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ABSTRACT 

A new algorithm is proposed for the segmentation of the lumen and bifurcation boundaries of the carotid 

artery in B-mode ultrasound images. It uses the hipoechogenic characteristics of the lumen for the 

identification of the carotid boundaries and the echogenic characteristics for the identification of the 

bifurcation boundaries. The image to be segmented is processed with the application of an anisotropic 

diffusion filter for speckle removal and morphologic operators are employed in the detection of the artery. 

The obtained information is then used in the definition of two initial contours, one corresponding to the lumen 

and the other to the bifurcation boundaries, for the posterior application of the Chan-vese level set 

segmentation model. 

A set of longitudinal B-mode images of the common carotid artery (CCA) was acquired with a GE Healthcare 

Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the acquired images include a part of the 

CCA and of the bifurcation that separates the CCA into the internal and external carotid arteries. In order to 

achieve the uppermost robustness in the imaging acquisition process, i.e., images with high contrast and low 

speckle noise, the scanner was adjusted differently for each acquisition and according to the medical exam. 

The obtained results prove that we were able to successfully apply a carotid segmentation technique based on 

cervical ultrasonography. The main advantage of the new segmentation method relies on the automatic 

identification of the carotid lumen, overcoming the limitations of the traditional methods. 

Keywords: Medical imaging; common carotid artery; internal and external carotid arteries; ultrasound 

imaging; image segmentation; Chan-Vese model. 

INTRODUCTION 

The common carotid artery (CCA) is the one that supplies the human head, specifically the front part of the 

brain, and neck, with oxygenated blood. Like other arteries, which purpose relies in the supply of blood from 

the heart, as the coronary arteries, the carotid is also in risk of developing several diseases, like 

atherosclerosis, known as the “hardening of the artery”, after the accumulation of fatty substances, i.e. 

lipoproteins, in the artery walls. This accumulation is known as “plaque” and decreases the blood supply. The 

carotid artery, specifically at the bifurcation, which separates the external (ECA) and internal (ICA) carotid 

arteries, is one very susceptible to atherosclerosis, mainly because of the high hemodynamic forces that can 

be found at the bifurcation and branching structures. 

Non-invasive ultrasound imaging has been widely used in the diagnosis of cardiovascular diseases, in 

particular concerning the atherosclerosis with the evaluation of the intima-media thickness (IMT), assessing 

the distance between the lumen of the carotid artery, that is, where the blood flows, and the inner boundary of 

the adventitia. This measure, and consequent diagnosis of atherosclerosis among other cardiovascular 

diseases, is performed with the aid of B-mode ultrasound imaging, requiring the detection of not only the 

lumen boundaries but as well as of both the near and far adventitia. Therefore, it has been and continues to be 

a great interest in the efficient automatic segmentation of the adventitia and lumen boundaries in B-mode 

ultrasound images of the carotid artery. According to Halenka (1999), in this type of images the carotid 

adventitia appears as two almost parallel lines, known due to their echogenic characteristics, separated in the 

middle by a hipoechogenic space, known as the “double line” pattern (Halenka, 1999). 
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Ultrasound B-mode imaging has been the most widely used technique in image-based cardiovascular 

diagnosis due to the fact of the carotid being a superficial artery and quite suitable for this type of imaging. 

However, B-mode images present difficulties, specifically in the segmentation of the structures involved, due 

to several imaging characteristics like low contrast, speckle noise, echo shadows and artifacts, which lead to 

images of very poor quality that usually require the interaction of an expert. Some works that use several 

statistical distributions can be found in the literature to cope the granular speckle noise in non-compressed 

ultrasound signals, like, for example, the Rayleigh distribution (Wagner et al., 1983; Sarti et al., 2004) and K-

distribution (V. Dutt et al., 1994; R.C. Molthen et al., 1993). However, most of the signals that are actually 

used in ultrasound imaging and medical practice are log-compressed signals, which are therefore, unsuitable 

for the application of statistical distributions because of the reduced intensity range that is characteristic of 

this type of signal. In 2006, Noble (Noble et al., 2006) described the success of texture segmentation 

techniques in the classification of breast masses and liver and kidney tissues in ultrasound images. However, 

the segmentation of the carotid artery tends to be more difficult due to the extremely low degree of 

discrimination of this structure in the usual ultrasound B-mode images. 

