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Morphological Disambiguation using Probabilistic Sequence Models
Miikka Pietari Silfverberg
Abstract

A morphological tagger is a computer program that provides complete morphological descriptions of sen-
tences. Morphological taggers find applications in many NLP fields. For example, they can be used as
a pre-processing step for syntactic parsers, in information retrieval and machine translation. The task of
morphological tagging is closely related to POS tagging but morphological taggers provide more fine-
grained morphological information than POS taggers. Therefore, they are often applied to morphologi-
cally complex languages, which extensively utilize inflection, derivation and compounding for encoding
structural and semantic information. This thesis presents work on data-driven morphological tagging for
Finnish and other morphologically complex languages.

There exists a very limited amount of previous work on data-driven morphological tagging for Finnish
because of the lack of freely available manually prepared morphologically tagged corpora. The work pre-
sented in this thesis is made possible by the recently published Finnish dependency treebanks FinnTree-
Bank and Turku Dependency Treebank. Additionally, the Finnish open-source morphological analyzer
OMorFi is extensively utilized in the experiments presented in the thesis.

The thesis presents methods for improving tagging accuracy, estimation speed and tagging speed in pres-
ence of large structured morphological label sets that are typical for morphologically complex languages.
More specifically, it presents a novel formulation of generative morphological taggers using weighted
finite-state machines and applies finite-state taggers to context sensitive spelling correction of Finnish.
The thesis also explores discriminative morphological tagging. It presents structured sub-label dependen-
cies that can be used for improving tagging accuracy. Additionally, the thesis presents a cascaded variant
of the averaged perceptron tagger. In presence of large label sets, a cascaded design results in substantial
reduction of estimation speed compared to a standard perceptron tagger. Moreover, the thesis explores
pruning strategies for perceptron taggers. Finally, the thesis presents the FinnPos toolkit for morpholog-
ical tagging. FinnPos is an open-source state-of-the-art averaged perceptron tagger implemented by the
author.

Tiivistelma

Disambiguoiva morfologinen jasennin on ohjelma, joka tuottaa yksikasitteisia morfologisia kuvauksia
virkkeen sanoille. Tallaisia jasentimid voidaan hyddyntda monilla kielenkasittelyn osa-alueilla, esimerkiksi
syntaktisen jasentimen tai konekéaannosjéarjestelmén esikésittelyvaiheena. Kieliteknologisena tehtdvana
disambiguoiva morfologinen jasennys muistuttaa perinteistd sanaluokkajasennystd, mutta se tuottaa hieno-
jakoisempaa morfologista informaatiota kuin perinteinen sanaluokkajésennin. Témén takia disambiguoivia
morfologisia jasentimid hyddynnetddnkin padsaantoisesti morfologisesti monimutkaisten kielten, kuten
suomen kielen, kieliteknologiassa. Tallaisissa kielissa kdytetdan paljon sananmuodostuskeinoja kuten
taivutusta, johtamista ja yhdyssananmuodostusta. Viitoskirjan esittelema tutkimus liittyy morfologisesti
rikkaiden kielten disambiguoivaan morfologiseen jasentdmiseen koneoppimismenetelmin.

Vaikka suomen disambiguoivaa morfologista jasentdmista on tutkittu aiemmin (esim. Constraint Gram-
mar -formalismin avulla), koneoppimismenetelmid ei ole aiemmin juurikaan sovellettu. Tdmaé johtuu siitd
ettd jasentimen oppimiseen tarvittavia korkealuokkaisia morfologisesti annotoituja korpuksia ei ole ollut
avoimesti saatavilla. Tassd vditoskirjassa esitelty tutkimus hyddyntda vastikdan julkaistuja suomen kie-
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len dependenssijdsennettyjd FinnTreeBank ja Turku Dependency Treebank korpuksia. Lisdksi tutkimus
hyodyntéd suomen kielen avointa morfologista OMorFi-jasennintd.

Viitoskirja esittelee menetelmid jasennystarkkuuden parantamiseen ja jasentimen opetusnopeuden seka
jasennysnopeuden kasvattamiseen. Vditoskirja esittdda uuden tavan rakentaa generatiivisia jdsentimia hyo-
dyntden painollisia dérellistilaisia koneita ja soveltaa téllaisia jasentimid suomen kielen kontekstisensiti-
iviseen oikeinkirjoituksentarkistukseen. Lisdksi vditoskirja kasittelee diskriminatiivisia jdsennysmalleja.
Se esittelee tapoja hyddyntda morfologisten analyysien osia jasennystarkkuuden parantamiseen. Lisdksi
se esittad kaskadimallin, jonka avulla jasentimen opetusaika lyhenee huomattavasi. Vdiitoskirja esittaa
myo0s tapoja jasenninmallien pienentdmiseen. Lopuksi esitellddn FinnPos, joka on kirjoittaman toteut-
tama avoimen ldhdekoodin tytkalu disambiguoivien morfologisten jasentimien opettamiseen.

General Terms:
morphological tagger, morphological analyzer, POS tagging, HMM, CRF, perceptron

Additional Key Words and Phrases:
morphologically complex languages
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Chapter 1

Introduction

A morphological tagger is a piece of computer software that provides complete morphological descriptions
of sentences. An example of a morphologically tagged sentence is given in Figure 1.1. Each of the words
in the sentence is assigned a detailed morphological label, which specifies part-of-speech and inflectional
information. Each word also receives a lemma. Morphological tagging is typically a pre-processing step
for other language processing applications, for example syntactic parsers, machine translation software
and named entity recognizers.

The task of morphological tagging is closely related to part-of-speech tagging (POS tagging), where
the words in a sentence are tagged using coarse morphological labels such as noun and verb. These typ-
ically correspond to main word classes. POS taggers are sufficient for processing languages where the
scope of productive morphology is restricted, for example English. Morphological taggers are, how-
ever, necessary when processing morphologically complex languages, which extensively utilize inflec-
tion, derivation and compounding for encoding structural and semantic information. For these languages,
a coarse POS tag simply does not provide enough information to enable accurate downstream processing

such as syntactic parsing.'

Article+Indef | Noun+Sg | Verb+Pres+3sg | Prep | Article+Def | Noun+Sg
A DOG SLEEP ON THE MAT
A dog sleeps on the mat

Figure 1.1: A morphologically tagged sentence

At first glance, the task of assigning morphological descriptions, or morphological labels, seems al-

For example in Finnish, the subject and object of a sentence are distinguished by case and different verbs can require different
cases for their arguments Hakulinen et al. (2004). Coarse POS tags do not capture such distinctions. Therefore, accurate parsing of
Finnish cannot rely solely on coarse POS tags.

13



14 1. Introduction

most trivial. Simply form a list of common word forms and their morphological labels and look up words
in the list when tagging text. Unfortunately, this approach fails because of the following reasons.

1. A single word form can get several morphological labels depending on context. For example “dog”

and “man” can be both nouns and verbs in English.

2. For morphologically complex languages, it is impossible to form a list of common word forms

which would have sufficient coverage (say, higher than 95%) on unseen text.

Due to the reasons mentioned above, a highly accurate morphological tagger must model the context
of words in order to be able to disambiguate between their alternative analyses. Moreover, it has to model
the internal structure of words in order to be able to assign morphological labels for previously unseen
word forms based on similar known words.

This thesis presents work on building morphological taggers for morphologically complex languages,
in particular Finnish, which is the native language of the author. The thesis focuses on data-driven methods
which utilize manually prepared training corpora and machine learning algorithms for learning tagger

models.

1.1 Motivation

Data-driven methods have dominated the field of natural language processing (NLP) since the 1990’s.
Although these methods have been applied to virtually all language processing tasks, research has pre-
dominantly focused on a few languages, English in particular. For many languages with fewer speakers,
such as Finnish, statistical methods have not been applied to the same extent. This is probably a result of
the fact that large training corpora required by supervised data-driven methods are available for very few
languages.

The relative lack of work on statistical NLP for languages besides English is a problem for NLP as
a field of inquiry because the languages of the world differ substantially with regard to syntax, morphol-
ogy, phonology and orthography. These differences have very real consequences for the design of NLP
systems. Therefore, it is impossible to make general claims about language processing without testing the
claims on other languages in addition to English.

This thesis presents work that focuses on data-driven methods for morphological tagging of Finnish.
Finnish and English share many characteristics but also differ in many respects. Both are written in Latin
script using similar character inventories, although Finnish orthography uses three characters usually not
found in English text “3”, “4” and “6”. Moreover, there are similarities in the lexical inventories of the
languages because, like many modern languages, Finnish has been influenced by English and because both
languages are historically associated with Germanic and Nordic languages. In some respects, however,
Finnish and English are vastly different. Whereas English has fixed SVO word order, the word order

in Finnish is quite flexible. Another major difference is the amount of inflectional morphology. For
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example, English nouns usually only occur in three inflected forms: singular “cat”, plural “cats” and
possessed “cat’s”. In contrast, thousands of inflected forms can be coined from a single Finnish noun.

Although data driven methods have dominated the field of POS tagging and, to a lesser extent, mor-
phological tagging for the last twenty years, data driven work on Finnish morphological tagging has been
scarce mostly because of the lack of high quality manually annotated broad coverage training corpora.
However, other approaches like the purely rule based constraint grammar (Karlsson et al., 1995) and
its derivative functional dependency grammar (Tapanainen and Jarvinen, 1997) have been successfully
applied for joint morphological tagging and shallow parsing.?

The recently published FinnTreeBank (Voutilainen, 2011) and Turku Dependence Treebank (Haveri-
nen et al., 2014) represent the first freely available broad coverage Finnish manually prepared data sets that
can be used for work on morphological tagging. These resources enable experiments on statistical mor-
phological tagging for Finnish using a convincing gold standard corpus. Moreover, the broad coverage
open-source Finnish morphological analyzer OMorFi (Pirinen, 2011) is a valuable resource for improving
the performance of a tagging system.

The complex morphology present in the Finnish language leads to problems when existing tagging
algorithms are used. The shear amount of possible morphological analyses for a word slows down both
model estimation and application of the tagger on input text. Moreover, the large amount of possible
analyses causes data sparsity problems.

Data driven methods typically perform much better on word forms seen in the training data than on
out-of-vocabulary (OOV) words, that is words which are missing from the training data. In the case of
English, this is usually not detrimental to the performance of the tagger. Especially when the training
and test data come from the same domain, the amount of OOV words is typically rather low and the
impact of OOV words on accuracy is consequently small. In contrast, this becomes a substantial problem
when applying purely data driven systems on morphologically complex languages because productive

compounding and extensive inflection lead to a large amount of OOV words even within one domain.

1.2 Main Contributions

This thesis presents an investigation into data-driven morphological tagging of Finnish both using gen-
erative and discriminative models. The aim of my work has been creation of practicable taggers for
morphologically complex languages. Therefore, the main contributions of this thesis are practical in na-
ture. I present methods for improving tagging accuracy, estimation speed, tagging speed and reducing

model size. More specifically, the main contributions of the thesis are as follows.

+ A novel formulation of generative morphological taggers using weighted finite-state machines
Finite-state calculus allows for flexible model specification while still guaranteeing efficient appli-

cation of the taggers. Traditional generative taggers, which are based on the Hidden Markov Model

2For example, the Finnish constraint grammar tagger FinCG is available online through the GiellaTekno Project
https://victorio.uit.no/langtech/trunk/kt/fin/src/fin-dis.cgl (fetched on February 24, 2016).
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(HMM), employ a very limited feature set and changes to this feature set require modifications to
the core algorithms of the taggers. Using weighted finite-state machines, a more flexible feature set
can, however, be employed without any changes to the core algorithms. This work is presented in
Publications I and II.

Morphological taggers and POS taggers are applied to context sensitive spelling correction
Typically, context sensitive spelling correctors rely on neighboring words when estimating the prob-
ability of correction candidates. For morphologically complex languages, this approach fails be-
cause of data sparsity. Instead, a generative morphological tagger can be used to score suggestions

based on morphological context as shown in Publication III.

Feature extraction specifically aimed at morphologically complex languages As mentioned
above, the large inventory of morphological labels causes data sparsity problems for morphologi-
cal tagging models such as the averaged perceptron and conditional random field. Using sub-label
dependencies presented in Publication V, data sparsity can, however, be alleviated. Moreover,

sub-label dependencies allow for modeling congruence and other similar syntactic phenomena.

Faster estimation for perceptron taggers Exact estimation and inference is infeasible in discrim-
inative taggers for morphologically complex languages because the time requirement of exact es-
timation and inference algorithms depends on the size of the morphological label inventory which
can be quite large. Some design choices (like higher model order) can even be impossible for mor-
phologically complex languages using standard tagging techniques. Although the speed of tagging
systems is not always seen as a major concern, it can be important in practice. A faster and less
accurate tagger can often be preferable compared to more accurate but slower taggers in real world
applications where high throughput is vital. Estimation speed, in turn, is important because it affects
the development process of the tagger. For these reasons, Publications I'V and V explore known
and novel approximate inference and estimation techniques. It is shown that these lead to substan-
tial reduction in training time and faster tagging time compared to available state-of-the-art tagging
toolKkits.

Pruning strategies for perceptron taggers Model size can be a factor in some applications. For
example, when using a tagger on a mobile device. In Chapter 6, I review different techniques for
feature pruning for perceptron taggers and present some experiments on feature pruning in Chapter
8.

FinnPos toolkit. Publication VI presents FinnPos, an efficient open source morphological tagging
toolkit for Finnish and other morphologically complex languages. Chapter 8 presents a number of
experiments on morphological tagging of Finnish using the FTB and TDT corpora. These experi-

ments augment the results presented in Publication VI.
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1.3 Research Questions

The work presented in this thesis mainly consists of practical contributions to the field of morphological
tagging. However, the thesis also investigates a number of questions related to the design of morpho-
logical taggers. There are various approximations and optimizations which are required to build accurate
and efficient morphological taggers and POS taggers. Examples include beam search, which is used to
speed up training, and higher model order, which improves accuracy. Although some of these techniques
are widely applied in POS tagging, it is interesting to study their effect in tagging of morphologically
complex languages where label sets are large and the amount of OOV words is high. In Chapter 8, I have
explored the impact of these techniques on estimation speed and tagging accuracy. The questions that are

investigated in Chapter 8 fall into the following categories.

» Approximate Estimation In presence of large label sets, exact estimation of the tagger model is
inconvenient or even impossible because of prohibitive computational cost. Therefore, different
approximations such as beam search and label guessing, presented in Chapter 6, have to be utilized
during estimation. I have investigated the impact of these approximations on accuracy and training

time.

* Improvements to Accuracy Several different methods can be used to improve the accuracy of
standard morphological taggers. These include increased model order, using lexical resources such
as morphological analyzers and utilizing sub-label dependencies presented in Chapter 6. I was
interested in exploring the impact of these methods on accuracy. Especially, I wanted to investigate
the relative magnitude of the impact of different optimizations. I was also interested in knowing
if the optimizations have a cumulative effect, that is, if a combination of several of these methods

delivers greater improvement in accuracy than any of the methods in isolation.

* Model Pruning Morphological tagger models can give rise to very large binary files because the
large amount of features that are extracted from the training data. Iinvestigated two straight forward
methods, value based and update count based filtering presented in Chapter 6, for reducing model
size by filtering out parameters which are likely to have small impact on tagging accuracy. I was

interesting in comparing the impact of these methods on tagging accuracy and model size.

1.4 Outline

This thesis can be seen as an introduction to the field of morphological tagging and the techniques used in
the field. It should give sufficient background information for reading the articles that accompany the the-
sis. Additionally, Chapter 8 of the thesis presents detailed experiments using the FinnPos morphological

tagger that were not included in Publication VI.
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Chapter 2 establishes the terminology on morphology and morphological tagging as well as surveys
the field of morphological tagging. Chapter 3 is a brief introduction to supervised machine learning and
the experimental methodology of natural language processing. In Chapter 4, I introduce generative data-
driven models for morphological tagging. Chapter 5 introduces finite-state machines and a formulation
of generative morphological taggers in finite-state algebra. It also shows how finite-state algebra can be
used to formulate generative taggers in a generalized manner encompassing both traditional HMM taggers
and other kinds of models. Chapter 6 deals with discriminative morphological taggers and introduces
contributions to the field of discriminative morphological tagging. Chapter 7 deals with the topic of data-
driven lemmatization. Experiments on morphological tagging using the FinnPos toolkit are presented in

Chapter 8. Finally, the thesis is concluded in Chapter 9.



Chapter 2

Morphology and Morphological Tagging

This Chapter introduces the field of linguistic morphology and morphological tagging. It will also present
an overview of the current state-of-the-art in morphological tagging.

2.1 Morphology

Words Words are the most readily accepted linguistic units at least in Western written language. I define
a word as a sequence of letters, and possible numbers, which is surrounded by white-space or punctuation.
Matters are more complex in spoken language, written languages that do not use white space (such as
Chinese), and sign language. Still, this definition covers most cases of interest from the point of view of
the field of morphological tagging.

Morphemes Morphology is the sub-field of linguistics that studies the internal structure of words. Ac-
cording to Bybee (1985), morphology has traditionally been concerned with charting the morpheme in-
ventory of language. That is, finding the minimal semantic units of language and grouping them into
classes according to behavior and meaning. For example, the English word form “dogs” consists of two
morphemes “dog” and “-s”. The first one is a word stem and the second one is an inflectional affix marking

plural number.

(Non-)Concatenative Morphology In many languages, such as English, words are mainly constructed

3

by concatenating morphemes. For example,“dog” and “-s” can be joined to give the plural “dogs”. This
is called concatenative morphology. There are many phenomena that fall beyond the scope of concatena-
tive morphology. For example, English plural number can be signaled by other, less transparent, means

as demonstrated by the word pairs “mouse/mice” and “man/men”. In these examples, choice of vowel
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indicates number. This type of inflection is called ablaut. In general, phenomena that fall beyond the
scope of simple concatenation are called non-concatenative.

Cross-linguistically, the most common form of non-concatenative morphology is suppletion. Sup-
pletion is the irregular relationship between word forms exemplified by the English infinitive verb “go”
and its past tense “went”. Such irregularity occurs in all languages. Even though suppletion is cross-
linguistically common, most lexemes in a language naturally adhere to regular inflection patterns. For
example, most English verbs form a past tense by adjoining the suffix “-ed” onto the verb stem.

Morphophonological alternations are a further example of non-concatenative morphology. They are
sound changes that occur at morpheme boundaries. A cross-linguistically common example is nasal as-
similation (Carr, 1993, p. 29), where the place of articulation of a nasal depends on the following stop.
As an example, consider the English prefix “in-”. The “n” in “input” and “inset” is pronounced as “m”
and “n”, respectively.

Languages differ with regard to the amount of non-concatenative morphology. Some, like Turkish,
employ almost exclusively concatenation. Such languages are called agglutinative. Others, such as En-
glish, employ a mix of concatenation and non-concatenative phenomena. These languages are usually
called fusional. Still, concatenative morphology is probably found to some degree in all languages. It is
especially prevalent in languages with complex morphology, such as Finnish or Turkish. From the point
of view of language technology for morphologically complex languages, it is therefore of paramount

importance to be able to handle concatenative morphology.

Morphotax Stems in English can often occur on their own as words and are therefore called free mor-
phemes. Inflectional affixes cannot. Therefore, they are called bound morphemes. Such restrictions
belong to morphotax: the sub-field of morphology concerned with defining the rules that govern the con-
catenative morphology of a language. For example, “dog” and “dog+s” are valid from the point of view

of English morphotax whereas “dogdog” and “s” (in the meaning plural number) are not.

Word Class The word forms “dogs” and “cats” share a common number marker “-s” but they have
different stems. Still, there is a relation between the stems “dog” and “cat” because they can occur with
similar inflectional affixes and in similar sentence contexts. Therefore, they can be grouped into a common
word class or part-of-speech, namely nouns. The inventory of word classes in a language cannot be
determined solely based on word internal examination. Instead, one has to combine knowledge about the
structure of words with knowledge about interaction of the words in sentences. The concept of word class,
therefore, resides somewhere between the linguistic disciplines morphology and syntax which is the study

of combination of words into larger units: phrases and sentences.

Lexeme and Lemma Word forms such as “dog” “dogs” and “dog’s” share a common stem “dog”. Each
of the word forms refers to the concept of dog, however, different forms of the word are required depending
on context. Different word forms, that denote the same concept, belong to the same lexeme. Each lexeme

has a lemma which is a designated word form representing the entire lexeme. In the case of English nouns,
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the lemma is simply the singular form, for example “dog”. In the case of English verbs, the infinitive, for
example “to run”, is usually used. The particular choice depends on linguistic tradition.

Lemmas are important for language technology because dictionaries and word lists, which can be
used to derive information about lexemes, usually contain lemmas. Therefore, it is useful to be able to

lemmatize a word form, that is produce the lemma from a given word form.

Categories of Bound Morphemes Whereas free morphemes are grouped into word classes, bound
morphemes are grouped into their own categories according to meaning and co-occurrence restrictions.
For example, Finnish nouns can take a plural number marker. Additionally, they can take one case marker
from an inventory of 15 possible case markers, one possessive suffix from an inventory of 6 possible
markers and a number of clitic affixes (Hakulinen et al., 2004). The categories of bound morphemes can
belong to one particular word class, however, several word classes may also share a particular class of

bound morphemes. For example, both adjectives and nouns take a number in English.

Morphological analysis In many applications such as information retrieval and syntactic parsing, it is
useful to be able to provide an exhaustive description of the morphological information associated with a
word form. Such a description is called a morphological analysis or morphological label of the word form.
For example, the English word form “dogs” could have a morphological analysis “dog+Noun+Plural”.
The granularity and appearance of the morphological analysis depends on linguistic tradition and the
linguistic theory which is being applied, however, the key elements are the lemma of the word form as

well as a list of the bound morphemes associated to the word form.

2.2 Morphological Analyzers

Word forms in natural languages can be ambiguous. For example, the English “dogs” is both a plural
form of a noun and the present third person singular form of a verb. The degree of ambiguity varies
between languages. To some degree, it is also a function of the morphological description: a coarse
morphological description results in less ambiguity than a finer one. A morphological analyzer is a system
which processes word forms and returns the complete set of possible morphological analyses for each word

form.

Applications Morphological analyzers are useful both when the lemma of the word is important and
when the information about bound morphemes is required. The lemma is useful in tasks where the se-
mantics of the word form is of great importance. These task include information extraction and topic
modeling. In contrast, bound morphemes predominantly convey structural information instead of seman-
tic information. Therefore, they are more important for syntactic parsing and shallow parsing which aim

at uncovering the structure of linguistic utterances.
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Motivation The need for full scale morphological analyzers has been contested. For example, Church
(2005) has argued that practical applications can mostly ignore morphology and focus on processing raw
word forms instead of morphologically analyzed words. This may be a valid approach for English and
other languages which mainly utilize syntactic means like word order to express grammatical information,
especially when large training corpora are available. In these languages the number of word forms in
relation to lexemes tends to be low. For example, in the Penn Treebank of English Marcus et al. (1993)
spanning approximately 1 million words, three distinct word forms occur which have the lemma “dog”,
namely “dog”, “dogs” and “dogged”. It can be argued that no specific processing is required to process
English word forms.

In contrast to English, many languages do utilize morphology extensively. For example, although
the Finnish FinnTreeBank corpus (Voutilainen, 2011) only spans approximately 160,000 words, there are
14 distinct word forms which have the lemma “koira” (the Finnish word for “dog”)." In total, the Penn
Treebank contains some 49,000 distinct word forms whereas the FinnTreeBank contains about 46,000
word forms even though it is only 20% of the size of the English corpus. These considerations illustrate
the need for morphological processing for morphologically complex languages like Finnish which make
extensive use of inflective morphology. Methods which rely purely on word forms will simply suffer too
badly from data sparsity. The experiments presented in Chapter 8 show that a morphological tagger is

vital for accurate morphological tagging of Finnish.

Variants There are different types of morphological analysis systems. The first systems used for English
information retrieval were stemmers, the most famous system being the Porter stemmer (Porter, 1997). It
uses a collection of rules which strip suffixes from word forms. For example, “connect”, “connection”
and “connected” would all receive the stem “connect”. The system does not rely on a fixed vocabulary
and can thus be applied to arbitrary English word forms. The Porter stemmer, and stemmers in general,
are sufficient for information retrieval in English but they fall short when more elaborate morphological
information is required, for example, in parsing. Moreover, they are too simplistic for morphologically
complex languages like Finnish and Turkish.?

