
FACULDADE DE ENGENHARIA DA
UNIVERSIDADE DO PORTO

Segmentation and classification of
structures of the carotid and coronary

arteries for image-based evaluation
of atherosclerotic lesions

Danilo Samuel Jodas

Programa Doutoral em Engenharia Informática

Supervisor: João Manuel Ribeiro da Silva Tavares

Co-Supervisor: Aledir Silveira Pereira

November, 2017



c© Danilo Samuel Jodas, 2017



Segmentation and classification of
structures of the carotid and coronary

arteries for image-based evaluation
of atherosclerotic lesions

Thesis submitted in partial fulfillment of the requirements for the degree of Doctor in
Informatics Engineering by the Faculty of Engineering of the University of Porto

Danilo Samuel Jodas
Master of Computer Science from the Universidade Estadual Paulista “Júlio de Mesquita Filho" (2012)

Bachelor of Computer Science from the Centro Universitário do Norte Paulista (2008)

Supervisor
João Manuel Ribeiro da Silva Tavares

Associate Professor of the Mechanical Engineering Department
Faculdade de Engenharia da Universidade do Porto

Co-Supervisor
Aledir Silveira Pereira

Assistant Professor of the Computer Science and Statistics Department
Universidade Estadual Paulista “Júlio de Mesquita Filho"

November, 2017





Acknowledgments

I would like to thank Professor João Tavares for his valuable contributions that have in-
deed improved my PhD project at each stage of the developed work. The advice provided
by Professor João Tavares contributed to my training as a good researcher. Moreover, his
effort for my coming to Portugal made me have wonderful experiences and knowledge
about the Portuguese and European cultures.

I would like to thank my co-supervisor Professor Aledir Silveira Pereira for all the
support provided during the development of this PhD project and his dedicated effort
that made possible my coming to Portugal. This PhD thesis was possible thanks to the
opportunity that Professor Aledir Silveira Pereira gave me some years ago to start my
MSc project.

I want to show all my gratitude to my parents who gave me an excellent education
and raised me with all the effort and affection that made me a better person every single
day. Even with all the difficulties, my parents always offered me all the support for a good
education, which contributed to my personal and professional development. I thank them
so much for everything they have done for me.

I want to show my sincere gratitude to all my friends that have worked with me and
with whom I have had happy and memorable moments. Thank you for sharing experi-
ences and knowledge that have helped me a lot during my studies. It was a pleasure to
have met them.

i





“The memory is the result of the interest. The greater the interest for something, the
easier the way it will be kept in the memory. It is a mistake try to keep in the mind

information that are not interesting for you. The memory is a selective element that
represents the principle of the knowledge structuring.”

Olavo de Carvalho

iii





Abstract

Evaluation of the arterial system represents an important step towards the identification of
disorders related to the reduction or even the blockage of the blood flow to vital structures
of the body. The presence of atherosclerosis represents a risk to the life of the patients
and needs to be treated as early on as possible to avoid the occurrence of heart attacks and
strokes. The advent of novel imaging systems contributed to the envisage of the anatomy
of the arterial system and the accurate identification of abnormalities that may impair
the blood flow through the arteries under analysis. However, the manual delineation of
arterial structures in medical images is a time consuming and subjective task. Therefore,
the development of automatic algorithms for image segmentation is necessary to expedite
the diagnosis and treatment planning before the onset or even the recurrence of symptoms.

This project focused on the assessment of image processing and analysis algorithms
to address the automatic segmentation of structures of the arterial system, particularly
those present in the carotid and coronary arteries. A study of classification models for
identifying calcifications in atherosclerosis of the carotid artery in computed tomography
angiography images was also carried out. Computational algorithms for the segmenta-
tion of the arterial system and analysis of the atherosclerotic plaque components were
reviewed and classified according to the computational technique and imaging modality
used. The complexity of the structures and intensity variations of the images were seen to
be a challenge to the development of new fully automatic segmentation methods. Cluster-
ing algorithms and deformable models were found to be promising for the segmentation
of structures belonging to carotid and coronary arteries. Therefore, the first step in the
development of segmentation methods was the identification of the lumen in carotid and
coronary arteries. The low intensity and circular shape of the lumen in axial magnetic
resonance images of the carotid artery were taken as premise to propose a new automatic
method without any type of user interaction. The combination of the K-means clustering
algorithm and the circularity index was used to separate the low intensity regions of the
magnetic resonance images and to select the one which represents the potential lumen
region of the carotid artery. Additionally, an active contour model was employed to refine
the contour of the identified lumen region.

The ability of the proposed automatic segmentation method to identify the lumen re-
gion in intravascular ultrasound images of the coronary artery with the same parameters
previously defined for magnetic resonance images of the carotid artery was also assessed
in this project. This was relevant since the intensity and shape of the lumen in intravascu-
lar ultrasound images of the coronary artery are similar to the ones in axial black-blood
magnetic resonance images of the carotid artery. Modifications were made to improve the
shape of the segmented lumen contour and eliminate one parameter previously included
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to identify regions segmented by the K-means clustering algorithm that represent noise.
Moreover, a new approach was proposed to identify and eliminate side branches present
in bifurcations of the coronary artery.

The combination of a distance map and a new external energy for the Snake model
was adopted to segment the outer boundary of the carotid artery in magnetic resonance
images. To prevent gradient vectors close to the boundary of the lumen region, the seg-
mented lumen contour was used as a baseline for the first outwards expansion based on the
distance map of the grayscale intensities of the magnetic resonance image under study.
Thereafter, an external energy based on the intensity of the input image was then inte-
grated in the active contour model to complete the expansion of the contour towards the
carotid artery boundary. The proposed approach was also conceived to effectively handle
with carotid arteries having large wall thickness.

Concerning the identification of calcium regions in computed tomography angiog-
raphy images of the carotid artery, a two-stage classification approach was adopted to
first identify the regions where calcified components may be present based on features
extracted from each pixel inside the carotid artery wall. Then, features extracted from
each identified region were submitted to the second stage to determine the regions that
represent the true calcifications of the atherosclerosis. The geometrical and intensity fea-
tures adopted in the second classification stage revealed to be promising in identifying
and eliminating regions with intensities similar to the ones of the calcifications present in
atherosclerotic lesions of the carotid artery.

The results obtained by the proposed methods were compared against the correspond-
ing manual delineations, as well as with methods reported in literature. The effectiveness
of the developed methods was confirmed and the aspects that might be improved were
identified.

Keywords: Medical images, Image analysis, Segmentation, Deformable models,
Atherosclerosis, Classification.



Resumo

A avaliação do sistema arterial representa um passo importante para a identificação de
distúrbios relacionados à redução ou mesmo ao bloqueio do fluxo sanguíneo para estru-
turas vitais do corpo. A presença de aterosclerose nas artérias representa um risco para
a vida dos doentes e precisa ser tratada o mais cedo possível para evitar a ocorrência de
ataques cardíacos e acidentes vasculares cerebrais. O advento de novos sistemas de diag-
nóstico por imagem tem contribuído para a visualização da anatomia do sistema arterial e
a identificação precisa de anormalidades que podem prejudicar o fluxo sanguíneo através
das artérias em análise. No entanto, a marcação manual das estruturas das artérias em
imagens médicas é uma tarefa bastante demorada e subjectiva. Portanto, o desenvolvi-
mento de algoritmos de segmentação automática é necessário para acelerar o diagnóstico
e o planeamento do tratamento antes do início ou até mesmo da recorrência de sintomas.

Este projeto focalizou a avaliação de algoritmos de processamento e análise de im-
agem para abordar a segmentação automática de estruturas do sistema arterial, particu-
larmente aquelas presentes nas artérias carótida e coronária. Também foi realizado um
estudo de modelos de classificação para a identificação de calcificações em ateroscle-
roses presentes na artéria carótida em imagens de angiografia por tomografia computa-
dorizada. Algoritmos computacionais para a segmentação do sistema arterial e análise da
composição de ateroscleroses foram identificados e classificados de acordo com a técnica
computacional e modalidade de imagem em causa. A complexidade das estruturas e vari-
ações de intensidade das imagens foram vistas como um desafio para o desenvolvimento
de novos métodos de segmentação totalmente automáticos. Algoritmos de clustering e
modelos deformáveis foram identificados como promissores para a segmentação de estru-
turas pertencentes às artérias carótida e coronária. Portanto, o primeiro passo no desen-
volvimento de métodos de segmentação foi a identificação do lúmen nas artérias carótida
e coronária. A baixa intensidade e forma circular do lúmen em imagens de ressonância
magnética axial da artéria carótida foram tomadas como premissa para o desenvolvimento
de um novo método automático sem qualquer tipo de intervenção manual. A combinação
do algoritmo K-means com o índice de circularidade foi adotada para separar as regiões
de baixa intensidade das imagens de ressonância magnética e selecionar a que representa
a possível região do lúmen da artéria carótida. Além disso, foi utilizado um modelo de
contorno ativo para refinar o contorno da região do lúmen.

A capacidade do método de segmentação automática para a identificação da região
do lúmen em imagens de ultrassom intravascular da artéria coronária com os mesmos
parâmetros previamente definidos para imagens de ressonância magnética da artéria
carótida também foi avaliada neste projeto. Esta adequação foi testada devido ao facto de
que a intensidade e a forma do lúmen nas imagens de ultrassom intravascular da artéria
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coronária são semelhantes às encontradas em imagens de ressonância magnética axial
black-blood da artéria carótida. Foram feitas modificações para melhorar o formato do
contorno do lúmen e eliminar um parâmetro previamente adotado para identificar regiões
segmentadas pelo algoritmo K-means que representam possíveis ruídos. Além disso, uma
nova abordagem foi proposta para identificar e eliminar ramos laterais presentes nas bi-
furcações da artéria coronária.

A combinação de um mapa de distâncias e uma nova energia externa proposta para o
modelo de contorno ativo conhecido por "Snake" foi adotada para segmentar a borda ex-
terna da artéria carótida em imagens de ressonância magnética. A fim de evitar os vetores
de gradiente próximos da borda da região do lúmen, o contorno do lúmen foi usado como
contorno inicial para a primeira expansão com base no mapa de distâncias das intensi-
dades da imagem de ressoância magnética. Em seguida, uma energia externa baseada na
intensidade da imagem em estudo foi integrada ao modelo de contorno ativo para comple-
tar a expansão do contorno em direção à borda da artéria carótida. A abordagem proposta
foi concebida para lidar de maneira eficiente com artérias carótidas de grande espessura.

Relativamente à identificação de calcificações em imagens de angiografia por tomo-
grafia computadorizada da artéria carótida, uma abordagem de classificação em duas
etapas foi adotada para primeiramente identificar as regiões que representam possíveis
componentes calcificados com base em características extraídas de cada pixel contido na
parede da artéria carótida. Em seguida, as características extraídas de cada região foram
submetidas à segunda etapa para determinar as regiões que representam as verdadeiras
calcificações da aterosclerose. As características geométricas e de intensidade adotadas na
segunda fase de classificação revelaram-se promissoras para identificar e eliminar regiões
com intensidades similares às das calcificações presentes nas lesões ateroscleróticas da
artéria carótida.

Os resultados obtidos dos métodos propostos foram comparados com as respectivas
marcações manuais, bem como com os métodos relatados na literatura. A eficácia dos
métodos desenvolvidos foi confirmada e os aspectos que podem ser melhorados foram
identificados.

Palavras-chave: Imagem médica, Análise de imagem, Segmentação, Modelos defor-
máveis, Aterosclerose, Classificação.
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1 Introduction 3

1 Introduction

Cardiovascular diseases still remain one of the most leading causes of death in the world.
According to the World Health Organization, in 2011, cardiovascular diseases represented
31% of deaths of people around the world [1]. In 2008, cardiovascular diseases were re-
sponsible for the death of more than 17 million people under 60-year old [1]. Smoking,
lack of physical exercise, inadequate food and excessive alcohol consumption are the pri-
mary causes of this type of disease [1]. Pathologies associated to cardiovascular diseases
might lead to serious complications such as amaurosis fugax, heart attacks and strokes.
Hence, the early diagnosis is important to minimize the risks of appearance or recurrence
of those symptoms.

One of the main underlying process of cardiovascular diseases is the atherosclero-
sis, which results from the formation of fatty material and cholesterol inside the walls of
the arterial system. In the advanced stage, an atherosclerosis is composed by lipid core,
fibrous tissue, intraplaque hemorrhage and calcifications. Atherosclerosis reduces or oc-
cludes the blood flow through the artery, leading to serious complications such as angina,
heart attack and vascular cerebral accident. An aneurysm is another type of cardiovascu-
lar disease that can arise as a result of a weakened artery wall. The formation and rupture
of blood clots originated from an aneurysm might induce hemorrhages, thrombosis and
hypovolemia shocks.

The interruption of the blood flow to a portion of the brain is the underlying condition
for the appearance of cerebrovascular diseases [2]. Small blood clots produced by abnor-
mal beating of the heart are one of the causes of cerebral events [2]. Shedding of such
clots into the bloodstream through the carotid arteries might block small vessels of the
brain, causing lack of oxygen and, consequently, a stroke. The formation of cholesterol
deposits in the wall of the carotid artery is also responsible for impairing the normal blood
flow to regions of the brain. Cholesterol debris detached from such deposits might enter
the bloodstream and travel to small vessels of the brain, resulting in the blockage of such
vessels and, consequently, in cerebral events. Transient ischemic attack and stroke are the
most common types of cerebrovascular diseases [2].

The assessment of atherosclerosis in the arterial system plays an important role in
the care of patients subjected to the above-mentioned cardiovascular and cerebrovascular
diseases. The early diagnosis allows timely planning of an adequate treatment for limiting
the disease progression. The degree of stenosis is commonly used to assess the percentage
of artery narrowing at the location of the atherosclerotic plaque. The degree of stenosis is
usually classified as mild (0-29%), moderate (30-69%) and high (70-99%) [3]. In general,
patients with high degree of stenosis have a higher chance of developing a cerebral event
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and therefore are selected for a surgical or endovascular procedure [3, 4]. However, the
quantification of atherosclerosis proved to be a more accurate and reliable diagnosis to
select the most appropriate treatment for each patient and identify those with higher risk
for future symptomatic events.

Technological advances made in computational systems of imaging diagnosis allow
the assessment and detection of cardiovascular and cerebrovascular diseases in a less in-
vasive manner. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI)
are examples of less invasive techniques that have been widely used for identification of
diseases and dysfunctions of the internal organs. CT is a technique for image reconstruc-
tion which relies on the radiologic attenuation of the anatomical regions under evaluation
[5]. In CT exams, a device composed by x-ray emission sources rotates around the region
of interest to generate 2D images of the related anatomical structures. The quality of CT
images is better than those generated by traditional x-ray systems.

In spite of its advantages over the traditional catheter diagnosis, CT might be harmful
to the health of patients due to the x-rays emission. It is sometimes possible to overcome
this problem by using other imaging systems such as ultrasound and magnetic resonance,
which are widely used and accepted by physicians. The diagnosis performed by the MRI
exam represents a lower risk to human health as a result of the non-exposure to the ion-
izing radiation. Magnetic Resonance Angiography (MRA) is an MRI diagnosis of blood
vessels commonly adopted to evaluate diseases of the cardiovascular system. MRA is
a noninvasive technique and safer than traditional angiography exams, since there is no
exposure to the x-rays emission. Other MRI exams such as Time-of-Flight (TOF) angiog-
raphy are also used for generating images without injection of contrast dye [6], which is
important to avoid allergic reactions in the patient.