Ultrasound imaging represents an extreme and complex challenge to the automatic segmentation algorithms, 

as for the reasons described earlier, as for the amount of boundary edges that may be missing in the image, 

leading to gaps in the vessel boundaries. Additionally, as different anatomical regions of the carotid can be 

acquired in ultrasound B-mode imaging, and also due to the variability of its shape among subjects, a model-

based segmentation is not appropriate. Despite these difficulties, there has been an increasing interest in 

ultrasound imaging-based medical diagnosis as consequence of the technological advances verified in this 

methodology, not only in terms of image quality, but also because of its non-invasive characteristics and low 

cost (Rui Rocha et al., 2011).  

The desired segmentation can be addressed by two main steps: i) the definition or estimation of a region of 

interest (ROI) of the carotid artery in the B-mode ultrasound image and ii) the delineation of the boundaries of 

the structure desired, which depends on the ROI defined and can be the artery lumen, intima or adventitia. For 

this reason, we may consider that the two steps are not independent from each other, since the correct 

delineation of the artery wall in the segmentation algorithm is strictly connected to the right definition of the 

ROI. 

In this paper, a method is proposed for the automatic identification of the lumen region and consequent 

segmentation of the lumen boundaries in longitudinal B-mode images of the CCA. The method searches for 

hipoechogenic structures in the input image, and the lumen region of the CCA is identified based on mean and 

standard deviation calculations concerning the image intensity. Afterwards, the lumen and bifurcation 

boundaries of the carotid artery are identified through the application of a geometrical model, in particular, 

using the Chan-Vese level set model. The method is robust to speckle noise, does not require human 

interaction and can adjust well the segmentation contours to the lumen boundaries represented in the input 

images. 

METHODS 

The approach developed is depicted in Figure 1. It starts by detaching the ultrasound data to be analyzed from 

other features like menus, patient data, etc., followed by the definition of two 2DH (2D histograms) 

representing for each image pixel the mean and standard deviation values of the intensity within a 

neighborhood. With the application of a Gaussian low-pass filter, for speckle noise reduction, the combining 

of the smoothed image with the two 2D histograms allows the identification of the lumen region of the carotid 

artery based on its hipoechogenic characteristics. The result is an estimation of the lumen and bifurcation 

boundaries represented in the input image. 
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Figure 1: Main steps of the method developed. 

 

Data set: A set of 11 longitudinal B-mode images of the CCA was acquired in 256 gray levels using a GE 

Healthcare Vivid-e ultrasound system (GE Healthcare, United Kingdom). All the images include part of the 

CCA and the bifurcation that separates the CCA into the ICA and ECA. In order to achieve high robustness in 

the acquisitions, i.e., images of high contrast and low speckle noise, the parameters of the scanner were 

defined according to the characteristics of each medical exam under evaluation. 

Identification of the image area and consequent reduction of the image size: As a first step, we intend to 

reduce the image area, eliminating any possibility of detecting unwanted features that do not belong to the 

ultrasound data to be analyzed. This procedure also reduces the time required in the posterior steps of image 

processing and segmentation. The reduction of the image data consists in the definition of a rectangular area 

involving the carotid artery (Golemati et al., 2007). With this goal in mind, four points are identified by the 

following procedure: (1) Morphological opening of the original image, using a circular element to remove 

unwanted objects such as characters; (2) Image binarization, as such, the areas outside the region of the 

ultrasound data to be analyzed are discarded; (3) Finally, the four points that correspond to the first and last 

nonzero lines and columns of the binary image are identified. These points are the vertices of the rectangular 

area in which all the further tasks of image processing and segmentation are performed. 