Morphological segmentation software, such as Morfessor (Creutz and Lagus, 2002), are another type
of morphological analyzers often utilized in speech recognition for languages with complex morphology.
The Morfessor system splits word forms into a sequence of morpheme-like sub-strings. For example, the
word form “dogs” could be split into “dog” and “-s”. This type of morphological segmentation is useful
in a wide variety of language technological applications, however it is more ambiguous than a traditional
morphological analysis where the bound morphemes are represented by linguistic labels such as plural.
Moreover, Morfessor output does not contain information about morphological categories that are not
overtly marked. For example, in Finnish, the singular number of nouns is not overtly marked (only plural

number is marked by an affix “-i-”). Although not overtly marked, such information can very useful for

L1f different compound words of “koira”, such as “saksanpaimenkoira” (German Shepard) are considered, there are 23 forms of
koira in the FinnTreeBank corpus.

2However, they may suffice in some domains. Kettunen et al. (2005) show that a more elaborate stemmer, which can give several
stem candidates for a word form, can perform comparable to a full morphological analyzer) in information retrieval.
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further processing.

The current state-of-the-art for morphological analysis of morphologically complex languages are
finite-state morphological analyzers (Kaplan and Kay, 1994, Koskenniemi, 1984). Full scale finite-state
analyzers can return the full set of analyses for word forms. They can model morphotax and morphophono-
logical alternations using finite-state rules and a finite-state lexicon (Beesley and Karttunen, 2003). In
contrast to stemmers, which are quite simple, and segmentation systems like Morfessor which can be
trained in an unsupervised manner, full-scale morphological analyzers typically require a lot of manual
work. The most labor intensive part of the process is the accumulation of the lexicon.

Although, full-scale morphological analyzers require a lot of manual work, the information they pro-
duce is very reliable. Coverage is a slight problem because lemmas typically need to be manually added
to the system before word forms of that lemma can be analyzed. However, morphological guessers can
be constructed from morphological analyzers (Lindén, 2009). These extend the analyzer to previously
unseen words based on similar words that are known to the analyzer.

The morphological analyzer employed by the work presented in this thesis is the Finnish Open-Source
Morphology (OMorFi) (Pirinen, 2011). It is a morphological analyzer of Finnish implemented using the
open-source finite-state toolkit HFST? (Lindén et al., 2009) and is utilized for the experiments presented
in Chapter 8.

2.3 Morphological Tagging and Disambiguation

I define morphological tagging as the task of assigning each word in a sentence a unique morphological
analysis consisting of a lemma and a morphological label which specifies the part-of-speech of the word
form and the categories of its bound morphemes. This contrasts with POS tagging, where the task is to
provide a coarse morphological description of each word, typically its part-of-speech.

One interesting aspect of the morphological tagging task is that both the set of potential inputs, that is
sentences, and potential outputs, that is sequences of analyses, are unfathomably large. Since each word
in a sentence & = x1, ..., xr of length T receives one label, the complete sentence has n” possible label
sequences y = y1, ..., yr when there are n possible labels for an individual word. Given a sentence of
40 words and a label set of 50 labels, the number of possible label sequence is thus 40°° ~ 10%° which
according to Wolfram Alpha* is the estimated number of atoms in the observable universe.

The exact number of potential English sentences of any given length, say ten, is difficult to estimate
because all strings of words are not valid sentences.> However, it is safe to say that it is very large —
indeed much larger than the combined number of sentences in POS annotated English language corpora
humankind will ever produce. Direct estimation of the conditional distributions p(y | z), for POS label

sequences y and sentences x, by counting is therefore impossible.

3http ://hfst.github.io/
“http://www.wolframalpha.com/input/?i=number+of+atoms+in+the+universe
SMoreover, it is not easy to say how many word types the English language includes.
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Because the POS labels of words in a sentence depend on each other, predicting the label y; for each
position ¢ separately is not an optimal solution. Consider the sentence “The police dog me constantly
although I haven’t done anything wrong!”. The labels of the adjacent words “police”, “dog”, “me” and
“constantly” help to disambiguate each other. A priori, we think that “dog” is a noun since the verb “dog”
is quite rare. This hypothesis is supported by the preceding word “police” because “police dog” is an
established noun—noun collocation. However, the next word “me” can only be a pronoun, which brings
this interpretation into question. The fourth word “constantly” is an adverb, which provides additional
evidence against a noun interpretation of “dog”. In total, the evidence points toward a verb interpretation
for “dog”.

The disambiguation of the POS label for “dog” utilizes both so called unstructured and structured
information. The information that “dog” is usually a noun is unstructured information, because it refers
to the POS label (the prediction) of an individual word “dog”. The information, that words which precede
pronouns are much more likely to be verbs than nouns, is a piece of structured information because it
refers to the combination of several POS labels. Both kinds of information are very useful, but a model
which predicts the label y; for each position in isolation cannot utilize structured information.

Even though structured information is quite useful, this usefulness has limitations. For example, the
labels of “dog” and “anything” in the example are not especially helpful for disambiguating each other.
It is a sensible assumption that the further apart two words are situated in the sentence, the less likely
it is that they can significantly aid in disambiguating each other. However, this does not mean that the
interpretations of words that are far apart cannot depend on each other — in fact they frequently do. For
example, embedded clauses and co-ordination can introduce long range dependencies inside sentences.
Sometimes, even words in another sentence may help in disambiguation. It is, however, difficult to utilize
this information in a tagger because most words that lie far apart are useless for disambiguating each
other’s morphological labels, which makes estimation of statistics from data quite difficult.®

Traditionally, morphological taggers have been classified into two categories: data-driven and rule-
based. Data-driven taggers primarily utilize morphologically labeled training data for learning a model
that represents the relationship between text and morphological labels. The model is typically based on
very simple facts called features that can be extracted from labeled text. For example the second word
in the sentence is “dog” and its label is noun+sg+nom and the second word has label noun+sg+nom
and the third word has label verb+pres+3sg. Each feature corresponds to a weight which determines
its relative importance and reliability. During training, these weights are optimized to describe the rela-
tionship between sentences and label sequences as closely as possible. Given an unlabeled input sentence,
it is possible to find the label sequence that the model deems most likely. Thus the model can be used for
tagging.

In contrast to data-driven systems, rule-based, or expert-driven, taggers do not primarily rely on train-
ing data. Instead they utilize information provided by domain experts (linguists in this case) using some
rule formalism. These rules are assembled into a grammar and compiled into instructions that can be

interpreted by a computer. In contrast to the weighted features in data-driven systems, the rules in expert-

5The primary problem is that it is difficult to distinguish co-occurrence by chance from a genuine tendency.



2.3 Morphological Tagging and Disambiguation 25

driven systems are typically categorical, that is they either apply or do not apply.

The division into data-driven and expert-driven systems is not clear-cut. For example, data-driven
statistical taggers often employ a morphological analyzer which is typically a rule-based system. Con-
versely, rule-based systems can utilize statistics to solve ambiguities which cannot be resolved solely based
on grammatical information. As seen below, it is also possible to integrate a rule-based and data-driven
approach more deeply into a hybrid tagger.

The Brill tagger (Brill, 1992) is one of the early successes in POS tagging. It is in fact a hybrid tagger.
The tagger first labels data using a simple statistical model (a unigram model of the distribution of tags
for each word form). It then corrects errors introduced by the simple statistical model using rules that can
be learned from data or specified by linguists. Several layers of rules can be used. Each layer corrects
errors of the previous layer. Although the Brill tagger is an early system, it might still be quite competitive
as shown by Horsmann et al. (2015), who compared a number of POS taggers for English and German
on texts in various domains (these experiments included state-of-the-art models such as the averaged
perceptron). According to their experiments, the Brill tagger was both the fastest and most accurate.

One of the major successes of the rule-based paradigm is the Constraint Grammar formalism (Karlsson
et al., 1995). The formalism uses finite-state disambiguation rules to disambiguate the set of morphologi-
cal labels given by a morphological analyzer. The approach may still produce the most accurate taggers for
English. Voutilainen (1995) cite an accuracy of 99.3% on English. Direct comparison of tagging systems
based on accuracies reported in publications is, however, difficult because they are trained on different
data sets and use different morphological label inventories but experiments conducted by Samuelsson
and Voutilainen (1997) show that constraint grammar performed better than a state-of-the-art data-driven
tagger at the time.

Although, there are many highly successful and interesting rule-based and hybrid systems, my main
focus is data-driven morphological tagging. The first influential systems by Church (1988) and DeRose
(1988) were based on Hidden Markov Models (HMM) which are presented in detail in Chapter 4. These
early data-driven systems achieved accuracy in excess of 95% when tested on the Brown corpus (Francis,
1964). Later work by Brants (2000) and Halacsy et al. (2007) refined the approach and achieved accuracies
in the vicinity of 96.5%. Publications I and II continue this work. They set up the tagger as a finite-state
system and experiment with different structured models for the HMM tagger.

HMM taggers are so called generative statistical models. They specify a probabilistic distribution
p(z,y) over sentences x and label sequences y. In other words, these systems have to model both sen-
tences and label sequences at the same time. Unfortunately, this is very difficult without making simplistic
assumptions about the labeled data. For example, a standard assumption is that the probability of a word
is determined solely based on its morphological label. This assumption is obviously incorrect as demon-
strated by word collocations.

In order to be able to use more sophisticated features to describe the relation between the input sentence
and its morphological labels, Ratnaparkhi (1997) used a discriminative classification model instead of a
generative one. Whereas, a generative model represents a joint probability p(x, y) for a sentence and label

sequence, a discriminative model only represents the conditional probability p(y|z) of label sequence
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y given sentence z. This means that the sentence = no longer needs to be modeled. Therefore, more
elaborate features can be used to describe the relation between sentences and morphological labels. The
model still has to account for the internal structure of y but because y can be anchored much more closely to
the input sentence, the accurate modeling of relations between the individual labels in y is not as important
in a discriminative tagger.”

The Maximum Entropy Markov Model (MEMM) used by Ratnaparkhi (1997) is a structured model but
itis trained in an unstructured fashion. For each training sentence = (1, ..., xr) and its label sequence
y = (y1, ..., yr) the model is trained to maximize the probability p(y¢|x, y1, ..., y1—1) in each position
t. This means that the model relies on correct label context during training time. This causes the so called
label bias problem described by Lafferty et al. (2001). Essentially, label bias happens because the model
relies too much on label context. Another form of bias, namely observation bias investigated by Klein
and Manning (2002) may in fact be more influential for POS tagging and morphological tagging. These
biases seem to have a real impact on tagging accuracy. In fact, Brants (2000) showed that it is possible
for a well constructed generative tagger to outperform a MEMM tagger, although direct comparison is
difficult because the test and training sets used by Ratnaparkhi and Brants differ. Additional support for
the superiority of the HMM model, is however provided by Lafferty et al. (2001) whose experiments
indicate that the performance of the MEMM is inferior to the HMM on simulated data when using the
same set of features.

Berg-Kirkpatrick et al. (2010) propose a model for part-of-speech induction which is an unsupervised
task related to POS tagging. The model can be seen as a hybrid of the HMM and MEMM models. Like an
HMM, it has emission distributions and transition distributions (the traditional HMM model is described
in Chapter 4). However, these distributions are modeled as local logistic regression models. It would be
interesting to apply this model to morphological tagging in a supervised setting.

Lafferty et al. (2001) proposed Conditional Random Fields (CRF) as a solution to the label bias prob-
lem. The CREF is trained in a structured manner (it is a so called globally normalized model) and does not
suffer from label or observation bias. According to their experiments, the CRF model outperforms both
the HMM and MEMM in classification on randomly generated data and POS tagging of English when
using the same feature sets. Moreover, the CRF can employ a rich set of features like the MEMM which
further improves its accuracy with regard to the HMM model.

Another discriminative model, the averaged perceptron tagger, is proposed by Collins (2002). The
model is a structured extension of the classical perceptron (Rosenblatt, 1958). The main advantage of
the perceptron tagger compared to the CRF model is that it is computationally more efficient and also
produces sparser models.? Its training procedure is also amenable to a number of optimizations like beam
search. These are explored in Chapter 6. The main drawback is that, while the classification performance

of the CRF and averaged perceptron tagger is approximately the same?, the averaged perceptron tagger is

7This is illustrated by the fact that an unstructured discriminative model which does not model relations between labels at all fares
almost as well on tagging the Penn Treebank as a structured model when the taggers use the same unstructured features. According
to experiments performed by the author on the Penn Treebank the difference in accuracy can be as small as 0.4%-points (a drop
from 97.1% to 96.7%). Dropping the structured features from a typical HMM tagger reduces performance substantially more.

8 Although, different regularization methods can give sparse models also for the CRF.

9For example experiments performed by Nguyen and Guo (2007) indicate that the classification performance of the averaged
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optimized only with regard to classification. It does not give a reliable distribution of alternative morpho-
logical tags which can sometimes be useful in downstream applications like syntactic parsers. Neverthe-
less, the averaged perceptron tagger and its extensions, like the margin infused relaxed algorithm (MIRA)
(Taskar et al., 2004) and the closely related structured Support Vector Machine (SVM) (Tsochantaridis
et al., 2005), are extensively applied in sequence labeling tasks such as POS tagging.

The CREF, averaged perceptron, SVM and other related classifiers can be seen as alternative estimators
for hidden Markov models (a terminology used by for example Collins (2002)) or linear classifiers. For
example Publication IV and Nguyen and Guo (2007) explore different estimators for linear classifiers and
compare them.

While these models have been extensively investigate for POS tagging, the focus of this thesis is
morphological tagging. Generative taggers such as the HMM have been applied to morphological tagging
by for example Halacsy et al. (2007) and Publication II but as in the case of English, generative models
cannot compete with discriminative models with regard to accuracy.

Morphological tagging using discriminative models has been investigated by Chrupala et al. (2008)
who use a MEMM and Spoustova et al. (2009) who utilize an averaged perceptron tagger. However,
these works do not adequately solve the problem of slow training times for morphological taggers in the
presence of large label sets. Spoustova et al. (2009) use a morphological analyzer to limit label candidates
during training. This is a plausible approach when a morphological analyzer is available and when its
coverage is quite high. This, however, is not always the case. Moreover, using only the candidates
emitted by an analyzer during training can degrade classification performance. Publication VI and the
experiments in Chapter 8 present alternative methods for accelerating model estimation using a cascaded
model architecture.

The structure present in large morphological label sets can be leveraged to improve tagging accu-
racy. For example, it is possible to estimate statistics for sub-labels, such as “noun”, of complex labels
“noun-+sg+nom”. This approach is explored by for example Spoustova et al. (2009) who extract linguisti-
cally motivated sub-label features. Publication V further investigate this approach and shows that general
unstructured and structured sub-label features lead to substantial improvement in accuracy. Additional
experiments are reported in Chapter 8.

Recently, Miiller et al. (2013) applied a cascaded variant of the CRF model to morphological tagging
of several languages in order to both speed up training and combat data sparsity. Publications V and VI
continue this line of research by setting up a cascade of a perceptron classifier and a generative classifier
used for pruning label candidates. This combination delivers competitive results compared to the cascaded
CRF approach as demonstrated by Publication VI while also delivering faster training times.

Morphological tagging can be done concurrently with parsing. Bohnet et al. (2013) present exper-
iments on the Turku Dependency Treebank also used in Publication VI. Although, the data splits are
different, it seems that the tagging results obtained in Publication VI are still better than the results of
joint tagging and parsing.

Morphological tagging includes the task of lemmatization. Chrupala et al. (2008) sets up this task as a

perceptron algorithm can in fact be better than the performance of the Conditional Random field.
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classification task as explained in Chapter 7 and Publication VI mostly follows this approach. Miiller et al.
(2015) explore joint tagging and lemmatization and shows that this improves both tagging and lemmati-
zation results. Although, it would be very interesting to experiment with joint tagging and lemmatization,
it remains future work for the author.

Data-driven classifiers can also be used for morphological disambiguation and, as the experiments in
Chapter 8 demonstrate, the combination of a morphological analyzer and discriminative tagger performs
substantially better than a purely data-driven morphological tagger. There are two principal approaches
to data-driven morphological disambiguation. Firstly, the analyzer can simply be used to limit label can-
didates. For example, for English, the word “dog” could receive a verb label and a noun label but not
a determiner label. The second approach is to use the morphological analyzer in feature extraction. In
discriminative taggers, the labels and label sets given by the morphological analyzer can be directly used
as features.

This thesis will mainly be concerned with a data-driven supervised learning setting but semi-super-
vised systems and hybrid systems that combine data-driven and linguist driven methods have also been
investigated in the field. Spoustova et al. (2009) and Segaard (2011) apply self-training where a large
amount of unlabeled text is first tagged and then used to train a tagger model in combination with hand
annotated training data. This leads to significant improvements for English and Czech. Spoustova et al.
(2009) additionally uses a voting scheme where different taggers are combined for improved accuracy.
This remains future work for the author.

Hulden and Francom (2012) investigate various combinations of HMM models and Constraint Gram-
mars for tagging. They show that a hybrid approach can lead to improved tagging accuracy and also
reduced rule development time. A nearly identical setup was also explored by Orosz and Novak (2013).
A very similar setup was also used by Spoustova et al. (2007) who examined combinations of hand-written
rules (very similar to constraint grammar rules) and an HMM, perceptron tagger and a MEMM. While
semi-supervised training and hybrid methods are very interesting, they remain future work for the author

at the present time.



Chapter 3

Machine Learning

This section outlines the basic methodology followed in machine learning research for NLP. I will briefly
discuss machine learning from a general point of view and then present supervised machine learning in

more detail using linear regression as example.

Supervised and Unsupervised ML  There exists a broad division of the field of machine learning into
three sub-fields.!

1. In supervised machine learning the aim is to learn a mapping from inputs = (such as sentences) to
outputs y (such as morphological label sequences). To this aim, a supervised system uses train-
ing material consisting of input-output pairs (z,y) and a model which can represent the mapping
2 +— y. Training of the model consists of tuning its parameters in such a way that the model accu-
rately describes mapping between the inputs and outputs in the training data. Typically, supervised
machine learning is employed for tasks such as classification and regression. Examples in the field
of natural language processing include POS tagging and other tasks that can be framed as labeling

(for example named entity recognition), speech recognition and machine translation.

2. In contrast to supervised machine translation, unsupervised approaches exclusively utilize unanno-
tated data, that is the training data consists solely of inputs . Unsupervised machine learning is
most often used for various kinds of clustering tasks where inputs are grouped into sets of similar

examples. Therefore, it has applications for example in exploratory data analysis.

3. Finally, semi-supervised systems use an annotated training set in combination with a, typically, very
large unannotated training set to improve the results beyond the maximum achievable by either
approach in isolation.

"However, for example reinforcement learning and active learning may not fit easily into this classification.
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Unsupervised and Semi-supervised techniques have many applications in the field of tagging. For
example, distributional similarity can be used to improve tagging accuracy for OOV words (Huang and
Yates, 2009, Ostling, 2013) and self-training can improve the accuracy of a tagging system (Spoustové

et al., 2009, Sggaard, 2011). This thesis, however, focuses exclusively on supervised learning.

3.1 Supervised Learning

In this section, I will illustrate the key concepts and techniques in supervised machine learning using the
very simple example of linear regression. I will explain the plain linear regression model and show how it
can be fitted using training data. I will then briefly present ridge regression which is a regularized version
of linear regression.

I choose linear regression as example because it is a simple model yet can be used to illustrate many
important concepts in machine learning. Moreover, the model has several tractable properties such as
smoothness and convexity. Additionally, it can be seen as the simplest example of a linear classifier
which is a category of models encompassing conditional random fields, the hidden Markov model and

average perceptron classifier presented in later chapters.

Linear Regression As a simple example, imagine a person called Jill who is a real estate agent.? She is
interested in constructing an application, for use by prospective clients, which would give rough estimates
for the selling price of a property. Jill knows that a large number of factors affect housing prices. Still,
there are a few very robust predictors of price that are easy to measure. She decides to base the model on

the following predictors:
1. The living area.
2. The number of rooms.
3. The number of bathrooms.
4. Size of the yard.
5. Distance of the house from the city center.
6. Age of the house.
7. Elapsed time since the last major renovation.

Jill decides to use the simplest model which seems reasonable. This model is linear regression which
models the dependent variable, the house price, as a linear combination of the independent variables listed
above and parameter values in R. The linear regression model is probably not accurate. It fails in several

regards. For example, increasing age of the house probably reduces the price up to a point but very old

2This example is inspired by the Machine learning course provided by Coursera and at the time taught by Andrew Ng.
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houses can in fact be more expensive then newly built houses especially if they have been renovated lately.
Although, the linear model is unlikely to be entirely accurate, Jill is happy with it because the intention is
just to give a ball park estimate of the price for the prospective client.

To formalize the linear regression model, let us call the dependent variable price y and each of the
independent variables living area, number of rooms and so on x;. Given a vector x = (1 ... z, 1)T S
R™*!, which combines the independent variables z;, a bias term 1, and a parameter vector 6 € R"™*! the

linear regression model is given by Equation 3.1.3
y(z;0) =6 (3.1)

Two questions immediately arise: How to compute the price given parameters and predictors and how
to compute the parameter vector 6. These questions are common for all supervised learning problems also

when using other models than the linear regression model.

Inference The first question concerns inference, that is finding the values of the dependent variable
given values for the independent variables. In the case of linear regression, the answer to this question is
straightforward. To compute the price, simply perform the inner product in Equation 3.1. The question
is, however, not entirely settled because one might also ask for example how close to the actual price the
estimate y is likely to be. A related question would be to provide an upper and lower bound for the price
so that the actual price is very likely to be inside the provided bounds. To answer these questions, one
would have to model the expected error.

Inference is very easy and also efficient in the case of linear regression. With more complex models
such as structured graphical models which are investigated in Chapters 4 and 6, it can however be an
algorithmically and computationally challenging problem. The task is still the same: Find the y which is

most likely given the input.

Training Data The second question concerns estimation of model parameters and it is more complex
than the question of inference. First of all, Jill needs training data. In the case of house price prediction,
Jill can simply use data about houses she has brokered in the past. She decides to use a training data set
D = {(z',y'),..., (T, yT)}, where each x' = (x} ... 2!, 1) is a vector of independent variable values
(living area, age of the house and so on) and g is the dependent variable value, that is the final selling
price of the house. The last element 1 in 2 is the bias which is constant. Now Jill needs to make a choice.
How many training examples (x?,y*) does she need? The common wisdom is that more data is always
better. In practice, it is a good idea to start with a small training data and increase the number of training

examples until the performance of the system plateaus.

Data Sparsity Whereas it is fairly easy to get a sufficient amount of training data for our example which

only has a few parameters, it is vastly more difficult to accomplish with more complicated models in

3In reality, each of the predictors would probably be transformed to give all of them the same average and variance. Although
this ii not required in theory, it tends to give a better model.
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natural language processing. When there is insufficient data to estimate model parameters accurately, the
data is called sparse. One central question in this thesis is how to counteract data sparsity in morphological

tagging.

Loss Functions The objective in estimation is to find a parameter vector # which in some sense mini-
mizes the error of the house price predictions y(x!; §) when compared to the actual realized house prices
y' in the training data. The usual minimization criterion used with linear regression is the least square
sum criterion given in Equation 3.2. It is minimized by a parameter vector § which gives as small square

errors |yt — y(zt; 0)|? as possible.

0 = arg min Z [yt — y(at; 0" 3.2)
ocR™ zteD

The square sum is an example of a loss function (also called the objective function). A loss function
assigns a non-negative real loss for each parameter vector. Using the concept of loss function, the objective
of estimation can be reformulated: Find the parameter vector ¢ that minimizes the average loss over the

training data.

Iterative Estimation In the case of linear regression model, there is an exact solution for the optimiza-
tion of parameter vector §.* This does not hold for more complex models. Moreover, the exact solution
might often not be the one that is desired because it does not necessarily generalize well to unseen exam-
ples. This is called overfitting. Fortunately, the loss function can be modified to counteract overfitting.
After the modification, the parameter optimization problem might, however, no longer have a closed form
solution.

Because the loss of the training data is a function of the model parameters, one can apply mathematical
analysis for finding optimal parameter values. These methods include for example Newton’s method
which is an iterative procedure that can be used to find the zeros of a differentiable function or local
extrema of a twice differentiable function. Approximations of Newton’s method, so called Quasi-Newton
methods (Liu and Nocedal, 1989), have also been developed because Newton’s method requires evaluation
and inversion of the Hessian matrix of a function. This is a very costly operation for functions where the
domain has high dimension. Quasi-Newton methods use approximations of the inverse Hessian.

A simpler method called gradient descent can be applied to functions that are once differentiable. In
general, gradient descent converges toward the optimum more slowly than Newton’s method, however,
the computation of one step of the iterative process is much faster when using gradient descent. Therefore,
it may be faster in practice.

