7.08 m3 respectively per every kg 
of coal.

The percentage of excess oxygen is given as: -

[ Actual secondary air + Primary air - Total stoishiometric air
I Total stoichiometric air - Primary air

xlOO% [A16]

The primary air, which was entrained into the burner, can be calculated from the 
following empirical formula, where the rotameter flow is measured in litre/min: -

Primary air = (60/1000) x [(4.6 x rotameter flow) - 119] m3/h [A17]

Since the rotameter flow was maintained at 120 litre/min throughout the experiments, the 
primary combustion air supply was 26 m3/h. The required total stoichiometric 

combustion air at the given coal-feed rate are 7.83 x 19.3 = 151 m3/hr, and 6.94 x 21.6 = 

150 m3/h for the Daw Mill and Cerrajon coals respectively.

Table A3 Percent Excess Secondary Combustion Air

Secondary 

Air (m3/h)

130

140

150

160

Cerrejon

Total 

stoichiometric 

combustion air 

(m3/h)

151

% Excess 

secondary 

air

4.0

12.0

20.0

28.0

Daw Mill

Total 

Stoichiometric 

combustion air 

(m3/h)

150

% Excess 

secondary 
air

4.8

12.9

21.0

29.0
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Appendix C - Matlab™ Code for Neural Network 
Training
% Introduction - Programme for training and testing of ANN in Matlab™

clear; 
home;

% load file
data=xls2mat('D:\MyDocuments\ohtan_control\l 01002\day8_l 01002.xls:sheetl 1 ','r4c3 :r
500c62!);
kstep=l; % # of steps required for the ANN to predict into the future

% data de-noised
[b,a]=butter(5,0.5);
ip=filtfilt(b,a,ip);
op=filtfilt(b,a,op);

% data normalisation
ip=ipf ;
op=op';
[ipn,meanip,stdip,opn,meanop,stdop]=prestd(ip,op)
[ipn,meanip,stdip]=prestd(ip)

% constructs a regressor vector
na=3; nb=[l 11111]; nk=[l 11111]; kstep=l; 
[ipregn,opregn]=regvec(ipn,opn,na,nb,nk,kstep);

M=400; 
N=401;

p=ipn(:,l:M); 
t=opn(:,l:M); 
pv=ipn(:,N:end); 
tv=opn(:,N:end);

% training data
p=ipn(:,l:M); 
t=opn(:,l:M);

% validation data
pv=ipn(:,N:end); 
tv=opn(:,N:end)
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test.P=pv; 
test.T=tv;

% network parameters
Sl=15; S2=l; % # of hidden and output neurons

% create a feedforward network structure
net=newff(minmax(p),[S 1 ,S2], {'tansigYpurelin'} ,'trainbr1);
net.trainParam.show=l;
net.performFcn='mse';
net.trainParam.epochs=2000;
net.trainParam.goal=0.01;
net=init(net);
[net,tr]=train(net,p,t,[],[],[],test); % network training

inpt=[p pv];
Yn=sim(net,inpt); % network simulation
Y=poststd(Yn,meanop,stdop); % de-normalised data (trained data)
NOx=Y(l,:);
target=poststd(opn,meanop,stdop); % de-normalised data (validation set)
NOxt=target(l,:);

error=(NOx-NOxt); % error prediction

% plot predictions
subplot(2,l,l);plot(l:length(NOxt),NOxt,'bt,l:Iength(NOx),NOx,'r-');
txt=strcat('output(solid) and ',num2str(kstep),'-step ahead prediction(dashed)');
title(txt);
xlabel('time (samples)');
ylabel('Emissions (ppm)');

subplot(2,1,2); plot( 1 :length(error),error); 
title('% prediction error'); 
xlabel('time (samples)'); 
ylabel('error - NOx');

% standard deviation and mean-square error
stdev_NOx=std(error4); 
txt=strcat('STDV(Va)=',num2str(stdev_NOx));
text(52,5,txt);
MSE_NOx=mse(error4);
txt=strcat('MSE(Va)=',num2str(MSE_NOx));
text(52,5,txt)