Intravascular Ultrasound (IVUS) is another imaging technique which allows the vi-
sualization of the morphology of blood vessels by means of ultrasound waves acquired
from a small ultrasound transducer attached to the top of a catheter that is inserted into
the artery to be diagnosed. Although it is an invasive imaging technique, IVUS allows
experts to detect and quantify atherosclerosis, as well as to assess the shape and size of
the vessel under analysis.

Techniques of image processing and analysis are commonly necessary to identify
structures in images in order to obtain statistic data or apply intelligent algorithms for
pattern recognition tasks. Regarding the usage in medical applications, techniques of im-
age processing and analysis are important to improve the quality of medical images and
consequently, the detection of structures associated to the pathologies to be evaluated.
Techniques such as smoothing filtering, contrast enhancement and segmentation algo-
rithms are commonly adopted to minimize noise effects, perform contrast correction and
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divide an original image in order to separate its main regions. Hence, image segmentation
is an important process for generating information to be processed in many applications
found in medicine.

Image segmentation can be carried out in the following manners:

• Manual: the pixels belonging to the regions of interest are explicitly defined by the
user. However, it is an unfeasible task in images with a large amount of pixels or
from complex scenarios;

• Automatic: a computational algorithm automatically identifies the image pixels
based on pre-established rules. However, these algorithms may not always provide
the most efficient results due to the complexity of the images or/and of the structures
involved;

• Semiautomatic: the approaches discussed above are combined in order to enable
the user to provide critical information about the structures of interest. Moreover,
semiautomatic algorithms can be used to manually correct errors or inaccurate re-
sults obtained by automatic methods.

Automatic and semiautomatic methods of image segmentation have been developed
in order to accurately detect arteries and blood vessels in images acquired from different
imaging techniques [7–9]. These methods provide fast identification of the structures
for evaluating pathologies in an efficient way. Moreover, the common acquisition of
large volumes of images of the arterial system stimulates the development of algorithms
to automatically identify the lumen and outer boundary of the arteries, as well as the
detection of diseases such as aneurysm, stenosis and atherosclerosis [10–13].

2 Main objectives of the project

The objectives defined for this PhD project were the following ones:

• To prepare a literature review of the atherosclerotic plaque components and the
association between atherosclerosis and cerebrovascular diseases, as well as the
imaging modalities used to identify plaque components; to identify the computa-
tional algorithms based on image processing, clustering and supervised classifica-
tion adopted for identification and quantification of atherosclerotic plaque compo-
nents in images;
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• To evaluate the relevance of magnetic resonance (MR) images in the identification
and analysis of the structures of the carotid artery; to address the automatic seg-
mentation of the lumen and outer boundaries in MR images of the carotid artery
and explore the main difficulties associated with the intensity variation inside the
artery under analysis;

• To study the applicability of the segmentation method proposed for identifying the
lumen region in MR images of the carotid artery to detect the lumen in IVUS images
of the coronary artery; to evaluate the similarities of the grayscale intensity of both
imaging modalities in order to employ the same lumen segmentation method in
IVUS images of the coronary artery without modification of the parameter values
defined for MR images of the carotid artery;

• To evaluate the use of deformable models for the segmentation of the outer bound-
ary of the carotid artery in magnetic resonance images. Variations of the grayscale
intensity are a challenge to the expansion of the segmented lumen contour towards
the boundary of the carotid artery in the image under analysis. Additionally, carotid
arteries with large wall thickness may still affect the convergence of the contours
to the boundaries of interest. Hence, the development of new approaches based
on deformable models is important to improve the accuracy of the segmentation of
carotid artery boundaries in magnetic resonance images;

• To develop a new classification model which identifies calcifications in atheroscle-
rotic plaques present in carotid arteries; to handle the incorrect detection of regions
with intensities similar to calcified components resulting from the inaccurate regis-
tration of the ground truths obtained from histological images with the correspond-
ing in vivo Computed Tomography Angiography (CTA) images.

In summary, the development of algorithms to segment, characterize and classify
structures of the carotid and coronary arteries in MR and IVUS images was the main fo-
cus of this project. More particularly, the segmentation of the lumen and outer boundaries
in MR images of the carotid artery and classification of calcified regions in atheroscle-
rotic lesions of the carotid artery in CTA images were the main purposes of this project.
An algorithm for the fully automatic segmentation of the lumen in IVUS images of the
coronary artery was also developed.



3 Organization of the Thesis 7

3 Organization of the Thesis

This Thesis is organized in two main parts: Part A and Part B. This part (Part A) presents
the context in which the work was developed, the main objectives defined for this PhD
project, a summarized description of the tasks developed, the main contributions achieved,
the final conclusions and a discussion of the future works. Part B is composed of five ar-
ticles written during the development of the PhD project. The articles provide a detailed
description of the state-of-the-art related to the project, the new fully automatic segmenta-
tion algorithms developed and the classification model proposed to identify calcifications
in atherosclerotic lesions of the carotid artery in CTA images. The following articles are
included in Part B:

Article 1

A review of computational methods applied for identification and quantifica-

tion of atherosclerotic plaques in images

Danilo Samuel Jodas, Aledir Silveira Pereira, João Manuel R. S. Tavares

Expert Systems with Applications, 46:1-14, 2016

Article 2

Lumen segmentation in magnetic resonance images of the carotid artery

Danilo Samuel Jodas, Aledir Silveira Pereira, João Manuel R. S. Tavares

Computers in Biology and Medicine, 79(1):233-242, 2016

Article 3

Automatic segmentation of the lumen region in intravascular images of the

coronary artery

Danilo Samuel Jodas, Aledir Silveira Pereira, João Manuel R. S. Tavares

Medical Imaging Analysis, 40:60-79, 2017

Article 4

Using a distance map and an active contour model to segment in proton den-

sity weighted magnetic resonance images the carotid artery boundary from

the lumen contour

Danilo Samuel Jodas, Maria Francisca Monteiro da Costa, Tiago A. A. Par-
reira, Aledir Silveira Pereira, João Manuel R. S. Tavares
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Submitted to an international journal, 2017

Article 5

Classification of calcified regions in atherosclerotic lesions of the carotid

artery in computed tomography angiography images

Danilo Samuel Jodas, Aledir Silveira Pereira, João Manuel R. S. Tavares

Submitted to an international journal, 2017

4 Brief description of the developed work

The segmentation of structures of the carotid artery is a challenge due to the usual in-
tensity variation of the images and weak boundaries of the regions of interest. This PhD
project concerned the development of fully automatic methods for the segmentation of
the lumen and carotid artery boundaries in magnetic resonance images. The applicability
of the proposed automatic segmentation method used in axial magnetic resonance images
to detect the lumen in intravascular ultrasound images of the coronary artery was also
assessed. Additionally, a two-stage classification process to be applied in CTA images
was developed to detect calcium regions present in atherosclerotic lesions of the carotid
artery. The following works were accomplished to fulfill the objectives established in this
project:

• The state-of-the-art of the methods already used in the identification and quantifi-
cation of atherosclerotic plaque components in images was reviewed. The most
important studies related to the segmentation of atherosclerotic plaques and the
associated components in images acquired from the carotid and coronary arter-
ies by ultrasound, CTA and MRI techniques were categorized in terms of image
processing and analysis, clustering algorithms and supervised classification. The
advantages and limitations of each study were also discussed. This comprehen-
sive review summarizes the most important computational methods employed to
identify structures of the carotid and coronary arteries in medical images, partic-
ularly the atherosclerotic plaques and their main components. Additionally, the
most used image modalities in diagnosis, visualization and characterization of the
atherosclerotic plaque components are identified. The review is presented in Article
1 included in Part B;

• The segmentation of the lumen region in MR images of the carotid artery plays an
important role in evaluating the pathologies associated to cardiovascular diseases.
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Intensity variation and the presence of noisy artifacts represent a challenge to the
development of fully automatic segmentation methods which identify the correct
location of the lumen region of the carotid artery. A method for the fully auto-
matic segmentation of the lumen region in axial MR images of the carotid artery
was proposed. This new method is based on the fact that the lumen occupies a
circular-shaped region with low grayscale intensity in axial MR images. The new
approach is based on the following stages: i) separation of the regions in the input
MR image by means of the K-means clustering algorithm with subtractive cluster-
ing; ii) evaluation of the regions belonging to the cluster with low intensities by
the modified mean roundness to calculate their circularity index; the one with the
maximum value represents the potential lumen region of the carotid artery; and iii)
refinement of the boundary of this region by an active contour algorithm. The pro-
posed method proved to be effective in identifying the correct location of the lumen
region in 181 Proton Density Weighted (PDW) and 181 3D-T1-Weighted MR im-
ages of the carotid artery. The new method is presented in Article 2 included in Part
B;

• The segmentation of the lumen and media-adventitia regions in IVUS images of
the coronary artery is an intensive focus of research since it plays an important role
towards the identification and quantification of atherosclerosis. A fully automatic
method for the segmentation of the lumen in IVUS images of the coronary artery
was developed. The new method is based on the following steps: i) the down-
sampling of the input image resolution by means of the Gaussian pyramid; ii) the
identification of the regions present in the IVUS image using the K-means cluster-
ing algorithm with subtractive clustering; iii) the identification of noisy artifacts in
the regions with low grayscale intensity using a morphological opening operation
with an adaptive structuring element; iv) the identification and removal of parts of
bifurcation regions; v) the employment of a circularity index to identify the poten-
tial lumen region; vi) the refinement of the boundary of this region by means of an
active contour algorithm; and vii) the post-processing of the lumen contour based
on the morphological opening and dilation operations with adaptive structuring el-
ements. The proposed method was evaluated on 326 IVUS images of the coronary
artery acquired at a frequency of 20 MHz. The method is described and discussed
in Article 3 included in Part B;

• The segmentation of the boundary of the carotid artery represents the first step
towards the identification of the atherosclerotic plaques and analysis of the mor-
phology of the associated components. Deformable models have been successfully
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employed to segment the outer boundary of the carotid artery in MR images. How-
ever, carotid arteries having large wall thickness and gradient vectors close to the
lumen regions represent a challenge to expand the segmented lumen contours to-
wards the outer boundaries of interest. Hence, a method to automatically identify
the boundary of carotid arteries in PDW MR images was developed. The gray-
weighted distance is firstly used to generate a distance map of the intensities of
the input MR image of the carotid artery. The Snake model is then applied on the
distance map to expand the segmented lumen contour beyond the boundary of the
lumen region. An ellipse constraint is also included in the Snake model to avoid
local convergence and maintain the contour with elliptical shape. Thereafter, a new
external energy for the Snake model called Weighted External Energy is employed
to complete the convergence of the expanded contour towards the true boundary of
the carotid artery. The method was effective in segmenting the outer boundaries
of the carotid artery in 185 PDW MR images, showing better results than the ones
obtained by using a Gradient Vector Flow-based force commonly used as exter-
nal energy in active contour models. The new approach is presented in Article 4
included in Part B;

• The diagnosis of the progression of atherosclerotic plaques is often made by iden-
tifying and evaluating the morphology of their main components. A new classifica-
tion model was proposed to identify calcified regions in atherosclerotic plaques of
the carotid artery in CTA images. Since parts of the lumen and other structures of
the carotid artery may affect the classification results due to the similarity of their
grayscale intensities with the calcium regions, the proposed classification model
is composed of two stages. The first stage is the classification per pixel, which is
based on the features extracted from each pixel inside the carotid wall. The result-
ing regions are then submitted to the second stage, the classification per region, to
identify those representing the correct calcified components of the atherosclerotic
lesion. Additionally, outlier removal is performed to improve the accuracy of the
classification model, which is presented in Article 5 included in Part B.

The steps of the work developed in this PhD project along with examples of corre-
sponding results are illustrated in Figure 1.

5 Main contributions achieved

The main contributions of this PhD project were the following ones:
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Figure 1: Steps of the work developed during this PhD project along with examples of
corresponding results. The articles indicated in each step and included in Part B of this re-
port provide a detailed description of the developed methods. Article 1 is a comprehensive
review of the related work and therefore does not appear in this diagram.
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• A comprehensive review of the computational methods for the segmentation of
atherosclerosis and assessment of the associated components was successfully pro-
duced. The context comprised in this review is important to provide a comprehen-
sion of the theories related to: cardiovascular diseases, imaging systems for visu-
alization of the carotid and coronary arteries, clinical methods usually adopted in
the diagnosis of symptomatic and asymptomatic patients, and the identification of
the main approaches applied to segment and assess the structures of the carotid and
coronary arteries, particularly the atherosclerotic plaque components. The methods
described in this review are classified per computational technique used to segment
the main components of the atherosclerosis. This can help other researchers to
investigate the appropriate algorithms and image modalities used to identify struc-
tures of the carotid and coronary arteries for future research works;

• A novel automatic method was developed to identify the location of the lumen
region in axial MR images of the carotid artery. Segmentation based on the sub-
tractive clustering algorithm was adopted to improve the stability concerning the
establishment of the values of the cluster centroids used in the K-means clustering
algorithm. A circularity index is used to identify the lumen of the carotid artery,
which normally has a circular shape in axial MR images. The following circularity
index was proposed to evaluate each region with low grayscale intensity segmented
by the K-means clustering algorithm:

E = MR+
1
Ir

+
1
d
, (1)

where MR is the mean roundness that assesses the circularity of the region under
analysis, Ir is an irregularity index used to avoid regions with irregular contours and
d is the centre index that represents the distance of the centre of the region under
analysis to the centre of the input image. The region that provides the maximum
value for E is assumed to be the lumen of the carotid artery under study.

Based on comparisons against manual delineations, the proposed method was
shown to be effective in identifying the correct lumen region without any manual
intervention. Comparison with results obtained from studies found in the literature
also suggested the superiority of the proposed method;

• The applicability of the proposed fully automatic method for segmenting the lumen
in IVUS images of the coronary artery with the same parameters defined for the
MR images of the carotid artery was assessed. This novel approach was able to
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identify the lumen in IVUS images without any changes in the values of the param-
eters previously established for the MR images. Improvements in the method were
also accomplished in order to increase the automaticity and performance whilst im-
proving the shape of the lumen contour. Moreover, the method is able to identify
and remove side branches in IVUS images with a bifurcation in the coronary artery.
In IVUS images of the coronary artery, bifurcations represent the extension of the
low grayscale intensity from the lumen region to the border of the input image. Re-
gions representing this extension are generated when the cluster corresponding to
the low-intensity values is built by the K-means clustering algorithm. Bifurcation
regions are not assessed in the subsequent processing steps of the method proposed
for the segmentation of the lumen region in MR images of the carotid artery, since
the regions at the border of the input image are discarded before the identification
of the lumen. Hence, a new approach to identify and remove bifurcations in IVUS
images of the coronary artery was developed. Bifurcation regions are removed from
the binary images generated by the K-means clustering algorithm according to:

r = min(dist(Cp,Bp))−min(dist(Cp,Rp)), (2)

where Cp is the pixel at the centre of the input image, Bp is the set of pixels of the
bifurcation region that are at the border of the input image and Rp is the set of all
pixels of the contour of the bifurcation. Based on the analysis of the regions of the
input binary image generated by the K-means clustering algorithm, the bifurcation
is assumed to be the region that is in the centre and with pixels at the border of the
image under analysis. Once a bifurcation is found, the proposed formulation de-
fined in Equation 2 is used to generate a circle with radius r centred at the center of
the image in order to delimit the regions with the possible lumen. The region out-
side this circle that represents the side branch of the bifurcation is removed from the
binary image corresponding to the low grayscale intensity. This approach is shown
to be effective in decreasing the segmentation errors and, consequently, improving
the segmentation accuracy;

• A new approach to segment the boundaries of carotid arteries in PDW MR images
based on the expansion of the segmented lumen contours was proposed and de-
veloped in this project. The combination of a gray-weighted distance map of the
intensities of the input MR images with a novel external energy for the Snake model
proved to be effective in segmenting carotid arteries with weak boundaries or large
wall thickness. The distance map of the input MR image is calculated according to:
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t f (P) =
l

∑
i=1

f (pi−1)+ f (pi)

2
, (3)

where f (pi− 1) and f (pi) are the intensities of the adjacent pixels pi− 1 and pi

along the minimum cost path t f (P), and l is the length of the path P. The result-
ing distance map image is then used as input to the Snake model with an ellipse
shape constraint to expand the segmented lumen contour beyond the boundary of
the lumen region. Then, the following weighted external energy was proposed to
complete the evolution of the expanded contour towards the boundary of the carotid
artery:

Eext = A∗ ((Fballoon ∗ (1−Ω))+(FNNGV F ∗Ω)), (4)

where Fballoon is the balloon force of the contour to be deformed, FNNGV F is a
Gradient Vector Flow based force called Neighbourhood-Extending and Noise-
Smoothing Gradient Vector Flow (NNGVF), Ω is a term which controls the ap-
plication of the balloon and NNGVF based forces and A is a penalty term proposed
to decrease the evolution of the contour when regions with low intensity are found.