All gradient based methods rely on differentiability of the loss function.” For the models used in
this thesis, differentiability holds. Gradient based methods work in the following general manner. Let
Lp : R™ — R be the loss of the training data D.

4The solution is given by = XY where XT = (X T X)~1X T is the More-Pennrose pseudo-inverse of X.
5At least, differentiability almost everywhere.
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1. Start at a random point 6 in the parameter space.

2. Determine the direction of steepest descent of the loss function. This is the negative gradient
—VLp(6) at point 6;.

3. Determine a suitable step size o, € R.

4. Take a step of length o in direction v; to get to the next point in the parameter space 6. 1, that is
0141 =0: — a:VLp(0:).

5. If the difference inloss | £p(0:+1) — Lp(6;)| is smaller than a threshold p, set = ;1. Otherwise,

set §; = 0;; and return to line 2.

The main difference between first and second order methods is the computation of the step size «.
Second order methods can take longer steps when the loss is plateauing. Thus they typically take fewer
steps in total. In first order methods such as gradient descent, «; can be constant, a decreasing function
of ¢ or can also be determined by a line search in the direction of —V L (6;). For example oy = ¢~ may
work.

As the meta-algorithm above suggests, gradient based optimization algorithms are local in the sense
that they always move in the direction of steepest descent of the loss function, that is toward a local
optimum. Therefore, they will in general not find the global optimum of the loss function. By choosing a
convex loss function, which has maximally one local, and thus also, global optimum it is possible to avoid
getting stuck at local optima.

Convexity is, however, not enough to guarantee convergence to a global optimum. First of all, a
global optimum might not exist.® Moreover, convergence may be too slow. This can leads to premature

termination of the training procedure. This is specifically a problem for first order methods.

Online Estimation The optimization methods discussed up to this point have been so called batch meth-
ods. The derivatives of the loss function is computed over the entire training data and parameters are
updated accordingly. Batch methods can be slow and subsequent training when new training examples
become available is computationally intensive. Online algorithms are an alternative to batch methods,
where the loss is instead computed for a randomly chosen training example and the parameters are then
updated accordingly. In practice, online methods can give fast convergence. Moreover, re-training is
relatively efficient when new training examples become available.

Stochastic gradient descent is a well known online estimation algorithm. The algorithm processes one
random training example at a time. It uses the gradient V Lp; (6) of the loss for this training example D[]
to approximate the gradient V Lp () over the entire training data D. It is identical to the ordinary batch
gradient descent except that it is an online estimation algorithm. In practice, SGD converges substantially
faster than regular gradient descent (Vishwanathan et al., 2006) because the evaluation of the approximate
gradient is very fast compared to evaluation of the gradient over the entire training data.

6This can happen if the domain of the loss function is not compact. Unfortunately, it usually is not.
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Regularization Due to the problem of over-fitting, a family of heuristic techniques called regularization
is often employed. They aim to transform the original problem in a way which will penalize both deviance
from the gold standard and “complexity” of the solution 6. Regularization can be seen to convey the same
idea as Occam’s Maxim which states that a simpler explanation for a phenomenon should be preferred
when compared to a more complex explanation yielding equivalent results. Of course, this does not
explain what is meant by a “complex” parameter vector 6.

To illustrate simple and complex parameter vectors, examine a case of linear regression where the
dependent variable y and the predictors x; have mean O and variance 1 in the training data. This may
seem restrictive but in fact any linear regression problem can easily be transformed into this form by
applying an affine transformation z +— az — b. When doing inference, this affine transformation can
simply be reversed by applying z — a~'(z + b). The simplest parameter vector 6 is clearly the zero
vector § = (0...0). It corresponds to the hypothesis that the predictors z; have no effect on the dependent
variable y. According to this hypothesis, the prediction for the house price is identically zero.

The zero solution to a linear regression problem is simple but also completely biased. Because we
are assuming that the independent variables z; explain the dependent variable 3, a model that completely
disregards them is unlikely to give a good fit to the training data. By introducing a regularization term
into the loss function, we can however encourage simple solutions while at the same time also preferring
solutions that give a good fit. There are several ways to accomplish this but the most commonly used are
so called L; and L, regularization.” These are general regularization methods that are employed in many
models in machine learning.

The L; regularized loss function for linear regression is given in Equation 3.3. L regularization,
also called LASSO regularization Tibshirani (1996), enforces solutions where many of the parameter
values are 0 (such parameter vectors are called sparse). It is suitable in the situation where the model
is overspecified, that is, many of the predictors might not be necessary for good prediction. The L;
regularized linear regression loss is given by Equation 3.3.

f = arg min Z [yt — y(xt; 02+ Z|01| (3.3)

0cR™ €D 7

The Lo regularized loss function is given in 3.4. Ly regularization is also called Tikhonov regular-
ization. In contrast to L regularization, it directly prefers solutions with small norm. A linear regression
model with Tikhonov regularization is called a ridge regression model.

0 =argmin > |y — y(ay 0)+A0]°= argmin Y |y — y(z; 0)P+A D _[0]>  (34)
0eR" 2D 0eR™ . cp i

The coefficient A\ € R is called the regularizer. The regularizer determines the degree to which

7 Another approach to counteracting overfitting is provided by Bayesian statistics where the parameter vector 6 is drawn from a
prior distribution. In practice, Bayesian methods and regularization are often equivalent.
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model fit and simplicity affect the loss. A higher A\ will increase the loss for complex models more than
a lower one. When ) increases, the optimal parameter vector 6 approaches the zero vector and when
it decreases € approaches the parameters that fit the training data as closely as possible. This is called
under-fitting.

Hyper-parameters The regularizer is a so called hyper-parameter of the regularized liner regression
model. It is easy to see that increasing A will automatically increase the loss. Therefore, there is no direct
way to estimate its correct magnitude simply using the training data. Instead held-out data can be used.
Held-out data is labeled data that is not used directly for estimating model parameters. If the model over-
fits the training data, that is generalizes poorly to unseen examples, the held-out data will have a high
loss. However, it will also have a high loss if the model under-fits, that is, performs poorly on all data.
Held-out data can therefore be used to find an optimal values for the regularizer A. Often, one tries several
potential values and chooses the one that minimizes the loss of the held-out data. Usually, one uses the

non-regularized loss function for the held-out data.

3.2 Machine Learning Experiments

In this thesis and in the associated articles, I present several experiments in morphological tagging. The

experiments are conduct on labeled data and follow a set pattern.

1. Data Splits The labeled data set is divided into three non-overlapping parts: (1) a training set
used for estimating model parameters (2) a development set used for setting hyper parameters and
performing preliminary experiments during development and (3) a test sets which is used to perform
the final evaluation of the model.

2. Feature Engineering Using the training set and development set, a number of features are tested
and depending on tagging errors in the development data, new features may be added.

3. Tuning The model hyper-parameters are set using development data.

4. Training When model parameters and hyper-parameters are set, the final model is trained on the

combined training and development data. Training time is measured at this point.

5. Evaluation The performance of the model is measured on the test data in order to derive an estimate
of tagging accuracy and tagging speed.

A crucial component of machine learning experiment is the baseline. For example, when investigating
the impact of a set of features on tagging accuracy, the baseline will be the model which does not include
those features. In Publication VI, which investigates the tagging accuracy, tagging speed or training speed
of the FinnPos toolkit, other established tagger tool-kits are used as baseline.
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When comparing tagging accuracy of two taggers, we compare their accuracies on the test set. How-
ever, this is only an estimate of the true tagging accuracies of the systems. When the difference in perfor-
mance between the systems is small, it is therefore not possible to say with great certainty which system
will perform better on new data. In this situation, it is helpful to know about the variance of the accuracy.

The variance is a measure of the stability of the difference in accuracies between tagging systems. It
can be estimated using random samples of the test data. If one system consistently performs better than
the other one on random samples of the test data, it is more likely to performs better on some unseen
sample. In contrast, when the performance of one system is better on some samples and worse on others,
it is less certain that it would perform better on unseen data even though it performs better on average in
the entire test set.

Using statistical significance testing, the above comparison can be formalized. In the papers included
in this thesis, the 2-sided Wilcoxon signed-rank test (Wilcoxon, 1945). In contrast to the often used t-test,
the Wilcoxon test does not assume that the measurements are drawn from a Gaussian distribution. A 2-
sided test (instead of a 1-sided test) is used because it cannot be known which of the systems actually has

the higher accuracy although we know that one of the systems performs better on the test set.?

8This was suggested by one of the reviewers of Publication VI.



Chapter 4

Hidden Markov Models

This chapter introduces hidden Markov models (HMM), which are a widely used model for POS tagging
and morphological tagging. Extensions to the HMM are further investigated in the next chapter and
Publications I, II and III.

4.1 Example

I will illustrate Hidden Markov Models using an example. Imagine a person called Jill who is hospitalized
and occupies a windowless room. The only way for her to know what is happening in the outside world
is to observe a nurse who passes her room daily.!

Suppose, Jill is interested in weather phenomena and she decides to pass time by guessing if it is raining
outside. She bases her guesses on whether or not the nurse is carrying an umbrella. In other words, she
predicts an unobserved variable, the weather, based on an observed variable, the nurse’s umbrella.

There are several probabilistic models Jill might use. The simplest useful model assigns probability
1 to the event of rain, if the nurse carries an umbrella, and assign it the probability 0 otherwise. This
simplistic model would certainly give the correct prediction most of the time, but Jill believes that she can
do better.

Jill knows that people often carry an umbrella when it is raining. She also knows that they rarely
carry one when the weather is clear. However, people sometimes do forget their umbrella on rainy days,
perhaps because they are in a hurry. Moreover, people sometimes carry an umbrella even when it is not
raining. For example the weather might be murky and they might anticipate rain. Therefore, Jill decides

to reserve some probability, say 0.2, for the event that the nurse is carrying an umbrella when there is no

1To make things simple, imagine the nurse works every day.

37
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rain. She reserves an equal probability for the event that the nurse arrives at work without an umbrella
although it is in fact raining.

Without additional information, this more complicated model will give exactly the same MAP pre-
dictions as the simplistic one. Knowledge of meteorology, however, also factors in. Let us suppose Jill
is a weather enthusiast and she knows that the probability of rain is 0.25 a priori, making the probability
of clear weather 0.75. She also knows that the probability of rain increases markedly on days following
rainy days at which time it is 0.7. Similarly, the probability of clear weather increases to 0.9 if the weather
was clear on the previous day. Figure 4.1 summarizes these probabilities.?

L T CLEAR | RAIN E 7T
CLEAR | 0.7 CLEAR | 0.9 0.1 CLEAR | 0.8 | 0.2
RAIN | 0.2 RAIN 0.3 0.7 RAIN | 0.2 | 0.8

Figure 4.1: The probability distributions which define the HMM in the weather forecast example. ¢
specifies the initial probability of CLEAR and RAIN. 7" shows the transition distributions, which specify
the probability of CLEAR and RAIN given the weather on the previous day. Finally, E shows the emission
distributions, which specify the probabilities of seeing an umbrella depending on the weather.

Let us assume that Jill observes the nurse for one week. She sees the nurse carry an umbrella on all
days except Tuesday. The MAP prediction given by the simplistic model is that Tuesday is clear and
all other days are rainy. The more complex model will, however, give a different MAP prediction: the
probability is maximized by assuming that all days are rainy. Under the more complex model, it is simply
more likely that the nurse forgot to bring an umbrella on Tuesday.

0.7 0.9

§ = ¢
S SO

0.1

Figure 4.2: A visual representation of the HMM in Figure 4.1.

The model Jill is using for weather prediction is called a Hidden Markov Model. It can be used to
make predictions about a series of events based on indirect observations.

The HMM is commonly visualized as a directed graph. Each hidden state, for example RAIN and
CLEAR, represents a vertex in the graph. Transitions from one hidden state to another are represented

by arrows labeled with probabilities. Figure 4.2 shows a graph representing the transition structure of the

2Since the author of this thesis has very little knowledge about meteorology, these probabilities are likely to be nonsense. The
overall probability of rain and clear weather is, however, chosen to be the steady state of the Markov chain determined by the
probabilities of transitioning between states. Consistency is therefore maintained.
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HMM outlined in Figure 4.1.

4.2 Formal Definition

Abstracting from the example above, an HMM is a probabilistic model that generates sequences of state
observation pairs. At each step ¢ in the generation process, the model generates an observation by sampling
the emission distribution €, of the current state y,. It will then generate a successor state 3, ; by sampling
the transition distribution 7, of state y;. The first hidden state y; is sampled from the initial distribution
¢ of the HMM.

Since the succession of days is infinite for all practical purposes, there was no need to consider termi-
nation in the example presented in Figure 4.2. Nevertheless, many processes, such as sentences, do have
finite duration. Therefore, a special final state f is required. When the process arrives at the final state, it
stops: no observations or successor states are generated.

Following Rabiner (1990)%, I formally define a discrete HMM as a structure (Y, X, i, T, E, IF)
where:

1. Y is the set of hidden states (Y = {CLEAR, RAIN} in the example in Figure 4.1).
2. X is the set of emissions, also called observations ( X = {/7?, /?} in the example in Figure 4.1).

3. ¢:Y — R is the initial state distribution, that is the probability distribution determining the initial
state of an HMM process (array ¢ in Figure 4.1).

4. T is the collection of transition distributions, 7, : ¥ — R, that determine the probability of transi-
tioning from a state y to each state ¢’ € Y (array 7 in Figure 4.1).

5. E is the collection of emission distributions €, : X — R, which determine the probability of

observing each emission o € X in state y € Y (array E in Figure 4.1).
6. f €Y is the final state. The state f emits no observations and there are no transitions from f.

Figure 4.3 gives a visualization of the HMM in Figure 4.1 with an added final state. Because the
progression of days is infinite for all practical purposes, the probability of transitioning to the final state f
in example 4.3 is 0 regardless of the current state. Hence, the probability of any single sequence of states
and emissions is 0. The probability of an initial segment of a state sequence may, however, be non-zero.*

An HMM models a number of useful quantities:

1. The joint probability p(x, y; 6) of a observation sequence x and state sequence y. This is the proba-
bility that an HMM with parameters 6 will generate the state sequence y and generate the observation

T+ in every state ;.

3The definition of HMMs in this thesis differs slightly from Rabiner (1990) since I utilize final states.
4The probability of an initial segment up to position ¢ can be computed using the forward algorithm, which is presented in Section
4.3.
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Figure 4.3: The HMM presented in Figure 4.1 with an unaccessible final state.

2. The marginal probability p(x; @) of an observation sequence x. This is the overall probability that

the observation sequence generated by an HMM is x.

3. The conditional probability p(y | z; 6) of a state sequence y given an observation sequence z. That
is, how likely it is that the model passes through the states in y when emitting the observations in x
in order.

4. The marginal probability p(z, t, x; 0) of state z at position t when emitting the observation sequence
x. That is, the probability of emitting observation sequence x under the single constraint that the

state at position ¢ has to be z.

To formally define these probabilities, let § = {¢, T, E} be the parameters of some HMM with
observation set X and hidden state set Y, € X7 be a sequence of observations and y € Y7*! a
sequence of hidden states. The last state yr1 in y has to be the final state f. Then the joint probability
p(z,y;0) of x and y given 6 is defined by Equation (4.1).

T T
p(,;0) = p(y; 0) - pla | y; 0) = (A(yl) 117 (yt+1)> e (@) 1)

t=1

Equation (4.1) is a product of two factors: the probability of the hidden state sequence y, determined
by the initial and transition probabilities, and the probability of the emissions x; given hidden states y;
determined by the emission probabilities.

When the HMM model is used as a morphological tagger, the emissions are word forms and the hidden
states are morphological labels. This allows for capturing simple grammatical dependencies between
adjacent morphological labels. For example, in English, a determiner is often followed by an adjective,
participle, noun or adverb, but rarely followed by an active verb form or another determiner. The HMM
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can, therefore, be seen as a simple probabilistic model of grammar where the grammar rules only concern
co-occurrences of words and labels as well as co-occurrences of adjacent labels. As demonstrated by the
success of the HMM model in POS tagging, this simple model can be surprisingly effective.

In the standard HMM, every hidden states in Y has a probability for emitting any given observation (of
course, the emission probability for a particular observation can be zero in some states). Therefore, several
state sequence y € Y7+! can be generate the same sequence of observations x € X7. The marginal
probability p(x; @) of an observation sequence z can be found by summing over all state sequences that
could have generated x. It is defined by Equation (4.2).

pla; 0) = > pl,y;0) 4.2)

yeYTH, yrp1=f

Possibly the most important probability associated to the HMM is the conditional probability p(y | z; 6)
of state sequence y given observations x. This is an important quantity because maximizing p(y | z; 6)

with regard to y will give the MAP assignment of observation sequence z. It is defined by Equation (4.3).

oy _ P(@,y;0)

4.3
It is noteworthy, that p(y | z; ) « p(z, y; #) because the marginal probability p(z; #) is independent of y.
Therefore, y maximizes p(y | z; 0) if and only if, it maximizes p(z, y; #). This facilitates inference because
the MAP assignment for the hidden states can be computed without computing the marginal probability
p(x;0).

Finally, the posterior marginal probability of state z at position ¢ given the observation sequence x
is computed by summing, or marginalizing, over all state sequence y, where y;, = z. It is defined by
Equation (4.4)

p(z,t, x;0) = Z p(x,y';0) (4.4)

Yy eYTHL, yi=z, yp  =f

4.3 Inference

Informally, inference in HMMs refers to finding a maximally probable sequence of hidden states y that
might have emitted the observation . As Rabiner (1990) points out, this statement is not strong enough

to suggest an algorithm.

Maximally probable is an ambiguous term when dealing with structured models. It could be taken to

mean at least two distinct things. The MAP assignment y; 4 p of the hidden state sequence is the most



42 4. Hidden Markov Models

probable joint assignment of states defined by Equation (4.5) and depicted in Figure 4.4a.

ymap = argmax p(y | z; 6) (4.5)
yey T

Another possible definition would be the maximum marginal (MM) assignment. It chooses the most
probable hidden state for each word considering all possible assignments of states for the remaining words.
The MM assignment yp; s is defined by Equation (4.6). Figure 4.4c shows the paths whose probabilities

are summed in order to compute the marginal for one position and state.

T
yarns = argmax | [ p(ye, t] 2;6) (4.6)
yey T

As Merialdo (1994) and many others have noted, the MAP and MM assignments maximize differ-
ent objectives. The MM assignment maximizes the accuracy of correct states per observations whereas
the MAP assignment maximizes the number of completely correct state sequences. Both objectives are
important from the point of view of POS tagging in a theoretical sense. However, they are often quite cor-
related and, at least in POS tagging, it does not matter in practice which of the criteria is used (Merialdo,
1994). Most systems, for example Church (1988), Brants (2000), Halécsy et al. (2007), have chosen to
use MAP inference, possibly because it is easier to implement and faster in practice.

Although, MM inference is more rarely used with HMMs, computing the marginals is important both
in unsupervised estimation of HMMs and discriminative estimation of sequence models. Therefore, an
efficient algorithm for MM inference, the forward-backward algorithm, is presented below.

There are a number of strongly related algorithms for both exact MAP and MM inference. The work
presented in this thesis, uses the Viterbi algorithm for MAP inference and the forward-backward algo-
rithm for MM inference (Rabiner, 1990). Belief propagation, introduced by Pearl (1982), computes the
MM assignment and can be modified to compute the MAP assignment as well. For sequence models,
such as the HMM where hidden states form a directed sequence, belief propagation is very similar to
the forward-backward algorithm. It can, however, be extended to cyclic graphs (Weiss, 2000) unlike the
Viterbi algorithm.

Since cyclic models fall beyond the scope of this thesis and both the Viterbi and forward-backward
algorithms are amenable to well known optimizations, which are of great practical importance, I will not
discuss belief propagation further. Koller and Friedman (2009) gives a nice treatment of belief propagation
and graphical models at large.

Before introducing the Viterbi and forward-backward algorithm, it is necessary to investigate the for-
ward algorithm, which is used to compute the marginal probability of an observation and also as part of
the forward-backward algorithm. The forward algorithm and Viterbi algorithm are closely related.

The Forward Algorithm Equations (4.5) and (4.6) reveal, that both MAP and MM inference require

knowledge of the entire observation z. In the weather prediction example, observations are, however,
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Figure 4.4: A visualization of subsets of paths in a trellis.
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(a) Trellis and path.

(c) Marginal paths.
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always infinite. What kind of inference is possible in this case?

Even when we only know a prefix x[1 : ¢] (of length ¢) of the entire observation x, we can still compute
the belief state (Boyen and Koller, 1998) of the HMM given the prefix. The belief state is in fact not a
single state, but rather a distribution over the set of hidden states Y. It tells us how likely we are to be in
state z at time ¢, when we have emitted the prefix z[1 : ¢].

To compute the belief state at position ¢, we first need to compute the forward probabilities for each
state z € Y. The forward probability fw, . (z) of state z at position ¢ is the probability of emitting prefix
(z1,...,x¢) and ending up in state z € Y. For example, given an infinite observation (A?, “?, 7, ),
the forward probability fws ramv is the probability that the third day is rainy, when the nurse carried an
umbrella on the first and second days, but did not carry one on the third day.

I am going to make a technical but useful definition. The prefix probability of observation sequence
x = (z1, ..., o) and state sequence y = (y1, ..., y¢) at position, where ¢ < T+ 1 is given by Equation
4.7).

p(z, y;0) = (L(zh) : (H T’yu(qurl)) 11 %(:cu)), t<T (4.7)

When ¢ = T, this is almost the same as the joint probability of = and y, but the final transition is missing.
Conceptually, the forward probability is computed by summing over the probabilities of all path pre-
fixes up to position ¢, where the state at position ¢ is z, see Figure 4.4b. Formally, the forward probability

is defined by Equation (4.8).
fwie= Y plx, y;0) (4.8)

yeEY'!t, yp=2

Comparing Equations (4.8) and (4.1) shows that the forward probability in a sense represents the proba-
bility of a prefix of observation z.

The belief state and posterior marginal distribution may seem similar. They are, however, distinct
distributions because the belief state disregards all information about observation = after position ¢. In
contrast, the marginal distribution encompasses information about the entire observation. For example
the marginal probability of RAIN at position 3 is likely to depend strongly on whether or not Jill observes
the nurse carry an umbrella on the fourth day. However, this will have no impact on the belief state.

Figure 4.5 demonstrates a naive approach to computing the forward probabilities. Simply list all rele-
vant state sequences, compute the probability of each sequence and sum the probabilities. Unfortunately,
the naive approach fails for large ¢ because the number of distinct state sequences depends on the sequence
length in an exponential manner.

The complexity of the naive algorithm is |Y'|*, which is infeasible. For example, foo ran(2) requires
us to sum approximately 20 million probabilities and f30 ramv(z) entails summation of approximately
540 million probabilities. Since observation sequences in domains such as natural language processing
frequently reach lengths of 100, a more efficient approach is required.

The belief state can be computed in linear time with regard to ¢ and quadratic time with regard to |Y|

using the forward algorithm (Rabiner, 1990), which is in fact simply a recursive application of the right
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Figure 4.5: A naive approach to computing forward probabilities.

Y1 Y2 Y3 p
CLEAR | CLEAR | CLEAR 0.75-0.8-0.9-0.2)-0.9-0.8 ~ 0.078
RAIN CLEAR | CLEAR 0.25-0.2-0.3-0.2)-0.9 - 0.8 ~ 0.002
CLEAR RAIN CLEAR | (0.75-0.8-0.1-0.8) - 0.3-0.8 =~ 0.012
RAIN RAIN CLEAR 0.25-0.2-0.7-0.8) - 0.3 - 0.8 =~ 0.007

o~ o~ o~ —

~ 0.098

distributive rule of algebra
ap-b+..+a,-b=(a;+..+a,) b

for real numbers a; up to a,, and b.
Instead of computing the probability separately for each path, the forward probabilities for longer
paths are computed incrementally using the forward probabilities of shorter paths. Examine Figure 4.5.

By grouping rows one and two, as well as three and four into pairs, it is easy to see that
fws cLear = (fwa2 raN - TRAIN(CLEAR) + fw crear - TcLear (CLEAR)) - 5CLEAR(%)

Generalizing, we get the recursion in Equation (4.9).

1(z) - ex(z1) t=1
le.Z = < Z th,l’Z/ ! TZI(Z)> : EZ(.Tt) ) 1 <t S T (4.9)
i z'eY
waT,z«-Tzl(f) t=T+1, z=f.
z'eY

The remaining forward probabilities fw 1 ., where z # f are defined to be 0.

