699 research outputs found

    Entropy coder for audio signals

    Get PDF
    In the paper an effective entropy coder designed for coding of prediction errors of audio signals is presented. The coder is implemented inside a greater structure which signal modeling part is a lossless coding backward adaptation algorithm consisting of cascaded OLS and NLMS sections is presented. The technique performance is compared to that of 4 other lossless codecs, including MPEG-4 ALS one, and it is shown that indeed, the new method is the best one. The entropy coder is an advanced context adaptive Golomb one followed by two context adaptive arithmetic coders

    Novel Ideas for Lossless Audio Coding

    Get PDF
    Novel ideas for lossless audio coding analyzed in the paper are linked with forward predictor adaptation, and concern optimization of predictors on the basis of zero-orderentropy and MMAE criterions, and context sound coding. Direct use of the former criterion is linked with exponential growth of optimization procedure, hence, a suboptimal algorithm having polynomial complexity is proposed. It is shown that on average the new types of predictors are better than those obtained by MMSE technique, while two- and three context systems are on average better than a single predictor one. It also appears that 7-bit PARCOR coefficients in the MPEG-4 ALS standard have insufficient precision for some predictor length, and that for very long frames coding results improve with the predictor rank practically in unlimited way

    A new efficient predictor blending lossless image coder

    Get PDF
    In the paper a highly efficient algorithm for lossless image coding is described. The algorithm is a predictor blending one, a sample estimate is computed as a weighted sum of estimates given by subpredictors, here 27 ones, hence the name Blend-2. Data compaction performance of Blend-27 is compared to that of numerous other lossless image coding algorithms, including the best currently existing ones. The compared methods are "classical" ones, as well as those based on Artificial Neural Networks. Performance of Blend-27 as a near-lossless coder is also evaluated. Its computational complexity is lower than that of majority of its direct competitors. The new algorithm appears to be currently the most efficient technique for lossless coding of natural images

    Efficient Adaptive Filter Algorithms Using Variable Tap-length Scheme

    Get PDF
    Today the usage of digital signal processors has increased, where adaptive filter algorithms are now routinely employed in mostly all contemporary devices such as mobile phones, camcorders, digital cameras, and medical monitoring equipment, to name few. The filter tap-length, or the number of taps, is a significant structural parameter of adaptive filters that can influences both the complexity and steady-state performance characteristics of the filter. Traditional implementation of adaptive filtering algorithms presume some fixed filter-length and focus on estimating variable filter\u27s tap-weights parameters according to some pre-determined cost function. Although this approach can be adequate in some applications, it is not the case in more complicated ones as it does not answer the question of filter size (tap-length). This problem can be more apparent when the application involves a change in impulse response, making it hard for the adaptive filter algorithm to achieve best potential performance. A cost-effective approach is to come up with variable tap-length filtering scheme that can search for the optimal length while the filter is adapting its coefficients. In direct form structure filtering, commonly known as a transversal adaptive filter, several schemes were used to estimate the optimum tap-length. Among existing algorithms, pseudo fractional tap-length (FT) algorithm, is of particular interest because of its fast convergence rate and small steady-state error. Lattice structured adaptive filters, on the other hand, have attracted attention recently due to a number of desirable properties. The aim of this research is to develop efficient adaptive filter algorithms that fill the gap where optimal filter structures were not proposed by incorporating the concept of pseudo fractional tap-length (FT) in adaptive filtering algorithms. The contribution of this research include the development of variable length adaptive filter scheme and hence optimal filter structure for the following applications: (1) lattice prediction; (2) Least-Mean-Squares (LMS) lattice system identification; (3) Recursive Least-Squares (RLS) lattice system identification; (4) Constant Modulus Algorithm (CMA) blind equalization. To demonstrate the capability of proposed algorithms, simulations examples are implemented in different experimental conditions, where the results showed noticeable improvement in the context of mean square Error (MSE), as well as in the context of convergence rate of the proposed algorithms with their counterparts adaptive filter algorithms. Simulation results have also proven that with affordable extra computational complexity, an optimization for both of the adaptive filter coefficients and the filter tap-length can be attained

    The theory of linear prediction

    Get PDF
    Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vector linear prediction is explained in considerable detail and so is the theory of line spectral processes. This focus and its small size make the book different from many excellent texts which cover the topic, including a few that are actually dedicated to linear prediction. There are several examples and computer-based demonstrations of the theory. Applications are mentioned wherever appropriate, but the focus is not on the detailed development of these applications. The writing style is meant to be suitable for self-study as well as for classroom use at the senior and first-year graduate levels. The text is self-contained for readers with introductory exposure to signal processing, random processes, and the theory of matrices, and a historical perspective and detailed outline are given in the first chapter

    Spectrum Hole Prediction And White Space Ranking For Cognitive Radio Network Using An Artificial Neural Network