To the best of our knowledge, no other study presented the combination of the
gray-weighted distance map and the active contour model for the segmentation of
structures in medical images. Therefore, the proposed approach is an important
contribution to improve the accuracy of the segmentation results;

• A novel classification model was developed to identify calcified regions present in
atherosclerotic lesions of the carotid artery in CTA images. The proposed approach
combines two stages, being the first one the classification per pixel and the second
one the classification of the resulting regions in order to handle the incorrect iden-
tification of parts of the lumen as calcium regions. The geometrical and intensity
features adopted in the second stage provide more accurate information to deter-
mine which regions are the true calcifications of the atherosclerosis. The outlier
removal was also important to improve the detection of the calcium regions and
consequently approximate them to the corresponding ground truths. The stages of
the proposed classification model with examples of resultant images are illustrated
in Figure 2. The features used as input to each stage of the proposed classification
approach are indicated in Table 1.



5 Main contributions achieved 15

Figure 2: Two-stage classification model proposed to detect the calcified regions in
atherosclerotic lesions of the carotid artery in CTA images. The features used in the
pixel classification stage are extracted from each pixel of the CTA images inside the mask
of the ground truth. The features used in the classification per region stage are extracted
from each region resultant from the previous stage. (The features used in each stage of
the classification model are indicated in Table 1.)

Table 1: Features used in the proposed classification model.

Id. Classification per pixel Id. Classification per region

F1 Intensity of the original image F21 Percentage of the area relatively to the carotid wall
F2 Intensity of the image (Gaussian filter) F22 Area of the region
F3 Intensity of the image (Mean filter) F23 Average intensity of the lumen †
F4 Intensity of the image (Sigmoid filter) F24 Average intensity of the carotid wall †
F5 Average intensity (Original image)* F25 Distance of the centroid of the region to the lumen
F6 Average intensity (Gaussian filter)* F26 Distance of the centroid of the region to the carotid wall
F7 Average intensity (Mean filter)*
F8 Average intensity (Sigmoid filter)*
F9 Minimum intensity (Original image)*
F10 Minimum intensity (Gaussian filter)*
F11 Minimum intensity (Mean filter)*
F12 Minimum intensity (Sigmoid filter)*
F13 Maximum intensity (Original image)*
F14 Maximum intensity (Gaussian filter)*
F15 Maximum intensity (Mean filter)*
F16 Maximum intensity (Sigmoid filter)*
F17 Average intensity of the lumen †
F18 Average intensity of the carotid wall †
F19 Distance of the pixel to the lumen contour
F20 Distance of the pixel to the carotid wall contour

*Features extracted from a 3x3 neighbourhood centred at each pixel of the original and filtered CTA images.
†Features extracted from the original CTA image.

Based on the main contributions of this project, five articles were written and submit-
ted to international journals; in addition, several articles were presented in international
conferences.
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6 Conclusions and Future works

Segmentation of the lumen and vessel wall boundaries of the arterial system, as well as the
identification of atherosclerotic plaque components, is still an intensive focus of research.
The main contributions of this PhD project concern the development of fully automatic
segmentation methods of the lumen and carotid artery boundaries in MR images and the
classification of calcium regions present in atherosclerotic lesions of carotid arteries in
CTA images. The intensity of the lumen region in IVUS images of the coronary artery is
similar to the one of the carotid artery in black-blood MR images. Improvements on the
segmentation method previously adopted to identify the lumen regions in MR images of
the carotid artery were also accomplished for effectively identifying the lumen in IVUS
images of the coronary artery. The classification of calcium regions is carried out in
a two-stage approach to avoid parts of the lumen region being incorrectly classified as
calcifications in atherosclerotic lesions of the carotid artery.

Variations in the grayscale intensities inside the regions of interest represent a chal-
lenge to the development of fully automatic algorithms used to identify structures of the
arterial system in medical images. Moreover, reducing the number of empirical parame-
ters is necessary to increase the automaticity and reliability of the segmentation methods.
Concerning the classification of calcified regions, manual delineations made directly in
the in vivo CTA images can lead to more accurate classification results. Although the pro-
posed methods were shown to be effective in segmenting and classifying the structures
present in carotid and coronary arteries, it is recognized that there are limitations which
can be tackled by the following future works:

• The evaluation of the proposed segmentation algorithms in other datasets with the
same parameters established for the image dataset used in this project. The pro-
posed algorithms rely on a set of parameters that have been empirically defined.
The possibility of reducing the number of parameters and using a learning-based
approach to determine their appropriate values should be investigated. Addition-
ally, the study of other features (such as those obtained from texture-based methods)
in the subtractive clustering algorithm adopted in the lumen segmentation process
should be carried out;

• The enhancement of the algorithm described in Article 3 of Part B in order to al-
low the segmentation of the lumen region in IVUS images acquired at a frequency
of 40 MHz, which involves other image artifacts that make the segmentation more
difficult and subject to errors. The transducer reflection is represented by a bright
ring located at the center of the IVUS images, which is commonly found in IVUS
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images acquired at a frequency of 40 MHz. The elimination of the transducer reflec-
tion should be considered in a pre-processing step before the identification process
of the lumen. Future works should also address the segmentation of the media-
adventitia boundary in IVUS images of the coronary artery;

• Besides the identification of calcified regions in CTA images of the carotid artery,
the classification of other components of the atherosclerotic plaques based on other
image modalities should be considered to provide more details of the disease pro-
gression. Additionally, the extraction of the pixels inside the carotid wall was done
through manual delineations provided with the dataset used in this project. Auto-
matic segmentation of the lumen and carotid wall boundaries in CTA images should
also be addressed in future works;

• The study concerning the 3D reconstruction of the segmented structures to provide
a better overview of the morphology of the arterial system and the measurement
of the volume of the atherosclerosis should be addressed in the near future. Addi-
tionally, 3D image-based models should be used in subject-specific hemodynamic
simulations to evaluate, for example, the stress on the reconstructed vessel wall.
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Abstract

Evaluation of the composition of atherosclerotic plaques in images is an important task
to determine their pathophysiology. Visual analysis is still as the most basic and of-
ten approach to determine the morphology of the atherosclerotic plaques. In addition,
computer-aided methods have also been developed for identification of features such as
echogenicity, texture and surface in such plaques. In this article, a review of the most
important methodologies that have been developed to identify the main components of
atherosclerotic plaques in images is presented. Hence, computational algorithms that take
into consideration the analysis of the plaques echogenicity, image processing techniques,
clustering algorithms and supervised classification used for segmentation, i.e. identifica-
tion, of the atherosclerotic plaque components in ultrasound, computerized tomography
and magnetic resonance images are introduced. The main contribution of this paper is
to provide a categorization of the most important studies related to the segmentation of
atherosclerotic plaques and its components in images acquired by the most used imaging
modalities. In addition, the effectiveness and drawbacks of each methodology as well
as future researches concerning the segmentation and classification of the atherosclerotic
lesions are also discussed.
Keywords: Stroke, Medical imaging, Image analysis, Image segmentation

1 Introduction

Cardiovascular diseases represent the main causes of an increasing number of deaths
around the world since they impair the heart and vascular system functions. Hence, the
early diagnosis of these pathologies is important to minimize clinical cases such as throm-
bosis, heart attacks, transient ischemic attacks and even the occurrence of strokes. In a
broader research study, Mendis et al. [1] revealed alarming numbers regarding cardiovas-
cular disease prevention and control: according to the World Health Organization, in 2011
the cardiovascular diseases represented 31% of the death of people around the world; in
2008, the cardiovascular diseases caused the death of more than 17 millions of people
around the world with less than 60-year old. Smoking, lack of physical exercises, inade-
quate food and excessive consume of alcoholic drinks are the major causes of this disease
[1].

One of the main cardiovascular diseases is the atherosclerosis, which occurs as a re-
sult of the formation of lipid plaques in the artery wall. The atherosclerosis reduces or
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occludes the blood flow through the artery, which can cause amaurosis fugax, transient
ischemic attack and strokes [2–4].

Technological advances in computerized systems for imaging diagnosis have allowed
less invasive ways of analysis and detection of cardiovascular pathologies. Computerized
Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound are examples of
less invasive procedures that have been widely used for evaluating the presence and char-
acteristics of atherosclerotic plaques [5–7]. Although CT provides better image quality
for visualization of the diseases and less invasive procedures compared to the traditional
catheter diagnosis, it can be harmful to the health of patients due to the x-rays emission
[8, 9]. Unlike computerized tomography, ultrasound imaging is a safer procedure since it
not exposes the patients to the ionizing radiation. However, the poor image contrast and
the speckle noises are the main drawbacks of ultrasound imaging when compared to CT
and MRI modalities [10–12].

Expedite the carotid endarterectomy is important after onset of symptoms in order to
avoid recurrent strokes. In addition, a recurrent stroke can arise within the first two weeks
after onset of symptoms and beyond this time a surgical procedure can be inefficient [13].
Degree of stenosis has been covered as an indicator for evaluating the risks associated
with neurological events. In general, patients with degree of stenosis greater or equal
than 70% are selected for carotid endarterectomy in order to prevent the risk of stroke
[14, 15]. Although it is a broadly measure related in various studies for selecting patients
for carotid endarterectomy, the majority of the patients with significant degree of stenosis
remained stroke-free even after years [16]. In addition, patients with moderate degree of
stenosis can also develop symptoms over time [17]. Therefore, the analysis of the plaques
composition provides the ability of evaluating the progression of atherosclerotic plaques.

Characteristics of echogenicity, texture and surface of atherosclerotic plaques are
also addressed in various studies [5, 16, 18–20] as indicators of neurological symptoms.
Echolucent lesions, heterogeneous plaques and ulcerations are described in many stud-
ies as the main characteristics associated with high risk for neurological symptoms [21].
One of the most used measure to quantitatively evaluate the plaques echogenicity is the
GrayScale Median (GSM). In various studies [21–26] the GSM was found to be low in
plaques with high risk of neurological symptoms.

Previous studies [26–28] have addressed the importance of the atherosclerotic plaque
burden in evaluating the risks of neurological events. Such components allow the assess-
ment of risks of plaque rupture and embolization, as well as the evaluation of future risks
for transient ischemic attacks, amaurosis fugax and strokes. Although visual analysis is
a well established method for quantifying the plaque burden, the intra and intervariabil-
ity between experts may impair the diagnosis. Therefore, development of computational
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algorithms plays an important role to expedite the assessment of atherosclerotic plaques
and avoid the intervariability between experts.

As to expert systems, the identification of atherosclerotic plaques and its main com-
ponents plays an important role in the evaluation of the disease progression. The classifi-
cation of such plaques in symptomatic or asymptomatic, for example, is crucial to avoid
future cerebral events. In addition, features extracted from the atherosclerotic plaque com-
ponents allow the development of expert systems to provide medical doctors with an aux-
iliary tool to automatically classify the occurrence of such events or even the atheroscle-
rotic lesion type. The identification of the lesion type according to the American Heart As-
sociation (AHA) classification standard [29] is also a valuable contribution for evaluating
the progression of the disease. The composition of the plaque is the basis for classifying
the lesion type according to the AHA classification standard. It provides the assessment
of the atherosclerotic plaque progression in order to determine the mechanisms that cause
its rupture. Hence, the segmentation task represents an essential key in the development
of medical decision-making systems that could provide a complementary diagnosis for
the atherosclerotic plaques.

A considered number of studies addressing the segmentation of atherosclerotic
plaques and its components, as well as the assessment of the occurrence of future cerebral
events based on the plaque characteristics, have been proposed. However, the categoriza-
tion of the main studies is important not only to present an overview of such method-
ologies, but also to provide the researchers with the employed techniques, the imaging
modalities and the effectiveness and drawbacks of each one, as well as future researches
to overcome the limitations and improve the accuracy of the current results.

This article presents a review of existing methodologies applied for characterization
and quantification of atherosclerotic plaques in ultrasound, CT and magnetic resonance
(MR) images. An overview of visual assessment and quantitative analysis applied for
characterization of atherosclerotic plaques is presented in section 2. In addition, a def-
inition about the atherosclerotic plaque components is also presented. Computational
algorithms based on image processing techniques, clustering and supervised classifica-
tion applied for identification and quantification of atherosclerotic plaque components are
presented in section 3. Section 4 is dedicated to discuss advantages and limitations of
each methodology. Finally, conclusions and future works are presented in the last section.
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2 Atherosclerotic plaque characterization

In order to identify the most important characteristics of atherosclerotic plaques asso-
ciated with neurological events, as well as to quantify the amount of histological com-
ponents, studies using images acquired from well-known imaging modalities have been
presented. Furthermore, the study of the atherosclerotic plaques morphology provides
specialists an understanding of its behavior at the moment of treatment and allows to de-
termine whether the plaque will resist the deployment of stents or not [30]. Biasi et al.
[21] reported that dangerous plaques are more predisposed to shed embolic material into
the bloodstream when they are manipulated with stent devices. Thus, the identification of
safe or dangerous plaques is important to avoid risks prior an angioplasty procedure.

Analysis either using visual classification or computational algorithms have been pre-
sented for identification and quantification of atherosclerotic plaques. Computational
methods such as image processing techniques and clustering algorithms have been pre-
sented in order to automatically outline the atherosclerotic plaque boundaries and classify
their main components. In addition, computational algorithms may avoid the intra/inter-
variability and the expensive work to manually outline atherosclerotic plaques in images.
A review of the most important studies addressing the assessment of the atherosclerotic
plaques morphology and histological components identification is presented in this article
according to the classification illustrated in Figure 1.