Lumen region identification: This procedure is based on the study performed by Liboni et al. (2007) to 

develop a computer-based tracing of the carotid artery. According to these authors, the carotid characteristics 

in an ultrasound image can be addressed using a model of variable intensity distribution over the carotid 

regions. It is precisely this idea that is used here for the automatic identification of the lumen of the carotid 

artery. 



Pixels belonging to the lumen region of the carotid artery are those characterized by both low mean and 

standard deviation intensity values (Liboni et al. (2007)). In order to proceed with this identification, 2D 

histograms are built: For each pixel of the image to be analyzed, it is calculated within a neighborhood the 

mean and standard deviation intensity values; both values are then normalized and grouped into a set of 

classes. 

A row-wise intensity distribution is built for each column of the ultrasound image region to be analyzed so the 

pixels corresponding to the carotid artery can be identified. However, the image data must be previously 

processed for speckle noise removal and attenuating the high intensity noisy points in the intensity 

distribution; in this task, a Gaussian low-pass filter is used. As mentioned previously, pixels belonging to the 

lumen region of the carotid artery are those characterized by their low mean and standard deviation intensity 

values. Having this into consideration, those pixels are identified in the intensity distributions built as being 

those related to the minimum values presented, which are frequently between the local maximums 

corresponding to the near and far adventitia layers, or corresponding to the walls of the ICA and ECA, or in 

the interval between these two borders, if it is considered a column of the image containing pixels belonging 

to the carotid bifurcation. Based on Liboni et al. (2007) approach, the identification process starts from the 

bottom of the image to be analyzed, i.e. from the highest row index, and moves upwards along the rows in 

order to correctly identify the first pixel of the first maxima which as possibly corresponds to the far 

adventitia of the carotid that is usually associated to the brightest structure of the ultrasound image of the 

carotid artery. Having this first pixel estimated as possibly belonging to the far adventitia, the method 

continues the lumen identification moving upwards and searching for a pixel possible belonging to the lumen 

region. Taking into account the row of the pixel that corresponds to the far adventitia, the pixel possibly 

belonging to the lumen is the first minima point after the far adventitia pixel. Also, its neighborhood mean 

and standard deviation intensity values must match the chosen criteria for the 2D histogram. 

Lumen edges identification: Having obtained the correct identification of a group of pixels belonging to the 

lumen of the carotid artery presented in the input image, the definition of a suitable mask for a level set-based 

segmentation is possible. However, some processing techniques must be applied to the image to be segmented 

in order to assure the robustness of the segmentation process. Hence, an anisotropic diffusion filter is applied 

in order to attenuate the high amount of speckle noise that is commonly present; the filter proposed in (Perona 

and Malik, 1990) with a 2D network structure of 8 neighboring nodes for diffusion conduction was chosen to 

accomplish such smoothing. Then, it is applied a morphological closing operator in order to merge small 

“channels” and “openings”. Thirdly, a threshold based on the value defined based on the image histogram is 

performed. This threshold results in a binary image on which is applied the Sobel gradient operator in order to 

identify the edge points. The binary image obtained with the application of the Sobel operator combined with 

the information relevant to the pixels that belong to the lumen region of the carotid allow the identification of 

the edges correspondent to the superior and inferior wall of the lumen of the carotid artery. Figure 2E shows 

that combination; in this figure, it can be observed the pixels of the lumen candidate string with the highest 

column value (located in the rightest part of the image), which can be searched in the binary image resulted 

from the Sobel operator, the pixels above and below (at the same column) with value 1 (one). Having the row 

and column of these two pixels found, one belonging to the superior lumen edge and the other to the inferior 

one, it is possible to trace the remainder of the edges in the Sobel binary image and store the coordinates of 

each pixel in a string. As such, two strings are built having the coordinates of each pixel belonging to the 

superior and inferior lumen edges. Posteriorly, a new string is defined containing the pixels belonging to the 

bifurcation edge in the binary image, knowing that the bifurcation is located between the superior and inferior 

walls of the carotid. Finally, two masks are defined for posterior application of the geometrical model of 

Chan-Vese for the segmentation of both bifurcation and common carotid artery walls, as shown in Figure 4. 