    Get PDF
    With spectrum becoming an ever scarcer resource, it is critical that new communication systems utilize all the available frequency bands as efficiently as possible in time, frequency and spatial domain. rHowever, spectrum allocation policies most of the licensed spectrums grossly underutilized while the unlicensed spectrums are overcrowded. Hence, all future wireless communication devices beequipped with cognitive capability to maximize quality of service (QoS); require a lot of time and energartificial intelligence and machine learning in cognitive radio deliver optimum performance. In this paper, we proposed a novel way of spectrum holes prediction using artificial neural network (ANN). The ANN was trained to adapt to the radio spectrum traffic of 20 channels and the trained network was used for prediction of future spectrum holes. The input of the neural network consist of a time domain vector of length six i.e. minute, hour, date, day, week and month. The output is a vector of length 20 each representing the probability of the channel being idle. The channels are ranked in order of decreasing probability of being idleminimizing We assumed that all the channels have the same noise and quality of service; and only one vacant channel is needed for communication. The result of the spectrum holes search using ANN was compared with that of blind linear and blind stochastic search and was found to be superior. The performance of the ANN that was trained to predict the probability of the channels being idle outperformed the ANN that will predict the exact channel states (busy or idle). In the ANN that was trained to predict the exact channels states, all channels predicted to be idle are randomly searched until the first spectrum hole was found; no information about search direction regarding which channel should be sensed first

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Disambiguoiva morfologinen jäsennys probabilistisilla sekvenssimalleilla

    Get PDF
    A morphological tagger is a computer program that provides complete morphological descriptions of sentences. Morphological taggers find applications in many NLP fields. For example, they can be used as a pre-processing step for syntactic parsers, in information retrieval and machine translation. The task of morphological tagging is closely related to POS tagging but morphological taggers provide more fine-grained morphological information than POS taggers. Therefore, they are often applied to morphologically complex languages, which extensively utilize inflection, derivation and compounding for encoding structural and semantic information. This thesis presents work on data-driven morphological tagging for Finnish and other morphologically complex languages. There exists a very limited amount of previous work on data-driven morphological tagging for Finnish because of the lack of freely available manually prepared morphologically tagged corpora. The work presented in this thesis is made possible by the recently published Finnish dependency treebanks FinnTreeBank and Turku Dependency Treebank. Additionally, the Finnish open-source morphological analyzer OMorFi is extensively utilized in the experiments presented in the thesis. The thesis presents methods for improving tagging accuracy, estimation speed and tagging speed in presence of large structured morphological label sets that are typical for morphologically complex languages. More specifically, it presents a novel formulation of generative morphological taggers using weighted finite-state machines and applies finite-state taggers to context sensitive spelling correction of Finnish. The thesis also explores discriminative morphological tagging. It presents structured sub-label dependencies that can be used for improving tagging accuracy. Additionally, the thesis presents a cascaded variant of the averaged perceptron tagger. In presence of large label sets, a cascaded design results in substantial reduction of estimation speed compared to a standard perceptron tagger. Moreover, the thesis explores pruning strategies for perceptron taggers. Finally, the thesis presents the FinnPos toolkit for morphological tagging. FinnPos is an open-source state-of-the-art averaged perceptron tagger implemented by the author.Disambiguoiva morfologinen jäsennin on ohjelma, joka tuottaa yksikäsitteisiä morfologisia kuvauksia virkkeen sanoille. Tällaisia jäsentimiä voidaan hyödyntää monilla kielenkäsittelyn osa-alueilla, esimerkiksi syntaktisen jäsentimen tai konekäännösjärjestelmän esikäsittelyvaiheena. Kieliteknologisena tehtävänä disambiguoiva morfologinen jäsennys muistuttaa perinteistä sanaluokkajäsennystä, mutta se tuottaa hienojakoisempaa morfologista informaatiota kuin perinteinen sanaluokkajäsennin. Tämän takia disambiguoivia morfologisia jäsentimiä hyödynnetäänkin pääsääntöisesti morfologisesti monimutkaisten kielten, kuten suomen kielen, kieliteknologiassa. Tällaisissa kielissä käytetään paljon sananmuodostuskeinoja kuten taivutusta, johtamista ja yhdyssananmuodostusta. Väitöskirjan esittelemä tutkimus liittyy morfologisesti rikkaiden kielten disambiguoivaan morfologiseen jäsentämiseen koneoppimismenetelmin. Vaikka suomen disambiguoivaa morfologista jäsentämistä on tutkittu aiemmin (esim. Constraint Grammar -formalismin avulla), koneoppimismenetelmiä ei ole aiemmin juurikaan sovellettu. Tämä johtuu siitä että jäsentimen oppimiseen tarvittavia korkealuokkaisia morfologisesti annotoituja korpuksia ei ole ollut avoimesti saatavilla. Tässä väitöskirjassa esitelty tutkimus hyödyntää vastikään julkaistuja suomen kielen dependenssijäsennettyjä FinnTreeBank ja Turku Dependency Treebank korpuksia. Lisäksi tutkimus hyödyntää suomen kielen avointa morfologista OMorFi-jäsennintä. Väitöskirja esittelee menetelmiä jäsennystarkkuuden parantamiseen ja jäsentimen opetusnopeuden sekä jäsennysnopeuden kasvattamiseen. Väitöskirja esittää uuden tavan rakentaa generatiivisia jäsentimiä hyödyntäen painollisia äärellistilaisia koneita ja soveltaa tällaisia jäsentimiä suomen kielen kontekstisensitiiviseen oikeinkirjoituksentarkistukseen. Lisäksi väitöskirja käsittelee diskriminatiivisia jäsennysmalleja. Se esittelee tapoja hyödyntää morfologisten analyysien osia jäsennystarkkuuden parantamiseen. Lisäksi se esittää kaskadimallin, jonka avulla jäsentimen opetusaika lyhenee huomattavasi. Väitöskirja esittää myös tapoja jäsenninmallien pienentämiseen. Lopuksi esitellään FinnPos, joka on kirjoittaman toteuttama avoimen lähdekoodin työkalu disambiguoivien morfologisten jäsentimien opettamiseen
    • …
    corecore