The forward probability fri 1, = p(x;6). In fact one of the principal applications for the forward
algorithm is computing the marginal probability of an observation. The other central application is in the
forward-backward algorithm, which computes the state marginals.

The forward algorithm is outlined in Algorithm 4.1. Assuming that accessing the data structures x,
i_prob, e_prob, tr_prob and trellis is constant time, the complexity of the algorithm is dominated
by the three nested loops on lines 27-37. This shows that the complexity of the forward algorithm is linear
with regard to the length of the sequence and quadratic with regard to the size of the hidden state set.

Although, the forward algorithm depends linearly on the observation length, its quadratic dependence
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on the size of the hidden state set is problematic from the perspective of morphological disambiguation of
morphologically complex languages, where the size of the hidden state set is measured in the hundreds or
thousands for regular HMMs. When using second order HMMs presented below, the state set can grow
to tens of thousands or millions, which can slow down systems to a degree that makes them infeasible in

practice. I will present partial solutions to these problems below.

The Viterbi Algorithm Whereas the forward algorithm incrementally computes the marginal probabil-
ity of an observation z, the Viterbi algorithm incrementally computes the MAP assignment for observation

x.

A naive approach to finding the MAP assignment is to list all the hidden state paths, compute their
probabilities and pick the one with the highest probability. Similarly as for the forward algorithm, the

complexity of this approach is exponential with regard to the length of observation x.

Just as in the case of forward probabilities, the MAP assignment of hidden states for a prefix of the
observation  can be computed incrementally. Formally, the MAP assignment for a prefix x[1 : ¢] is
defined by equation (4.10) utilizing the joint prefix probability of = and a state sequence y of length ¢.
Intuitively, it is the sequence of hidden states y, , which maximizes the joint probability and ends at state
z.

yt,» = argmax p(z, y;0) (4.10)
YeY't, yi=2
Comparing this equation with the definition of the forward probability f; ., in Equation 4.8, we can see

that the only difference is that the sum has been changed to arg max.

I will now show that the MAP prefix y, , can be computed incrementally in a similar fashion as
the forward probability f: .. Suppose that y1+1,.r = (Y1, -y Yt = 2, Yt41 = 2’). I will show that
Ye+1,2[1 : t] = yr,». Let y be the concatenation of y; , and 2’. If yy11 .1 : t] # yq ., then

p(@, Yrg1,250) = pl@, w1,z [1:t];0) 7(2) - ex (@ega)

A

(@, yr,250) - 72 (2) - e (ig1)
= p(z,y;0)

This contradicts the definition in Equation (4.10).%

We now get Equation (4.11), which gives us a recursion. The implementation of the Viterbi algorithm
is identical to the implementation of the forward algorithm except that sums are replaced by maximization.
Consequently, the time complexity of the algorithm is the same. It is linear with regard to sentence length

5As long as we suppose that there is exactly one MAP prefix.
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Algorithm 4.1: The forward algorithm in Python 3.

def forward(x, i_prob, e_prob, tr_prob):

nun

X - The observation as a list.
i_prob - Initial state distribution.
e_prob - Emission distributiomns.

tr_prob - Transition distributions.

Return the trellis of forward probabilities.
wun

assert(not x.empty())
trellis = {}

# Indexing in python starts at O.
x_1 = x[0]
T = len(x) + 1

# Set final state F. States are consecutive integers
# in the range [0, FJ].
F = len(i_prob) - 1

# Initialize first trellis column.
for z in range(F):
trellis[(1,z)] = i_prob[z] * e_probl[z][x_1]

# Set all except the final column.
for t in range(2, T):
trellis[(t, z)] =0
x_t = x[t - 1]
for z in range(F):
for s in range(F):
trellis[(t, z)] = trellis[(t - 1, s)] * tr_probl[s][z]
trellis[(t, z)] *= em_prob[z][x_t]
# Set the last column.
for z in range(s_count):

trellis[(T + 1, z)] = trellis[(T, z)] * tr_probl[z][F]

return trellis
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and quadratic with regard to the size of the state set.

U(z) - ex(xq) =1
Yirte = ABIMAX Y1 T (2) ex(ne) L 1<t<T (4.11)
zE
yT,z"Tz’(f) ,t:T+1,Z:f

Beam Search As seen in the previous section, the complexity of the Viterbi algorithm depends on the
square of the size of the hidden state set. This can be problematic when the set of hidden states is large, for
example when the states represent morphological labels in a very large label set or when they represent
combinations of labels. When tagging, a morphologically complex language, the state set may easily
encompass hundreds or even thousands of states.

Beam search is is a heuristic which prunes the search space explored by the Viterbi algorithm based
on the following observation: in many practical applications, the number of hidden states, which emit a
given observation with appreciable probability, is small. This is true even when the total number of hidden
states is very large. For example, when the states represent morphological labels, a given word such as
“dog” can usually only be emitted by a couple of states (maybe Noun and Verb in this case).

When the Viterbi algorithm maximizes (4.11) for ;11 ., a large number of histories y; . can, therefore,
be ignored.

Often a constant number, the beam width, of potential histories are considered in the maximization.
The complexity of the Viterbi algorithm with beam search is o(|z||b||)|), where |z| is the input length,
|b| the beam width and || the size of the state set.

In addition to histories, the possible hidden states for output can also be filtered. The simplest method

in to use a so called tag dictionary. These techniques are described in Section 4.6.

The Forward-Backward Algorithm The Viterbi algorithm computes the MAP assignment for the hid-
den states efficiently. For efficiently computing the marginal probability for a every state and position
(see Figure 4.4c), the forward-backward algorithm is required.

Intuitively, the probability that a state sequence y has state z € Y at position ¢, that is the probability
that y, = z, is the product of the probabilities that the prefix y[1 : ¢] ends up at state z and the probability
that the suffix y[¢ : 7] originates at z.

The name forward-backward algorithm stems from the fact, that the algorithm essentially consists of
one pass of the forward algorithm, which computes prefix probabilities, and another pass of the forward
algorithm starting at the end of the sentence and moving towards the beginning which computes suffix
probabilities. Finally, the forward and suffix probabilities are combined to give the marginal probability
of all paths where the state at position ¢ is z. These passes are called the forward and backward pass,
respectively.

6Sequential decoding, an approximate inference algorithm, which was used for decoding before the Viterbi algorithm was in
common use (Forney, 2005) is very similar to beam search. Indeed, it could be said that Viterbi invented an exact inference algorithm,
which is once more broken by beam search.
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Formally, the suffix probabilities computed by the backward pass are defined by equation (4.12).

Since a backward pass of the forward algorithm carries the same complexity as the forward pass,
we can see that the complexity of the forward-backward algorithm is the same as the complexity of the
forward algorithm, however, there is a constant factor of two compared to the forward algorithm.

( Z t.(2') - btJrl,z’) cex(Tep1) 1<t <T
btz =

pm (4.12)

)

t(f) t=T+1, 2= f.

4.4 Estimation

HMMs can be trained in different ways depending on the quality of the available data, but also on the task
at hand. The classical setting presented by Rabiner (1990) is nearly completely unsupervised: the HMM
is trained exclusively from observations. Some supervision is nevertheless usually required to determine
the number of hidden states. Additionally priors on the emission and transitions distributions may be
required to avoid undesirably even distributions (Cutting et al., 1992, Johnson, 2007).

The unsupervised training setting has two important and interrelated applications:

1. Modeling a complex stochastic process from limited data. Here the HMM can be contrasted to a
Markov chain (Manning and Schiitze, 1999, 318-320), where each emission can occur in a unique

state leading to a higher degree of data sparsity and inability to model under-lying structure.
2. Uncovering structure in data, for example part-of-speech induction (Johnson, 2007).

The classical method for unsupervised Maximum likelihood estimation of HMMs is the Baum-Welch al-
gorithm (Rabiner, 1990), which is an instance of the expectation maximization algorithm (EM) (Dempster
et al., 1977) for HMMs.

In morphological tagging, the supervised training scenario is normally used. Supervised training con-
sists of annotating a text corpus with POS labels and estimating the emission and transition probabilities
from the annotated data.

Straight-forward counting is sufficient to get the ML estimates for the transition and emission distri-
butions. For example, one can simply count how often a determiner is followed by a noun, an adjective
or some other class. Similarly, one can count how many often a verb label emits “dog” and how often the
noun label emits “dog”.

Even in large training corpora, “dog” might very well never receive a verb label.” Nevertheless, “dog”
can be a verb, for example in the sentence “Fans may dog Muschamp, but one thing’s for certain: he did
things the right way off the field.”. To avoid this kind of problems caused by data sparsity, both emission
and transition counts need to be smoothed.

7There are ten occurrences of “dog” in the Penn Treebank and all of them are analyzed as nouns.
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Counting for Supervised ML Estimation When HMMs are used in linguistic labeling tasks, such
as part-of-speech tagging, they are usually estimated in a supervised manner.2 Each label is thought to
represent a hidden variable, and the HMM models the transitions from one label type to another and the

emission of words from each label type.

Mr. NNP
Vinken NNP
is VBZ
chairman NN
of IN
Elsevier NNP
N.V. NNP
the DT
Dutch NNP
publishing VBG
group NN

Figure 4.6: Tagged text from the Penn Treebank.

Figure 4.6 shows one sentence from the Penn Treebank (Marcus et al., 1993). The sentence is labeled
with POS tags which are taken to be the hidden states of an HMM. When estimating an HMM tagger for the
corpus, transitions probabilities, for example tyyp vz, and emission probabilities, for example eyyp (Dutch)
can in principle be computed directly from the corpus. For example the transition probability ¢yyp vez and

the emission probability eyyp (Dutch) in the Penn Treebank are simply:

Count of POS tag pair NNP VBZ in the corpus 4294

P - ~0.04
NP, VBZ Count of POS tag NNP in the corpus 114053
Number of times Dutch was tagged NNP in the corpus 14 4
. (Dutch) — = ~1.2-10
emve (Dutch) Count of POS tag NNP in the corpus 114053

Simple computation of co-occurrences is insufficient because of data-sparsity. Words do not occur
with all POS tags in the training corpus and all combinations of POS tags are never observed. Sometimes
this is not a problem. For example, “Dutch” could never be a preposition. We know that the probability
that a preposition state emits “Dutch” is 0. However, there are at least three analyses that are perfectly
plausible: noun (the Dutch language), adjective (property of being from The Nederlands) and proper noun
(for example in the restaurant name “The Dutch”).

Since “Dutch” occurs only 14 times in the Penn Treebank, it is not surprising that all of these analyses

8Such taggers are sometimes called visible Markov models (Manning and Schiitze, 1999).
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do not occur. Specifically, the noun analysis is missing. An HMM based on direct counts will therefore
never analyze “Dutch” as a noun.

It is tempting to think that missing analyses are a minor problem because they only occur for relatively
rare words such as “Dutch”. Unfortunately, a large portion of text consists of rare words. The problem
therefore has very real consequences.

The usual approach is to use a family of techniques called smoothing. In smoothing, zero counts and
all other counts are modified slightly to counter-act sparsity.

Smoothing of emission probabilities and transition probabilities differ slightly. For transition proba-
bilities it is common practice to use counts of both tag pairs and single tags to estimate tag probabilities
either in a back-off scheme or using interpolation (Brants, 2000).

Many systems such as the HMM tagger by Brants (2000) do not smooth emission probabilities for
words seen in the training corpus. However, words not seen in the training corpus, or out-of-vocabulary
(OOV) words still require special processing. The simplest method is to estimate combined statistics for
words occurring one time in the training corpus and use these statistics for OOV words. However, word
forms contain valuable information which this approach disregards. Another approach would be to build
models to guess the analysis of OOV words using the longest suffix of the word shared with a word in the
training data.

Brants (2000) employs a specialized emission model for OOV words, which combines both appro-
aches. It assigns a probability p(y|z) for any label y € Y and an arbitrary word « based on suffixes s; of
the word different lengths. The subscript ¢ indicates suffix length.

The model uses relative frequencies p(y|s;) of label y given each suffix s; of z that occurs in the train-
ing data. The frequencies for different suffix lengths are recursively combined into probability estimates
p(y|s;:) using successive interpolations

D(ylsiv1) +0-p(yls:
plylsir) = PUer) 0o plulr)

The base case p(y|so), for the empty suffix s, is given by the overall frequency of label type y in the
training data, i.e. p(y|so) = p(y), and the interpolation coefficient 6 is the variance of the frequencies of

label types in the training data
1

0= =1 > - b))

yey

Here p is the average frequency of a label type. Finally, p(y|z) = p(y|ss), where s; is the longest suffix
of z that occurs in the training data. However, a maximal suffix length is imposed to avoid over-fitting.
Brants (2000) uses 10 for English. Moreover, the training data for the emission model is restricted to
include only “rare” words, that is words whose frequency does not exceed a given threshold. This is
necessary, because the distribution labels for OOV words usually differs significantly from the overall
label distribution in the training data.

Brants (2000) does not discuss the choice of 6 in great length. It is, however, instructive to consider
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the effect of the magnitude of 6 on the emission model. When the variance of label type frequencies, that
is 0, is great, shorter suffixes and the prior distribution of label types will weigh more than long suffixes.
This is sensible as (1) a high # implies that the distribution of words into label types is eschewed a priori
and (2) long suffix statistics are sparse and thus prone to overfitting. When 6 is low, the prior distribution
of word classes is closer to the even distribution. Therefore, there is no choice but to trust longer suffixes
more.

For morphologically complex languages, the smoothing scheme employed by Brants (2000) may be
inferior to a longest suffix approach utilized in Publication IT and Lindén (2009). This may happen because
productive compounding. For languages with writing systems that radically differ from English, such as
Mandarin Chinese, suffix based methods work poorly. Other methods, such as basing the guess on all

symbols in the word, may work better.

The EM algorithm for Unsupervised ML Estimation The Baum-Welch, or Expectation Maximiza-
tion, algorithm for HMMs is an iterative hill-climbing algorithm, that can be used to find locally optimal
parameters for an HMM given a number of unlabeled independent training examples which are drawn
from the distribution that is being modeled by the HMM. Here is a short outline of the algorithm:

1. Random initialize the emission and transition parameters.
2. Use the forward-backward algorithm to compute posterior marginals over input positions.
3. Use the posterior marginals as soft counts to estimate new parameters.

4. Repeat steps 2 and 3 until the improvement of likelihood of the training data is below a threshold

value.

In step 2, the algorithm computes the maximally likely state distribution for each position given the
current parameters. In step 3, the state distributions for each position in the input data are used to infer the
MAP parameters for the HMM. Therefore, the marginal probability of the training data has to increase on
every iteration of steps 2 and 3, or possible remain the same, if the current parameters are optimal.

There are no guarantees that the optimum found by the EM algorithm is global. Therefore, several
random restarts are used and parameters giving the best marginal probability for the training data are used.

A more formal treatment of the EM algorithm can be found in Bilmes (1997).

4.5 Model Order

The standard HMM presented above is called a first order model because the next hidden state is deter-
mined solely based on the current hidden state. This model is easy to estimate and resistant to over-fitting
caused by data-sparsity, but it fails to capture some key properties of language. For example, in the Penn
Treebank, the probability of seeing a second adverb RB following and adverb is approximately, 0.08. If the
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first order assumption were valid, the probability of seeing a third adverb following two adverbs should
also be 8%, however it is lower, around 5%.

Figure 4.7: A second order HMM for a sentence.

The example with adverbs is poor at best, but it illustrates the kind of effect second order information
can have. Second order HMMs are models where transitions are conditioned on two preceding hidden
states. Equivalently, in POS tagging, the hidden states can be taken to be pairs of POS tags, e.g. (DT,
NN). In such a model transitions can only occur to a subset of the hidden state set. For example a transition
from (DT, NN) to (NN, VBZ) is possible, but a transition to (JJ, NN) is impossible. Figure 4.7 illustrates
a path with legal transitions.

Figure 4.7 implies that emissions in a second order model are conditioned on two labels like the
transitions. However, many existing HMM based POS tagging systems such as Brants (2000) condition
emissions only on one label, thatis use ey, ¢, , (w;) = p(w; | ;) instead of ey, 1, , (w;) = p(w; | ti—1, ;).
The reason is probably data-sparsity. Therefore, these systems cannot be called HMMs in the strictest
sense of the word. They should instead be called trigram taggers.

Haldcsy et al. (2007) show that it is possible to maintain the correct HMM formulation, over-come the
data sparsity problem and achieve gains over the more commonly used trigram tagger. However, they fail
to describe the smoothing scheme used, which is crucial. This defect is partly remedied by the fact that
the system is open-source. One of the chief contributions of Publication IT was to investigate the effect
of different ways of estimating the emission parameters in a generative trigram tagger paying attention to

smoothing.

Increasing model order unfortunately leads to increased data sparsity because the number of hidden
states increases. Therefore, smoothing transition probabilities is even more important than in the first
order case.

An alternative to increasing model order, is to use so called latent annotations (Huang et al., 2009) in
an otherwise regular first order HMM. Conceptually, each label for example NN is split into a number of
sub-states NN1, NN2 and so on. Expectation maximization is used to train the model in a partly supervised
fashion. Splitting labels, and indeed any increase in order, is probably works better for label sets with
quite few labels. Otherwise, it will simply contribute to data sparsity.
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4.6 HMM taggers and Morphological Analyzers

The inventory of POS labels that are possible for a given word form tends to be small. For example the
English “dog” can get two of the Penn Treebank POS tags singular noun NN and VB infinitive verb form.
The remaining 43 POS tags can never label “dog”. Consequently, in an HMM POS tagger, only the states
corresponding to VB and NN should ever emit the word “dog”.

A tag dictionary (Brants, 2000) can be used in combination with the Viterbi algorithm to limit
the set of hidden states that could emit a word. The tag dictionary can be constructed from the training
corpus. Additionally, an external lexical resource, such as a morphological analyzer, can be used. Such
a lexical resource can help to compensate for missing statistics for OOV words. In the frequent setting,
where most rare words have quite few analyses, this can have a substantial effect on tagging accuracy.



Chapter 5

Generative Taggers using Finite-State

Machines

In this Chapter, I will present an implementation of HMMs using weighted finite-state machines. It is
further investigated in Publications I and II. The implementation allows for extensions of the HMM
model in the spirit of Hal4csy et al. (2007), who utilize label context in the emission model of an HMM. It
also allows for applying global grammatical constraints. I will first present a short summary of the most

important aspects of finite-state calculus and then present the finite-state implementation of HMMs.

5.1 Weighted Finite-State Machines

Automata Weighted Finite-state automata are a data structure for representing algorithms that solve the
decision problem of a regular language. A string can be either accepted or discarded by a an automaton
with some weight. Typically, weights bear resemblance to probabilities and if they are interpreted as
probabilities, an automaton defines a distribution over the set of strings.

Figure 5.1 presents a finite-state which recognizes a subset of noun phrases in the Penn Treebank. It

illustrates the key components of a finite-state automaton M
1. A finite set of states Qs ({0, 1, 2, 3, 4} in Figure 5.1).
2. An alphabet ¥, (the POS labels in Penn Treebank in Figure 5.1).

3. A unique initial state I5; (0 in Figure 5.1).!

'Some formulations allow for several initial states with initial weights. This does, however, not increase the expressiveness of

55
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Figure 5.1: A finite-state machine accepting a subset of the singular noun phrases in Penn Treebank.

4. A set of final states Fpy = {r1,...,m} C Qs with associated final weights f(r;) ({2} and 1.0 in
Figure 5.1).2

5. A transition function 7,,, which specifies a, possibly empty, set

T]u(q,l’) = {(QLwl), weey (QmWn)}

of target states and transition weights for each symbol z € 3, in each state ¢ € Qs (in Figure,
5.1 the relation is represented by the arrows in the graph).

When 7 (a, q) is either empty or a singleton set for all a and ¢, the automaton M is called deterministic

and I write 7/ (a, q) = (¢1,w1) instead of 7a7(a, q) = {(q1,w1)}.

Weight Semirings Transition and final weights should form a algebraical structure KK called a semiring
which is an abstraction of the structure of positive real numbers under addition and multiplication. Conse-
quently, two operations, addition & and multiplication ®, are defined in K. The addition operation should
be associative, commutative and have an identity element 0. The multiplication operation should also be
associative and commutative. If it has an identity element, that element is denoted by 1. Multiplication
should distribute over addition (Allauzen et al., 2007).

As noted above, the prototypical example of a weight semiring is given by the positive real numbers
with the regular addition and multiplication of reals. This weight semiring, called the probability semir-
ing,® can be used to represent a probability distribution over the set of strings. In practice, this weight
semiring is however rarely used. Because of numerical stability concerns, a logarithmic transformation
x +— —log(z) is often applied to the weights and operations in the probability semiring. This gives the
log semiring, where weights belong to R, multiplication is given by * ® y = x + y and addition by
z @y = —log(exp(—z) + exp(~y)).

The addition operation of the log semiring — log(exp(—x) + exp(—y)) is slow in practice. Moreover,

—log(exp(—x) + exp(—y)) ~ = when x < y. Therefore, the addition operation in the log semiring is

the formalism.

2 Alternatively, we could also specify a final weight for every state. Then the actual final states would be the ones wit non-zero
weight.

3Even though the probability semiring is intended for representing probability distributions, weights cannot be restricted to [0, 1]
because the semiring has to be closed under addition.
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often replaced by « @ y = min(z, y). This gives the tropical semiring which is the semiring used in this
thesis.

I denote the transition weight of the transition leaving state ¢; with symbol x and ending up in g2 by
w(7p(q1,2),q2). As a notational convenience, w(7ps(q1, ), q2) = 0, if there is no transition from ¢;
to g2. An automaton M assigns a weight to a path of states p = (qo, ..., gn+1), Where ¢qo = Ips and
gn € Fpy, and a string s = s3...s,, € 37,. The weight is wj;(s, p) is given by Equation 5.1. The total

weight w(s) assigned to string s by automaton M is given by Equation 5.2

war(s,p) = f(gn41) ® ®WAI(TAI(QZ'7 $i); Gi+1) 6.1
i=0
wu(s)= @ wuls.p) (5.2)
peQy

Closure Properties It is well known that regular languages are closed under many unary and binary
operations: union, negation, concatenation and reversion (Sipser, 1996). Similarly, the class of weighted
finite-state machines is closed under these operations and efficient algorithms for computing these oper-
ations exist. Table 5.1, summarizes the properties of these algorithms.

Optimization As stated above, a finite state machine where each symbol and state is associated to maxi-
mally one transition is called deterministic. It is well known that every finite-state machine corresponds to
a deterministic machine and this holds for weighted finite-state machines as well given light assumptions
on the weight semiring (Mohri et al., 2002). A determinization algorithm can be applied to any weighted
finite-state machine in order to produce a deterministic machine which accepts exactly the same set of

weighted strings as the original machine.

N-Best The finite-state implementation of morphological taggers presented in Publications I and IT com-
piles a weighted finite-state machine which represents a sentence and all of its alternative label sequences
as paths. The path weights correspond to the joint probabilities of the sentence and label sequences. An
n-best algorithm (Mobhri et al., 2002) can then be used to efficiently extract the path that carries the high-
est probability. The best path can be found in time O(|Q|log(|Q]) + |7|), where @ is the state set of the

sentence machine and |7| is the number of transitions in the machine.

5.2 Finite-State Implementation of Hidden Markov Models

As seen in Chapter 4, a generative HMM can be decomposed into an emission model p(x;|y; ) of emissions

x; given states y; a transition model p(y,,+1|y1, ---, Yn ), which models the conditional distribution of a state
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Operation Symbol Definition

Power M warn ($) = 6951...3,,:3 war(s1) @ ... @ war(sn)

Closure M* =@, - M* | wir(s5) = P, o —s W (51) ® ... @ Was(sy), where k € N
Union My @ My WaneM, (8) = War, (8) @ war,(s)

Concatenation | Mi.M, Wt M, (S) = @5152:5 W, (51) @ W, (s2)

Intersection M; N My WannM, (S) = War, (8) @ War, (8)

Composition | M; o My Wis oM, (8:1) = B, war, (5:1) @ War, (r:t)

Table 5.1: A selection of operators for weighted finite-state machines given by Allauzen et al. (2007).

Yn-+1 given a state history y1, ..., ¥,,. As shown in Publications I and II both of these can be compiled into
weighted finite-state machines.

A generative HMM can be represented as a weighted finite-state machine in several ways. The imple-
mentation presented in Publication I, however, allows for enriching the emission model by conditioning
them on neighboring word forms and labels.