% saves variables to excel
rangel=strcat('r3c2:r',nurn2str(length(target));c2');
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mat2xls(K,target',range 1);
range2=strcat('r3c3:r',nurn2str(length(Y)) ) 'c3');
mat2xls(K,Y',range2);

% saves model weight and network structure
save NOx_MODELl mat meanip meanop stdip stdop net na nb nk
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Appendix D - Matlab™ Code for Self-Organising 

Map (SOM) Neural Network
% Introduction - Programme of SOM in Matlab™

clear; 
home;

% load file
data=xls2mat('D:\My Documents\PHD Thesis\Chapter6 
Ist\bookl.xls:sheet3','r2cl0:rl51cl4');

% data normalisation
[pn,minp,maxp] = premnmx(data'); %p must be transposed before normalisation

% create labels
Tc=[l*ones(30,l); 2*ones(30,l); 3*ones(30,l); 4*ones(30,l); 5*ones(30,l)];

% divides data (training and validation)
ptr = pn(:, 1:405)'; 
pts = pn(:,406:end)'; 
ttr = Tc(l:405,:); 
tts = Tc(406:end,:);

% labelling
sD_tr = som_data_struct(pn'); 
for i=l:length(sD_tr.data)

sD_tr.labels{i} = num2str(Tc(i)); 
end

% SOM training
sM=som_make(sD_tr);
sM = som_make(sD_tr,'msize',[15 15]);
sM=som_autolabel(sM,sD_tr,Votel);

% computes and plots 3 principal component planes
[Pd,V,me] = pcaproj(sD_tr,3); 
Ps= pcaproj(sM.codebook, V, me); 

som_grid(sM, lCoord',pcaproj(sM,V,me),'markerl,'none','label',sD.labels,
'labelcolorVrYlinecolor',[0.7 0.7 0.7]);

% label predictions corresponding to clusters
cl = Pd(fmd(str2num(char(sD_tr.labels))=ll),:); 
c2 = Pd(find(str2num(char(sD_tr.labels))=12),:);
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c3 = Pd(find(str2num(char(sD_tr.labels))=13),:); 
c4 = Pd(fmd(str2num(char(sD_tr.labels))==14),:); 
c5 = Pd(fmd(str2num(char(sD_tr.labels))==15),:); 
c6 = Pd(find(str2num(char(sD_tr.labels))=21),:); 
c7 = Pd(fmd(str2num(char(sD_tr.labels))==22),:); 
c8 = Pd(fmd(str2num(char(sD_tr.labels))=23),:); 
c9 = Pd(find(str2num(char(sD_tr.labels))==24),:); 
clO = Pd(find(str2nurn(char(sD_tr.labels))=25),:);

% examine predictions using Unit Distance Matrix
som_show(sM,'subplotsl,[22], lempty',", lfootnote1,"); 
som_show_add('laber,sM, lsubplot', 1 ,'textsize', 10);colormap( 1 -gray); 
figure

% plot results
subplot( 1,2,2)
plot3(cl(:,l),cl(:,2),cl(:,3), 1ob', 1markersize',10);
hold on
plot3(c2(:,l),c2(:,2),c2(:,3), l+r','markersize',10);
plot3(c3(:,l),c3(:,2),c3(:,3),'Agl , 1markersize',10);
plot3(c4(:,l),c4(:,2),c4(:,3),'sy', lmarkersizel,10);
plot3(c5(:,l),c5(:,2),c5(:,3),'dk','markersize',10);
plot3(c6(:,l),c6(:,2),c6(:,3),'or','markersize',5);
plot3(c7(:,l),c7(:,2),c7(:,3),'-+Tl,'niarkersizel,5);
plot3(c8(:,l),c8(:,2),c8(:,3),'Arl , 1markersize',5) ;
plot3(c9(:,l),c9(:,2),c9(:,3), 1srl , 1markersize',5);
plot3(clO(:,l),clO(:,2),clO(:,3),'drVmarkersize',5);

box on
view(2)
xlabel('Principal Component l','fontsize',10); ylabel(Trincipal Component
2','fontsize',10);