2.1 Analysis of atherosclerotic plaques morphology

Visual analysis of the atherosclerotic plaques echogenicity in ultrasound images has
been addressed in several studies for evaluating the presence or absence of neurologi-
cal symptoms. Echogenicity represents the distribution of the grayscale values within a
plaque. Echogenicity is represented by echolucent/anechogenic pattern (dark regions) or
echogenic/hyperechogenic pattern (bright regions) [17]. In this type of study, an observer
performs the visual classification of the plaques based on their echolucent or echogenic
pattern. A study performed by Steffen et al. [18] presented the evaluation of carotid
plaques in ultrasound images in order to determine the echogenicity patterns associated
with the presence or absence of symptoms. In the study, four types of echogenic and
echolucent patterns were used to classify the carotid plaques in symptomatic or asymp-
tomatic groups: type 1 - uniformly echolucent; type 2 - predominantly echolucent with
small areas of echogenic pattern; type 3 - predominantly echogenic with small echolucent
regions; and type 4 - uniformly echogenic. The results shown that types 1 and 2 were
more predominant in symptomatic plaques (67%) and types 3 and 4 were predominant
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Figure 1: Classification of the methods reviewed in this article.

in asymptomatic ones (87%). Thus, it shows that symptomatic plaques are more echolu-
cent than asymptomatic ones. Similar results were achieved by Geroulakos et al. [19],
where the same types were used for classifying the carotid plaques. However, a fifth type
was included in order to classify plaques with higher amount of calcification and acoustic
shadows. In the study, types 1 and 2 were predominant in symptomatic plaques (81%),
whereas types 3 and 4 were found in asymptomatic ones (59%). No results concerning
the fifth type were presented either for symptomatic or asymptomatic plaques.

Characterization of symptomatic and asymptomatic plaques has been addressed in
studies such as the one presented by Lal et al. [16]. Furthermore, morphological charac-
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teristics are also evaluated in order to correlate them with the plaque components [5, 20].
In a study proposed by Lal et al. [16], the identification of intraplaque hemorrhage, large
lipid cores and their proximity to the lumen was performed in ultrasound images of carotid
plaques in order to correlate them with symptomatic and asymptomatic groups. The au-
thors found that hemorrhage and lipid components were higher in symptomatic plaques,
whereas calcium percentage was higher in asymptomatic ones. In addition, lipid core
presented higher area and lower distance to the lumen in symptomatic plaques when com-
pared to asymptomatic ones.

Widder et al. [5] performed an evaluation of the morphological features of carotid
plaques in ultrasound images in order to correlate them with the presence of ulcerations
and intraplaque hemorrhage. Ultrasound images of the carotid artery have been used to
evaluate the border, density and echo structure of plaques. According to the results, regu-
lar borders, an echogenic pattern and heterogeneous plaques are indicators for discarding
the probability of ulcerations and intraplaque hemorrhage.

Lovett et al. [20] performed a comparison between the surface of carotid plaques
provided by angiography imaging with histological features. The analysis shown that
the increase of the carotid plaque and lipid core components, as well as the decrease
of fibrous tissue, are higher in irregular and ulcerated plaques. In addition, irregular
and ulcerated plaques were considered 44% and 50% as definitely unstable, respectively,
whereas smooth plaques was considered 53% as definitely stable.

2.2 GrayScale Median of atherosclerotic plaques: A quantitative
analysis

Although visual classification showed good results for characterization of atherosclerotic
plaques morphology, the subjective analysis among experts may impair the diagnosis.
To overcome this problem, computer-aided methods have been proposed for the efficient
quantitative analysis of atherosclerotic plaques.

In order to evaluate the relationship between echogenicity pattern and atherosclerotic
plaques with evidence of cerebral infarction, a measure called GSM was introduced by El-
Barghouty et al. [22]. The GSM value is used to determine the global plaque echogenicity.
A plaque with a GSM value below a certain threshold is considered echolucent and of high
risk for neurological symptoms.

In a study conducted by El-Barghouty et al. [22], the GSM values of 184 carotid
plaques in duplex ultrasound images were calculated by using Adobe Photoshop

TM
soft-

ware. The results shown that of the 64 plaques with GSM > 32, only 11% were associated
to brain infarction, whereas of the 84 plaques with GSM ≤ 32, 55% were associated to
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brain infarction. In addition, of the 53 plaques associated to brain infarction, 13% has
GSM > 32 and 87% has GSM ≤ 32. Of the 95 plaques not associated to brain infarction,
60% has GSM > 32 and 40% has GSM ≤ 32. In short, the study concludes that echolu-
cent pattern could be considered as high-risk for unstable plaques, whereas echogenic
characteristic is associated to stable plaques.

Several studies evaluating the plaques echogenicity with the GSM analysis have been
conducted using different threshold values. In addition, other characteristics have been
included in order to improve the accuracy of the evaluation. Elatrozy et al. [23] presented
the evaluation of carotid plaques in ultrasound images in order to obtain the most impor-
tant features associated with ipsilateral hemispheric symptoms. The analysis has been
performed in order to measure the GSM and the Percent of Echolucent Pixels (PEP) of
carotid plaques, as well as to measure the homogeneity, entropy and contrast. To deter-
mine how homogeneous is a plaque, the homogeneity has been used. Entropy indicates
the dissimilarity of the gray level values into the carotid plaques so that heterogeneous
plaques have higher entropies. Contrast is a measure that determines the variability of
gray scale differences so that large values indicate high variation in the gray scale of the
pixels. The results shown that the GSM and the PEP were not statiscally significant for
asymptomatic plaques, but significant differences were found for symptomatic plaques.
According to the results, more symptomatic plaques were found with GSM < 40 (84%)
and PEP > 50 (80%) and multiple regression analysis demonstrated that these feature
are the most important predictors for the presence or absence of ipsilateral hemispheric
symptoms. In addition, the entropy was the measure that presented statistical significance
in differentiating symptomatic from asymptomatic plaques. According to this measure,
symptomatic plaques tend to be less heterogeneous due to the lower entropy (lower than
2.9).

The relationship between echogenicity and atherosclerotic plaques with evidence of
cerebral infarction was addressed in the study of Biasi et al. [21]. In this study, the GSM
was calculated as the global echogenicity measure of the plaques in order to find an as-
sociation with symptoms, evidence of cerebral infarction and degree of stenosis. The
results shown that symptomatic plaques have more evidence of cerebral infarction (32%)
when compared to asymptomatic ones (16%). In addition, plaques with more evidence
of cerebral infarction are more echolucent than those with no evidence (40% vs 9%, re-
spectively). Symptomatic plaques have lower GSM values (38± 13) when compared to
asymptomatic ones (56±14). No statistical significance was found for GSM and degree
of stenosis.

In the study of Pedro et al. [24] the GSM, percentage of pixels below the value 40
(echolucent pixels), presence of echogenic cap, plaque disruption, echogenic cap thick-
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ness, the percentage of echolucent juxtaluminal region and the percentage of echolucent
region were considered in the analysis of carotid plaques in ultrasound images. The re-
sults shown that symptomatic plaques associated with Brain Infarction (BI) have low
GSM and more echolucent pixels when compared to asymptomatic plaques not associ-
ated with BI. For the homogeneous characteristic, symptomatic plaques associated with
BI shown lower GSM, higher percentage of echolucent pixels and higher surface dis-
ruption, whereas the presence of echogenic cap was higher in asymptomatic plaques not
associated with BI. For the heterogeneous group, symptomatic plaques associated with
BI shown lower GSM value and higher echolucent juxtaluminal region. It is important to
note that the GSM value was lower in all cases.

Grogan et al. [25] presented a study which aimed to find the most relevant features
associated with symptomatic plaques. GSM was obtained from B-mode ultrasound im-
ages (ex-vivo carotid plaques) and preoperative color Doppler ultrasound. Calcified and
necrotic area, as well as the distance of the necrotic core to the lumen, was calculated
from histopathological analysis. The authors found more echolucency, less calcified com-
ponents and lower GSM value in symptomatic plaques. In addition, the percentage of
necrotic area was higher in symptomatic plaques and its distance to the lumen is lower
compared to asymptomatic ones. The mean GSM calculated from B-mode ultrasound im-
ages shown a value of 41 for symptomatic plaques and 60 for asymptomatic ones. These
results are statiscally close to those presented by color Doppler, in which the mean GSM
with 33.8 is echolucent, whereas the mean GSM with 53.6 is echogenic.

Salem et al. [26] evaluated patients with low risks for unstable plaques by comparing
the ultrasound images and histological analysis. In addition to the GSM value, juxtalumi-
nal black area and plaque area were also considered in the study. A correlation between
the characteristics acquired from the ultrasound images and the histological classification
(stable/unstable) of the plaques was performed in order to select the most significant asso-
ciation. The results shown that a GSM < 25, a plaque area > 95 mm2 and a juxtaluminal
black area > 6 mm2 are the features associated with unstable plaques.

2.3 Atherosclerotic plaque components

An atherosclerotic plaque is formed by components such as lipid core, fibrous tissue,
smooth muscle cells, intraplaque hemorrhage and calcifications. The American Heart As-
sociation (AHA) lesion type classification is a histological examination that divides the
atherosclerotic plaques in categories based on the components within the plaques [29].
Thus, a matching of imaging features and the histological examinations provided by this
standard aid the physicians in accurately determining the atherosclerotic lesion type. The
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AHA classification of atherosclerotic plaques based on their components is shown in Ta-
ble 1.

Table 1: AHA Lesion Type Classification [29].

Type Description
Type I Initial lesion
Type II Fatty streak with multiple foam cells layers
Type III Intermediate lesion (preatheroma)
Type IV Atheroma
Type Va Fibroatheroma
Type Vb Calcified (lesion type VII)
Type Vc Fibrotic lesion (lesion type VIII)
Type VI Lesion with surface defect, and/or hematoma-hemorrhage, and/or throm-

botic deposit

A foam cell is a macrophage cell that engulfs fatty components. The accumulation
of this type of cells in regions with a large amount of fatty components represents the
first stage to the development of atherosclerosis [29]. Types I, II and III are considered
intermediate lesions, whereas the other types belong to the advanced lesions group. In
addition, narrowing of the lumen or obstruction of the blood flow does not occur in these
lesion types [29]. Lesion types I and II can occur in the childhood, but adults are also
likely to these lesions, type III appears after the puberty, whereas type IV appears in the
third decade. Subjects after third decade are likely to lesion types V and VI [29]. In
Figure 2 is shown an illustration of the progression of an atherosclerotic disease.
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Figure 2: An example of atherosclerotic plaque progression over time (adapted from
Koenig and Khuseyinova [31]).
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Since the components identified in atherosclerotic plaques are addressed in the AHA
lesion type classification, the method can be used in the classification of atherosclerotic
lesion types. In fact, several researches addressing the classification of atherosclerotic
plaques based on the AHA classification can be found in studies such as those of Cai
[32], Kampschulte et al. [33] and Saam et al. [34].

The composition of atherosclerotic plaques has been addressed as an important factor
for evaluating the risks of plaque rupture, as well as risks for embolization and neurolog-
ical events. Histological analysis of the carotid specimens has proved a higher amount
of lipid and cholesterol components in symptomatic plaques when compared to asymp-
tomatic ones [27]. Unstable plaques associated with majority of strokes contain features
such as hemorrhage, large lipid cores, thrombus and plaque inflammation [26]. Takaya
et al. [28] showed that the presence of thin or ruptured fibrous cap, intraplaque hemor-
rhage, lipid-rich necrotic core, as well as a larger mean area of intraplaque hemorrhage,
larger maximum percentage of lipid-rich necrotic core and maximum wall thickness, were
the factors associated with the risk of neurological events.

Identification of atherosclerotic plaque components can be performed in images pro-
vided by ultrasound, CT and MRI examinations. The identification of plaque components
in ultrasound images is difficult due to their low resolution and artifacts such as noises and
acoustic shadows caused by high calcification. Furthermore, the analysis of morpholog-
ical characteristic of atherosclerotic plaques associated with the presence of components
still presents a lack of consensus. As an example, in the study of Bluth et al. [35] the in-
cidence of intraplaque hemorrhage was higher in heterogeneous plaques (81%), whereas
96% of the homogeneous plaques did not present intraplaque hemorrhages. In contrast,
the study of Schulte-Altedorneburg et al. [36] showed that hemorrhage was associated
with echolucent and homogeneous plaques.

Intravascular Ultrasound (IVUS) is an invasive imaging procedure which allows the
evaluation of arterial morphology from within the vessel lumen. Although it is a broadly
procedure used for evaluating the arterial diseases, the poor quality of the IVUS images
difficult the identification of the plaque components, particularly by automatic algorithms
[30]. Intravascular Ultrasound Virtual Histology (IVUS-VH) provides color-mapped im-
ages that represent the plaque constitution. The plaque components are identified during
the IVUS procedure based on the returned frequency of the transducer. That frequency
varies depending on the tissue type. These variations allow the real time identification of
the components. Several studies [30, 37, 38] dealing with IVUS-VH examination pro-
vide the characterization of the following plaque components: fibrous, fibrofatty, necrotic
lipid core and calcifications. Although the IVUS-VH provides an accurate real-time eval-
uation of the plaques constitution, the procedure is invasive for the patient. Furthermore,
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IVUS-VH is limited after a stenting procedure because the metal stent is classified as
calcification [30].

Lal et al. [39] discussed the importance in analyzing the internal structure of carotid
plaques in order to characterize their components and select patients at high risk for
strokes and atheroembolization. The possibility of identifying carotid plaque components
in B-mode ultrasound images is addressed in the study. The methodology called Pixel
Distribution Analysis (PDA) was based on the mean grayscale value of subcutaneous fat,
muscle, fibrous tissue and calcified structure calculated from control images in order to
find these components in carotid plaques. The following mean grayscale values were
found for each component: Hemorrhage was 2 (0 up to 4), lipid was 12 (8 up to 26), mus-
cular tissue was 53 (41 up to 76), fibrous tissue was 172 (112 up to 196) and calcium was
221 (211 up to 255). Based on the PDA, the authors found higher levels of blood and lipid
components in symptomatic patients (11.22% ± 3.16 and 29.38% ± 5.96, respectively),
whereas in asymptomatic patients the calcium and fibromuscular were the components
with higher concentration (11.13% ± 1.29 and 42.77% ± 5.93, respectively). The analy-
sis takes into consideration the components with statistical significance. According to the
Spearman correlation coefficient, the correlation between PDA and histological analysis
for blood, lipid, calcium and fibromuscular components was 0.61, 0.77, 0.85 and 0.53,
respectively.

Identification of plaque components on magnetic resonance images has been ad-
dressed in some studies. Toussaint et al. [40] presented the ability of T2W images in
identifying in vivo and in vitro carotid atherosclerotic plaque components based on the
T2 signal. Identification of lipid-rich necrotic cores and intraplaque hemorrhages in MR
images performed by Yuan et al. [41] shown high accuracy when correlated to histological
assessment. The study presented by Saam et al. [42] aimed the evaluation of the ability
of MRI exams in quantifying the main components of carotid atherosclerotic plaques.
Time-of-Flight (TOF), T1-, T2- and Proton Density Weighted (PDW) images were used
to classify the lipid-rich necrotic core, calcification, loose matrix and fibrous tissue in
carotid plaques. The components were identified by two radiologists based on the signal
intensity (SI) of each MR image. Table 2 indicates the SI values of the plaque compo-
nents in each MR image.

The results shown a sensitivity of 92%, 76%, 82% and 64% for lipid-rich necrotic
core, calcification, hemorrhage and loose matrix, respectively. Kappa values were 0.73,
0.75, 0.71 and 0.53, respectively. The correlation was higher for lipid-rich necrotic core
and calcification (0.75 and 0.74, respectively) when compared to hemorrhage, loose ma-
trix and fibrous tissue (0.66, 0.70 and 0.55, respectively). The intra and inter-reader re-
producibility were also higher for lipid-rich necrotic core and calcification.
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Table 2: Tissue classification criteria proposed by Saam et al. [42].

TOF T1W PDW T2W
LR/NC with

No or little hemorrhage o o/+ o/+ -/o
Fresh hemorrhage + + -/o -/o
Recent hemorrhage + + + +

Calcification - - - -
Loose matrix o -/o + +
Dense (fibrous) tissue - o o o

*The classification into the subgroups is based on the following SIs relative to the adjacent
muscle: +, hyperintense; o, isointense; -, hypointense.