The main idea of the implementation discussed in Publication I is to represent a labeled sentence as a
string of word form label pairs as in Figure 5.2. The emission and transition models are implemented as
weighted finite-state machines which assign weights to such labeled sentences. Because of this represen-
tation, both the emission model and transition model can access information about the sequence of word
forms and their labels. Therefore, the emission and transition models can use more information than in a
regular HMM model.

In a normal HMM tagger, extension of the emission and transition model requires changes to inference
algorithms used by the tagger. In contrast to a traditional HMM tagger, the finite-state tagger presented in
Publications I and II uses an n-best paths algorithm for inference. This is a general algorithm which can
be applied on any model that can be represented as weighted finite-state machine. Therefore, extending
the emission and transition models requires no changes to the inference procedure.

In this Section, I will discuss the implementation of a HMM model. In the next Section, I will show

how emission and transition models can be extended.

| The [ DT | dog | NN | sleeps | VBZ | . | .|

Figure 5.2: The representation of a labeled sentence as a single sequence.

Emission Model Let x = (1,...,z7) be a sentence and let Y; = {y},...,y"} be the set of possible
labels for word z;. We can construct a very simple finite-state machine X; which recognizes the word x;
followed by one of its possible labels yi € Y; and assigns that combination a log weight corresponding
to the probability p(z; | y?). As in the case of a regular HMM tagger, p(; | yi) can be estimated from the
training data. For OOV words, we can use a guesser, for example the one presented in Chapter 4.
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As an optimization, only the most probable labels for each word can be included in the emission model.
However, it is completely possible to include all labels for each word.

The individual emission machines X; can be combined into a sentence model using concatenation as
shown in Figure 5.3. The paths through the sentence model correspond to the possible label assignments
of sentence .

IN/4.92

@ man NN/7.13 1)/9.38 °
UH/9.45 RB/6.63

N

Figure 5.3: An example of a sentence model. The weights on the arcs are negative logarithms of emission
probabilities. Only a subset of the possible labels are shown in the picture.

board (:) NN/6.06 .

Transition Model As stated above, Publications I and IT represent labeled sentences as a sequence of
pairs where each pair consists of a word form and a label. The transitions model assigns weight to such

sequences. I will explain the construction of the transition model in three phases:

1. How to construct a model which assigns weight — log(p(yn+1 | ¥1, ---, ¥»)) to plain label n-grams

Yty ooy Ynt1-
2. How to extend the model to assign weight to an n-gram of word form label pairs.
3. How to score an entire labeled sentence.

The construction presented below will result in a number of deterministic finite-state machines whose

combined effect (the intersection of the machines) corresponds to the n-gram model in a standard HMM.

Scoring one label n-gram The transition distributions p(y; | y;—1, ..., ¥i—n) in an nth order HMM en-
code the likelihood of label sequences. I will first consider the problem of constructing a machine which
represents transition weights for isolated label n-grams.

To emulate transitions weights in an HMM using finite-state calculus, we can first compile a machine
T which accepts any sequence of n + 1 labels y1, ..., yn+1. The weight assigned by the machine to one
of these paths can be estimated from a training corpus for all sequences that occur in the corpus. Some
form of smoothing is required to score label n-grams missing from the training corpus. In Publication II,
a very simple form of smoothing is used. Each n-gram, not occurring in the training corpus, receives an
identical penalty weight —log(1/(N + 1)), where N is the size of the training corpus.

The machine 7" will be quite large. If it is deterministic and has one path corresponding to each label n-

gram y1, ..., Yn+1, where y; € ), each non-terminal state in the machine will have ) transitions. Because
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c/0.41
6 OST e —

Figure 5.4: Failure transitions (with symbol F) are added to a bigram model. With failure transitions, the
model will accept previously missing n-grams, such as aa and bb with penalty weight 1.39.

T encodes the weight p(y+1 | ¥1, .., yn) for each label n-gram, it will have a large amount of states when
many label n-grams occur in the training corpus. It is difficult to present a formal analysis of the size of
T as a function of the number of distinct label n-grams in the corpus. An example can, however, illustrate
the number of states that are typically required.

For the FinnTreeBank corpus, 8801 non-terminal states are required to represent 7" for n = 2. As
the corpus has 1399 distinct morphological labels, this translates to approximately 12 million transitions.
When using add one smoothing for label n-grams missing in the training corpus, most paths will have the
same weight. This fact allows for an optimization which substantially reduces the size of T'.

In order to, reduce the size of the model, so called failure transitions can be used (Knuth et al., 1977,
Mohri, 1997).* A failure transition in a state ¢, will match any symbol which does not have another
outgoing transition in ¢g. The failure transitions will go to sink states, which encode the penalty weight
for unseen label n-grams. When failure transitions are used to encode label n-grams that are missing from
the training corpus, most states will only have a few outgoing transitions. Figure 5.4 illustrates a bigram
model with failure transitions.

I will now outline the procedure to compute a machine with failure transitions in the general case.
We first need an auxiliary definition. For a state ¢ € Qr, let n(g) be the length of the shortest symbol
string required to reach state ¢ from the initial state ¢o. Now, given a machine 7 that recognizes every
label n-gram occurring in the training corpus, a corresponding machine 7'y with failure transitions can be

computed.

1. n + 1 new sink states are added: Qr, = Qr U {s1,..-; Sn+1}- The state s,,11 is final and its final

weight is the penalty weight for unseen n-grams.
2. A failure symbol is added: Y7, = X7 U {f}, where f ¢ .
3. Transitions are copied from T 77, (q,a) = 77(q, a) forall ¢ € Qr and a € Y.
4. 7, (s1, f) = {(si41, 1)} fori <=n.

5. Failure transitions are added: 77, (¢, f) = {(sn(q)+1, 1)}, forall ¢ € Qr.

4The failure transitions used by Mohri (1997) differ from the ones used in this thesis because they do not consume input.
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Adding word forms The current transition model scores label n-grams. However, because we represent
labeled sentences as sequences of word form label pairs, we need to include word forms in the model.
This can be accomplished by adding a number of new states and failure transitions to the model. When
implementing a standard HMM tagger, the added failure transitions will simply skip word forms. Figure

5.5 demonstrates the construction for the transition model in Figure 5.4.

Figure 5.5: The transition model in Figure 5.4 is augmented with additional failure transitions and states
in order to be able to handle word forms.

We construct a new machine 7', which accepts n-grams of word form label pairs. Let Qr, =
{90, .-, qx}, then Qr,, = Qr,; Uro,..., 7k, where r; & Qr,. Let 7o be the start state of 7, and let

Fr, = Fr,,. The transitions function 7r,, is defined in the following way.

Lo7p, (ri, ) = {(ai, D}
2. 17, (g5, ) = {(rj,w)} forall z € B, , if 77, (qs, ) = {(g;, w)}.

Consider two states g1, g2 € Q s, in a machine M with failure transitions. Failure transitions in ¢;
and ¢, may match a different set of symbols. For example, If ¢; has a transition with symbol a € X,
and ¢- does not, then a will match the failure transition in g5 but it will not match the failure transition in
q1. This is a problem when the determinization algorithm is applied to M because determinization joins
states. State joining may change the language accepted by M and the weights assigned to strings.

It is highly desirable that the transition model of the finite-state implementation of an HMM tagger
is deterministic because of reduced tagging time. However, as noted above, we cannot use standard
determinization with machines which have failure transitions. Therefore, the construction presented below

will produce deterministic machines without resorting to determinization.

Scoring a sentence We will now see how the transition model for scoring an isolated label n-gram can
be extended for scoring an entire sentence. Given the machine 7, which scores one n-gram, we can form
the Kleene closure of T,,,. Since M,, is an acyclic machine accepting strings of equal length (that is 2n: n
word forms and n labels), we can easily compute a deterministic Kleene closure 7}, of T, by re-directing

transitions going to final states into the initial state®

1. ET;; = ETS.

5Tt can easily be seen that this construction fails if the machine accepts strings of unequal lengths.
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2. Qr: =Qr, — Fr,.
3. Fr: = {qo} and f(qo) = 0.
4. 7t (a,q) = {(¢,w)},if 7, (a,q) = {(¢',w)} and ¢’ ¢ Fr,.
5. If g, (a,q) = {(¢/,w)} and ¢’ € Fr,, then 77+ (a,q) = {(q0,w + f(¢))}.

The machine T will score entire labeled sentences, however, it only scores some of the trigrams in the
sentence, namely, the ones starting at positions divisible by n+ 1. Fortunately we can form n+ 1 machines
Tp ... T,, which will score all remaining n-grams. Let Ty = 7} and let 7; 1 = F.F.T;. Intuitively each
T; will skip ¢ word form label pairs.

The final scoring of all possible labeled sentences, corresponding to an input sentence x, is accom-
plished by intersecting the sentence model X and each of the 7; using an intersection algorithm which
handles failure symbols correctly. In Publications I and II a parallel intersection algorithm (Silfverberg

and Lindén, 2009), however, this is not actually required. The intersections can be performed sequentially.

Smoothing As observed in Chapter 4, a second order model usually gives the best results in morpho-
logical tagging. However, a pure second order model suffers from data sparsity which degrades it per-
formance. This can be avoided using smoothing. In Publications I and II, smoothing is accomplished by
using first and zeroth order transition models in addition to the second order transition model. To get the
combined effect of all models, each of them is intersected with the sentence model.

Usually, for example in Brants (2000), the transition probabilities p(y;|y;—1,y;—2) are a linear inter-
polation of the probability estimates p for different orders as shown in equation 5.3. Brants (2000) sets
the values for o; using deleted interpolation and cross validation. When >, a; = 1, it is easily seen that
Equation 5.3 defines a probability distribution over y;.

PWilyi—1, yi—2) = ap(yilyi—1, Yi—2) + 1 p(yilyi—1) + cop(ys) (5.3)

Linear interpolation is not possible when using the finite-state implementation presented in this chap-
ter because intersection of weighted machines corresponds to multiplying probability estimates, not to
adding them. Therefore, Publications I and II define the score s(y;|y;—1, yi—2) of a labeled sentence as
the weighted product given in Equation 5.4. Inference corresponds to finding the label sequence which
maximizes the score. The optimal values for the exponents «; in Equation 5.4 are found by optimizing

the tagging accuracy on held out data using grid search.

s(Yilyi—1, yi—2) = PWilyi—1, yi—2)**P(slyi—1) ™ D(ys)*° 649

The weighted product s(y;|y;—1,v:—2) given by 5.4 does not necessarily define a probability distri-
bution over y;. It can, however, easily be normalized to give one. When the score is normalized, it can

be seen as a special case of the family of distributions defined by Equation 5.5. Here the parameter val-
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ues 72 (Yi|yi—1, Yi—2), r1(y:|yi—1), To(yi) can be arbitrary positive real numbers. Each assignment of the
parameter values defines a probability distribution over y;.

ro(yilyi—1, Yi—2)71 (Walyi—1)70(ys)
vey T2(lYi—1, Yi—2)71(ylyi—1)sr0(y)

P(Yilyi—1,yi—2) = S (5.5)

The interpretation of the weighted product in Equation 5.4 given by Equation 5.5 reveals a problem.
There is no guarantee that the parameter values r(y;|yi—1,%i—2) = P(¥i|¥i—1,Yi—2)*, m1(yi|yi—1) =
P(yilyi—1) and ro(y;) = p(y;)° result in a model which fits the training data maximally well in the sense
that is discussed in Chapter 3. This may have contributed to the inferior tagging accuracy of the system
when compared to Brants (2000) which is seen in the experiments in Publication II. This problem lead
the author to consider conditional random fields presented in Chapter 6, which naturally support a product

formulation.

5.3 Beyond the Standard HMM

The real strength of the system presented in this chapter lies in its capability of easily incorporating in-
formation not usually present in a generative HMM tagger. Halacsy et al. (2007) show that enriching
the emission model of an HMM tagger by including label context can improve tagging results. Instead
of the usual emission model p(z; | y;) which conditions each word on its morphological label, Halacsy
et al. (2007) instead use a model p(z; | y:—1, y¢), where the emission is conditioned on preceding label
context. As stated in Chapter 4, this is in fact not an extension to the standard second order HMM. In-
stead, it is the faithful implementation of the second order HMM model. The definition p(z; | y;), used
by for example Brants (2000), is incorrect in a second order HMM. It is probably used because of data
sparsity. Nevertheless, Halacsy et al. (2007) show that the correct formulation can result in improved
tagging accuracy.

Richer local structure The model presented by Halacsy et al. (2007) can easily be implemented as a
finite-state machine by a slight modification to the compilation of the sentence model as described in
Publication I and it can be extended to model p(z; | y¢—1, ¥¢, Yy+1). Moreover, it is possible to condition
transitions on word forms as shown in Publication I. Both of these modifications are shown to give sta-
tistically significant improvements over the standard baseline model. The problem with including such
information in the emission and transition models is that it violates the conditional independence assump-
tions in the generative HMM model. This is yet another reason to consider alternative models such as the

conditional random field or averaged perceptron.

Global Constraints In addition to local changes to the emission and transition models, it would also be
possible to include global probabilistic constraints to the model. These are constraints that apply on the

entire input sentence. A simple example of such a constraint is the existence or frequency of finite verb
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forms in the sentence. Another family of interesting global constraints is given by syntactic and semantic
valency of words (Baker et al., 1998). Such information could be represented as a weighted finite-state
machine. Similarly to the enriched locally emission and transition models, global constraints also violate

the independence assumption of the generative HMM model.

5.4 Summary of Publications I, IT and III

Publication I presents the finite-state implementation of HMMs introduced in this Chapter and Publication
II presents experiments using the model on the Penn Treebank and a Finnish data set. The taggers pre-
sented in Publications II are used in Publication III to implement a language model for a context-sensitive

finite-state spelling corrector.

Publication I The main contribution of this publication is to present the finite-state implementation of
HMMs. The publication presents experiments on morphological tagging of Finnish, English and Swedish
but the experiments presented in the publication are nearly void of value because they were conducted
on machine labeled data and the amount of training data was unrealistic (1 million sentences for each
language). Both factors contribute to extremely good, and quite unrealistic, tagging accuracy for all lan-
guages on test data. Still, the extreme size of the training set does demonstrate that the method can use
large amounts of training data.

For Finnish, experiments on machine labeled data were the only option because, at the time, there
was no freely available hand-labeled morphologically tagged corpus available. For Swedish and English,
established data sets should have been used.

The formulation of the probabilistic model in Publication I differs from the formulation in this Chapter
in two respects. Instead of the usual transitions probabilities p(y: | y¢—n, .-, Yz—1), Publication I uses the
joint probability p(y¢—n, ..., y). The model can therefore not be seen as an actual HMM. Additionally, the
publication uses lexicalized transition probabilities. The final probability is thus p(l¢—pn, Yt—n, .-, lt, Yt),
where the [ refer to lemmas. This is possible because of the extremely large training set.

Although the experiments in Publication I are flawed, the paper is included in the thesis because it
describes the finite-state implementation for HMM taggers and can be seen as a natural starting point for
Publications II and III.

Publication IT The main contribution of this publication is to present experiments on a standard data
set for POS tagging of English, the Penn Treebank 2. However, because of insufficient knowledge at
the time, the experiments were performed on a non-standard version of Penn Treebank 2. Publication I
uses the data splits introduced by Collins (2002) but the data from the tagged sub-directory in the Penn
Treebank 2 distribution. As Toutanova et al. (2003) explain, it is conventional to extract the POS tagged
sentences from the parse trees in the parsed sub-directory in the distribution. Unfortunately, this makes
the reported accuracies approximately 0.3 %-points higher than they would be if the experiments were
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performed on the correct data set. For Finnish, experiments were performed on machine labeled data by
necessity, similarly as in the case of Publication I.

Publication II presents models for Finnish and English which use enriched emission models described
in Section 5.3, which are inspired by the HunPos system (Halacsy et al., 2007). The taggers are evaluated
against a standard HMM baseline. The results are also compared against tagging accuracies reported in
Brants (2000) and HalAcsy et al. (2007). Because of the unfortunate mix-up with the Penn Treebank data
set, the results for English are not comparable between the different tagging systems. However, Publica-
tion IT does show that the enriched emission models yield clear improvements over baseline. Moreover,
the final system outperforms HunPos by 0.4%-points on the Finnish data set. Because the data set is
machine labeled, this result may of course not be convincing.

Publication III This publication applies the taggers presented in Publications I and II to the task of
context-sensitive spelling correction. Many spelling correction systems determine the best spelling cor-
rection for a misspelled word based solely on the misspelled word form itself. Typically, correction can-
didates that have a small edit distance to the misspelled word form are ranked higher than more remote
candidates. Context-sensitive spelling correction systems additionally utilize surrounding words to rank
correction candidates.

For English, plain word context can improve the accuracy of spelling correction (Brill and Moore,
2000). For example “cat” is much more likely in the context “the _ miaowed” than “car” is. As Publication
IT shows, word context does improve results for Finnish as well. However, Publication III also shows
that a morphological tagger can yield greater improvements in accuracy for both English and Finnish
when using comparable amounts of training data for the tagger and word context model. Of course, the
word context model can be trained on unlabeled data. Therefore, there is in principle no obstacle to using
arbitrarily much training data.

The system presented in Publication III first generates a set of correction candidates for the misspelled
word using a finite-state spelling correction system based on edit distance. It then uses a generative mor-
phological tagger for selecting the best candidate. The misspelled form is replaced with each correction
candidate c;, ..., ¢;, in turn producing n sentences x1, ..., £,,. The sentences are then tagged which results
in n tag sequences y1, ..., Y,. The candidates ¢; are finally ranked according to the joint probability of the
sentence and label sequence p(y;, z;).°

The spelling correction system using the morphological tagger probably yields better results, espe-
cially for English, because it is less susceptible to data sparsity than the word context model. As noted
above, the amount of training data for the word context model could, however, be increased. This is likely
to gradually improve accuracy. At the same time it, however, increases the size of the model. The spelling
correction system that uses the morphological tagger can be more compact and thus more practicable while

delivering comparable accuracy.

6n fact only a sub-sequence of the sentence is tagged as an optimization, however, the basic idea is the same.
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Chapter 6

Discriminative Models

As seen in Chapter 4, a first order HMM POS tagger can be viewed as a process which alternates between
sampling a word from a label specific observation distribution and sampling the next morphological la-
bel from a label specific transition distribution. The emitted word and the next morphological label are
conditioned solely on the current morphological label. These independence assumptions are harsh. For
example, collocations cannot be adequately modeled because the model does not include direct informa-
tion about word sequences.

Although information about collocations and orthography is quite useful in morphological tagging, it
is often difficult to incorporate such information in a generative model. As Sutton and McCallum (2012)

note, two principal approaches could be attempted:

1. Extending the emission model presented in Chapter 4 to incorporate additional sources of informa-

tion.

2. Replacing the usual emission model with a Naive Bayes’ model which in theory can handle arbitrary
features.

Approach 1 is difficult in a fully generative setting because the emission model needs to account for
the complex dependencies that exist between sentence level context and orthography. There simply does
not seem to exist a straightforward way of modeling the dependencies.’

Approach 2, that is making the naive Bayes assumption, corresponds to disregarding the dependen-
cies that exist between orthography, word collocations and other sources of contextual information. In
the domain of named entity extraction, which is closely related to morphological tagging, Ruokolainen
and Silfverberg (2013) show that approach 2 also fails. In fact the experiments in the paper indicate that

adding richer context modeling such as adjacent words may worsen the performance of a tagger with a

L Although recent development in deep learning might make this approach viable.

67



68 6. Discriminative Models

Naive Bayes emission model. One reason for this may be that the richer sources of information are often
correlated and this violates the independence assumption of the Naive Bayes model. This can cause it to
give overly confident probability estimates (Sutton and McCallum, 2012). When the emission probabili-
ties are over confident, and thus biased, combining them with the transition model can be problematic.

In contrast to generative sequence models, discriminative sequence models such as Maximum Entropy
Markov Models (Ratnaparkhi, 1998) and Conditional Random Fields (Lafferty et al., 2001) can incor-
porate overlapping sources of information. They model the conditional distribution of label sequences
p(y | z) directly instead of modeling the joint distribution p(x, y). Therefore, they do not need to model
dependencies between words and orthographic features.

Discriminative models assign probabilities p(y | x) for label sequences y = (DT, NN, VBZ, .)
and word sequences z = (The, dog, eats, .) by extracting features from the input sentence and label
sequence. Examples of features include the current word is “dog” and its label is NN and the previous
label is DT and the current label is NN. Each feature is associated with a parameter value and the
parameter values are combined to give the conditional likelihood of the entire label sequence. Naturally,
the label sequence which maximizes the conditional likelihood given sentence x is the label sequence
returned by the discriminative POS tagger.

In generative models, emissions and transitions are independent. Both are determined exclusively
based on the current label. In contrast, there are no emissions or transitions in a discriminative model.
Instead, it is customary to speak about unstructured features which relate the label in one position to the
input sentence, and structured features, which incorporate information about the label sequence. Simpli-
fying a bit, discriminative models make no independence assumptions among features relating to a single
position in the sentence. This allows for improved fit to training data but parameter estimation becomes

more complex as we shall soon see. Moreover, discriminative models are more prone to over-fitting.?

6.1 Basics

In this section, I will describe a CRF POS tagger from a practical point-of-view. The tagging procedure
encompasses two stages: feature extraction and inference using an exact or approximate inference algo-
rithm. Inference in CRFs is very similar to inference in HMMs. We did not discuss feature extraction in
association to HMMs. The discussion was omitted because HMM taggers use a fixed set of features (the
current word and preceding labels). In contrast, CRF taggers can incorporate a variety of user defined
features.

As seen above, features are true logical propositions that apply to a position ¢ in a labeled sentence.

They connect aspects of the input sentence to the label at position ¢.3 They consist of two components: a

2This is of course an example of the famous bias-variance trade-off (Geman et al., 1992).

3 Although the original first order CRF formulation by Lafferty et al. (2001) allows for features that refer to both unstructured and
structured information at the same time, the author has found that such features do not improve model performance significantly.
They, however, do increase model size substantially. Therefore, the models used in the thesis extract purely unstructured features,
which relate one label to the sentence, and structured features, which only relate adjacent labels to each other.
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feature template, for example The current word is “dog” or the previous label is DT, and a label the
current label is NN. The set of features recognized by a CRF POS tagger consists of all conjunctions
f&y of a feature template f and label y. For example, the feature The current word is “dog” and the
current label is DT can be formed although it is unlikely that this feature would ever be observed in

actual training data.

Feature template

The current token is w € W

The current token has prefix p € P

The current token has suffix s € .S

The current token contains a digit

The current token contains a hyphen

The current token contains an upper case letter
The previous token is w € W

The next token isw € W

The token before the previous token is w

The token after the next token is w

Table 6.1: The set of unstructured feature templates introduced by Ratnaparkhi (1996)

Ratnaparkhi (1996) introduced a rather rudimentary feature set and variations of this feature set are
commonly used in the literature (for example Collins (2002), Lafferty et al. (2001), and Publications V
and VI). Let W be the set of word forms in the training data. Additionally let P and .S be the sets of
prefixes and suffixes of maximal length 4 of all words w € W. Then, the Ratnaparkhi feature set contains
the unstructured feature templates in Table 6.1 and the structured feature templates in Table 6.2.

Feature template

The label of the previous word is y
The label of the previous two words are 3’ and y

Table 6.2: The set of structured feature templates introduced by Ratnaparkhi (1996)

As in the case of an HMM, the order of a CRF can be increased. This corresponds to including more
label context in structured features. It is instructive to estimate the number of features when using a
realistic training set. It is |V|*+|F||)|, where ) is the set of morphological labels and F is the set of
unstructured feature templates.

For small label sets and large training data, the bulk of all features consists of unstructured features.
However, for large label sets in the order of 1, 000 labels, there will be a significant number of structured
features (one billion in this case). This necessitates either dropping second order structured features or
using sparse feature representations. All structured features simply cannot be represented in memory. We
will see techniques to circumvent these problems. Especially the averaged perceptron is essential.
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It is common to represent the CRF using linear algebra. Each position ¢ in the sentence is represented
as a vector ¢, whose dimensions correspond to the entire space of possible features. The selection of
features is finite because it is limited by the training data: there are only finitely many word forms, suffixes,
morphological labels and so on in the training data. The elements of each vector ¢, represent activations
of features. In the present, work all elements are either 0 or 1 mirroring the truth value of a feature at
position ¢ in the labeled sentence. Other activations in R can also be used when appropriate.

In order to represent sentence positions as vectors, we need an injective index function I which maps
features onto consecutive integers starting at 1. For each feature f, I( f) will correspond to one dimension
in ¢;. In a concrete implementation of a CRF tagger, features can be represented as strings and the index
function I can be implemented as a hash function.