These masks are created with the information of the superior and inferior walls of the carotid artery, as well as 

its bifurcation, by filling its interior with pixels of value 1 (one), and the outside with pixels of value 0 (zero), 

creating a binary image. 

Segmentation of the lumen and bifurcation boundaries of the carotid artery using the Chan-Vese 

geometrical model: The Chan-Vese level set is a powerful segmentation method that can be used to detect the 

lumen boundaries of the carotid artery using the two masks built in the previous step as initial contours. This 

segmentation approach is well known for its high flexibility and accuracy as is a region-based model 

independent of gradient information. This independence makes the segmentation robust to cases in which 



gaps exist in the boundaries of the carotid as usually occur. The segmentation both of the lumen and 

bifurcation boundaries of the carotid artery is based on the work developed by Lankton and Tannenbaum 

(2008) that defined a local-based framework according to the active contour moves according to an internal 

energy defined in the Chan-Vese approach using a constant intensity model. The framework starts with the 

input of an initial contour, here, one of the masks built in the previous step, and the definition of a signed 

distance function   defined as: 
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where m represents the initial contour and    is the Euclidean distance transform of the considered binary 

image, assigning for each pixel, the distance between them and the nearest nonzero value.  
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Similarly, the exterior of C is defined by:  ( )  [     ( )]            (3) 

Having   and   as independent variables representing the coordinates of a pixel in the domain Ω of an image, 

the following equation represents a function defining a region of interest (ROI) of radius  , with value 1 (one) 

inside and 0 (zero) outside: 
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With eq. (4), the energy functional can be defined as: 

 ( )  ∫    ( ) ∫  (   )  ( ( )  ( ))     
    

,     (5) 

where    ( ) prevents the development of new contours by ensuring that C does not undergo sudden changes 

in its geometry. On the other hand, it will allow certain parts of the contour C to separate or combine within 

each other. Each pixel in this term is masked to  (   ) ensuring that only the local information surrounding 

C will be used. 

The smoothness of the contour C is assured through the application of a regularization term that penalizes its 

arc length. The weight of this penalty is controlled by the parameter   in the new equation of the energy 

functional: 
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Lanktom and Tannenbaum (Lanktom and Tannenbaum, 2008) proposed the introduction of specific energies 

into the generic framework described previously, including the Chan-Vese energy that is expressed as: 
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where   and   are global mean intensities of the interior and exterior regions of C given as: 
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The corresponding Chan-Vese internal energy function is based on the local mean intensities    and   , 

instead of   and  : 
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Eq. (10) can now be replaced in the energy functional of the framework given by eq. (6) defining a localized 

energy. However, to obtain the curvature flow regularization term, eq. (10) must first be derivated: 
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The Chan-Vese energy function finds its minimum when the interior and exterior of the curve    are closer to 

the global mean intensities   and  , while in the localized version, the minimum is obtained when they are 

closer to the local mean intensities    and   . 

For the segmentation of the bifurcation boundaries, the mask illustrated in Figure 3g is chosen as the initial 

contour. The level set for the segmentation of these boundaries must be flexible in order to reach the limit of 

the bifurcation walls. On the other hand, for the segmentation of the lumen boundaries, the mask illustrated in 

Figure 3f is defined and the development contour C has to be properly controlled and somehow attenuated in 

order to prevent its development towards other structures near the carotid artery. The circular ROI  (   ) has 

also to be chosen narrow in order to prevent larger intensity variations during the contour C development 

along the Chan-Vese energy minimization process. 