According to Chu et al. [43] the identification of hemorrhage component stages pro-
vides the ability of analyzing the progression of the atherosclerotic plaques. Thus, in
their study the ability of T1W, T2W, PDW and TOF images in detecting the hemorrhage
components stages in atherosclerotic carotid plaques was addressed. The classification of
hemorrhages into fresh, recent and old was based on the signal intensity from each MR
weighted image and the results were correlated with histological analysis. The sensitivity
and specificity found for the hemorrhage areas were 90% and 74%, respectively; while
the hemorrhage stages classification shown moderate kappa value which did not reached
0.80. The kappa value for one expert was 0.66, whereas for the other expert was 0.44.
The worst result presented by the second expert can be explained by the difference in
the calcium and old hemorrhage determination. These components presented low signal
intensity, although the calcification has well-defined borders.

Because thin fibrous cap are likely the most cause of cerebral ischemic diseases in
patients with carotid plaques, its evaluation is important to detect possible embolus and
hemorrhages. In the study of Yuan [44] the identification of fibrous cap tissues and its
classification into intact and thick, intact and thin and ruptured was performed by evalu-
ating the signal intensity and lumen surface in TOF, T1W, T2W and PDW images. The
author found that intact and thick fibrous cap has continuous dark band adjacent to the
lumen on TOF images and smooth lumen surface on PDW, T1W and T2W images; intact
and thin fibrous cap not presented visible dark band adjacent to the lumen on TOF images,
whereas smooth lumen surface is also presented in this fibrous cap type in all other im-
ages; finally, the ruptured fibrous cap not present visible dark band adjacent to the lumen
on TOF images. Unlike the intact and thin fibrous cap, it was found that ruptured fibrous
cap present irregular boundaries on PDW, T1W and T2W images.

In a study presented by Watanabe et al. [45] the evaluation of the ability of Time-of-
Flight Magnetic Resonance Angiography (TOF-MRA) images in detecting fibrous cap
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rupture of atherosclerotic carotid plaques was performed. Fibrous cap status was deter-
mined by using the SI of the TOF-MRA. A hypointense band signal with various thick-
ness indicates the presence of fibrous cap, whereas the absence of this signal represents
a ruptured fibrous cap. The TOF-MRA images were examined by two radiologists who
evaluate the fibrous cap status and reached a consensus about their opinion. In order to
evaluate the results, histological specimens obtained from carotid endarterectomy were
evaluated by pathologists who identified the fibrous cap rupture and the major compo-
nents of the plaques. The analysis of histological and MR images shown high sensitivity
and moderate specificity (90% and 69%, respectively). In addition, the concordance level
provided by k-value was moderate (0.59).

3 Atherosclerotic plaque characterization with computa-
tional algorithms

The aforementioned studies have been proposed to demonstrate the viability of using
imaging diagnosis to identify the atherosclerotic plaque components. However, the man-
ual outline of atherosclerotic plaques is a very time consuming task. The development of
computational algorithms have been addressed in various studies in order to automatically
detect the plaque components and expedite the diagnosis of possible risks for neurologi-
cal events. In addition, the inter-variability among diagnosis performed by several experts
may be avoid by using computational algorithms.

This section presents a review of computational algorithms used for the identification
of atherosclerotic plaque components in images acquired from the most common imag-
ing examinations. The computational algorithms reviewed in this section are grouped into
image processing techniques, clustering algorithms and supervised classification. A sum-
mary of each study containing the author names, the publication year, the used imaging
modality and the applied algorithm is presented in the final of each subsection.

3.1 Image processing

The segmentation is recognized as one of the major tasks in image processing. Usually,
segmentation is an essential process to identify structures within an image that can be
made in a manual, semiautomatic or automatic way. It constitutes the first step to solve
many complex tasks of image processing and analysis, particularly in medical applica-
tions. In addition, features extracted, i.e. segmented, from image processing techniques
contain important information for the identification and evaluation of risk of diseases
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either by statistical analysis or by intelligent algorithms. The segmentation of atheroscle-
rotic plaques has been addressed in several studies such as those presented by Loizou
et al. [46, 47].

In two studies presented by Molinari et al. [48, 49] a method for extraction and charac-
terization of carotid plaques was presented in order to classify them as stable or unstable.
In these works, a contrast agent was used to enhance the tissues of the plaques since
each component absorbs the contrast agent differently. In the first study, the intima-media
thickness and plaques profiles were extracted by using the Completely User-Independent
Extraction (CULEX2) algorithm, which was proposed by the same authors [50]. After-
ward, the identification of each component of the plaques was performed based on the
PDA values [39]. The results proved that the injection of a contrast agent can improve the
areas with echolucent characteristic so that accurate segmentation can be reached. Before
the contrast injection, the authors reached a segmentation error of 5% for stable plaques
and 35% for unstable plaques. However, after the contrast injection the segmentation er-
ror for stable plaques was 2%, whereas for those unstable was 8%. In addition, the carotid
plaques segmentation error between the manual and automatic segmentation was 1.2%.
Regarding the identification of the carotid plaques, the authors found that the presence
of 42% or more of fibrous components represents a stable plaque, whereas an unstable
plaque is composed by 25-30% of hemorrhage and lipid core components.

The same approach applied to the first study to extract the carotid plaque and its com-
ponents was used in the second study of Molinari et al. [49]. However, the composition of
the soft unstable plaques presented by both histological analysis and automatic methods
was:

• Hemorrhage: 12% for the histological analysis and 8% for the automatic method;

• Lipids: 35% for the histological analysis and 36% for the automatic method;

• Fibrous and muscular: 53% for the histological analysis and 50% for the automatic
method;

• Calcium: no presence for both strategies.

Kerwin et al. [51] provided a method for the segmentation of atherosclerotic lesions
in MR images using grouping of similar pixels and active contours, as well as the classifi-
cation of the tissue types. In addition, the 3D reconstruction of the artery is performed in
order to provide the visualization of the stenosis and the tissues volume. The algorithms
used in the study were compiled in a package called Quantitative Vascular Analysis Sys-
tem (QVAS). The 5 steps performed by the proposed framework are:
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• Grouping pixels with similar intensities into clusters;

• Place nodes along the boundaries of the regions and connect them with paths in
order to determine the initial boundaries. Manual corrections can be necessary;

• Refine the initial contours by using active contours;

• Tissue classification based on the comparison of the mean brightness values from
regions of the images and from a compiled library with standard regional mean
values of each component;

• Generation of the 3D model.

The method is feed forward, i.e., the results from the previous image are used in the
next image in order to reduce the processing time. In addition, this procedure allows the
measurement of the lesions volume. The lumen and wall boundaries are used and refined
in the next image. Then, the regions from the previous images are used to seek the regions
with similar intensities in the next image. In addition, the classification of the tissues in
lipid core, fibrous cap or calcification is performed based on the mean brightness value,
which change among patients. Regional brightness values and the associated tissue types
were defined in a library. Mean brightness value is calculated from the segmented regions
and the labeling is performed based on the mean value defined in the library that is closer
to that calculated for the regions. In order to minimize the errors caused by the variation
of the mean value between patients, the mean values are adapted according to the current
tissue.

In a study of Liu et al. [52] a method called Morphology-Enhanced Probabilistic
Plaque Segmentation (MEPPS) for segmentation of carotid plaques based on probability
density functions and active contours method was presented. The carotid plaques acquired
from T1W, T2W, PDW, TOF and Contrast-Enhanced (CE) imaging were segmented into
four tissues: necrotic core, calcification, loose matrix and fibrous tissue. Correction of in-
tensities, normalization, generation of a probability map of each pixel belonging to each
tissue type and the application of an active contour in order to delineate the boundaries
based on the probabilities maps were the steps performed by the proposed method. The
probability map was generated based on the intensity of each contrast weighted image
and on two morphological features: distance of the pixel to lumen and wall thickness.
Afterward, the active contour method was applied in order to maximize the probabilities
and refine the boundaries, as well as avoid noisy artifacts. The image dataset was divided
into training set and validation set, being the first one used to generate probabilities maps
that represent the probability of each pixel to belong to a tissue type. The results shown
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a correlation coefficient of 0.78, 0.83, 0.41 and 0.82 for necrotic core, calcification, loose
matrix and fibrous tissue, respectively. The sensitivity and specificity were higher for
MEPPS when compared to manual segmentation, except for calcification. The sensitivity
for necrotic core, calcification, loose matrix and fibrous was 0.75, 0.65, 0.51 and 0.88 and
the specificity was 0.92, 0.98, 0.97 and 0.84, respectively.

In another study performed by Kerwin et al. [53] the MEPPS algorithm was used
to segment the atherosclerotic plaque components. The method begins with the identi-
fication of the lumen and outer wall boundaries by using the B-spline snake algorithm
[54]. Then, the identification of plaque components, particularly the necrotic core and
calcification components, was performed by the MEPPS framework. The normalized
wall thickness (area of the wall divided by the total vessel area) and the maximal wall
thickness, as well as the average of the necrotic core and calcification from all slices,
were calculated for comparison against the manual segmentation. The results shown a
high correlation between the manual and automated methods: Normalized wall thick-
ness: 0.90; Maximum wall thickness: 0.84; Necrotic core: 0.86; Calcification: 0.96. The
intraclass correlation coefficient showed good reproducibility of the automatic and man-
ual measurements: Normalized wall thickness: 0.97 and 0.90; Maximum wall thickness:
0.95 and 0.89; Necrotic core: 0.87 and 0.95; and calcification: 0.94 and 0.98, respectively.
Reproducibility was higher for normalized wall thickness, maximum wall thickness and
calcification in automatic method, but lower for necrotic core.

Studies performed on Computerized Tomography Angiography (CTA) images have
also been proposed for characterization of atherosclerotic plaques. The identification of
plaques components using Hounsfield Unit (HU) Attenuation values was described in
various studies [6, 55–58]. HU represents the X-Ray attenuation unit used in CT scan
examinations [59]. It characterizes the relative density of a substance, i.e. the amount of
X-Ray radiation absorbed by each element in the tissue [60]. A value between -1000 (air,
black) and +3000 (dense bone, white) is assigned to each image element [60].

A study conducted by de Weert et al. [6] presented the Hounsfield Unit ranges of fi-
brous, calcium and lipid-core components in carotid plaques in order to determine the
ability of CTA images in identifying such components. The tracing of two regions of
interest (ROI) in Multidetector Computer Tomography (MDCT) images was performed
by two operators. First, the vessel wall boundary was outlined and the HU ranges of
each component were determined. Second, the lumen boundary was outlined and its HU
range was determined, as well as the HU of the fibrous tissue near to the lumen. The
results shown larger total plaque and calcified areas in MDCT images, whereas fibrous
and lipid core areas were smaller when compared to the histological images. According
to the authors, the plaque area was larger in MDCT images due to the shrinkage caused
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by the preparation step of the histological specimens. The lipid-core areas presented the
worst results due to the blooming of calcifications area that overshadows area of soft tis-
sue. Thus, it may affect the accuracy and segmentation of lipid-core areas. However,
lipid-cores with mildly calcified area shown better results compared to those obtained
with hard calcium. It was due to lower blooming effect of the calcium areas. Linear re-
gression showed the following correlations between the proposed method and the analysis
of histological specimens: 0.73, 0.74, 0.76 and 0.24 for total plaque area, calcified area,
fibrous area and lipid-core area with hard calcium, respectively. Also, the lipid-core area
was measured with different levels of calcification. The best correlation was provided by
0-10% level of calcification (R=0.77).

An automatic method for quantification of atherosclerotic plaques in CTA images of
coronary arteries was proposed in de Graaf et al. [55]. Four components were identified:
fibrous, fibro-fatty, necrotic core and dense calcium. The extraction of each component
was performed by using two approaches: fixed threshold and dynamic threshold. The first
approach used fixed HU ranges for extraction of each component, whereas the second
one define the cut-off values based on the luminal intensity. The dynamic threshold is
based on the fact that the lower luminal intensity, the lower will be the HU value of the
plaque. Thus, the HU of the tissue are defined based on the luminal attenuation. A study
performed by Dalager et al. [61] confirmed the correlation between the attenuation of
plaque HU values and the decreasing of the luminal density. Registration of the CTA
images with corresponding IVUS images was also performed in order to correlate the
results. The results shown that vessel, lumen and plaque volume calculated from CTA
images shown high correlation with IVUS results. Regarding the identification of plaque
components, a good correlation between CTA and IVUS images was also found as for
fixed threshold as for dynamic threshold. However, the correlation coefficient for necrotic
core was lower when compared to the other components.

An automatic method for segmentation of the lumen and artery wall boundaries in
CTA images was presented in the study of Vukadinovic et al. [62]. Furthermore, the iden-
tification of atherosclerotic plaque components based on HU values was also performed
by the proposed method. A set of 40 dataset was used to perform a correlation between
the automatic and manual tracing, as well as a interobserver analysis. Another set of 90
dataset was used for evaluating the accuracy of the automatic method. The method starts
with the segmentation of the lumen boundary using a level set approach. Afterward, the
calcium components and the pixels belonging to the vessel region were detected using a
GentleBoost framework. Then, calcium and pixels classified in the vessel wall were used
to fit an ellipsoid in the vessel wall. From the 40 dataset, the correlation between the
manual tracing performed by two observers and the automatic methods showed the worst
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results for the lipid component: 0.68 (observer 1) and 0.79 (observer 2) in lipid volume;
0.52 (observer 1) and 0.57 (observer 2) in lipid percentage. However, the calcium and
fibrous components showed moderate and high correlation: 0.97 for both observer in cal-
cium volume, 0.94 for both observer in calcium percentage, 0.94 (observer 1) and 0.87
(observer 2) in fibrous volume, and 0.79 (observer 1) and 0.73 (observer 2) in fibrous
percentage. In addition, the fibrous and lipid percentages obtained from 90 databases
also presented the worst correlation coefficients: 0.77 and 0.55, respectively. This was
possibly caused by overlapping between the HU ranges of lipid and fibrous tissues.

Wintermark et al. [58] proposed the identification of carotid plaque components in
CTA images based on HU values. Connective tissue, lipid-rich necrotic core, hemorrhage
and calcifications were segmented in each 2x2 mm2 region created from a grid delin-
eation in the histological images in combination with micro CT images. Also, the mean
Hounsfield attenuation calculated from each corresponding 2x2 mm2 region in the CTA
images were used in a linear mixed model in order to obtain the mean Hounsfield at-
tenuation for each plaque component. The results shown an overall agreement of 72.6%
between CTA and histological analysis. The CTA classification of the calcium component
is in perfect concordance with the histological analysis. However, the small lipid-core did
not present good concordance and it can be assigned to the overlapping of the Hounsfield
threshold of the lipid-core and connective tissues. When the large lipid-core is evaluated
(equal to or higher than 5 pixels) the results showed good agreement (k=0.796). Hemor-
rhage also presented good agreement when large amount (equal to or higher than 5 pixels)
were considered (k=0.712). The identification of the ulceration also showed good results
(k=0.855). The thickness of the fibrous cap showed good correlation between CTA and
histological classification (R2=0.77).

The proposed studies for identification of atherosclerotic plaque components based on
image processing techniques are summarized in Table 3.

Table 3: Proposed methodologies for segmentation of atherosclerotic plaque components
based on image processing techniques.