% save model weight and network structure
save cess5irsom.mat sM sD_tr sD_ts minp maxp

% plot prototype vectors
plot3(Pd(l :30,1 ),Pd(l :30,2),Pd(l :30,3),'ro',Pd(31:60,1 ),pd(31:60,2),Pd(31:60,3),'yo',Pd( 
l:90,l),Pd(61:90,2),Pd(61:90,3), 1go',Pd(91:120,l),Pd(91:120,2),Pd(ll:120,3),'bo l )Pd(121
150,l),Pd(121:150,2),Pd(121:150,3Vmo')
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Appendix E - Matlab™ Codes for Wavelet Analysis
%Introduction - Programme of Wavelet Analysis in Matlab™

clear; 
home;

% create file path
paths = {'D:\My Documents\ohtan_control\test44\rawaeY}; 
for m=l :length(paths) 
spath = paths {m};

% load files
Dirlnfo = dir(spath); %return directory info of spath
mame = {Dirlnfo(3:end).name}; %retum cell array of filenames contained in spath
fpath = strcat(spath,mame); %retum cell array of full filepath
fpath = char(fpath); %convert to rows of character array
row = size(fpath,l); %number of files in the current directory

% empty matrix
E = zeros(row,32); % expected band energy 
oindx = 1;

% main programme
for i=l:row
fprintf('File %i of %i\n',[i,row]);
[fid,message] = fopen(fpath(i,:),'r');
if isempty(message)==0
error(message);
else

% matlab workspace variable is of "Double" by default
data = fread(fid,32768,'intl6l); 
fclose(fid); % file closed 
end

if length(data)-=32768

% data normalisation
data = (data - mean(data))./std(data); 
N = 5; % # of layers to discompose

[T,D] = wpdec(data,N,'db2','shannont); 
fork=l:(2AN) 
wc = wpcoef(T,D,[Nk-l]);
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E(i,k) = sqrt(mean(wc.*wc));
end
else

outlier {m}(oindx) = i; % return indices of outlier 
oindx = oindx+l;

end 
end 
end

% plot results
forj=l:k 
subplot(4,8j)

end
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Appendix F - Matlab™ Codes for the Controller
% Introduction - Programme of signal processing and control in Matlab™

home 
clear

% controller settings - emission targets
NOx_low=550; % Low level of NOx 
NOx_high=575; % High Level of NOx 
CO_low=300; % Low level of CO 
CO_high=350; % High level of CO

% signal processing
m=l;
Z=2000; % length of control period
P=round(Z/3);
Q=60; % control time (60 seconds)
% empty matrices (storage)
mtx=zeros(Z,54);
pred=zeros(Z,3);
FGA=zeros(P,4);
SEC=zeros(Z,l);
SES=zeros(P,l);

% create file paths
paths = {'d:\ohtan_control\test5 l\irV

'd:\ohtan_control\test5 l\micY 
'd:\ohtan_control\test5 l\rawae\'};

% create statement
SE_init=input('Enter Initial Secondary Air = ');

% main programme
fork=l:Z

% read secondary air input
RR=strcat(Ir',num2str(k),'c 1 :r',num2str(k),'c 1');
dat=xls2mat('D:\ohtan\book2.xls:sheet5',RR);
SEI(k,l)=dat;

% logged time
start_time=clock; 
tt=round(start_time( 1,4:6));
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T=tt;

T2=T(1,2); 
T3=T(1,3); 
Time=strcat(num2str(Tl),': I,num2str(T2),I : I ,num2str(T3));

% save logged time and # steps in control in excel
Ra=strcat('r',num2str(k+ 1 ),'c 1 :r',num2str(k+ 1 ),'c 1 '); 
mat2xls('D:\bookl .xls:sheetl ',Time,Ra);