Contour smoothness: Finally, the obtained contours must be smoothed: Firstly, through a cubic spline 

interpolation and secondly, by projecting all the resulting points of the contour towards a local regression line. 

Once again, a ROI is defined for each point of the contour, regarding the number of points in the 

neighborhood that contribute for the computation of the local regression line. In this process, for each pixel 

we defined an 8-connected-neighborhood for its computation. 

RESULTS 

The parameters of the method proposed used were defined through several experimental tests. Figure 2, 

shows an example of the first step of the method that aims to identify automatically in an input B-mode 

ultrasound image the rectangular area enclosing the ultrasound data to be further analyzed. 
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Figure 2: Automatic identification and consequent detaching of the ultrasound data to be further analysed: (a) 

Original image; (b) Image resultant of the morphological opening; (c) Resultant thresholded image 

overlapped with the rectangular area found to crop the original image defined based on the first and last 

nonzero pixels in the lines and columns; (d) Resultant image with the desired ultrasound image data. 

Figure 3 demonstrates an example of the identification of the lumen region of the CCA in an ultrasound 

image of the carotid artery achieved by our method. Figure 3a shows the cropped image after the application 

of the Gaussian low-pass filter with a kernel size of 40x40 pixels and σ=10; all the possible pixel candidates 

for the lumen region of the CCA are represented with value 1’s (corresponding to the white color) in the 

binary image presented in Figure 3b. Finally, the pixels that were identified as belonging to the lumen region 

of the CCA and as being closer to the lumen boundaries of the CCA are posteriorly used in the definition of 

the initial contour for the application of Chan-Vese segmentation model. 

       

 

Figure 3: Automatic identification of the lumen region of the CCA in one B-mode ultrasound image of the 

carotid artery: (a) Cropped image after the application of a Gaussian low-pass filter; (b) All possible pixel 

candidates for the lumen region of the CCA (in white). 

Figure 4 demonstrates the described steps of our method for the identification of the lumen edges: Figure 4a 

illustrates the cropped image in grayscale, i.e., with pixel values varying from 0 (zero) to 255, with 0 (zero) 

corresponding to the black color and 255 to the white color, while Figure 4b illustrates the same image after 

the application of the anisotropic filter proposed by Perona and Malik (1990) for speckle noise removal. After 

the application of a threshold with a value correspondent to the first 15% of the image histogram width, the 

image illustrated in Figure 4c is obtained. In Figure 4d, the pixels identified in the binary image resultant of 

the Sobel edge detector as belonging to the superior and inferior walls of the carotid artery and to its 

bifurcation are represented in green. Finally, Figures 4e and 4f illustrate the two masks used to define the 

initial contours for the posterior Chan-Vese level set-based segmentation. 

      

(c) (d) 

(a) (b) 

(a) (b) (c) 



 

     

 

Figure 4: Lumen edges identification: (a) Cropped image in grayscale; (b) Resultant image after the 

application of an anisotropic diffusion filter for speckle noise removal; (c) Image after the application of the 

Sobel edge detector; (e) Original cropped image overlapped by the pixels identified in image (d) as belonging 

to the superior and inferior walls of the carotid artery represented in green; (e and f) The two binary images 

defining the masks to be used in the level set-based segmentation. 

Figure 5 demonstrates the results of the application of the geometric level set model based on the Chan-Vese 

energy minimization developed by Lanktom and Tannenbaum (Lanktom and Tannenbaum, 2008), in the 

image shown in Figure 4a and starting with the initial contours defined by the masks visible in Figures 4e and 

4f. Thus, Figure 5a shows the segmentation obtained for the bifurcation of the carotid artery boundaries, while 

Figure 5b reveals the segmentation obtained by our method for the lumen boundaries. 

  

 

Figure 5: Segmentation using the geometric model level set based on the Chan-Vese energy minimization: 

(a) segmentation obtained for the bifurcation boundaries of the carotid artery; (b) segmentation obtained for 

the lumen boundaries of the carotid artery. 