Author Year Imaging modality Segmentation method
Molinari et al. [48] 2007 Ultrasound PDA
Molinari et al. [49] 2010 Ultrasound PDA
Kerwin et al. [51] 2001 MRI Active Contour and clustering
Liu et al. [52] 2006 MRI Active Contour
Kerwin et al. [53] 2007 MRI Active Contour
de Weert et al. [6] 2006 CTA Ranges of Hounsfield Unit values
de Graaf et al. [55] 2013 CTA Ranges of Hounsfield Unit values
Vukadinovic et al. [62] 2012 CTA Level set and GentleBoost
Wintermark et al. [58] 2008 CTA Ranges of Hounsfield Unit values
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3.2 Clustering algorithms

Clustering represents the partitioning of a dataset in subsets that have similar character-
istics. Hence, the similar pixels of an image are partitioned in regions with similar char-
acteristics by using measures such as mean, intensity and standard deviation calculated
from the image pixels. Clustering algorithms have also been proposed for segmentation of
atherosclerotic plaque components [63–68]. Since each component is composed by simi-
lar intensities, clustering algorithms can be applied to separate the regions of atheroscle-
rotic plaques according to determined criteria.

Adame et al. [63] presented a study which the aim was the automatic detection of
the boundaries of the lumen and vessel wall based on ellipse fitting and fuzzy clustering.
Ellipse fitting was used to detect the outer vessel wall boundary, while fuzzy clustering
was applied to identify the lumen boundary and the carotid plaque boundary. Lumen area,
outer wall area and fibrous cap thickness were also measured. The definition of an ellipse
centered in the lumen center point defined by the user is made to refine the lumen bound-
ary. In addition, fuzzy clustering was used to first segment the lumen region and then the
plaque region (represented by the lipid core). In order to perform the experiments, the
authors used 50 images acquired from PDW (23) and T1W (27) examinations. The lumi-
nal area (mm2), outer wall area (mm2) and fibrous cap thickness were taken into account
in the manual tracing and in the automatic method. The fibrous cap thickness was deter-
mined by measuring the mean minimal distance of the lumen and lipid core points. The
thickness of the fibrous cap had an acceptable correlation (0.72), whereas the correlations
of the lumen and outer wall boundaries were high (0.92 and 0.91, respectively).

In a similar study, Adame et al. [64] performed the segmentation of the outer ves-
sel wall, lumen and lipid component in carotid arteries based on fuzzy clustering and
ellipse fitting. The first step consists in detecting the outer wall by fitting an ellipse to
its boundaries. The regions inside the outer wall was classified into three classes by the
fuzzy C-means algorithm: lumen, plaque and wall tissue. The clustering was based on
the intensity of T1W or PDW images or even on the combination of the two types of
images. The last step comprises the segmentation of the lipid component by using the
same clustering algorithm but, this time, two classes were established: wall tissue and
lipid component.The automatic method was compared to manual outlines performed by
experts and good correlation was found for the three components: 0.94 for lumen, 0.92
for outer wall and 0.76 for fibrous cap thickness.

Itskovich et al. [65] proposed an approach to segment the coronary plaque components
in ex-vivo MR images based on a clustering algorithm. The Spatially Enhance Clus-
ter Analysis (SECA) was used to identify loose fibrous, fibrocellular, lipid-rich necrotic
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core, thrombus and dense fibrous components. Combined intensities from the T1W, T2W
and PWD images were used to initialize the clusters. In order to refine the clusters, the
SECA performed the minimization of the chromatic variance and the discontiguity. The
first aspect represents the compactness of the cluster and the second one is the rate of
the pixels that are not in the same cluster as their neighboring pixels. After the cluster-
ing step, the AHA classification of the plaques was performed by experts and compared
with those performed by histopathologists in the histological specimens. Regarding the
results, the classification based on cluster-analyzed MR images shown good overall agree-
ment with AHA lesion type classification (k=0.89) and it was better when compared to
the color composite (k=0.78), T1W (k=0.29), T2W (k=0.42) and PDW images (k=0.31).
In addition, the quantification of the components was performed by calculating its area as
the percentage of the total plaque area. When compared to color-spacing, the clustering-
analyzed images shown the best correlation with histological analysis. The Pearson corre-
lation for loose fibrous, fibrocellular, lipid-rich necrotic core, thrombus and dense fibrous
components were 0.82, 0.89, 0.79, 0.98 and 0.83, respectively.

In the study of Karmonik et al. [66, 67] the identification and quantification of carotid
plaques in MR images was performed by the k-means clustering algorithm. The first
study was performed on images of ex-vivo carotid plaques, whereas the second one was
performed on in-vivo images. The k-means algorithm considered points composed by the
combination of the intensity values of the PDW, T1W and T2W MR images. The k-means
algorithm classified each point into six classes: fibrous, calcium, thrombus, lipid, normal
and background. Comparison between histological section analysis and the correspond-
ing k-means classification was performed in order to evaluate the accuracy of the proposed
method. A convergence threshold was used in order to determine the assignment of the
points in each cluster. This assignment continues until the sum of the distances of the
cluster centers between two iterations is smaller than the convergence threshold. The sec-
ond study was similar to the first one, but the different approach is the inclusion of in vivo
images. The mean differences between histological analysis and the clustering algorithm
were 5.8± 4.1, 1.5± 1.4, 4.0± 2.8, 8.2± 10 and 2.4± 2.2 for thrombus, calcification,
fibrous, normal and lipid components, respectively.

The identification of coronary plaque components based on a spatial penalized fuzzy
C-means algorithm and the signal intensities of the components was proposed in the study
of Sun et al. [69]. T1W, T2W, PDW and DW (Diffusion Weighted) images acquired from
ex-vivo coronary arteries were used to identify and classify the lipid/necrotic core, fibro-
cellular/fibrous cap, fibrous tissue, thrombus and calcification components. These com-
ponents were also identified in histological sections of the coronary arteries in order to
provide a ground truth for evaluating the proposed method. A spatial penalized fuzzy
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C-means algorithm was performed to partition the groups corresponding to the plaque
components. The pixel intensity of each MR weighted image was used by the algorithm.
Then, the components were labeled based on their signal intensity pattern. However, the
thrombus component was manually outlined on DW images due to its heterogeneous in-
tensity in T1W, T2W and PDW images. Regarding the results, the Pearson correlation
coefficient was 0.98 and 0.97 for histology and fresh condition and histology and pre-
served condition, respectively.

In a similar study, Sun et al. [70] proposed a method called Prior Information En-
hanced Clustering (PIEC) for classification and labeling of the coronary plaque compo-
nents based on a spatial fuzzy C-means algorithm and T2 values of the components. As
in the previous study, the same spatial fuzzy C-means algorithm was used to segment
the regions based on the pixel intensities of T1W, T2W and PDW images. However,
only the T2 values were used to labeling the clusters as calcification, adipose fat, loose
matrix, necrotic tissue or fibrocellular component. According to the authors, T2 values
are not dependent on the imaging parameters, but only on the temperature and magnetic
field strength. This justifies the use of these values for labeling the plaque components.
Regarding the results, the true positive rate for calcification, adipose fat, loose matrix,
necrotic tissue and fibrocellular was 88.9, 70.6, 69.2, 94.7 and 75.0, respectively.

Xu et al. [68] presented the segmentation of carotid plaque components based on a
modified mean-shift algorithm [71]. MRI diagnosis was performed in carotid specimens
in order to obtain four ex-vivo MR contrast weighted images: T1W, T2W, PDW and TOF.
However, T2W images were removed from the data set due to the similarity with PDW
images. A modified mean-shift algorithm was proposed in order to correctly estimate the
initial center of the clusters. In addition, a sphere with dynamic size was considered to
minimize the problems of fixed radius used in the original mean-shift algorithm. Calcium,
necrotic core, foam cells and fibrous tissues were the components under consideration and
the segmentation results were compared to the histological analysis. The misclassification
rate values of the calcium, necrotic core, foam cell and fibrous tissue were 2.8, 11.1, 10.0
and 4.6, respectively. In addition, loose fibrous tissue showed the worst results (misclas-
sification rate of 13.5).

The proposed studies for identification of atherosclerotic plaque components based on
clustering algorithms are summarized in Table 4.

3.3 Supervised classification of plaque components

Supervised classification is an important step for solving many pattern recognition prob-
lems. In contrast to unsupervised classification, which the classified samples are unla-
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Table 4: Proposed methodologies for segmentation of atherosclerotic plaque components
based on clustering algorithms.

Author Year Imaging modality Clustering technique
Adame et al. [63] 2004 MRI Fuzzy clustering
Adame et al. [64] 2004 MRI Fuzzy clustering
Itskovich et al. [65] 2004 MRI SECA
Karmonik et al. [66] 2006 MRI K-Means
Karmonik et al. [67] 2009 MRI K-Means
Sun et al. [69] 2006 MRI Spatial fuzzy C-Means
Sun et al. [70] 2008 MRI Spatial fuzzy C-Means
Xu et al. [68] 2001 MRI Modified Mean-Shift

beled, the supervised classification allows the building of statistic models based on de-
sired outputs provided by experts for each sample. Thus, the classification model may be
combined with experience of experts about a certain pattern recognition problem. Super-
vised classification have been proposed in order to classify the components of atheroscle-
rotic plaques. In addition, the classification of atherosclerotic plaques in symptomatic or
asymptomatic was also addressed in several studies [72–76].

Anderson et al. [77] presented the segmentation of atherosclerotic plaque components
based on predictive models. T1W, T2W and PDW images were acquired from coronary
artery specimens. The k-means clustering algorithm was applied in order to extract the
cluster membership of each pixel. In addition, Discrete Cosine Transform and measures
extracted from a neighborhood of pixels were also used as input variables by the pre-
dictive models. Three predictive models based on an artificial neural network known as
Relevant Input Processor Network (RIPNet) were created for a pixel-by-pixel classifica-
tion of fibrous tissues and lipid components. Each model receives a set of values calcu-
lated from the above-mentioned methods. The results showed that the predictive models
presented better results when compared to k-means and logistic regression. The results
of the predictive models were between 25% and 30% better than k-means algorithm and
approximately 8% better than the logistic regression.

In a study of Clarke et al. [78] the identification of fibrous tissue, loose connective
tissue, necrotic core and calcification was performed by a minimum distance classifier
in eight MR contrast weighted images. Tracing of fibrous, loose connective tissue and
necrotic core on histological images were performed by a pathologist in order to provide a
ground truth for validating the classifier results. In addition, calcifications were identified
on micro CT images. Four ROIs corresponding to each component were outlined in each
MR contrast weighted image. The mean value of each ROI was calculated in each MR
image. Then, a pixel-by-pixel classification was performed by calculating the euclidean
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distance of the pixel to be classified from each mean value belonging to a tissue type so
that it is assigned to the tissue associated to the minimum distance. The training of the
classifier was performed by using four percent of the total number of pixels. The results
shown an overall accuracy of 73.5%. The sensitivity for necrotic core, fibrous tissue, loose
connective tissue and calcification were 83.9%, 60.4%, 65.2% and 97.6%, respectively. In
addition, the reproducibility of the tracing performed by the pathologist was also higher:
96.9%, 85.1%, 93.8% and 100% for necrotic core, fibrous tissue, loose connective tissue
and calcification, respectively.

In another study of Clarke et al. [79] the identification of carotid plaque components
on MR images was performed by using a maximum likelihood classifier. A pixel-based
classification was performed in order to assign each one of them into the following five
components: fibrous, loose connective tissue, necrotic core, hemorrhage and calcium.
The results were compared to histological analysis and micro CT images which served as
a gold standard to validate the ability of the MR images in detecting these components.
Only 2.5% of the total plaque area was selected to train the maximum likelihood classifier
and these small areas containing the plaque components were obtained from all images.
For every pixel of the image, the assignment of its corresponding class was performed by
using the maximum likelihood classifier and the comparison of the results was performed
by overlapping the MR and histological images. The best overall accuracy was provided
by the PDW, T1W and Diffusion-Weighted (DW) images and by the combination of all 8
contrast images used in the study (78%±15% for both set of images).

In a study of Hofman et al. [80] the segmentation of carotid plaque components was
performed by using Bayes classifier, k-NN, neural network and Bayes2 classifier. Images
acquired from MRI diagnosis were submitted to pre-processing algorithms in order to ex-
tract the Ratio Signal Intensity (rSI) of the carotid artery pixels. Also, the carotid artery
boundaries were manually outlined by using an in-house software developed in Mathe-
matica. ROIs defined in all MR weighted images were used in order to obtain the pixels of
the homogeneous regions that represent the tissue to be classified. A total of 1811 pixels
were extracted from the ROIs and used to train the classifiers. Bayes classifier, k-NN,
neural network and Bayes2 classifier were used to classify the pixels into the following
four tissue types: fibrous, calcium, hemorrhage and lipid core. Bayes, k-NN and neural
network classification were based on the individual rSI of the pixels, whereas the Bayes2
was based on the spatial context of the neighborhood of the pixels. The classification
was performed in each MR image slice. The final area of each component was obtained
from the sum of each area from each slice divided by the number of slices. The results
provided by Bayes, k-NN and Bayes2 classifiers presented reasonably results. The neural
network presented the worst results. Calcium component presented the worst results in all
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classifiers. Although the results were moderated and reasonably, no classifier has reached
a correlation coefficient of 0.80.

A method for segmentation of atherosclerotic plaques in ex-vivo MR images using
a linear discriminant classifier was proposed in van Engelen et al. [81]. Thirty-two fea-
tures extracted from intensities, gradient, laplacian and euclidean distances of the voxels
to the lumen and vessel wall were used as input for the classifier. The study describes
the use of histological images as a ground truth for fibrous and necrotic core, whereas
micro CT images were used as ground truth for calcification. The lumen, outer vessel
wall and lipid-rich necrotic core were manually drawn on the digitized histological slices,
while the calcification was determined by using a Hounsfield threshold value in the micro
CT images. The remain component was classified as fibrous tissue. Registration of the
ex-vivo MRI and micro CT with histology images were performed in order to obtain a
ground truth image with the three components. The results shown an improvement of the
accuracy when all 32 features were included. The sensitivity and specificity were 81%
and 97% for calcification; 85% and 60% for fibrous; and 52% and 89% for necrotic core,
respectively. Percentage of plaque volume of each component was measured and cor-
related with the ground truth segmentation. The Spearman coefficient for calcification,
fibrous and lipid rich necrotic core was 0.86, 0.71 and 0.72, respectively.

