2,845 research outputs found

    Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery

    Get PDF
    Abstract—The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMTmean ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques

    Intima-Media Thickness: Setting a Standard for a Completely Automated Method of Ultrasound Measurement

    Get PDF
    The intima - media thickness (IMT) of the common carotid artery is a widely used clinical marker of severe cardiovascular diseases. IMT is usually manually measured on longitudinal B-Mode ultrasound images. Many computer-based techniques for IMT measurement have been proposed to overcome the limits of manual segmentation. Most of these, however, require a certain degree of user interaction. In this paper we describe a new completely automated layers extraction (CALEXia) technique for the segmentation and IMT measurement of carotid wall in ultrasound images. CALEXia is based on an integrated approach consisting of feature extraction, line fitting, and classification that enables the automated tracing of the carotid adventitial walls. IMT is then measured by relying on a fuzzy K-means classifier. We tested CALEXia on a database of 200 images. We compared CALEXia performances to those of a previously developed methodology that was based on signal analysis (CULEXsa). Three trained operators manually segmented the images and the average profiles were considered as the ground truth. The average error from CALEXia for lumen - intima (LI) and media - adventitia (MA) interface tracings were 1.46 ± 1.51 pixel (0.091 ± 0.093 mm) and 0.40 ± 0.87 pixel (0.025 ± 0.055 mm), respectively. The corresponding errors for CULEXsa were 0.55 ± 0.51 pixels (0.035 ± 0.032 mm) and 0.59 ± 0.46 pixels (0.037 ± 0.029 mm). The IMT measurement error was equal to 0.87 ± 0.56 pixel (0.054 ± 0.035 mm) for CALEXia and 0.12 ± 0.14 pixel (0.01 ± 0.01 mm) for CULEXsa. Thus, CALEXia showed limited performance in segmenting the LI interface, but outperformed CULEXsa in the MA interface and in the number of images correctly processed (10 for CALEXia and 16 for CULEXsa). Based on two complementary strategies, we anticipate fusing them for further IMT improvement

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Automating Carotid Intima-Media Thickness Video Interpretation with Convolutional Neural Networks

    Full text link
    Cardiovascular disease (CVD) is the leading cause of mortality yet largely preventable, but the key to prevention is to identify at-risk individuals before adverse events. For predicting individual CVD risk, carotid intima-media thickness (CIMT), a noninvasive ultrasound method, has proven to be valuable, offering several advantages over CT coronary artery calcium score. However, each CIMT examination includes several ultrasound videos, and interpreting each of these CIMT videos involves three operations: (1) select three end-diastolic ultrasound frames (EUF) in the video, (2) localize a region of interest (ROI) in each selected frame, and (3) trace the lumen-intima interface and the media-adventitia interface in each ROI to measure CIMT. These operations are tedious, laborious, and time consuming, a serious limitation that hinders the widespread utilization of CIMT in clinical practice. To overcome this limitation, this paper presents a new system to automate CIMT video interpretation. Our extensive experiments demonstrate that the suggested system significantly outperforms the state-of-the-art methods. The superior performance is attributable to our unified framework based on convolutional neural networks (CNNs) coupled with our informative image representation and effective post-processing of the CNN outputs, which are uniquely designed for each of the above three operations.Comment: J. Y. Shin, N. Tajbakhsh, R. T. Hurst, C. B. Kendall, and J. Liang. Automating carotid intima-media thickness video interpretation with convolutional neural networks. CVPR 2016, pp 2526-2535; N. Tajbakhsh, J. Y. Shin, R. T. Hurst, C. B. Kendall, and J. Liang. Automatic interpretation of CIMT videos using convolutional neural networks. Deep Learning for Medical Image Analysis, Academic Press, 201

    An Efficient Hemodynamic Workflow in Computational Surgery

    Get PDF
    For few decades, it has been shown that atherosclerosis is the cause of the majority of clinical cardiovascular diseases including peripheral arterial diseases. The diagnosis and treatment for vascular disease has evolved significantly over the past years considering the rapid advances in imaging technologies. In recent years, computational fluid dynamics has been increasingly used as a simulation tool for blood flows. Numerous researches connect wall shear stress quantities to endovascular diseases such as stenosis, aneurism, and atherosclerosis. A thorough knowledge of vascular anatomy and hemodynamic would be beneficial for understanding the development and progression of the disease, the therapeutic decision process and follow up. The objective of this dissertation is to propose a computational fluid dynamic framework that includes: Understanding how streamline efficiently hemodynamic simulation for main arteries to produce database for clinical study/Providing some confidence estimate on numerical results/Extending the state of the art of clinical study by including motion and particles analysis.Computer Science, Department o

    Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm

    Get PDF
    Stroke and cardiovascular diseases (CVD) significantly affect the world population. The early detection of such events may prevent the burden of death and costly surgery. Conventional methods are neither automated nor clinically accurate. Artificial Intelligence-based methods of automatically detecting and predicting the severity of CVD and stroke in their early stages are of prime importance. This study proposes an attention-channel-based UNet deep learning (DL) model that identifies the carotid plaques in the internal carotid artery (ICA) and common carotid artery (CCA) images. Our experiments consist of 970 ICA images from the UK, 379 CCA images from diabetic Japanese patients, and 300 CCA images from post-menopausal women from Hong Kong. We combined both CCA images to form an integrated database of 679 images. A rotation transformation technique was applied to 679 CCA images, doubling the database for the experiments. The cross-validation K5 (80% training: 20% testing) protocol was applied for accuracy determination. The results of the Attention-UNet model are benchmarked against UNet, UNet++, and UNet3P models. Visual plaque segmentation showed improvement in the Attention-UNet results compared to the other three models. The correlation coefficient (CC) value for Attention-UNet is 0.96, compared to 0.93, 0.96, and 0.92 for UNet, UNet++, and UNet3P models. Similarly, the AUC value for Attention-UNet is 0.97, compared to 0.964, 0.966, and 0.965 for other models. Conclusively, the Attention-UNet model is beneficial in segmenting very bright and fuzzy plaque images that are hard to diagnose using other methods. Further, we present a multi-ethnic, multi-center, racial bias-free study of stroke risk assessment

    Contrast-enhanced micro-CT imaging in murine carotid arteries : a new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. Methods: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE(-/-) mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. Results: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. Conclusions: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque

    Appraisal of different ultrasonography indices in patients with carotid artery atherosclerosis

    Get PDF
    In this study a semi-automated image-processing based method was designed in which the parameters such as intima-media thickness (IMT), resistive index (RI), pulsatility index (PI), dicrotic notch index (DNI), and mean wavelet entropy (MWE) were evaluated in B-mode and Doppler ultrasound in patients presenting with carotid artery atherosclerosis. In a cross-sectional design, 144 men were divided into four groups of control, mild, moderate and severe stenosis subjects. In all individuals, far wall IMT, RI, PI, DNI, and MWE of the left common carotid artery (CCA) were extracted using the proposed method. Our findings showed that the maximum far wall IMT, RI, PI, DNI in the CCA were significantly different in the patients with mild, moderate, and severe stenosis compared to control group (p-value 0.05). The proposed method can help physicians to better identify patients at risk of cardiovascular diseases

    Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images

    Get PDF
    A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the identification of the carotid boundaries and the echogenic characteristics for the identification of the bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. The obtained information is then used in the definition of two initial contours, one corresponding to the lumen and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set segmentation model. A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. The obtained results prove that we were able to successfully apply a carotid segmentation technique based on cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic identification of the carotid lumen, overcoming the limitations of the traditional methods
    corecore