Given a sentence z and label sequence y, we can extract the set of features F}(z) for each position ¢
in z. Let ¢, € RY be a vector defined by

¢e(i) =1, if it < N and I(f) =i for some f € F;

all other entries in ¢; are 0.

Given a parameter vector § € R, the probability p(y|z) is

T
plylz) o [ [ exp(67 éy)

t=1

Specifically, the same parameter vector 6 is shared by all sentence positions and the probability p(y|z) is

a log linear combination of parameter values in 6.

6.2 Logistic Regression

The Logistic Regression Model can be said to be the simplest instance of the conditional random field. It
is an unstructured probabilistic discriminative model. In this section, I will present a formal treatment of
the logistic regression model because it aids in understanding more general CRFs.

Regular linear regression models a real valued quantity y as a function of an input x = (1, ..., ).
In contrast, the logistic regression model models the probability that an observation x belongs to a class
y € |Y|, where Y is a finite set of classes. For example, a logistic classifier can be used to model
the probability of a tumor belonging to the class MALIGNANT or BENIGN. The probability is based on
quantifiable information about the tumor such as its size, shape. These quantifiable sources of information
are the feature templates of the logistic classifier and combined with class labels they constitute the features
of the model.

The material at hand deals with linguistic data where most information sources are binary, for example
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whether a word ends in suffix “-s” and whether a word is preceded by the word “an”. In other domains
such as medical diagnostics, more general features can be used. These can be real valued numerical
measurements such as the diameter of a tumor. This treatment of logistic classifiers will assume binary
feature activations. When using binary features, we can equate the example x with the set of feature
templates F,, C JF that it activates, that is Tumor diameter > 5 cm, The previous word is “an” and so
on. Examples that activate the exactly same feature templates will be indistinguishable from the point of
view of the Logistic Regression model.

The logistic classifier associates each combination of a feature template and class with a unique feature
and a corresponding real valued parameter. Intuitively, the logistic classifier models correlations of feature
templates and classes by changing the parameter values of the associated features. For example, it might
associate the feature template Tumor diameter > 5 cm more strongly with the class MALIGNANT than
the class BENIGN if large tumors are cancerous more often than smaller ones. This could be reflected
in the parameter values of the model that correspond to the features f = Tumor diameter > 5 cm and
class is MALIGNANT and f/ = Tumor diameter > 5 cm and class is BENIGN so that the parameter
value for f is greater than the parameter value for f’. In general parameter values, however, also depend
on other features and feature correlations in the model. Therefore, we can say that the parameter value
of f will be guaranteed to be greater than the parameter value of f’ when Tumor diameter > 5 cm is
the sole feature template and the model accurately reflects the original distribution of class labels among
examples. In the general case, where there are several feature templates, this might fail to hold.

Formalizing the notation used in Section 6.1, let F be a finite set of feature templates and ) a finite
set of classes. Each combination of feature template f € F and class y € ) corresponds to a unique
feature. Therefore, the model will have |F x )| features in total. Let § € RIZ*Y! be a real valued
parameter vector and let I be a 1-to-1 index function which maps each feature onto and index of 0, that is
1<I(f,y) <|FxYI.

For each example z, let F,, C F be the set of feature templates that = activates and let y € ) be a

class. Then the feature vector associated with « and y is ¢(z,y) = {0, 1}/7*¥I defined by

o(z,y)[i] = 1 iff i = I(f,y) for some f € F,,

0 otherwise.

Now the conditional probability p(y | «) defining the Logistic classifier is given by Equation (6.1).
The equation defines a probability distribution over the set of classes ) because each quantity p(y | z; 0)

is a positive real and the quantities sum to 1.

exp(0 ¢(z,y))
sey exp(0T¢(z,2))

p(ylx;0) = 5 (6.1)

Inference Inference for a Logistic Regression Model corresponds to performing the maximization in

Equation 6.2. As the equation demonstrates, the full computation of the probability is not required when
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classifying. The maximization can be performed without normalization.

eT .
Ymaz = argmax p(y | x; 0) = arg max exp(0_¢(z,y)) = argmaxexp(8' ¢(z,7)) (6.2)
yey yey Z(x;0) yey
To avoid underflow when using finite precision real numbers (such as floating-point numbers), the
maximization is usually rephrased as the minimization of a loss function in Equation 6.3 by applying a

logarithmic transformation z — — log(z).

Ymin = argmin —60 " ¢(z, y) (6.3)

yey
From a practical implementation perspective, the minimization in Equation 6.3 boils down to comput-
ing one inner product § T ¢(z, ) for each label y € Y and finding the minimum. Using a suitable sparse
approach, each of the inner products can be computed in O(|F;|) time, where F,, is the set of feature
templates activated by example . Therefore, the worst-case complexity of classification is dependent on
the size of the label set Y and the number of feature templates f € F, that is the complexity is O(|Y||F|).

Estimation The Logistic Regression Model is log-linear as demonstrated by Equation 6.4, which rep-

resents the model using a loss function L.
L(6;D) = —logp(y | x;0) = log(Z(x;6)) — 07 F,(x) (6.4)

Here Z(z;0) = >,y exp(6 T F.(x)) is the partition function for example x.

Given labeled training data D = {(x1, ¥1), .., (n, Yn)}, there exist several options for estimating
the parameters 6. The most commonly used is maximum likelihood estimation, which finds a parameter
vector that minimizes the loss £ on the training data D as shown in Equation (6.5).

6 = argmin £(0; D) = arg min Z Z(x;0") — H'TFy(z) (6.5)
0’ 0’
(z, y)eD

The probability p(y | z; 6) has exponential form, which means that the probability is proportional to a
product of factors of the form e“?, where a is an activation (0 or 1) and p is a parameter. This has three

important consequences:
1. The function 6 — p(y | z; 6) is smooth.
2. The function 6 — p(y | z; 6) is convex.
3. There exists a unique  maximizing the likelihood of the training data D.*

Smoothness follows from the fact that each factor @ — e®? is smooth and products and sums of smooth

functions are smooth. Convexity of the likelihood follows by a straightforward application of the Hélder

4Technically this requires that the possible values of 6 are limited into a compact subset of the parameter space.
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inequality. Property 3 is a consequence of properties 1 and 2.

Although the maximization in Equation 6.1 cannot be solved exactly in general, the convexity and
smoothness of p(y | z; §) mean that efficient numerical methods can be used for approximating the max-

imum.

Gradient based methods such as SGD (leading to online estimation) and L-BFGS (leading to batch
estimation) require information about the partial derivatives of the loss function. Therefore the partial
derivatives 0L(6; D)/0i need to be computed. Examining Equation 6.5, we can see that the loss consists
of two terms f(6; D) = log(Z(D; 0)) and g(6; D) = >_(, ,)ep 0T F, (). The partial derivative of g w.r.t.

parameter ¢ can be computed in the following way

(z,y)€D

This quantity represents the total activation of feature ¢ in the training data and is called the observed count

of feature 1.

Using the chain rule of derivatives, we get the partial derivative of f w.r.t. to param ¢

g: Z Zy’eyF()HeXp(e F Z ZF y|x0)

i 2(w:0)
(z,y)€D (z,y)€D Y €Y

This is the expected count of feature 7 which is the activation of feature 7 in the data set x4, ..., x,, predicted
by the model given all possible label assignments.

Using the partial derivatives of the functions f and g, we see that the gradient of the loss function £

is defined by
veil = > (X Fe@)lilp12:0)) - Fy(@)li] (6.6)

(z,y)€ED Y €Y

Equation 6.6 shows that the loss is zero when the expected and observed counts for each feature agree.’
The properties for the logistic regression model discussed above guarantee that this there is at most one
01 like this and, when it exists, 6,7, is the maximum likelihood estimate for the parameters.

Regularization methods such as L; and L, introduced in Chapter 3 can also be applied to the model.
This naturally changes the gradient and also the properties of the model. Analysis of the regularized model

falls outside of the scope of this thesis.

5As each feature 7 is label specific in the current work, the sum Yyey Fy (@) [i]p(y'|z; 0) reduces to Fy (x)[i]p(y|z; 0). Itis
thus easy to see that the loss vanishes if p(y|z; 8) = 1 for each (z,y) € D.
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6.3 The Perceptron Classifier

The perceptron algorithm (Rosenblatt, 1958) is an alternative to maximum likelihood estimation for learn-
ing the weights of a discriminative classifier. As seen above, the logistic classifier optimizes the condi-
tional probability of gold standard classes given training inputs. In contrast, the perceptron rule directly
optimizes the classification performance of the discriminative classifier.

Intuitively, the multiclass perceptron algorithm works by labeling each training example in order using
a current estimate of the parameter vector # and adjusting the parameter vector whenever training examples

are incorrectly labeled. Consequently, the perceptron algorithm is an online learning algorithm.

Inference Similarly as in the case of any linear classifier, the perceptron classifier scores each example
x and class y by 8T ¢(z, y). Example z is labeled by the 4 € ) which maximizes the score.

Estimation The perceptron algorithm is an error-driven online learning algorithm (see Algorithm 6.1

for an implementation in Python 3). When a classification error is encountered during estimation, that is

9T¢($7 y) > 0T¢(‘r> yg(ﬂ(i)

for some y # Y4014, the parameter vector 6 is adjusted for relevant features. For every feature tem-
plate f which is activated by the example z, the weights 0[I(f, yo1a)] and 0[I(f,y)] are adjusted. Here
I(f,ygoa) and I(f,y) are the features corresponding to the template f and classes Y4014 and y, respec-

tively. The perceptron rule for weight adjustment is the following:

0U(f7 ygold)] = 9[1(f7 ygold)] + 1 and 0[1(f7 y)} = 0U(f7 y)} -1

The perceptron adjustment does not guarantee that example z is correctly classified. However, it does
guarantee that the score difference between the gold class and erroneous class decreases.® Given training
data consisting of just one example, it is easy to see that the perceptron algorithm will eventually classify
the example correctly. If there are more examples, it may however happen that a correct parameter vector
is never found.

The perceptron algorithm converges when no example in the training data causes a change in the pa-
rameter vector §. Equivalently, the perceptron algorithm correctly classifies every example in the training
data. It can be showed that the perceptron algorithm converges whenever there exists a parameter vector
that correctly classifies the training data (Freund and Schapire, 1999). Such a data set is called linearly sep-

arable. The term originates from a geometrical interpretation of the 2-class perceptron algorithm, where

SThere are refinements of the perceptron algorithm, such as the passive-aggressive learning algorithm, which aim to make fewer
updates by updating more aggressively when the difference in scores between the erroneous class and gold class is large (Crammer
et al., 2006)
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6.3 The Perceptron Classifier

def

Algorithm 6.1: One pass of the perceptron algorithm in Python 3.

infer (x, fextractor,

nun

theta, label_set)

b3 - An observation.
fextractor - A vector valued function.
len(fextractor(x,y)) == len(theta).
theta - A parameter vector.
label_set - Set of potential labels.
Wi
sys_label = None
max_score = -float('inf')

for y in label_set:
score = dot_product (theta, fextractor(x,y))
if score > max_score:

max_score =
sys_label =

assert(sys_label
return sys_label

perceptron(data,
Wi

data =
fextractor -

theta =
label_set -

Run one pass
wun

score
label

None)

fextractor, theta,

label_set):

data[i][0] is an observation, datal[i]l[1] a label.
A vector valued function.
len(fextractor(x,y)) == len(theta)
The parameter vector.

Set of potential labels.

of the perceptron algorithm.

for x, y_gold in data:
infer (x, fextractor,

y_system =

if y_system

y_gold:

theta,

for f in fextractor(x, y_system):
thetal[f] -= 1
for f in fextractor(x, y_gold):
thetal[f] += 1

label_set)

75
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the parameter vector defines a hyper plane in the feature space which divides the space into two halves.
A data set is called separable if there is a hyper space which separates the examples in each of the classes
into their own half space.

When a data set is linearly separable, there are typically infinitely many parameter vectors that that
classify the data set correctly. The perceptron algorithm will give one of these. Other algorithms exist
which attempt to find an optimal parameter vector in some sense (e.g. Support Vector Machines (Cortes
and Vapnik, 1995)). These, however, fall beyond the scope of the present work.

Even when the training set is not linearly separable, the perceptron algorithm will have good perfor-
mance in practice. In the non-separable case, a held out development set is used. Training is stopped

when the performance of the classifier on the development set no longer improves.

Voting and Averaging Because the perceptron algorithm makes fixed updates of size 1, the parameter
vector tends to change too rapidly at the end of the training procedure. To avoid this, it is customary to use
the average of all parameter vectors from the training procedure instead of the final parameter vector. This
will give better performance during test time. Parameter averaging is an approximation of so called voting
perceptron. In voting, each parameter vector is considered a separate classifier and the classification is
performed by taking a majority vote of all of the classification results. This is impractical, because there
are thousands of classifiers. Therefore, averaging is used in order to achieve approximately the same
effect.

6.4 CREF - A Structured Logistic Classifier

This Section presents Linear Chain Conditional Random Fields (CRF).” Just as the HMM is a structured
equivalent of the NB classifier, the CRF is the structured equivalent of the logistic regression model.
Consequently, many of the algorithms required to run a CRF tagger are similar to the algorithms required to
run an HMM tagger. Estimation of model parameters is, however, different because of the discriminative
nature of the model.

Another major difference between an HMM classifier and a CRF classifier is that the CRF classifier
typically employs a much larger set of features. This increases the size of the model. It also makes the
discriminative tagger slow in comparison to the generative tagger. The slowdown is demonstrated by
the experiments in Publication VI. However, the accuracy of the discriminative model in morphological
tagging is superior to the generative HMM tagger.

Intuitively, the CRF model resembles a sequence of logistic regression classifiers with shared param-
eters. Given a sentence z = (z1, ..., 1), label sequence y = (yi, ..., yr) and parameters 6§ for the
logistic regression model, a score s(z, y:—2, Y:+—1, Yt, t; @) for label y; in position ¢ can be computed. Here

the logistic regression model utilizes the input sentence = as well as labels y;_», y:—1 and y; to extract

"More general CRF models can be formulated but these mostly fall beyond the scope of this thesis. See (Sutton and McCallum,
2012) for further details.
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unstructured and structured features from the sentence and label sequence. The score s takes on a familiar

form

S(.Z', Yt—2,Yt—1, Yt, t- 6) = eXp(eTFy(w7 t> Yt—2, ytfl))

where F, is a vector valued feature extraction function. Each feature associated to the label i corresponds
to one element of the vector F(x, ¢, y:—2,y:—1). Since F), refers to a context spanning three labels, the
model is a second order model. All discriminative taggers discussed in this Chapter are assumed to be
second order models. As in the case of the logistic regression model, each entry of the vector can be an

arbitrary real number but in this thesis they will always be either O or 1.

The probability of label sequence y € )T given a sentence z of length T is

T
p(ylz; 0) o HS(Iaytf%ytflvyht; 0) (6.7)
t=1

In Equation 6.7, the labels y_; and yg are special stop labels which do not belong to the label set ). The
partition function of the sentence x is given by

T
Z Hs(x7yt727yt717yt7t;0) (68)

yeyT t=1

It is noteworthy, that the probability in Equation 6.7 is normalized for the entire sentence, not for
each position in isolation. A similar model, where normalization happens in each position is called the
Maximum Entropy Markov Model (MEMM). It has been shown to give inferior performance in POS
tagging of English (Lafferty et al., 2001).2

Inference Tagging of a sentence using the CRF model is very similar to HMM tagging. The major
difference is that there are far more features in a CRF model which slows down inference compared to a
typical HMM tagger. As in the case of an HMM, the Viterbi algorithm has to be used to find the MAP
assignment of the label sequence because of the structured nature of the model. The forward-backward
algorithm can be used to compute the marginal probabilities of labels.

Estimation Estimation of the CRF model parameters is more involved than the straightforward counting
which is sufficient for HMM training. Estimation is instead very similar to estimation of the logistic
regression model parameters. However, the structured nature of the CRF model complicates matters
slightly.

8The inferior performance of the MEMM has been thought to be a result of the so called label bias problem (Lafferty et al., 2001)
although observation bias may be more influential in POS tagging (Klein and Manning, 2002).
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Let (z,y) be a labeled sentence. The observed count of feature ¢ in position ¢ is

Fy(x,t,yi—2, ye—1, Y1) [4]

and its expected count is

> (@t yio vty lilp | 2 0).
y/eyT

The partial derivative w.r.t. to the loss L is the difference between the expected and observed counts as in
the case of logistic regression.

8£ 12 / INT: ;
5= > ( > Fylat i, yi— ) lilp(y Iw;9)> = Fy(x,t, Y2, ye—1, ye)[1]

T
t=1 4 eyT
The quantities »© , yr Fy(21,t, Y12, ¥;—1, Y1) []p(y’ | 2; 0) have to be computed using the forward back-
ward algorithm because a naive algorithm has too high computational cost. The need of the forward back-
ward algorithm is the most important difference between logistic regression and CRF estimation. Com-
monly, the SGD algorithm and L-BFGS are used for the optimization of § (Vishwanathan et al., 2006).
As in the case of logistic regression model, the CRF model can also be regularized using for example L.1
or L2 regularization (Sutton and McCallum, 2012).
Held out development data is commonly used to set the number of training epochs, model order and
regularization hyper-parameters.

Alternative estimators In addition to the ML estimator, a variety of estimators are available for dis-
criminative taggers. These alternative estimators are predominantly used because ML estimation can be
quite resource intensive. A commonly used substitute for the ML estimator is the structured variant of the
averaged perceptron algorithm described in Section 6.5 and taggers trained using the averaged perceptron
algorithm are often called perceptron taggers (see for example Collins (2002)). Other examples mentioned
by Sutton and McCallum (2012) are the pseudolikelihood Besag (1975) and piecewise pseudolikelihood
estimators Sutton and McCallum (2007). Publication IV investigates a pseudolikelihood inspired variant
of the perceptron estimator.

Given a training example (z,y) € D where = z1,...,xr and y = y1, ..., y7, the pseudolikelihood
of y given x is given by equation 6.9. The notation y—; in Equation 6.9 refers to all the labels in y except

label ;.
T

t=1

The complexity of optimizing the parameters § with regard to pseudolikelihood is linear linear with
regard to sentence length. In contrast, ML estimation which requires the forward-backward algorithm
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is has quadratic complexity. This means that the pseudolikelihood estimator is substantially more effi-
cient than ML estimation. However, it may result in poor accuracy as indicated by the experiments in
Publication IV.

6.5 The Perceptron Tagger

Whereas the unstructured perceptron classifier presented in Section 6.3 is a discriminative classifier simi-
lar to the logistic regression model except that it uses perceptron estimation, a perceptron tagger (Collins,
2002) is a sequence labeling model similar to the CRF except that it uses perceptron estimation.

The model is formulated very similarly as the CRF model. It also uses a real valued parameter vector

0 but the definition of the score of a label sequence y given sentence z is different

s(yla;0) = s(x, 42, yi-1, i1 0) (6.10)

i=1

The definition of the score s in an individual position ¢ in Equation 6.10 is defined as s(z, y;—2, ¥i—1, ¥i, ¢;0) =
QTFy(Jc, i, Yi—2,Yi—1), where F} is the vector valued feature extraction function for label y. The defi-
nition of the perceptron model is simpler than the definition of the CRF model. The reason is that the
perceptron model is not intended for defining a probability distribution among label sequence. It can only

be used for determining the best label sequence with regard to a sentence .

Inference The Perceptron tagger uses the Viterbi algorithm for exact inference. Beam search can be used
for faster approximate inference together with a label dictionary as shown in Publication VI. Chapter 8

presents experiments on varying beam widths.

Estimation Whereas, CRF estimation requires the forward-backward algorithm, perceptron estimation
only requires the Viterbi algorithm. Exactly as in the case of the unstructured perceptron algorithm, each
training example (i.e. sentence) is labeled and unstructured and structured features are updated accord-
ingly. The number of training epochs is determined using held-out data. As in the case of the unstructured

perceptron algorithm, parameter averaging is useful for improving the accuracy of the percetron tagger.

Besides the standard perceptron algorithm, there are many approximative perceptron variants. Publi-
cation IV introduces the pseudopeceptron and piece-wise pseudoperceptron estimators which are inspired
by the pseudolikelihood and piecewise pseudolikelihood estimators for the CRF model. In the spirit of

pseudolikelihood, the pseudoperceptron maximizes the score of each label in isolation as shown by equa-
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tion 6.11. The remaining labels in the sentence are fixed to their gold standard values.

s(yle, Ygoa: 0) = > (|2, Ygota,—; 9)- (6.11)
t=1

Beam search for estimation A high model order and large label set can result in a prohibitive runtime
for the Viterbi algorithm. It has a time complexity that is dependent on the n + 1st power of the label set
size for an nth order model. This problem can be avoided using beam search during estimation instead of
the Viterbi algorithm. This reduces the complexity to O(7'|)|b, where T is the size of the training data,
Y the label set and b is the beam width.

Because beam search is an approximative inference algorithm, it may however not give the correct
MAP assignment for a sentence. It may happen that beam search returns a label sequence y,,, for training
sentence = whose score with regard to the current model parameters is lower than the score of the gold
label sequence %,4;4. This leads to perceptron updates which are not necessary because the model would
already correctly label sentence z, if only exact inference were used. In some domains such as syntactic

parsing, this leads to significant reduction in classification performance (Huang et al., 2012)

Violation fixing To avoid superfluous perceptron updates, a technique called violation fixing can be
used (Huang et al., 2012) (this is an extension of the early update technique suggested for incremental
parsing in Collins and Roark (2004)). Huang et al. (2012) suggest several related violation fixing methods.
The essence of the methods is to compute the score for each prefix of the label sequence ¥, returned by
beam search and each prefix of the gold standard label sequence y,,;4. One prefix length 7 is then selected
so that the score of ys,s[1 : 7] is higher than y,0q(1 : ].” Updates are then performed for ys,s[1 : i] and
Ygoid|1 : t]. The choice of ¢ depends on the violation fixing method. For example, the maximum violation
criterion corresponds to choosing an ¢ which maximizes the score difference between y,,s[1 : 4] and
Ygolall + .

In the experiments presented in Publication VI, violation fixing did not result in consistent statistically
significant improvements. It may be that violation fixing is more influential in parsing than POS tagging

or morphological tagging.

* Hierarchical CRF Miiller et al. (2013), Weiss and Taskar (2010) and Charniak and Johnson (2005).

Cascaded Model Architecture Beam search can be used to speed up estimation for the perceptron
tagger. For large label sets, even beam search may not lead to sufficient run-time optimization because
the complexity of beam search is dependent on the label set size. Publication VI introduces a method to
optimize estimation even further by only considering a subset of ) in every position in the training data.

The approach is an application of the idea of structured prediction cascaded presented by Weiss and
Taskar (2010). They propose to use a cascade of increasingly complex models. Each model prunes the

91f such an 4 does not exist, then the score for Ysys 1s in fact higher than the score of y4414-
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label candidates available at a position in the input data. Subsequent models only consider those labels
that were not pruned by an earlier model in the cascade. This leads to accelerated inference and estimation.
Miiller et al. (2013) applied the idea of structured prediction cascades to CRF models. Their results suggest
that this can lead to both accelerated estimation and improved tagging results.

As in the case of the CRF model, a cascaded model structure can be used to shorten training time of
a perceptron tagger as shown in Publication VI. Instead of a cascade of discriminative classifiers, used
by Miiller et al. (2013), the system presented in Publication VI uses a combination of a generative label
guesser of the type presented in Section 4.4 and a structured perceptron tagger. The number of guesses
can be determined either based on a probability mass threshold or using a fixed number of guesses per
word. Setting the threshold too low will result in a training task that is to easy. Consequently the model
will over-fit the training data. Higher thresholds will approximate the original training task more closely
but will also lead to longer training times.

Like beam search, label guessing modifies the training task. It does, however, not require violation
fixing because it does not influence the relative difference in scores of label sequences as long as the gold
standard label sequence is never pruned out. Therefore, the gold standard label should always be added
to the set of guesses given by the label guesser.

The combination of beam search and model cascading results in a fast training with a tolerable decrease
in tagging accuracy even for large label sets and for second order models as shown by the experiments in
Chapter 8.

An early approach that resembles the structured cascade approach is tiered tagging used by Tufis
(1999) and Ceausu (2006). In tiered tagging, the label set is first projected onto a smaller set of coarse
labels. A tagger is first used for labeling text with coarse labels. Subsequently another tagger is used to
convert coarse labels into full morphological labels. The structured prediction cascades seem to deliver
superior results as indicated in Publication V, however, direct comparison is difficult because Ceausu
(2006) uses a MEMM tagger and Publication V uses a perceptron tagger. However, this seems plausible
because both tagging with coarse labels and subsequent recovery of fine-grained labels represent potential

error sources.