In another study, van Engelen et al. [82] described that histological sections are not
well aligned with corresponding images due to the deformation caused by the histology
processing. In addition, inter and intra-variability, as well as the overlapping between
classes, are the most problems of the use of manual segmentation as ground truth. Based
on these problems, the authors provided the classification of plaque components (fibrous
tissue, lipid-rich necrotic core and calcium) based on the probability of each voxel be-
longs to a component. The probability was calculated by using the Gaussian blur and the
dice overlapping. The main objective of the study was deal with inaccuracies registra-
tions between in vivo and histological data by measuring the probability and dice overlap
of each voxel. Thus, samples near to borders or with low dice overlap have lower con-
tribution in the classifier. The ground-truth segmentation was obtained from the manual
outline of the components in histological and micro CT images, being the last one used as
ground-truth for calcium. After registration of the in-vivo with histologic and micro CT
images, each component of the ground-truth segmentation was binarized and blurred with
Gaussian filter in order to create soft labels that indicate the probability of each voxel be-
longing to a component. The soft labels were multiplied with the Dice overlap coefficient
calculated from the overlapping between the segmentation of the vessel wall in histology
and MR images. It was performed in order to determine the weight of each voxel so that
samples close to the boundaries or with low dice overlap coefficient contribute less with
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the classifier. Twenty three features were extracted from each voxel and together with the
soft labels the training was performed by using a linear discriminant classifier. Regarding
the results, the Spearman correlation between soft and hard labels per subject was 0.88,
0.71 and 0.75 for calcification, fibrous and necrotic core, respectively. In addition, the
soft labels presented lower volume difference when compared with the hard label (man-
ual segmentation of histology and micro CT images) for fibrous and lipid-rich necrotic
core components. Per slice, the difference between the classifier results and ground truth
using hard labels were -0.3 ± 3.6% for calcification, 9.5 ± 19.5% for fibrous tissue and
-9.2 ± 19.3% for necrotic tissue. In contrast, the use of soft labels yielded a difference
of -0.6 ± 3.7% for calcification, 6.0 ± 20.8% for fibrous tissue and -5.4 ± 20.4% for
necrotic tissue.

van ’t Klooster et al. [83] proposed the classification of carotid plaque components
using a linear discriminant classifier. A group of 60 patients were selected for diagno-
sis and 3D-TOF, T1W, T2W and PDW images were acquired from MRI examinations.
Signal intensities of each MR image were used to manually identify the calcification,
hemorrhages, lipid core and fibrous components. The manual segmentation was used as a
ground truth to evaluate the performance of the automatic method. The automatic classi-
fication was performed by a linear discriminant classifier, which receives features such as
normalized signal intensity, zero-, first- and second-order derivatives, distance to the inner
and outer vessel wall and local vessel wall thickness calculated from each pixel in each
MR image. The training of the classifier was performed by using images of 20 patients,
whereas the validation was performed in images of 40 patients. Regarding the results,
the proposed method showed good agreement for presence or absence of each component
when compared to the manual classification. An agreement of 80%, 82.5% and 97.5%
was presented for calcification, hemorrhage and lipid core, respectively. In addition, the
Pearson correlation coefficient obtained from the volumes calculated by the manual and
automatic classifications was 0.80, 0.88, 0.80 and 0.10 for hemorrhage, lipid core, fibrous
and calcium, respectively. According to the authors, the small number of calcifications
compared to other components have in part contributed for the poor results. Also, similar
signal intensities of calcifications close to the lumen and other components may explain
the poor results.

The reviewed studies for identification of atherosclerotic plaque components based on
supervised classification are indicated in Table 5.
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Table 5: Reviewed methodologies for segmentation of atherosclerotic plaque components
based on supervised classification.

Author Year Imaging modality Classifier
Anderson et al. [77] 2006 MRI RIPNet (Based on ANN)
Clarke et al. [78] 2003 MRI Minimum Distance
Clarke et al. [79] 2006 MRI Maximum Likelihood
Hofman et al. [80] 2006 MRI ANN, Bayes and K-NN
van Engelen et al. [81] 2012 MRI Linear Discriminant
van Engelen et al. [82] 2012 MRI Linear Discriminant
van ’t Klooster et al. [83] 2012 MRI Linear Discriminant

4 Discussion

The correct quantification of atherosclerotic plaques is an important key to perform the
assessment of risks of neurological events. Studies addressing specifically the segmenta-
tion of atherosclerotic plaque components using image processing, clustering algorithms
and supervised classification were presented in this review.

Active contours and level sets algorithms have been used in many problems dealing
with correct delineation of structural boundaries. Chan-Vese active contours [84] have
been covered in many researches dealing with boundaries segmentation [85–88]. An
advantage of using Chan-Vese segmentation method concerns the identification of the
boundaries without the need of gradient information. Studies such as those presented
by Kerwin et al. [51] and Liu et al. [52] used active contours algorithms to improve the
boundaries of the plaque components.

Clustering have also been proposed for image segmentation. Based on similar char-
acteristics shared by the pixels of the images, clustering algorithms such as k-means and
fuzzy C-means have been used in order to partition the images in different regions of in-
terest [89–91]. Although k-means is a well established clustering algorithm that has been
proposed in various studies dealing with unsupervised classification, a certain data may
belongs to more than one cluster with a certain membership degree [92]. In many image
segmentation problems one intensity value can belongs to more than one cluster due to
the overlapping of the gray-scale of different regions. Thus, based on the fuzzy concepts
the intensity value could have a membership degree in each cluster. In fuzzy clustering
each data element can belongs to more than one cluster with a certain membership level,
whereas in hard cluster the data can belongs to one cluster only. Fuzzy C-Means was pro-
posed in the study of Adame et al. [63, 64] for the segmentation of the lipid core in carotid
plaques. In the study of Sun et al. [69, 70] spatial fuzzy C-Means was proposed as the
method for segmentation of the main components in coronary arteries. In addition, results
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provided by a clustering algorithm can be used to refine the boundaries of the detected
regions as shown in the study of Kerwin et al. [51].

Artificial neural networks, Bayes classifier, k-nearest neighbor and decision tree are
examples of algorithms used in supervised classification. Supervised classification also
provides the ability of identifying patterns on images based on features extracted from the
pixels. Such features are submitted to a classifier which provides an output that represents
the class of the presented pattern. However, the classifier model must be constructed by
a training set composed by examples along with the corresponding desired outputs. After
training, the built model can be used to classify new patterns not belong to the training
set. With respect to identification of atherosclerotic plaque components, supervised clas-
sification has been proposed in various studies [77–82] to classify each pixel into a tissue
type.

Although the aforementioned studies have proved to be effective on identifying
atherosclerotic plaque components, some drawbacks must be highlighted. PDA provides
constant values for the segmentation of atherosclerotic plaque components in ultrasound
images [39]. However, redefinition of the gray levels of the components could be nec-
essary due to different gray levels among images acquired with different equipments. In
addition, calcified plaques could harm the segmentation due to projected shadow that can
precludes regions of interest [49]. The use of HU values in CTA images also presents
drawbacks. Similarly to the problems of PDA, the values of HU may change with dif-
ferent datasets. In the study of de Weert et al. [6] lipid-core comprised lipid, hemorrhage
and thrombus components due to the difficulty of detecting thrombus and hemorrhage
in MDCT images. Also, lipid-core with mildly calcified area shown better results com-
pared to those obtained with hard calcium. According to the authors, it was due to lower
blooming effect of the calcium areas [6].

Similarity of intensity values hampers the discrimination of plaque components. In the
study of Vukadinovic et al. [62] the overlapping of the HU values corresponding to the
lipid and fibrous tissues hampers the distinction of these components. Similar difficulties
can be found in the study of Adame et al. [63] and van Engelen et al. [81]. Difficulties in
detecting lipid core close to lumen is also covered in another study of Adame et al. [64].

The main drawback of supervised classification is still the need for a training step to
build a predictive model. In addition, complex models with a high number of input ele-
ments achieved similar results to those presented with simpler algorithms. Clustering has
been proposed for image segmentation as a simple methodology based on less complex
mathematical models and no need for a training step. In combination with image pro-
cessing techniques, methodologies to partition similar regions of an image and refine the
boundaries of these regions with active contour algorithms can improve the results of ex-
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isting methods of characterization of atherosclerotic plaque components. Since clustering
algorithms provide unsupervised classification, the identification of the categories belong-
ing to the partitioned regions becomes a problem due to the lack of labels corresponding
to each region.

The main limitations of the works and proposals surveyed in this article are summa-
rized in Table 6.

Studies addressing the combination of spatial fuzzy C-Means algorithms with active
contours for identifying the components on atherosclerotic plaques is expected to be con-
sidered in the future. Spatial fuzzy C-means proved to be effective to overcome the pres-
ence of noises in images and improve the cluster partitioning [93–96]. Use of spatial fuzzy
C-means algorithms could also overcome the problems with transitions of intensities val-
ues belonging to a same component. In addition, the use of Adaptive Resonance Theory
(ART) models [97, 98] such as Fuzzy-ART and Fuzzy-ARTMAP can also be considered
as alternative methods to classify the regions corresponding to the atherosclerotic plaque
components.

5 Conclusion and future research

Quantification of atherosclerotic plaque components has been addressed in studies assess-
ing the risks associated with neurological events. The morphology of such plaques is a
well established indicator to predict events such as transient ischemic attacks, amauro-
sis fugax and strokes. Several methodologies has been proposed to quantify atheroscle-
rotic plaques in the most popular imaging diagnosis. Automatic identification of plaque
components performed by computational algorithms provides an expedited diagnosis of
possible neurological events. Thin fibrous cap, lipid rich-necrotic core and intraplaque
hemorrhages were covered as the components associated with high risk for such event.

The automatic classification of the atherosclerotic plaques is a demanding challenge
to the expert systems usage. An auxiliary diagnosis of the disease progression performed
by these systems allows the medical doctors to identify the characteristics of the diseases
as soon as possible and, consequently, to expedite the treatment planning. As previously
mentioned, the features extracted from the atherosclerotic plaques represent a key point
for developing machine learning based expert systems to recognize the atherosclerotic
lesion type or determine whether it is symptomatic or asymptomatic.

Future studies addressing the improvement of the proposed computational algorithms
could provide more accuracy in identifying the components and correctly delineating
their boundaries. The overlapping of the main components associated with high risk



5 Conclusion and future research 49

Ta
bl

e
6:

L
im

ita
tio

ns
of

co
m

pu
ta

tio
na

la
lg

or
ith

m
s

ap
pl

ie
d

fo
ri

de
nt

ifi
ca

tio
n

an
d

qu
an

tifi
ca

tio
n

of
at

he
ro

sc
le

ro
tic

pl
aq

ue
s

A
ut

ho
r(

s)
(y

ea
r(

s)
)

Te
ch

ni
qu

e(
s)

L
im

ita
tio

ns
Im

ag
e

pr
oc

es
si

ng
M

ol
in

ar
ie

ta
l.

[4
8,

49
]

PD
A

R
ed

efi
ni

tio
n

of
th

e
gr

ay
le

ve
ls

of
th

e
co

m
po

ne
nt

s
m

ay
be

ne
ce

ss
ar

y
K

er
w

in
et

al
.[

51
]

A
C

M
an

ua
li

nt
er

ac
tio

n
fo

rc
or

re
ct

in
g

th
e

ed
ge

s;
N

o
co

m
pa

ri
so

ns
w

ith
ra

di
ol

og
is

ts
w

er
e

pr
es

en
te

d
L

iu
et

al
.[

52
]

A
C

N
ee

d
fo

ra
tr

ai
ni

ng
st

ep
fo

rg
en

er
at

in
g

th
e

pr
ob

ab
ili

ty
m

ap
s

K
er

w
in

et
al

.[
53

]
A

C
T

he
us

e
of

th
e

M
E

PP
S

al
go

ri
th

m
pr

es
en

te
d

th
e

sa
m

e
lim

ita
tio

ns
of

th
e

st
ud

y
of

L
iu

et
al

.[
52

]
de

W
ee

rt
et

al
.[

6]
H

U
D

iffi
cu

lty
in

de
te

ct
in

g
th

ro
m

bu
s

an
d

he
m

or
rh

ag
e

de
G

ra
af

et
al

.[
55

]
H

U
It

de
pe

nd
s

on
th

e
co

rr
ec

ts
eg

m
en

ta
tio

n
of

th
e

lu
m

en
re

gi
on

fo
rc

al
cu

la
tin

g
th

e
th

re
sh

ol
d

va
lu

es
V

uk
ad

in
ov

ic
et

al
.[

62
]

L
S

an
d

G
B

O
ve

rl
ap

pi
ng

of
th

e
H

U
va

lu
es

ha
m

pe
rs

th
e

id
en

tifi
ca

tio
n

of
lip

id
s

an
d

fib
ro

us
tis

su
es

W
in

te
rm

ar
k

et
al

.[
58

]
H

U
V

ar
ia

tio
ns

on
th

e
H

U
va

lu
es

w
ith

in
th

e
2x

2
gr

id
m

ay
im

pa
ir

th
e

co
rr

ec
td

et
er

m
in

at
io

n
of

th
e

m
ea

n
va

lu
e

C
lu

st
er

in
g

A
da

m
e

et
al

.[
64

]
FC

D
iffi

cu
lty

in
de

te
ct

in
g

lip
id

co
re

cl
os

e
to

lu
m

en
du

e
to

its
si

m
ila

ri
ty

A
da

m
e

et
al

.[
63

]
FC

D
iffi

cu
lty

in
de

te
ct

in
g

th
e

lip
id

an
d

fib
ro

us
ca

p
du

e
to

th
e

si
m

ila
ri

ty
of

th
es

e
co

m
po

ne
nt

s
in

PD
W

an
d

T
1W

im
ag

es
It

sk
ov

ic
h

et
al

.[
65

]
SE

C
A

C
al

ci
fic

at
io

n
w

as
no

ta
dd

re
ss

ed
in

th
e

st
ud

y
K

ar
m

on
ik

et
al

.[
66

,6
7]

K
-M

ea
ns

C
ho

os
e

a
co

nv
er

ge
th

re
sh

ol
d

is
co

m
pu

ta
tio

na
le

xp
en

si
ve

;K
-m

ea
ns

al
go

ri
th

m
is

se
ns

iti
ve

to
no

is
y

da
ta

;F
ur

th
er

m
or

e,
di

ffi
cu

lti
es

in
tr

ea
tin

g
si

m
ila

r
da

ta
be

lo
ng

in
g

to
di

ff
er

en
tc

lu
st

er
s

ar
e

al
so

a
pr

ob
le

m
fo

rk
-m

ea
ns

al
go

ri
th

m
Su

n
et

al
.[

69
]

SF
C

T
he

us
e

of
th

e
si

gn
al

in
te

ns
ity

is
no

ta
de

qu
at

e
si

nc
e

it
ch

an
ge

s
w

ith
th

e
ac

qu
is

iti
on

pa
ra

m
et

er
s

Su
n

et
al

.[
70

]
SF

C
D

iffi
cu

lti
es

in
id

en
tif

yi
ng

th
e

lo
os

e
m

at
ri

x,
fib

ro
ce

llu
la

ra
nd

ad
ip

os
e

fa
td

ue
to

th
e

si
m

ila
rT

2
va

lu
es

of
th

es
e

co
m

po
ne

nt
s

X
u

et
al

.[
68

]
M

M
S

T
he

co
m

pl
ex

ity
of

th
e

M
ea

n
Sh

if
ta

lg
or

ith
m

in
cr

ea
se

s
w

he
n

th
e

fe
at

ur
e

sp
ac

e
di

m
en

si
on

al
ity

al
so

in
cr

ea
se

Su
pe

rv
is

ed
cl

as
si

fic
at

io
n

A
nd

er
so

n
et

al
.[

77
]

R
IP

N
et

N
ee

d
fo

ro
ne

m
od

el
fo

re
ac

h
co

m
po

ne
nt

;A
ls

o,
di

ff
er

en
ts

et
of

va
ri

ab
le

s
is

us
ed

in
ea

ch
m

od
el

C
la

rk
e

et
al

.[
78

]
M

in
im

um
D

is
ta

nc
e

M
in

im
um

di
st

an
ce

cl
as

si
fie

rm
ay

be
se

ns
iti

ve
to

va
ri

at
io

ns
on

th
e

da
ta

C
la

rk
e

et
al

.[
79

]
M

ax
im

um
L

ik
el

ih
oo

d
H

em
or

rh
ag

e
an

d
ne

cr
ot

ic
-c

or
e

ar
e

si
m

ila
ra

cc
or

di
ng

to
th

e
M

R
si

gn
al

s
H

of
m

an
et

al
.[

80
]

A
N

N
,B

ay
es

an
d

K
-N

N
T

he
lo

w
nu

m
be

ro
fp

ix
el

s
us

ed
fo

rc
al

ci
fic

at
io

n
m

ay
ex

pl
ai

n
th

e
w

or
st

re
su

lts
;S

lig
ht

ov
er

la
pp

in
g

m
ay

al
so

ha
ve

af
fe

ct
ed

th
e

re
su

lts
va

n
E

ng
el

en
et

al
.[

81
]

L
in

ea
rD

is
cr

im
in

an
t

L
ar

ge
nu

m
be

ro
fi

np
ut

va
lu

es
;D

iffi
cu

lty
in

di
ff

er
en

tia
tin

g
fib

ro
us

tis
su

e
an

d
ne

cr
ot

ic
co

re
co

m
po

ne
nt

s;
V

al
id

at
io

n
on

in
-v

iv
o

im
ag

e
is

ne
ce

ss
ar

y
va

n
E

ng
el

en
et

al
.[

82
]

L
in

ea
rD

is
cr

im
in

an
t

Q
ui

te
nu

m
be

ro
fi

np
ut

va
lu

es
fo

re
ac

h
pi

xe
li

s
ne

ce
ss

ar
y

fo
rc

la
ss

ifi
ca

tio
n

va
n

’t
K

lo
os

te
re

ta
l.