Rb=strcat(Y,num2str(k+ 1 ),'c2:r',num2str(k+l ),'c2'); 
mat2xls('D:\bookl .xls:sheetl *,k,Rb);

ifk>=3; 
k

% empty matrix for secondary airflow rate
ifk<=Q;
SI=SE_init;
SEC(k,l)=SI;
else
SI=SE_Cur;
SEC(k,l)=SI;
end

% plot secondary airflow rate
SEC(l:k,l); 
subplot(2,4,4); 
plot(SEC(l:k,:),'k'); 
title('Current Air'); 
ylabel('m3/h'); 
xlabel('# sample1);

% save secondary airflow rate in excel
Rc=strcat('r',num2str(k+l ),'c6:r',num2str(k+1 ),'c6'); 
mat2xls('D:\bookl .xls',SI,Rc);

% empty matrix for secondary airflow rate information
SES(l:m,l);

% plot suggested secondary airflow rate
ifm>=2 
subplot(2,4,8); 
plot(SES(l:m-l,:),V); 
title('Suggested Air');
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ylabelCmS/h1); 
xlabel('# sample'); 
end

% load files as in binary from directories
fori=l:length(paths);
Dirlnfo = dir(paths{i});
fiiame = {Dirlnfo(l:end).name}; % return cell array of filenames contained in spath
warning on

while (k-length(fhame))>0
warning('Still Wait for latest files from LabView');
warning off
Dirlnfo = dir(paths{i});
fhame = {Dirlnfo(l:end).name};
pause(l)

end

fhame = fname(end);
fpath = strcat(paths{i},fhame); % return cell array of full filepath
fpath = char(fpath); %convert to rows of character array
[fid,message] = fopen(fjpath,'r');

if isempty(message)==0 
error(message);

else data = fread(fid,32768,'intl 6'); %matlab workspace variable is of double by
default
fclose(fid); % close file
end

% signal processing 
% time analysis
Me = mean(data); 
Med = Median(data);

% data normalisation
data = detrend(data,'constant'); 
data = premnmx(data);

St = std(data); 
vars = var(data); 
zcrs = mcross(data); 
Rms = rms(data); 
Ku = kurtosis(data);
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Sk = skewness(data);

% frequency analysis of IR signals
ifi=l
[U,f] = pwelch(data, 1024,D,[],8192);
fmdx = fmd(f<=1000); f = f(fmdx); U = U(findx);
PUf = U./sum(U); %probability of U(f)
S = sum(PUf.*log(l./PUf));
fcg = U'*f./sum(U);
SF = std(U,l)./mean(U);
fl = fmd(f<=200); f2 = find(f>200&f<=400); £3 = fmd(f>400&f<=600); f4 =
fmd(f>600&f<=800);
f5 = find(f>800&f<=1000);
E = [sum(PUf(n)) sum(PUf(f2)) sum(PUf(f3)) sum(PUf(f4)) sum(PUf(f5))];
f_vectors = [Me vars St zcrs fcg SF S Rms Ku Sk Med E];
IR=f_vectors;

FV_IR = [k f_vectors]; %Total data with time & #step 
xlsname=strcat('d:\bookl .xls\sheet',num2str(i+1)); 
Rd=strcat('r',num2str(k+1 ),'c2 :r',num2str(k+1 ),'c 
mat2xls(xlsname,FV_IR,Rd); 
mat2xls(xlsname,Time,Ra);

% frequency analysis of microphone signals
elseifi=2
[U,fJ = pwelch(data,1024,[],[],8192);
fmdx = find(f<=1000); f - f(fmdx); U = U(fmdx);
PUf = U./sum(U); %probability of U(f)
S - sum(PUf.*log(l./PUf));
fcg = U'*f./sum(U);
SF = std(U,l)./mean(U);
fl = find(f<=200); f2 = fmd(f>200&f<=400); £3 = fmd(f>400&f<=600); f4 =
fmd(f>600&f<=800);
f5 = fmd(f>800&f<=1000);
E = [sum(PUf(fl)) sum(PUf(f2)) sum(PUf(f3)) sum(PUf(f4)) sum(PUf(f5))];
f_vectors = [Me vars St zcrs fcg SF S Rms Ku Sk Med E];
MIC=f_vectors;