6.6 Enriching the Structured Model

As seen above, the feature set of a discriminative classifier with || classes and |F'| feature templates
has on the order of |V x F|+|Y|™ features and parameters, where n is the model order. When Y is
large, this gives rise to data sparsity because each feature template is seen with quite few labels y € ).
Large morphological label sets, however, are typically internally structured. For example, the noun label
noun+sg+nom and adjective label adj+sg+nom share the same number sg and case nom.

Often data sparsity is combated by introducing more abstract features that will be activate more often
than the existing features. In the case of large structured feature sets, a natural choice is to extract features
for the components of morphological labels as well as for the entire labels. I will call such features sub-
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label features.

For the label noun+sg+nom, the features which are extracted is by a standard CRF are given by

Fnoun+sg+nom (I7 t7 Yt—2, ytfl)

When using sub-label features, we additionally extract features for the components of noun+sg+nom

Z Fy(xatayt—27yt—1)

y€{noun+sg+nom, noun, sg, nom}

The features extraction function also utilizes the internal structure of the argument labels y;_; and y;_o.
Examples of sub-label features include a word dog is singular and a singular word follows another
singular word. It is, however, best to do this in a restricted manner. The experiments in Chapter 8
demonstrate that in a second order CRF tagger, structured sub-label features of order one result in consis-
tent improvement in accuracy but higher order sub-label features give no improvement.

Sub-label features can help combat data sparsity. Additionally, they are useful for modeling linguistic
phenomena such as congruence. For example, two adjacent singular words will activate the set of features
for the singular sub-label regardless of the main POS of the words.

In restricted form, sub-label features have been utilized by for example Miiller et al. (2013). They use
sub-labels exclusively for unstructured features. While sub-labels seem to be most beneficial in combi-
nation with unstructured features in a morphological tagging setting where a morphological analyzer is
not utilized, this is not the case in a morphological disambiguation setting as the experiments in Chapter
8 indicate. When using a morphological analyzer, sub-labels result in the greatest improvement when

combined with structured features.

Smith et al. (2005) also utilize structured sub-labels, however, only in a restricted way. They build sep-
arate structured chains modeling the sequence of main POS classes, cases, numbers, genders and lemmas
of neighboring words. Due to the lack of cross-dependencies between different grammatical categories,
is doubtful that their system could model phenomena like the dependence between a verb and the case of
its object.

Spoustova et al. (2009) also use a linguistically motivated selection of unstructured and structured sub-
labels (at least for main part-of-speech and case of nominals) for tagging Czech, however, it is difficult
to establish exactly what kind of features they use because this is not documented in a detailed manner in
Spoustova et al. (2009).

Publication V extends this approach to fully take into account structured features. As the experiments
in Chapter 8, structured sub-labels have a substantial impact on tagging accuracy both in morphologi-
cal tagging setting without a morphological analyzer and in morphological disambiguation setting. For
Finnish, the impact of sub-label features on tagging accuracy seems to be on par with the impact of higher
model order.
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6.7 Model Pruning

Discriminative models for morhpological tagging can often grow quite large in terms of parameter count.
For example, the model learned from the FTB corpus by the FinnPos tagger has more than 4 million
parameters.

A large number of parameters is problematic because it causes over-fitting of the model to the training
data. Moreover, large models can be problematic when memory foot-print is an issue: e.g. on mobile
devices.

Different methods have been proposed for pruning of perceptron models. Goldberg and Elhadad
(2011) prune the models based on update count. Parameters that receive less than a fixed amount of
updates during training will be omitted from the final model. Another approach is to prune by feature
count. For example Hulden et al. (2013) prune out features for words occurring less than a fixed amount
of times in the training data. More generally, features that are activated less than a fixed amount of times
may be pruned out.

Some regularization techniques can also be used to learn sparse perceptron models. L1-regularization
yields sparse models similarly as for logistic regression. Zhang et al. (2014) investigate L.1-regularization
for structured perceptron. They gain accuracy but do not report results on model size.

I have explored two different pruning strategies
* Pruning based on update counts (Goldberg and Elhadad, 2011).
* Pruning based on parameter value.

Goldberg and Elhadad (2011) show that update count based pruning beats feature count based pruning in
dependency parsing and POS tagging. Therefore, I decided not to compare those approaches. Instead, I
compare update count based pruning to pruning based on final parameter value.

Update Count Pruning When using this strategy, each parameter which did not receive at least n up-
dates during training, is omitted from the final model. Here n is a hyper-parameter which is set using
held-out data. In practice, this pruning strategy requires that one maintains a update count vector where
each element corresponds to one model parameter. Whenever a parameter is updated during training, the
update count is increased.

As stated before, the perceptron algorithm labels a training example and then performs updates on the
model parameters. When labeling during training, only those parameters that already received at least
n updates are used. However, updates are performed on all parameters. When the update count of a
parameter exceeds 7, the parameter value will therefore already be of similar magnitude with the rest of
the parameter values in the model. This speeds up estimation as Goldberg and Elhadad (2011) note.

Goldberg and Elhadad (2011) do not explore pruning in an early stopping scenario. My preliminary
experiments showed that it is best to first set the number of training passes without parameter pruning and

then set the pruning threshold n separately using development data. If the number of passes and the update
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count threshold are set at the same time, the model parameters converge quite slowly resulting in many
training epochs and consequently many parameter updates. This has an adverse effect on the number of
parameters that can be pruned from the final model without resulting in improved accuracy.

Value Based Pruning A very simple strategy for parameter pruning is to prune based on the parameter
value. The model is trained in the regular manner. After training, all parameters whose absolute value does
not exceed a threshold « are omitted from the model. Remaining parameter values remain unchanged.
The hyper-parameter « is determined using a development set.

In the experiment chapter, I show that value based pruning outperforms update count based pruning
on the data-sets that I have used. In some settings, the difference is substantial.

6.8 Summary of Publications IV, V and VI

Publication IV A central problem training perceptron and CRF taggers for morphologically complex
languages is that the time complexity of the Viterbi algorithm is dependent on the n + 1st order of the label
set size, when training an nth order tagger. When the label set is large, this results in inconvenient training
times even in the case of first order taggers. Publication IV presents two novel variants of the perceptron
algorithm which are inspired by the pseudo-likelihood and piecewise pseudo-likelihood criteria presented
in Section 6.4.

The new estimators, pseudo-perceptron and piecewise pseudo-perceptron are shown to be competitive
with greedy decoding and passive aggressive training with regard to accuracy. Moreover, it delivers
substantially shorter training times in presence of large label sets. The training time is, however, still
influenced by the label set size because the time complexity of pseudo-perceptron and piecewise pseudo-
perceptron is linear with regard to label set size.

Publication V  This publication investigates sub-label dependencies in morphological tagging of five
languages: English, Romanian, Estonian, Czech and Finnish. The experiments show that sub-label de-
pendencies yield statistically significant improvements for Estonian, Czech and Finnish. Moreover, the
experiments indicate that addition of sub-label dependencies to a first order model results in greater im-
provement in tagging accuracy than going from a first order to a second order model.

Publication VI  This paper describes FinnPos, an open-source morphological tagging and lemmatiza-
tion toolkit for Finnish. The morphological tagging model is based on the averaged structured perceptron
classifier. Given training data, new taggers are estimated in a computationally efficient manner using a
combination of beam search and model cascade. The lemmatization is performed employing a combina-
tion of a rule-based morphological analyzer, OMorFi, and a data-driven lemmatization model.

The toolkit is readily applicable for tagging and lemmatization of running text with models learned
from the recently published Finnish Turku Dependency Treebank and FinnTreeBank. Empirical evalua-
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tion on these corpora shows that FinnPos performs favorably compared to reference systems in terms of
tagging and lemmatization accuracy. In addition, we demonstrate that our system is highly competitive
with regard to computational efficiency of learning new models and assigning analyses to novel sentences.
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Chapter 7

Data-Driven Lemmatization

In this section, I will present the task of data driven lemmatization. I will examine different approaches to
data driven lemmatization and present the lemmatizer used in the FinnPos toolkit presented in Publication
VL

A lemmatizer is a system that takes text as input and returns the lemmas of words in the text. Because
dictionaries and other lexical resources often list lemmas but omit other word forms, lemmatizers are
useful for example for information extraction. They are particularly useful for morphologically complex
languages where a substantial part of words occurring in text undergo various inflection.

Lexical resources such as dictionaries or morphological analyzers are very helpful for the lemmatiza-
tion task. In fact, lemmatization is often seen as one of the sub tasks of morphological analysis. Another
task which is closely related to lemmatization is morphological paradigm induction (Ahlberg et al., 2014).
Here the task is to generate all, or a selection, of the inflectional forms of a word form. Therefore, lemma-

tization can also be seen as a sub-task of morphological paradigm induction.

Word Label Translation Lemma

kissa noun+sg+nom a/the cat kissa
sanoessa | verb+act+inf+ine | while saying (something) | sanoa

talossa noun+sg+ine in a/the house talo

Table 7.1: Lemmatization of three Finnish word forms ending “-ssa”.

I will treat lemmatization as a follow-up task of morphological labeling. Therefore, the lemmatizer
has access to the morphological labels of the words in the text. The morphological label provides very
useful information for lemmatization because it can help to disambiguate between candidate lemmas. As

an example, consider the three Finnish word form ending “-ssa” in Table 7.1. The different morphological
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analyses correspond to different ways of forming the lemma. For example in the case of a singular inessive
of a noun (“talossa”), the lemma (“talo) is formed by removing the suffix “-ssa”. If the word form is
instead a nominative, the lemma is identical to the word form. As the example shows, the morphological
label can help to rule out incorrect lemmas.

A morphological analyzer can be used for lemmatization of a morphologically tagged text. First,
analyze each word using the morphological analyzer. This produces a set of morphological labels and as-
sociated lemmas. Then simply pick the lemma which is associated with the correct morphological label.
As long as the morphological label assigned to each word is also known by the morphological analyzer,
this works perfectly. Problems arise when word forms are not recognized by the morphological analyzer
or when words are assigned morphological labels not recognized by the analyzer. There are several ap-
proaches to solving these problems. One approach is to utilize the morphological analyzer (for example
a finite-state analyzer) to produce a guess for a lemma even though the word form is not recognized. The
guess is based on orthographically similar words which are recognized and can be lemmatized by the mor-
phological analyzer. As an example of this approach, see Lindén (2009) who use finite-state algebra to
transform a morphological analyzer into a morphological guesser that can generate the lemma for words
that are not recognized by the original analyzer.

The main advantage of basing a data driven lemmatizer on an existing morphological analyzer is that
large coverage morphological analyzers model most, if not all, morphotactic and the morphophonological
phenomena that occur in a language. Therefore, it is likely that the analyzer recognizes a number of similar
words in the inflectional paradigm of an unknown word even though it would not recognize that specific
word form which can be utilized in lemmatization.

Most existing work on analyzer based lemmatizers has used rather simple statistical models. For

example, Lindén (2009) uses plain suffix frequencies.

7.1 Framing Lemmatization As Classification

In contrast to lemmatizers based on morphological analyzers, classifier based lemmatizers Chrupala et al.
(2008) are learned from data without an existing model. The general approach is based on the observation
that word forms can be transformed into lemmas using an edit script. For example, the English noun
“dogs” has the lemma “dog”. To convert “dogs” into “dog” one needs to remove the suffix “s”. This is a
very simple example of an edit script which I will denote [—s — ¢]. Classifier based lemmatizers frame
the lemmatization task as a as classification task. As labels, the classifier uses edit scripts. Subsequently
to labeling a word form with an edit script class, the lemmatizer will apply the edit script thus constructing
a lemma.

The main advantage of using a classifier based lemmatizer is that the classifier can use a feature
based discriminative model. In contrast to analyzer based lemmatizers, classifier based lemmatizers can

therefore use richer information sources such as prefixes and word shapes expressed as regular expressions
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1 _ not exclusively information about word suffixes.

Although it would be very interesting to combine these approaches, it falls beyond the scope of this
thesis. Therefore, I have used classifier based lemmatizers. I decided upon classifier based lemmatizers
partly because the work of Lindén (2009) already investigates analyzer based lemmatization for Finnish.
When performing morphological disambiguation based on the output of a morphological analyzer, the
current system does use the morphological analyzer for lemmatization of all word forms which are rec-
ognized by the analyzer. For all remaining words, the data driven lemmatizer is used.

In the field of morphological paradigm generation, there exists work which in a sense combines the
analyzer and classifier based approaches, for example (Hulden et al., 2014). However, their starting point
is not a morphological analyzer. Instead a list of morphological paradigms is used. It would be inter-
esting to explore this but it falls beyond the scope of the current work. Another interesting direction for
future research is joint tagging and lemmatization which has yielded improvements both in tagging and
lemmatization accuracy (Miiller et al., 2015). However, this also falls beyond the scope of the current

work.

7.2 Lemmatization in FinnPos

The classification based lemmatizer in the FinnPos toolkit reads an input word, identifies the set of edit
scripts that can be applied to the input and scores the candidate scripts using the input form, and its
morphological label. The score is given by a feature based classifier. Finally, the edit script that receives

the highest score is applied on the input form and the lemma is recovered.

Extracting Edit Scripts Given a word form such as “dogs” and its lemma “dog”, several edit scripts
can be extracted. For example, [—s — €], [-gs — —¢], [~0gs — —og]. The current system extracts the
shortest script which adequately recovers the lemma.

The FinnPos system only extracts edit scripts which delete a suffix and appends another suffix such
as the script [—s — &]. This is sufficient for Finnish where all words except numerals exclusively exhibit
inflection at the end of words. Naturally, this would not be sufficient in general. More general edit scripts
are therefore applied with other languages, for example by Chrupala et al. (2008).

For morphologically complex languages, a large number of edit scripts may be extracted from training
data. For example, the Finnpos system extracts 4835 different edit scripts for the 145953 tokens in the
training and development data of FinnTreeBank. Therefore, many of the classes occur only a few times
in the training data. This leads to data sparsity. However, increasing the amount of the training data
would probably alleviate the problem significantly because the inventory of inflectional paradigms, and
consequently edit scripts, is finite.

L An example of a word shape expressions in POSIX syntax is [A-Z] [a-z]+ which matches capitalized English words.
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Features for Lemmatization For a word w = (w...w,,) and a morphological label y, the lemmatizer
in the FinnPos system currently uses the following feature templates:

» The word form w.

» The morphological label y.

* Suffixes (wy,), (Wp—1,wy), ... Up to length 10.

* Prefixes (wy), (wy,ws), ... Up to length 10.

* Infixes (wy,—_2,wn_1), (Wn—_3, Wp_2) and (Wy_4, Wp_3).

For each feature template f (except the morphological label template ), FinnPos additionally uses a com-
bination template ( f, y) which captures correlations between morphological labels and the orthographical
representation of the word form.

The infix templates are useful because they model the environment where an inflectional suffix (such
as “-ssa”) is removed and a lemma suffix is added. They aim at preventing phonotactically impossible
combinations.

Estimation The lemmatizer can be implemented using any discriminative classifier. For example as an
averaged perceptron classifier or a logistic classifier. In the FinnPos system, the lemmatizer is an averaged
perceptron classifier.

The estimation of the lemmatizer model differs slightly from standard averaged perceptron estima-
tion presented in Chapter 3. Even though the number of edit scripts can be very large (in the order of
thousands), the subset of edit scripts applicable for any given word form is much smaller. Moreover, it is
always known in advance because it is completely determined by the suffixes of the word form. There-
fore, the classifier is only trained to disambiguate between the possible edit scripts associated to each word

form. This speeds up estimation considerably.

Inference In the FinnPos system, words which were seen during training time, are lemmatized based
on a lemma dictionary which associates each pair of word form and morphological label with a lemma.
For words which were not seen during training or which received a label not seen during training, are
lemmatized using the data driven lemmatizer. Additionally, a morphological analyzer can be used to
assign lemmas to those words which it recognizes.

For word forms which cannot be lemmatized using the lemma dictionary or morphological analyzer,
the data driven lemmatizer is used. For each word form, the set of applicable edit scripts is formed and

scored. The highest scoring edit script is subsequently applied to the word form to produce a lemma.



Chapter 8

Experiments

Publication VI presents FinnPos, which is a discriminative morphological tagger based on the averaged
perceptron classifier. It is specifically geared toward morphologically complex languages. To this end, it
implements beam search and a cascaded model architecture for speeding up estimation and tagging speed.
To improve accuracy, it includes an option to use a morphological analyzer during tagging. Moreover,
it extracts sub-label dependencies for unstructured and structured features in order to improve tagging
accuracy in presence of large structured label sets.

This chapter presents experiments on morphological tagging in Finnish using FinnPos. These ex-
periments are intended to augment the experiments in Publication VI. I will present experiments on the

following themes

.

Cascaded Model Architecture What is the effect of different settings for the label guesser on
tagging accuracy, estimation speed and tagging speed?

» Beam Search What is the effect of beam width on tagging accuracy, estimation speed and tagging
speed?

* Model Order What is the effect of model order on tagging accuracy, estimation speed and tagging

speed? Experiments are presented both when tagging with and without a morphological analyzer.

* Sub-Label Order What is the effect of the order of sub-label dependencies on tagging accuracy,
estimation speed and tagging speed? Experiments are presented both when tagging with and without

a morphological analyzer.

* Model Pruning Which is the better model pruning strategy: update count based or value based

pruning?
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8.1 Data Sets

All experiments are conducted on both the Turku Dependecy Treebank (Haverinen et al., 2014) (TDT)
and FinnTreeBank (Voutilainen, 2011) (FTB). Two distinct data sets, containing text from different genres,
are used in order to justify general claims about the performance of the system in Finnish morphological

tagging. Table 8.1 gives a numerical overview of both data sets.

TDT FTB
Sentence Count 13,572 19,121
Token Count 183,118 162,028
Label Count 2,014 1,399
OMorFi Coverage 94.2% 99.0%

Table 8.1: Summary of Turku Dependency Treebank (TDT) (Haverinen et al., 2014) and FinnTreeBank
(FTB) (Voutilainen, 2011). The OMorFi coverage refers to coverage per token.

FinnTreeBank FTB is a morphologically tagged and dependency parsed collection of example sen-
tences from Iso Suomen Kielioppi, a descriptive grammar of the Finnish language (Hakulinen et al., 2004).
The examples have been harvested from newspapers, novels and blogs. Additionally, some examples rep-
resent spoken language.

Each sentence in the FTB corpus has been selected to illustrate some grammatical phenomenon. There-
fore, it is safe to say that FTB does not represent a random sample of Finnish text. It probably contains
a high number of rare grammatical phenomena. This can be seen as a weakness because results on the
FTB corpus may not carry over to other data sets. However, it also makes the corpus interesting and
challenging from the point of view of morphological tagging because the data is expected to be complex.

Both the morphological tagging and dependency structures of FTB have been manually prepared. The
morphological analyses of word tokens are post-processed outputs of OMorFi, an open-source morpho-

logical analyzer for Finnish (Pirinen, 2011).

Turku Dependency Treebank TDT contains text from ten different domains, for example Wikipedia
articles, blog entries, and financial news. The annotation has been prepared by manually correcting the
output of an automatic annotation process. Similarly to FTB, the morphological analyses of word tokens in
FTB are post-processed outputs of OMorFi (Pirinen, 2011). However, the treebanks are based on different
versions of OMorFi. Moreover, the post-processing steps applied in TDT and FTB differ. This results
in somewhat different annotation schemes. The TDT annotation for each word token consists of word
lemma (base form), part-of-speech (POS), and a list of detailed morphological information, including

case, number, tense, and so forth.
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Data Splits Widely used data sets usually have established splits into training, development and test
data. For example, most work on English POS tagging reports results on the Penn Treebank corpus
(Marcus et al., 1993) using the data splits introduced by Collins (2002) (Sections 1-18 for training, 19-21
for development and 22-24 for testing). This is sound because it guarantees that results reported in different
papers are comparable. For the data sets used in this thesis, FTB and TDT, there are no established splits.
Therefore, the experiments use 80% of the data for training, 10% as development data and 10% as final
test data. The data is split in the following way: For each consecutive ten sentences, the first eight are

assigned to the training set, the ninth one to the development set and the tenth one to the test set.

8.2 Setup

Exhaustive experiments on the effect and interactions of the different hyper-parameters used by the Finn-
Pos tagger would require hundreds of experiments because FinnPos incorporates a variety of optimizations
to accuracy and speed governed by different hyper-parameters.' I did not deem this feasible in practice.
Instead I have chosen the settings presented in Publication VI as vantage point and examined the impact
of changing one hyper-parameter at a time. These settings were chosen because they give state-of-the-art
accuracy as presented in the paper.

The basic setting for all experiments is

* A second order model.

+ First order sub-label dependencies.

* 99.9% mass for the generative label guesser.
* 99.9% mass for the adaptive beam search.

This setting is varied with respect to the hyper-parameter that is being investigated. All experiments are
run on a desktop computer (Intel Core i5-4300U with 1.90 GHz and 16 GB of memory).

In all experiments, hyper parameters are first set using development data. Then the development data
and training data are combined and this data set is used to train the final model, which is then evaluated
using the test set. Training times refer to training the final model. Thus they do not contain the cost of
development. This setup was used because it is also used in Publications IV, V and VI.

A morphological analyzer is used when specifically indicated. A label dictionary is used in all ex-
periments both to speed up decoding and improve accuracy. The label dictionary is also used when a
morphological analyzer is used in tagging. The reason for this is that a liberal compounding and deriva-

tion mechanisms (such as the ones implemented in the OMorFi morphological analyzer) can result in a

IExperiments should vary beam width, the settings of the label guesser, model order and order of sub-label dependencies. More-
over, experiments should be conducted using a morphological analyzer and without one. Assuming 10 different settings for beam,
and guesser and three settings for model order and sub-label order, this gives 10% - 32 - 2 = 1800 distinct experiments.
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number of unlikely analyses for longer word forms. Analyses that have been attested in the training corpus
should, therefore, be preferred when possible.

The feature set used in the experiments follows Publication VI. Let © = (x;...z7) be a sentence, y =
(y1...yr) alabel sequence and ¢ and index. Then the unstructured features templates for the morphological
tagger are the familiar Ratnaparkhi features (Ratnaparkhi, 1998) augmented with a few additional features.

For all words, FinnPos uses the following feature templates
e The word form z; and the lower cased version of x;.

* The length |z;| of word form ;.

Each word form in a four word window around ¢: x;_o, 41, Z¢+1 and T, 42.
* The word form bigrams (z;—_1, z;) and (¢, T¢41)-
For rare words?, it additionally extracts the following features
* DIGIT when x; contains a digit.
» UC when z; contains an upper case letter.
« Prefixes and suffixes of x; up to length 10.

When a morphological analyzer is used, each morphological label given to word z; is also used as a feature
template.

Some baseline runs are impossible to run. FinnPos uses a second order model. With a label set size
of 1,000, inference using the plain Viterbi algorithm is prohibitively slow because the time complexity of
the algorithm is dependent on the third order of the label set size. Therefore, it was not feasible to run
experiments without label pruning during training.

Finally, the results of the experiments presented here differ minutely from the results presented in
Publication VI due to added features (lower cased word form and word length) and a few bug fixes that
have improved results.

8.3 Using a Cascaded Model

This section presents experiments on using different settings for the generative label guesser included as
a pre-pruning step during training as explained in Section 6.5.