The smoothed contours obtained for the lumen and bifurcation boundaries are both represented in the cropped 

B-mode ultrasound image. For exemplification purpose, Figure 6 shows the smoothed contours obtained by 

our method in 6 of the 11 B-mode ultrasound images tested. From a visual based analysis of the images 

included in this figure, one can conclude that the segmentation results of our method are very good. 
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Figure 6: Examples of the segmentation of the lumen and bifurcation boundaries of the carotid artery 

achieved by our method in 6 B-mode ultrasound images. 

For a quality assessment of the segmentation results obtained by our method, the same 11 B-mode ultrasound 

images were manually segmented by a specialist on this medical exam. The manual segmentation of each 

image consisted in the definition of a set of border points on the lumen and bifurcation of the carotid artery. 

From the points defined, the correspondent contour of the carotid artery was defined by a cubic interpolation 

and then smoothed. Afterwards, the evaluation of the our computational proposed for the automatic 

segmentation of the carotid artery was performed using two different procedures: one focus on area-based 

metrics, by the comparison of the area enclosed between the contour obtained by the computational method 

with the one obtained by the manual segmentation, Figure 8; and the second one focus on a distance-based 

metric of the maximum minimal distance of the points that were defined by the specialist with the closest one 

from the contour obtained by the computational method, through the definition of the normal line that 

intersects the correspondent point of the contour manually drawn. 

The area-based metric procedure was based on the approach proposed in (Yi Guo et al., 2011), according to 

which the evaluation is achieved by the pixel-analysis of true positives (TP), false positives (FP), true 

negatives (TN) and false negatives (FN), and the parameter related to the area overlap (AO) by the two 

contours, which is calculated as: 

   
  

        
    .         (16) 

The values found for this parameter regarding the images under study are shown in Table 1. From the values 

present, one can conclude that the values of AO vary between 94.64% and 98.89%, being the mean area equal 

to 96.78%. 

Concerning the distance-based metric, it is firstly found how many points are coincident on the two contours: 

the one resultant by the automatic segmentation and the correspondent one manually defined. Then, for each 

non-coincident point of the contour manually defined, it is defined a straight line normal to the contour and 

passing through that point. The definition of this line facilitates the identification of the correspondent point in 

the related contour obtained by our automatic method, and the consequent calculation of the distance between 

the correspondent points, i.e., the distance error (ei). As such, the maximum and mean errors can be found, 

Figure 7. 
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Figure 7: Example of a non-coincident point and calculation of the associated distance: (a) Contour manually 

defined draw in green and the non-coincident point in yellow; (b) Definition of the straight line normal to the 

contour manually defined and passing through the non-coincident point; (c) Difference between the contours 

manually and automatically obtained for the non-coincident point; (d) Zoom of the rectangular area identified 

in red in image (c). 

Figure 8 shows the contours obtained by an expert and our segmentation method; the values calculated for the 

quality evaluation of the results are indicated in Table 1. 

       

 

       

 

Figure 8: Contours obtained by an expert (in green) and by our segmentation method (in red) in 6 B-mode 

ultrasound images. 

Table 1: Comparison between the results of the automatic and manual segmentations for the 11 B-mode 

ultrasound images 6 of which are shown in Figure 8. 

Images 

 

Size 

(Rows x 

Columns) 

Number of 

points 

manually 

defined 

Number of 

coincident 

points 

Number of 

non-

coincident 

points 

Maximum 

error (pixels) 

Mean 

error 

(pixels) 

Area 

Overlapped 

(%) 

#1 (Fig. 8a) 
409x504 

46 35 11 1 0.239 98.89 

#2 (Fig. 8b) 
490x533 

73 42 21 1.414 0.293 97.13 

#3 (Fig. 8c) 
417x482 

66 44 22 8 0.66 95.92 

#4 
490x522 

45 34 11 1 0.244 96.88 

#5 (Fig. 8d) 
486x525 

56 34 22 8.246 0.978 95.42 

(c) (d) 