FV_MIC = [k f_vectors]; %Total data with time & #step 
xlsname=strcat('d:\bookl .xls\sheet',num2str(i+1)); 
mat2xls(xlsname,FV_MIC,Rd); 
mat2xls(xlsname,Time,Ra);

% frequency analysis of AE signals
else

280



[U,f] = pwelch(data,1024,[],[],5000000);
findx = find(£>=100000&f<=1200000); f = f(fmdx); U = U(fmdx);
PUf = U./sum(U); %probability of U(f)
S = sum(PUf.*log(l./PUf));
fcg = U'*f./sum(U);
SF = std(U,l)./mean(U);
fl = fmd(f>=100000&f<=200000); £2 = fmd(f>200000&f<=300000); £3 =
fmd(f>300000&f<=400000); f4 = fmd(fi>400000&f<=500000);
f5 = find(f>500000&f<=600000);f6 = fmd(f>600000&f<=700000);f7 =
find(f>700000&f<=800000);f8 = fmd(f>800000&f<=900000);f9 =
find(C>900000&f<=l 000000);
HO = find(fi>1000000&f<=1100000);fll = fmd(e>1100000&f<=l 200000);
E = [sum(PUf(fl)), sum(PUf(G)), sum(PUf(D)), sum(PUf(f4)), sum(PUf(f5)),
sum(PUf(f6)), sum(PUf(f7)), sum(PUf(f8)), sum(PUf(f9)), sum(PUf(nO)),
sum(PUf(fll))];
f_vectors = [Me vars St zcrs fcg SF S Rms Ku Sk Med E];
AE=f_yectors;

FV_AE = [k f_vectors]; %Total data with time & #step
xlsname=strcat('d:\bookl .xls\sheet',num2str(i+l));
mat2xls(xlsname,FV_AE,Rd);
mat2xls(xlsname,Time,Ra);
end
end

% empty matrices for storing features
Tol=[IR MIC AE]; 
mtx(k,:)=Tol;

% ANN model predictions

ifk>=f 
ip=mtx(3:k,l:54);

% feature sets use for predictions
FV_IR=[mtx(3:k,2:3) mtx(3:k,6:10) mtx(3:k,12:16)]; 
FV_MIC=[mtx(3:k,20:21)mtx(3:k,28:29)]; 
%FV_AE=[mtx(3:k,45) mtx(3:k,47:48) mtx(3:k,53)]; 
ip=[FV_IRFV_MIC];

% load weight for NOx predictions
load ASTON.mat meanip meanop stdip stdop net
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% data normalisation
pnew=trastd(ip,meanip,stdip);

% NOx predictions
Yn=sim(net,pnew);
Y=poststd(Yn,meanop,stdop);
Y=V;
n=k-2;
Y_NOx=Y(n,l);
Y_NOx

ifY_NOx<=100
Pr_NOx=pred(k-3,l);
elseifY_NOx>900
Pr_NOx=pred(k-3,l);
else
Pr_NOx=Y_NOx;
end

% load weight for CO predictions
load BMW.mat meanip meanop stdip stdop net

% data normalisation
pnew=trastd(ip,meanip,stdip);

% CO predictions
Yn=sim(net,pnew);
Y=poststd( Yn,meanop, stdop);
Y=Y';
Y_CO=Y(n,l);
Y_CO

ifY_CO<=-1000
Pr_CO=pred(k-3,2);
elseifY_CO>1000
Pr_CO=pred(k-3,2);
else
Pr_CO=Y_CO;
end

% load weight for O2 predictions
load CIVIC 1.mat meanip meanop stdip stdop net

% data normalisation
pnew=trastd(ip,meanip,stdip);
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% O2 predictions
Yn=sim(net,pnew);
Y=poststd(Yn,meanop,stdop);
Y=Y';
Y_02=Y(n,l);
Y_O2
ifY_O2<=0.5
Pr_O2=pred(k-3,3);
elseifY_O2>5
Pr_O2=pred(k-3,3);
else
Pr_O2=Y_O2;
end