2A rare word is one that is not common. The list of common words is user defined but in these experiments I have defined
common words to be words having frequency 10 or higher in the training corpus



8.3 Using a Cascaded Model

ADAPTIVE GUESS COUNT

Guess Mass

Tagging Accuracy (%)

Training time

Dec. Speed (KTok/s)

0.9
0.99
0.999
0.9999

93.21 (OOV: 77.68)
93.11 (OOV: 77.14)
93.23 (OOV: 78.49)
93.41 (OOV: 78.55)

3 min, 3 epochs
3 min, 3 epochs
4 min, 4 epochs
2 min, 2 epochs

FIXED GUESS COUNT

7

7
8
7

Guess Count

Tagging Accuracy (%)

Training time (min)

Dec. Speed (KTok/s)

1

10
20
30
40

91.48 (OOV: 69.81)
93.23 (OOV: 77.56)
93.18 (OOV: 77.89)
93.22 (OOV: 77.62)
93.43 (OOV: 78.49)

1 min, 3 epochs
2 min, 2 epochs
3 min, 3 epochs
4 min, 3 epochs
4 min, 2 epochs

(S2 N BN N )

Table 8.2: Different label guesser settings for FinnTreeBank

ADAPTIVE GUESS COUNT

Guess Mass

Tagging Accuracy (%)

Training time (min)

Dec. Speed (KTok/s)

0.9
0.99
0.999
0.9999

92.69 (OOV: 74.10)
92.66 (OOV: 74.13)
92.76 (OOV: 74.65)
92.75 (OOV: 74.30)

8 min, 8 epochs
9 min, 8 epochs
8 min, 7 epochs
6 min, 5 epochs

FIXED GUESS COUNT

5

5
5
5

Guess Count

Tagging Accuracy (%)

Training time (min)

Dec. Speed (KTok/s)

1

10
20
30
40

89.85 (OOV: 61.33)
92.35 (OOV: 72.55)
92.61 (OOV: 73.88)
92.81 (OOV: 74.87)
92.91 (OOV: 75.35)

2 min, 5 epochs
5 min, 7 epochs
5 min, 4 epochs
12 min, 9 epochs
14 min, 9 epochs

6

6
6
5
5

Table 8.3: Different label guesser settings for Turku Dependency Treebank
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Setup Forboth TDT and FTB, I present results for using a fixed amount of label guesses and for choosing

a varying amount of guesses per word based on probability mass. Because of the prohibitive runtime and

memory requirements, it was not possible to run experiments without any form of label pruning during

training. The most important point of these experiments is that using some kind of label guesser during

training is almost necessary if one wants to train a second order model for label sets of several hundreds
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or thousands of labels.

Results As Table 8.3 demonstrates, using a larger amount of label guesses improves accuracy in general.
When using a fixed number of guesses for every word, the accuracy levels off at 40 guesses per word for
both FTB and TDT.

When pruning label candidates based on probability mass, the results differ between the treebanks. For
FTB, the mass 0.9999 yields approximately the same accuracy than as 40 guesses. For TDT, however,
40 label guesses result in 0.2%-points better accuracy than using the mass 0.9999. The difference is
substantial.

The training time per epoch is clearly related to the amount of label guesses, however, the number of
epochs seems to fluctuate somewhat from two to four for FTB and from five to eleven for TDT. Therefore,
it is difficult to see a clear trend for the total training time. It is also not possible to say that mass based
pruning always leads to a faster training time when compared to a fixed number of guesses which yield
similar accuracy.

The amount of label guesses influences decoding speed to some degree because the same setting is
used for the label guesser during decoding. Because the label guesser is only used for OOV words, the
exact setting of the guesser does however only have a moderate impact.

Discussion Whereas training a second order tagger for a label set exceeding a thousand labels requires a
prohibitive amount of computational resources when estimation and inference utilize the standard Viterbi
algorithm or even a beam search, the experiments in this section demonstrate that a cascaded model ar-
chitecture allows for training second order models rather fast. The memory requirement was moderate as
it did not exceed the 16 GB available on the author’s computer.

It is not clear whether pruning based on probability mass is superior to pruning based on a fixed
amount of guesses. It is concerning that the results on the TDT data set for the mass 0.9999 were clearly
inferior to the result when using 40 guesses for each word. Increasing the the probability mass also did not
seem to improve the results further. A reason for this may be that the TDT corpus is larger than the FTB
corpus. The generative guesser may suffer from over-confident probability estimates when the amount
of training data is increased and it may be quite difficult to set the threshold for the probability mass. A
discriminative guesser could be used instead, but its training time would exceed that of the generative
guesser. This would reduce overall performance. An alternative might be to decreases the amount of

training data for the guesser, but this requires further experiments.

8.4 Beam Search

This subsection presents experiments using different beam settings during training and decoding. Ex-
periments are presented both for fixed beam widths and adaptive beam, which is described in Section
6.5.
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Setup
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I compare fixed beam width to an adaptive beam presented in Section 6.5. Additionally, I include

training and decoding results when no beam is used. The same beam width is used during in training and

when tagging the test set.

ADAPTIVE BEAM

Beam Width | Tagging Accuracy (%) | Training time (min) | Dec. Speed (KTok/s)
0.9 93.08 (OOV: 76.99) 3 min, 3 epochs 6
0.99 93.14 (OOV: 77.44) 3 min, 3 epochs 8
0.999 93.28 (OOV: 80.49) 2 min, 2 epochs 8

FIXED BEAM

Beam Width | Tagging Accuracy (%) Training time Dec. Speed (KTok/s)
1 92.32 (OOV: 75.07) 2 min, 2 epochs 7
10 93.33 (OOV: 78.28) 2 min, 2 epochs 7
20 93.11 (OOV: 77.29) 4 min, 3 epochs 7
o0 93.31 (OOV: 78.19) 20 min, 2 epochs 6

Table 8.4: Different beam settings for FinnTreeBank.
ADAPTIVE BEAM

Beam Width | Tagging Accuracy (%) | Training time (min) | Dec. Speed (KTok/s)
0.9 92.55 (O0V: 73.73) 5 min, 5 epochs 6
0.99 92.87 (OOV: 74.88) 7 min, 7 epochs 6
0.999 92.76 (OOV: 74.65) 8 min, 7 epochs 6

FIXED BEAM

Beam Width | Tagging Accuracy (%) | Training time (min) | Dec. Speed (KTok/s)
1 91.80 (OOV: 71.26) 6 min, 9 epochs 6
10 92.83 (OOV: 74.85) 7 min, 6 epochs 6
20 92.60 (OOV: 73.98) 10 min, 7 epochs 6
o0 91.58 (OOV: 69.46) 199 min, 8 epochs 6

Table 8.5: Different beam settings for Turku Dependency Treebank.

Results

It is difficult to see a clear relation between the beam width and tagging accuracy. The fixed

beam of width one is clearly the worst for both TDT and FTB. Larger beams give improved results when

compared to beam width one, however, all larger beams seem to give results in the same range. Moreover,

increasing the beam from 10 to 20 results in a 0.1%-point drop in accuracy for FTB. Additionally, the
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system without beam search performs worse than systems with adaptive or fixed beam width for TDT.

A small beam width results in a faster training time than a larger beam. When using an infinite beam,
the training time for TDT is surprisingly large. The reason for this is that there are sequences of words in
the training and development data which receive a large number of label guesses. When no beam is used,
this results in very long tagging times for the sequences because a second order model is used.

Discussion It seems that the effect of beam width on tagging accuracy is not easy to analyze. Beam
width one gives inferior results when compared to other beam settings but all other beam settings seem
to deliver accuracy in the same range. The effect on training time is, however, clear. Larger beam width

slows down training.

The effect of large beam widths on training time can be dramatic as exemplified by the results for TDT
using infinite beam width. Analysis of the problem revealed that there are sentences in the treebank that
contain words which consist of characters that only occur in those words. Such words will receive a very
large amount of guesses when label guesses are pruned based probability mass. This happens because the
suffix based label guesser uses Laplace smoothing. The distribution p(y|x) of labels y given a word form
x becomes almost flat when the suffixes of x only occur a single time in the training data. For example,
the three Greek words in “Larnakan lentoasema (kreik. AweBvég Aepodpopio Aapvakac) on Kyproksen
kansainvélinen lentoasema” receive 1287 label guesses each, that is every label in the TDT label set,
when using mass 0.999. When no beam is employed, sequences of consecutive words with extremely

many labels candidates result in extreme tagging times for the sentence.

In contrast to training time, the effect of beam width on decoding time is minimal. This happens
because decoding uses the label dictionary which means that for most words the tagger will choose the

label from a very restricted set of candidates, typically one or two analyses.

Contrary to what the literature indicates (Huang et al., 2012, Collins and Roark, 2004), violation fixing
gave no significant improvements in accuracy in preliminary experiments. As it only slows down training,
it was not included in FinnPos.

In conclusion, it seems that the effect of beam width on tagging accuracy is erratic but the effect on
training time is clear. Therefore, it is probably recommendable to use a beam. The mass based beam

resulted in similar training times and tagging accuracies as the fixed beam.

I think it is interesting that infinite beam width results in inferior results for TDT when compared with
other beam settings. This effect was also noted by Huang et al. (2012) when performing experiments in

POS tagging. I have no explanation for this at the current time.
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WITHOUT A MORPHOLOGICAL ANALYZER

Model Order | Tagging Accuracy (%) Training time Dec. Speed (KTok/s)
0 91.91 3 min, 3 epochs 8
1 92.49 3 min, 4 epochs 8
2 92.49 4 min, 5 epochs 7

USING A MORPHOLOGICAL ANALYZER

Model Order | Tagging Accuracy (%) Training time Dec. Speed (KTok/s)

0 95.35 5 min, 9 epochs 25
1 95.98 5 min, 10 epochs 23
2 95.96 5 min, 8 epochs 24

Table 8.6: Different Model Orders for FinnTreeBank

WITHOUT A MORPHOLOGICAL ANALYZER

Model Order | Tagging Accuracy (%) | Training time (min) | Dec. Speed (KTok/s)
0 91.15 6 min, 4 epochs 6
1 91.17 8 min, 8 epochs 5
2 91.83 5 min, 3 epochs 5

USING A MORPHOLOGICAL ANALYZER

Model Order | Tagging Accuracy (%) | Training time (min) | Dec. Speed (KTok/s)

0 95.53 5 min, 4 epochs 21
1 96.05 5 min, 7 epochs 22
2 96.13 5 min, 5 epochs 20

Table 8.7: Different Model Orders for Turku Dependency Treebank

8.5 Model Order

In this section I examine the impact of model order on tagging accuracy, training time and decoding time.
I examine the effect of model order both when tagging without an analyzer and wen using an analyzer.

Setup The experiments in this section do not use sub-label features in order to clearly reveal the impact

of model order in isolation of other factors.

3FinnPos has now been fixed to employ a user defined ceiling on the amount of guesses used during training. This setting will,
however, degrade the accuracy of the tagger to some extent. Therefore, the setting has not been used in these experiments.
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Results The accuracy on both FTB and TDT increases when going from order zero to a first order model.
Further increasing model order only gives an improvement for TDT.

The increase in accuracy when going from a unstructured (order zero) model to a second order model is
approximately 0.5%-points for both FTB and TDT. This applies both when using a morphological analyzer
and when not using it. It is noteworthy that the increase in accuracy resulting from the morphological

analyzer is substantially larger for both data sets.

Discussion The fact that a second order model improves results only for TDT could be a result of the
fact that FTB is smaller, however, the difference in corpus size is quite small (only about 11% or about
20,000 words). A more likely explanation relates to the fact that the average sentence length in TDT is
13 words, whereas sentences in FTB only have 8 words on average. Higher sentence length translates to
longer average distance between syntactically dependent words. Therefore, a second order model, which
can model longer dependencies, may be more helpful when tagging TDT.

Overall, it seems like the improvement from using a second order model over a zeroth order model is
quite small. Partly, this is probably a result of the fact that both of the data sets are quite small. Moreover,
the unstructured word context features included in the feature set partly overlap with structured features
and thus diminish their effect.

Finally, it is interesting to see that the improvement resulting from model order is about equal when
using a morphological analyzer and when not using one even though the tagging accuracies for the zeroth
order models when using an analyzer and without one are about 4 %-points apart. This shows that using
the analyzer does not nullify the improvement from other improvements to tagging accuracy. Ultimately,
the impact of the analyzer on tagging accuracy is however of a higher magnitude than the impact of model

order.

8.6 Sub-Label Dependencies

In this section, I examine the impact of sub-label order on tagging accuracy, training time and decoding
time both using a morphological analyzer and without a morphological analyzer. The results in this section
differ slightly from Publication VI because of minor bug fixes and improvements to the feature set of the
tagger.

Setup The different model configurations, which are investigated and shown in Tables 8.8 and 8.9, are
(1) no sub-label dependencies, (2) unstructured sub-label dependencies, (3) unstructured and first order
sub-label dependencies and (4) unstructured, first and second order sub-label dependencies.

Results When a morphological analyzer is not used as part of the tagger, total improvement in accuracy
stemming from sub-label dependencies is approximately 0.8%-points for both FTB and TDT. This is
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WITHOUT A MORPHOLOGICAL ANALYZER

Sub-Label Order | Tagging Accuracy (%) | Training time | Dec. Speed (KTok/s)
None 92.49 (OOV: 74.68) 3 min, 5 epochs 6
0 93.05 (OOV: 77.74) 1 min, 2 epochs 5
1 93.29 (OOV: 78.40) 1 min, 2 epochs 4
2 92.68 (OOV: 75.22) 5 min, 4 epochs 6

USING A MORPHOLOGICAL ANALYZER

Sub-Label Order | Tagging Accuracy (%) | Training time | Dec. Speed (KTok/s)
None 95.98 (OOV: 91.41) 3 min, 8 epochs 25
0 96.08 (OOV: 91.98) 1 min, 3 epochs 22
1 96.24 (OOV: 92.28) 1 min, 2 epochs 21
2 96.31 (OOV: 92.58) 4 min, 3 epochs 19

Table 8.8: Different Sub-Label Orders for FinnTreeBank

WITHOUT A MORPHOLOGICAL ANALYZER

Sub-Label Order | Tagging Accuracy (%) Training time Dec. Speed (KTok/s)
None 91.89 (OOV: 70.63) 2 min, 3 epochs 5
0 92.59 (OOV: 73.98) 2 min, 4 epochs 5
1 92.69 (OOV: 74.35) 5 min, 7 epochs 3
2 92.31 (OOV: 72.31) 13 min, 8 epochs 5

USING A MORPHOLOGICAL ANALYZER

Sub-Label Order | Tagging Accuracy (%) Training time Dec. Speed (KTok/s)
None 96.12 (OOV: 91.12) 3 min, 5 epochs 19
0 96.17 (OOV: 91.39) 2 min, 5 epochs 18
1 96.39 (OOV: 91.84) 3 min, 5 epochs 16
2 96.29 (OOV: 91.69) 12 min, 8 epochs 16

Table 8.9: Different Sub-Label Orders for Turku Dependency Treebank

higher than the improvement stemming from increasing model order (from model order zero to model
order two).
When a morphological analyzer is used as part of the tagger, total improvement in accuracy provided
by sub-label dependencies is approximately the same as transitioning from model order zero to one.
Only for FTB, do second order sub-label features give added accuracy compared to first order features
and only when using the morphological analyzer. However, the improvement is not statistically signif-

icant. In other cases, second order sub-label dependencies degrade performance compared to first order
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sub-label dependencies.

As can be expected, training time increases and decoding speed decreases with increasing sub-label
order. However, sub-label dependencies seems to decrease the amount of training epochs needed to con-

verge to the final model parameters.

When a morphological analyzer is not used, unstructured sub-label features are more influential for
accuracy than structured sub-label features for both FTB and TDT. When the analyzer is used, the op-
posite is true. Structured sub-label dependencies improve performance substantially more. In fact, un-
structured sub-label dependencies alone do not provide a statistically significant improvement, when the
analyzer is used, whereas a combination of unstructured and first order structured sub-label dependencies
do. Moreover, the improvement given by first order sub-label dependencies with regard to unstructured

dependencies is greater when the analyzer is used than when it is not used.

Discussion As stated in Section 6.5, sub-label dependencies can improve accuracy in two ways

1. they can counteract data sparsity and

2. capture congruence and other phenomena that transcend individual word classes.

Experimentally, it is difficult to discern these two effects (probably the experiments in this section cannot
do this). Perhaps they are not even distinct effects. After all, in the presence of a sufficient amount of
training data, all combinations of full labels are observed and there is no need for modeling congruence and
other similar phenomena using sub-label dependencies. In practice the data is, however, always sparse.
And I think that in the case of insufficient data, a stronger structured model can yield better results because

it utilizes the training data in a richer manner.

Unstructured sub-label dependencies probably mainly act to reduce data sparsity. This is a credible
explanation for the improvement in accuracy because their effect is almost completely nullified by the
morphological analyzer whose main purpose is similarly to counteract data sparsity which arises because
of the large variety of inflections in Finnish text. In contrast, the effect of structured sub-label dependen-
cies is not nullified by the morphological analyzer. In fact the improvement is greater when the analyzer

is used, when compared to the setting where only unstructured sub-label dependencies are used.

It is possible that the effect of structured sub-label dependencies still mainly stems from reduced data
sparsity in the structured model but a part of the reduction of data sparsity is that significant grammatical

relations can be learned from the data.

The experiments show that sub-label dependencies deliver at least as great improvements as increas-
ing model order which is a standard trick in sequence labeling. Still, however, the impact from using a
morphological analyzer dwarfs both of these effects.
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8.7 Model Pruning

In this section, I examine two model pruning strategies: pruning by update count and pruning by parameter

mass. The strategies are presented in 6.7.

Setup The value for the pruning parameter was set using development data. The range of parameter
values was chosen so as to show the difference in pruning efficiency. The specific parameter values are
not very important. The important aspect is the relation of model size and accuracy. These experiments

only investigate pruning for tagger parameters. Pruning could, however, also be applied to the data-driven

lemmatizer.
UPDATE COUNT THRESHOLD

MA None <2 <3 <4 <5

no | 93.2%, 4.8M | 93.2%, 3.9M | 93.2%, 3.6M | 93.2%, 3.0M | 93.1%, 1.0M
yes | 96.3%, 4.3M | 96.2%, 3.9M | 96.2%, 3.7M | 96.2%, 3.3M | 96.1%, 1.0M

PARAMETER MASS THRESHOLD

MA None < 2.0 < 2.5 <3 < 3.5

no | 93.2%, 4.8M | 93.3%, 1.8M | 93.2%, 1.4M | 93.2%, 1.2M | 93.2%, 0.9M
yes | 96.3%, 4.3M | 96.3%, 0.9M | 96.3%, 0.7M | 96.2%, 0.3M | 96.1%, 0.1M

Table 8.10: Result of applying different pruning strategies on FinnTreeBank models.

UPDATE COUNT THRESHOLD

MA None <2 <3 <4 <5

no | 92.8%, 6.4M | 92.7%, 5.2M | 92.7%, 5.0M | 92.8%, 4.9M | 92.6%, 4.9M

yes | 96.3%, 5.5M | 96.4%, 5.0M | 96.3%, 4.9M | 96.4%, 4.9M | 96.3%, 4.9M
PARAMETER MASS THRESHOLD

MA None < 4.0 < 5.0 < 6.0 <70

no | 92.8%, 6.4M | 92.8%, 2.9M | 92.7%, 2.8M | 92.7%, 2.6M | 92.6%, 2.1M

yes | 96.3%, 5.5M | 96.3%, 1.2M | 96.3%, 0.8M | 96.2%, 0.2M | 96.2%, 0.2M

Table 8.11: Result of applying different pruning strategies on Turku Dependency Treebank models.

Results The results for FTB and TDT are shown in Tables 8.10 and 8.11, respectively. The results are

visualized in Figure 8.1.
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Clearly, mass based pruning is more effective than update count based pruning. For FTB, without a
morphological analyzer, the full accuracy of 93.2% can be maintained even when pruning out 81% of
model parameters. When using update count as pruning criterion, full accuracy cannot be maintained
when pruning out more than 38% of model parameters. For TDT, the corresponding figures are 55% for
mass based pruning and 23% for update based pruning.

When using a morphological analyzer, even further feature pruning is possible. For FTB, 84% of
model parameters can be pruned while maintaining full accuracy when using mass based pruning. When
using update count based pruning, however, no parameters can be pruned without losing accuracy. For
TDT, update count based pruning can prune out 72% of the features when using a morphological analyzer

but mass based pruning can prune out even more — 81%.

Discussion The guiding principle for pruning based on update count is that parameters which receive
few updates activate rarely. Thus they are not very influential for tagging accuracy. Whereas this may
give a sufficient criterion for determining that a parameter is non-influential, it does not give a necessary
condition. There are features that activate often but do not help in tagging. For example, features sharing
the template The word begins with “a” activate often in any realistic data set for Finnish morphological
tagging. However, they are almost completely uninformative. Therefore, provided sufficient data, their
update count will be high but the absolute value of the features will close to zero because the updates
cancel out as the features activate approximately equally often for all labels. Value based pruning will
prune out both features that activate rarely and features that activate often but do not provide additional
information for the tagging task. It is, therefore, not surprising that the experiments quite clearly show
that value based pruning is superior on the FTB and TDT data sets.

Models can be pruned more heavily when the morphological analyzer is used. This probably reflects
the fact that the tagging task is easier when the tagger can rely on the analyzer. For example, a substantial
part of word forms only receive one label from the morphological analyzer. Therefore, the disambiguation
task becomes trivial for these words.

Value based pruning may not be able to filter out features that are highly correlated with other features.
This case should be handled using for example L1 regularization for perceptron taggers Zhang et al. (2014).

Training and development times are not included in Tables 8.10 and 8.11. However, model devel-
opment is substantially more time consuming when update count based pruning is used. This happens
because a new model has to be trained for every threshold, as the threshold influences the model during
training. In contrast, mass based pruning can be performed on a trained model using several thresholds.

Finally, it is interesting to note that some pruned models yields better results for TDT than the original
models. It may be that pruning can help to regularize the model in some cases, however, the differences

in these experiments are not statistically significant.
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Figure 8.1: This figure visualizes the trade-off between model accuracy and model size which can be
achieved using value based pruning (the red data points) and update count based pruning (the blue data
points). The black data point in each graph represents the original model without pruning. Data points that
lie close to the upper left corner of the graph represent models that are pruned efficiently while maintaining
a lot of the original accuracy. In contrast, data points closer to the lower right corner represent models
where pruning is unable to reduce model size effectively but the accuracy of the model still degrades. The
general tendency is that red data points are closer to the upper left corner than blue ones, which means
that value based pruning is more effective than update count based pruning.
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Chapter 9

Conclusions and Future Work

This thesis has presented work on data driven morphological tagging for Finnish using both generative

and discriminative models.

Generative Taggers The finite-state implementation of generative taggers which is presented in Publi-
cations I and IT allows for flexible model formulation. Publication IT shows that it compares favorably to
the widely used HunPos tagger when tagging Finnish text. The implementation does, however, not solve
the principal problem of HMM taggers: the independence assumptions in the model are too harsh. There-
fore, complex unstructured features such as word context cannot be used. This is probably the greatest
pitfall of generative models because surrounding words are quite useful in morphological tagging.

There are other reasons to prefer discriminative models above the generative tagging paradigm. All
generative models require some manner of smoothing. It is difficult to know what the optimal choice
of smoothing method. This may even be language specific to some extent. For example, Publication IT
indicates that the guesser presented in Brants (2000) may not be optimally suited for morphologically
complex languages such as Finnish. A guesser based on the longest common suffix with words in the

training data may give better results.

Discriminative Taggers The discriminative model presented in this thesis is based on the averaged per-
ceptron model. It incorporates sub-label dependencies to improve accuracy in presence of large structured
label sets and a cascaded model structure and beam search in order to speed up estimation. Moreover, I
investigated different pruning strategies for models and showed that model size can be reduced by up to
80% with negligible reduction in accuracy. The FinnPos toolkit implements these optimizations and is
freely available as an open-source utility.

The experiments in Chapter 8 show that the morphological analyzer is clearly the most influential

factor for the accuracy of the model. It results in much larger gains in accuracy than increasing model

107
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order or using sub-label dependencies. Sub-label dependencies however are equally or more influential
than increased model order. This is not entirely surprising because a second order model will be very
sparse when used in presence of label sets exceeding a thousand labels and training data on the order of

200,000 tokens. In contrast, sub label dependencies are by definition less sparse.

Future Work It would be interesting to try self-training as presented by Sggaard (2011). Other semi-
supervised training methods such as distributional similarity could also be interesting. In the context of
morphologically complex languages, distributional similarity of word forms might require a large amount
of training data. Therefore, it could also be interesting to explore using lemmatized training material.

All experiments in this thesis have used a full-fledged morphological analyzer. It would be interesting
to try out a morphological segmentation application such as Morfessor (Creutz and Lagus, 2002). The
segments could be used as features in a similar manner as the morphological labels are used in the current
system.

Further feature engineering could probably be useful. For example verb valency could be useful. It
would also be interesting to combine the finite-state implementation presented in Publications V and VI
with the discriminative estimation in the FinnPos toolkit. Especially, it would be interesting to explore
global tagger constraints implemented as features in a discriminative tagger. An simple example of such a
feature is the sentence has a finite verb form. This would be possible using the finite-state implementa-
tion which is not constrained by a fixed model order unlike standard inference using the Viterbi algorithm.
However, efficient estimation would probably be a challenge.

As further work on model pruning, it would be interesting to compare value based pruning and L1

regularization for perceptron taggers and investigate the combination of these methods.
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