(a) (b) (c) 

(d) (e) (f) 



#6 
493x351 

39 29 10 8 0.833 96.67 

#7 
499x457 

38 24 14 9.84 0.47 94.64 

#8 (Fig. 8e) 
496x457 

44 33 11 7.615 0.635 97.73 

#9 (Fig. 8f) 
499x631 

43 33 10 5.385 1.419 97.76 

#10 
473x505 

57 45 12 3.223 0.33 98.03 

#11 
490x457 

60 50 10 2.712 0.27 97.91 

 

 

DISCUSSION 

The proposed method provides the fully automatic segmentation of the arterial lumen and bifurcation 

boundaries of the carotid artery in longitudinal ultrasound images. Its main advantage relies on the automatic 

identification of the carotid lumen based on its hipoechogenic characteristics overcoming the limitations of 

the traditional methods. In our experimental dataset, the method has proven to be highly efficient, robust and 

accurate. 

As can be verified in Figure 4b, the application of the anisotropic diffusion filter proposed by Perona and 

Malik (1990) is satisfactory, allowing the correct distinction of the carotid artery from other near vessels and 

small features, which greatly facilitates the posterior detection of the boundaries of the carotid for the 

definition of the initial contours for the application of the Chan-Vese model. In all tested images, the initial 

contours for the Chan-Vese model have been successfully defined, i.e., very close to the true lumen and 

bifurcation boundaries of the carotid artery, which is an advantage in the proposed method, since it 

significantly increases the robustness of the segmentation process. 

Regarding the results of the proposed method illustrated in Figure 6, we can consider them to be very 

satisfactory. As it can be seen in the images included in this figure, there was an overall correct identification 

of the boundaries of the lumen and bifurcation of the carotid artery. The best segmentation was achieved in 

the image of Figure 6a since, although it is the case with the lumen, intima-media and adventitia boundaries 

that are best defined in terms of contrast, hipoechogenic characteristics and noise, the contours obtained are 

highly smoothed and perfectly adjusted to the boundaries of the carotid artery. The bifurcation is also very 

well defined in this image. The same not happened for the carotid in the image of Figure 6d; in this case, it is 

clear that the contrast of the bifurcation of this carotid artery is really very poor and with a high level of noise 

and gaps in its interior. In spite of the complexity of this image, the segmentation obtained by our method can 

be globally considered as satisfactory. 

The images tested were manually segmented by an expert and a statistical comparison with the segmentations 

obtained by the automatic segmentation method was performed. The results obtained (Table 1), with a mean 

area overlapped of 96.78%, and a maximum distance of 9.85 pixels between the non-coincident points of the 

contours obtained automatically and manually, confirm the good quality of the proposed segmentation 

method. The overall error in the distances between the non-coincident points of the contours automatically 

and manually obtained is very low, with the maximum value equal to 1.419 pixels for the contours of Figure 

8f, which proves that the contours resulting from the automatic segmentation are very similar to the ones 

manually defined by the expert. 

 

CONCLUSIONS AND FUTURE WORK 

We were able to successfully apply a carotid segmentation method based on cervical ultrasonography. The 

main advantage of the novel segmentation method relies on the automatic identification of the carotid lumen, 

overcoming the limitations of the traditional methods. 

As a future work, we will test our method using more B-mode ultrasound images, including images of carotid 

arteries of patients with severe atherosclerosis. With the obtained contours from the segmentation of the 

carotid artery, 3D models will be building using algorithms of data interpolation, geometrical meshing and 

smoothing. With additional images acquired by computerized angiography, we expect to be able to building 



accurate 3D models for carotid arteries that can be posteriorly deformed and adjusted to the data obtained 

with the segmentation of the lumen and bifurcation structures of the carotid artery in ultrasound B-mode 

images. This will allow the achievement of truthful 3D models for carotid arteries from B-mode ultrasound 

images. 
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