% form new vectors for predictions information
prediction=[Pr_NOx Pr_CO Pr_O2]; 
xlsname='d:\bookl .xls:sheetl';
Re=strcat(V,num2str(k+l),'c3:r',num2str(k+l), lc5');
mat2xls(xlsname,prediction,Re);
pred(k, :)=prediction;

pNOx=pred(f:k,l);
pCO=pred(f:k,2);
pO2=pred(f:k,3);

% create NOx & CO targets for plotting
LLNOx( 1 :Z, 1 )=NOx_low; 
LNOx=LLNOx(f:k,l); 
HHNOx(l:Z,l)=NOx_high; 
HNOx=HHNOx(f:k,l);

LLCO(l:Z,l)=CO_low; 
LCO=LLCO(f:k,l); 
HHCO(l:Z,l)=CO_high; 
HCO=HHCO(f:k,l);

% plot results
subplot(2,4,l);

Emission'); 
ylabel('vppm') 
xlabel('# sample')

subplot(2,4,2); 
Plot(f:k,pCO,'b',f:k,LCO,'g-- 1 ,f:k,HCO,'g--');
title('CO Emission');
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ylabelCvppm') 
xlabel('# sample1)

subplot(2,4,3);

title('O2 Emission1); 
ylabel('%') 
xlabel('# sample1) 
end

% data averaging
% input variable - average over 30 points (5 minutes) of predictions

FG=pred(l:k,:); 
ifk==m*Q

% initial secondary airflow rate
SE_Cur=input('Enter Current Secondary Air =');

L=k-(Q-20); 
L

NOxb=FG(L:k,l); %Carbon Monoxide
COb=FG(L:k,2); %Oxygen
O2b=FG(L:k,3); %Nitrogen Oxides

% average
NOxa=mean(NOxb);
COa=mean(COb);
O2a=mean(O2b);

FGT=[kNOxaCOa02a]; 
FGA(m,:)=FGT;

% plot averaged NOx & CO targets
LNOx=LLNOx(l:m,l); 
HNOx=HHNOx(l:m,l); 
LCO=LLCO(l:m,l); 
HCO=HHCO(l:m,l);

% transfer values of averaged NOx & CO to excel
xlsname-D:\bookl :sheetl';

),'c 10');
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mat2xls(xlsname,FGT,Rf);

% plot results - averaged NOx & CO
NOx=FGA(l:m,2);
CO=FGA(l:m,3);
O2=FGA(l:m,4);

subplot(2,4,5);
plot(l :m,NOx,V, 1 :m,LNOx,'g--',l :m,HNOx,'g-');
title('Average NOx Emission');
ylabel('vppm')
xlabel('# sample')

subplot(2,4,6);
plot(l rr^CO.V, 1 :m,LCO,'g-', 1 :m,HCO,'g-');
title('Average CO Emission');
ylabel('vppm')
xlabel('# sample')

subplot(2,4,7);
plot(O2,'m');
title('Average O2 Emission');
ylabel('%')
xlabel('# sample')

% controller
% CV - calorific value %Frate - Load(kW) %CoalFeed Rate[kg/h]
Load[kW]*3600./CV [kJ/kG]

NOxf=FGA(m,2);
COf=FGA(m,3);
O2f^FGA(m,4);

Rg=strcat('r',num2str(m+ 1 ),'c 1 2 :r',num2str(m+ 1 ),'c 1 2');
),^! I 1);

% NOx & CO tuning loop 
% status 1
if NOxf<=NOx_low & COf<=CO_low;

disp('Status 1');
disp('Optimal Setting - Low NOx & CO1);
dispC'No Air Adjustment Required');

SEI new=SE_Cur
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W=T;

Y='Balance';

SES(m,l)=SEI_new;

mat2xls(xlsname,W,Rg); 
mat2xls(xIsname,Y,Rh);

% status 2
elseif NOxf<=NOx_low & CO_low<COf & COf<=CO_high;
disp('Status 2');
disp('O2 Tuning - Increase Air Slightly');

Rate=2.5;

SEP=SE_Cur; 
SEI=round(SEP);

SEI_new=SEI+Rate;
SES(m,l)-SEI_new;
fprintf('%s %.2f,'Suggest Air =',SEI_new)
W='2';

mat2xls(xlsname, W,Rg); 
mat2xls(xlsname,SEI_new,Rh);

% status 3
elseif NOxf<=NOx_low & CO_high<COf;

disp('Status 3') %Status 3 - Refer to the statement 3
disp('O2 Tuning - High CO, Increase Air'); % High CO. Increase air to reduce CO

Rate=5;

SEP=SE_Cur; 
SEI=round(SEP);

SEI_new=SEI+Rate; 
SES(m,l)=SEI_new; 
fprintf('%s %.2f,'Suggest Air =',SEI_new);

W='3';

mat2xls(xlsname,W,Rg); 
mat2xls(xlsname,SEI_new,Rh);
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% status 4
elseif NOx_low<NOxf & NOxf<=NOx_high & COf<=CO_low;
disp('Status 4')
disp('O2 Tuning - Reduce Air slightly');

Rate=5;
SEP=SE_Cur;
SEI=round(SEP);
SEI_new=SEI-Rate;
SES(m,l)=SEI_new;
rprintf('%s %.2f,'Suggest Air =',SEI_new);

W='4';

mat2xls(xlsname, W,Rg); 
mat2xls(xlsname,SEI_new,Rh);

% status 5
elseif NOx_low<NOxf & NOxf<=NOx_high & CO_low<COf &COf<=CO_high;
dispC'Status 5')
disp('O2 Tuning - Reduce Air Slighty');

Rate=2.5;
SEP=SE_Cur;
SEI-round(SEP);

SEI_new=SEI-Rate;
SES(m,l)=SEI_new;
rprintf('%s %.2f,'Suggest Air =',SEI_new);
W='5';

mat2xls(xlsname,W,Rg); 
mat2xls(xlsname,SEI_new,Rh);

% status 6
elseif NOx_low<NOxf & NOxf<=NOx_high & COf>CO_high;
disp('Status 6')
disp('O2 Tuning - High CO, Increase Air');

Rate=2.5;
SEP=SE_Cur;
SEI=round(SEP)
SEI_new=SEI+Rate;
SES(m,l)=SEI_new;
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rprintf('%s %.2f ,'Sugget Air =',SEI new); 
W='6';

mat2xls(xlsname,W,Rg); 
mat2xls(xlsname,SEI_new,Rh);

% status 7
elseif NOx_high<NOxf & COf<=CO_low;
disp('Status 7');
disp('O2 Tuning - NOx high, Reduce Air1);

Rate=10;
SEP=SE_Cur;
SEI=round(SEP);

SEI_new=SEI-Rate; 
SES(m,l)=SEI_new;

fprintf('%s %.2f ,'Sugget Air =',SEI_new); 
W='7';

mat2xls(xlsname,W,Rg); 
mat2xls(xlsname, SEI_new,Rh);

% status 8
elseif NOx_high<NOxf & COf<=CO_high & COf>CO_low;
disp('Status 8');
disp('O2 Tuning - NOx high, Reduce Air');

Rate=5;

SEP=SE_Cur;
SEI=round(SEP);
SEI_new=SEI-Rate;

SES(m,l)-SEI_new;
fprintf('%s %.2f ,'Sugget Air =',SEI_new);
W='8';

mat2xls(xlsname,W,Rg); 
mat2xls(xlsname,SEI_new,Rh);

% status 9
else 
disp('Status 9');
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disp('O2 Tuning - Both NOx & CO high. Increase Air');

Rate=5;
SEP=SE_Cur;
SEI=round(SEP);

SEI_new=SEI+Rate;

SES(m,l)=SEI_new;
rprintf('%s %.2f ,'Sugget Air =',SEI_new);
W='9';

mat2xls(xlsname,W,Rg);
mat2xls(xlsname,SEI_new,Rh);
end

m=m+l; 
end 
end 
end
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