[8
3]

L
in

ea
rD

is
cr

im
in

an
t

Si
m

ila
ri

ty
of

th
e

si
gn

al
in

te
ns

iti
es

of
ca

lc
ifi

ca
tio

ns
cl

os
e

to
th

e
lu

m
en

w
ith

ot
he

r
co

m
po

ne
nt

s
ha

ve
co

nt
ri

bu
te

d
fo

r
th

e
po

or
re

su
lts

;
A

ls
o,

m
or

e
im

ag
es

w
ith

ca
lc

ifi
ca

tio
ns

sh
ou

ld
be

in
cl

ud
ed

in
th

e
tr

ai
ni

ng
st

ep
to

ov
er

co
m

e
th

is
pr

ob
le

m
*A

C
=

A
ct

iv
e

C
on

to
ur

;H
U

=
H

ou
ns

fie
ld

U
ni

t;
L

S=
L

ev
el

Se
t;

G
B

=
G

en
tle

B
oo

st
;F

C
=

Fu
zz

y
C

lu
st

er
in

g;
SF

C
=

Sp
at

ia
lF

uz
zy

C
-M

ea
ns

;M
M

S
=

M
od

ifi
ed

M
ea

n-
Sh

if
t.



50

for neurological events is still a problem in many studies dealing with the segmentation
of atherosclerotic plaques. The main cause of this is the similar intensities of these com-
ponents. Fuzzy C-Means algorithm proved to be effective in segmenting regions with
similar intensities. In addition, spatial fuzzy C-Means allows to overcome the presence
of local noise not treated with the traditional fuzzy C-Means. The combination of clus-
tering with active contours could provide the correct identification and delineation of the
components on atherosclerotic plaques.

Regarding the assessment of the atherosclerotic plaque from an expert systems de-
velopment point of view, future researches addressing the classification of the disease
progression are required to allow the development of medical decision-making systems
for providing an efficient and complementary diagnosis for planning the adequate treat-
ment. Since the accuracy of the automated classification depends on the information
attained from the segmented structures in images, the extraction of the most relevant fea-
tures from atherosclerotic plaques and their components is one of the most important task
to be considered in future studies for allowing the accurate assessment of carotid diseases.
Such features could allow the accuracy improvement of the most existing methodologies
applied to the classification of the symptomatic or asymptomatic atherosclerosis. To the
best of our knowledge, no one study presents an expert system for the assessment of the
atherosclerotic lesion type based on the AHA classification standard. Therefore, as the
main contribution that can be attained with the application of expert systems concerning
the study of atherosclerotic plaques, we suggest the use of the most efficient classifiers
addressed in the literature in order to perform the classification of the lesion type, partic-
ularly based on the referred standard.
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Abstract

Investigation of the carotid artery plays an important role in the diagnosis of cerebrovas-
cular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR)
images is the first step towards evaluating any possible cardiovascular diseases like
atherosclerosis. However, the automatic segmentation of the lumen is still a challenge
due to the low quality of the images and the presence of other elements such as stenosis
and malformations that compromise the accuracy of the results. In this article, a method
to identify the location of the lumen without user interaction is presented. The proposed
method uses the modified mean roundness to calculate the circularity index of the regions
identified by the K-means algorithm and return the one with the maximum value, i.e. the
potential lumen region. Then, an active contour is employed to refine the boundary of
this region. The method achieved an average Dice coefficient of 0.78 ± 0.14 and 0.61 ±
0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively.
The results show that this method is promising for the correct identification and location
of the lumen even in images corrupted by noise.
Keywords: Magnetic Resonance Imaging, K-means algorithm, Deformable model, Sub-
tractive clustering, Circularity index

1 Introduction

The segmentation of medical images is an important diagnostic tool to detect and/or to
follow-up various diseases. An examination of the arterial system allows the identification
of pathologies associated to cardiovascular diseases [1, 2]. One of the main cardiovascular
diseases is atherosclerosis, which is when fatty components, calcium, cholesterol and
fibrous tissues form plaques on the artery walls. Consequently, atherosclerosis reduces or
blocks the blood flow through the artery, which can cause amaurosis fugax and strokes
[3–5]. Several imaging modalities are able to identify atherosclerosis in a non-invasive
way, allowing treatment planning before the onset or recurrence of symptoms.

Magnetic Resonance Imaging (MRI) of the carotid artery has been widely used in
studies to identify the atherosclerotic plaques and their main components in order to
analyze the progression of the disease [6]. However, the correct identification of the
lumen and vessel boundaries is an important step before segmenting the atheroscle-
rotic plaque components, since atherosclerosis is located between those boundaries. The
automatic/semi-automatic segmentation of the lumen and vessel wall has been proposed



68

in several studies and in most cases it is considered as the first step to identify and evalu-
ate atherosclerosis [7–12]. However, this task is not always performed automatically and
therefore, in several studies, the boundaries of the lumen and vessel wall in the images
have to be delineated manually [9, 13]. Typically, the lumen boundary is located inside
the vessel wall. Hence, the lumen boundary can be extended until it reaches the vessel
wall boundary [8].

Three-dimensional ultrasound (3D-US) is also an interesting imaging modality to en-
visage the anatomy of the carotid artery [14–16]. However, the segmentation of lumen and
wall boundaries in 3D-US images is a challenge because of the poor contrast and weak
boundaries caused by shadows that are due to calcifications; however, several studies have
been proposed to overcome such difficulties [17, 18].

The segmentation of the lumen and wall of the carotid artery is a strong focus of
research due to the lack of automation. Although the refinement of the lumen boundary
can be easily achieved by deformable models [19–21], finding the region corresponding
to the lumen is the most important step towards a fully automatic segmentation.

The semiautomatic segmentation of the lumen and wall of the carotid artery was tack-
led by Adame et al. [22, 23]. In those studies, ellipse fitting was used to detect the ves-
sel wall boundary, while fuzzy clustering was applied to identify the lumen and carotid
plaques. Although the segmentation results had high correlation with the manual segmen-
tations, the method requires user interaction to determine the centre point of the lumen.

Another study carried out by Saba et al. [8] proposed the segmentation of the lumen
and wall of the carotid artery based on the level set algorithm. The radial expansion from
a specific point is used to define the initial contour of the lumen. The final contour of
the lumen, which is expanded by two pixels, is then used to initialize the contour of the
carotid wall.

An attempt to automatically segment the lumen in transverse ultrasound images of the
carotid artery was undertaken by Yang et al. [24]. The proposed method used the Canny
algorithm to find the edges in the input image and the morphological closing operation
was used to find and fill the region corresponding to the lumen.

Gao et al. [25] proposed a method to identify the media-adventitia and lumen regions
on intravascular ultrasound (IVUS) images by applying an adaptive region growing algo-
rithm and the combination of the K-means and 2D Otsu algorithms to identify the lumen
inside the media-adventitia region. The algorithms were applied individually and the min-
imization of the curvature was used to obtain the region with the least curvature variation,
which is the best representation of the lumen.

Santos et al. [26, 27] addressed the segmentation of the lumen and bifurcation of
the common carotid artery in B-mode ultrasound images. After a limiarization process,
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the binary image containing the region corresponding to the lumen was used to generate
the masks that were applied in the segmentation of the lumen and bifurcation boundaries.
The Chan-Vese segmentation algorithm correctly detected the inferior and superior lumen
walls. Although the segmentation was fully automatic, the method is only for longitudinal
B-mode ultrasound images.

This study proposes a fully automatic method to identify the location of the lumen in
MR images of the carotid artery. This method relies on the analysis of the regions in the
input image to identify the ones corresponding to the potential lumen. We hypothesized
that, since the lumen is a low intensity region with an approximately circular shape on
axial MR images, the use of the mean roundness index would allow the identification
of the region with the maximum circularity that may represent the potential lumen. In
addition, an active contour method is applied to refine the region boundaries. In order to
evaluate the method, a comparison between the computer and manual segmentations was
made to attain a quantitative analysis.

The article is organized as follows: the steps of the proposed method are described
in Section 2. The results of the segmentation, as well as the comparison with the man-
ual segmentation, are presented in Section 3. Section 4 points out the advantages and
limitations of the proposed method. Finally, the conclusions are drawn in Section 5.

2 Materials and Methods

2.1 Image acquisition

The MR images of the carotid artery selected for this study were used in research by van
Engelen et al. [9] and kindly provided by the authors on request. The proposed method
was performed on images that are the regions of interest surrounding the carotid arteries.
A registration procedure was previously performed to match the original MR images with
the corresponding histology images, which only contained the region of the artery under
study [9]. Once the matching was completed, the MR images were cropped to obtain
only the part that matched the histology images [9]. The original dataset was composed
of five MRI scans acquired from thirteen patients: T1-weighted (T1W), Proton Density
Weighted (PDW), Time-of-Flight (TOF) and two 3D-T1W scans. The first three MRI
scans were acquired without administration of intravenous (IV) contrast media, whereas
the 3D-T1W scan was acquired with and without contrast media. The post-contrast 3D-
T1W scan was performed 4.6± 3.4 minutes after the administration of the contrast media.
Each MRI scan is composed of approximately 17.7± 4.8 slices per patient; each slice has
a pixel size of 0.25 mm x 0.25 mm. Computer Tomography Angiography (CTA) images
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were also acquired to provide details for the registration with the histology images and
to facilitate the manual segmentation of the lumen, vessel wall and plaque components.
Manually drawn contours of the lumen and arterial wall were also provided for many of
the MR slices. The manual delineations of the lumen and vessel wall were performed by
one expert based on the combination of the CTA, PDW and post-contrast 3D-T1W scans
with visual assessment of additional in vivo MRI scans [9]. More details about the MRI
scans are available in van Engelen et al. [9].

From the original image dataset, we used all MR images with their corresponding
ground truth, i.e. one reference contour of the lumen and another one for the vessel wall
manually delineated in the slice under analysis; hence, 181 3D-T1W and 181 PDW MR
images were used in the experiments.

2.2 Methodology

The proposed method is made up of three main stages, as shown in Figure 1.
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Figure 1: Diagram of the proposed segmentation method.

The pre-processing stage is necessary to minimize noise and improve the quality of
the input images. Then, the enhanced images are submitted to the segmentation stage in
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order to separate the regions with low pixel values, which include the background and the
lumen regions. The lumen identification stage uses three classification indexes to identify
the region corresponding to the lumen of the artery, which is then inputted to an active
contour algorithm for further refinement of the boundary.

2.2.1 Pre-processing

The first step of the pre-processing stage is the use of a median filter with a mask of 5x5 to
minimize the noise effects in the original images. The median filter was chosen due to its
ability to remove noise without compromising the boundaries of the regions of interest.

The contrast enhancement step improves the brightness of the dark regions of the in-
put images. The transformed-based gamma correction algorithm used here is a contrast
enhancement algorithm belonging to the group of histogram modification-based algo-
rithms [28]. In order to overcome the under- and over-estimation problems of the common
gamma correction and histogram equalization algorithms, Huang et al. [28] proposed a
gamma correction-based method to avoid the overestimation of regions with low-level in-
tensities. The method relies on the probability density function (PDF) and the cumulative
density function (CDF) of the intensity values:

T (l) = lmax× (l/lmax)
1−CDF(l), (1)

where CDF(l) is the cumulative density function of the intensity value l and lmax is the
highest possible intensity value. The output intensity T(l) progressively increases as the
CDF increases. Also, a weighting distribution is used to avoid an overestimation of low-
level intensities. The weighting PDF is proposed as:

pd fw(l) = pd fmax×
(

pd f (l)− pd fmin

pd fmax− pd fmin

)α

, (2)

where l is the intensity value, pdfmin is the minimum probability of the PDF function,
pdfmax is the maximum probability and α is a parameter. The weighting CDF is defined
as:

cd fw(l) =
lmax

∑
l=0

pd fw(l)
∑ pd fw

, (3)

where lmax is the highest possible intensity value and ∑ pd fw = ∑
lmax
l=0 pd fw(l). The adap-

tive gamma correction with weighting distribution (AGCWD) [28] is:

T (l) = lmax× (l/lmax)
1−cd fw(l). (4)
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The amount of contrast enhancement depends on the value of the α parameter. The
larger α is, the greater the enhancement will be.

Since the correct contrast enhancement plays an important role in the segmentation
accuracy, the AGCWD is used in this study to avoid overestimating the brightness of
the input images. However, a potential loss of important information can occur due to
this image processing. Therefore, the analysis of the grayscale intensity is important to
automatically determine whether the contrast correction is necessary or not. Hence, an
automatic determination technique of the contrast enhancement of images based on the
PDF of the grayscale intensities is proposed here. The PDF of the grayscale intensities is
partitioned into two halves: the first halve represents the low intensity pixels of the image,
whereas the second one represents the high intensity pixels. The difference between the
accumulated probabilities of both halves is calculated. If the difference is low, the input
image has a good contrast. The Otsu threshold is used to separate the probability density
function. The following equation represents the basis of the automatic contrast correction:

D =
t

∑
i=1

PDFmini−
N

∑
j=t+1

PDFmax j , (5)

where PDFmin and PDFmax represent the probabilities of the low and high intensities of
the input image, respectively, t is the value obtained by the Otsu threshold algorithm and
N is the highest possible intensity value. If D is equal or less than a threshold, the contrast
correction is not necessary. Here, a threshold value of 0.1 was found to be the one that
led to good contrast enhancements without compromising the structures under analysis.

2.2.2 Segmentation

The K-means clustering algorithm is a well-known method to separate regions with sim-
ilar characteristics (of intensity, for instance) in images. However, the correct use of the
cluster centroids used in the K-means algorithm is a challenging task because different
images have different cluster centroids. Additionally, trial and error is not an adequate
approach because it is time consuming. Therefore, an automatic method to determine the
cluster centroids is necessary.

The inconsistency results of the Fuzzy C-means algorithms are caused by different
membership values generated by several executions. Thus, different cluster centroids can
be generated because they are calculated from the membership values.

Subtractive clustering [29] has been proposed as an alternative approach to avoid the
instability of the Fuzzy C-means algorithms. The adequate number of cluster centroids is
calculated from the potential of each pixel in the neighbourhood as:
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Pi =
n

∑
j=1

e
−4‖xi−x j‖2

r2a , (6)

where ||xi−x j|| represents the distance between pixels xi and xj, ra is the radius represent-
ing the neighbourhood and n is the number of pixels in the input image. Equation 6 gives
the initial potential of each pixel; then, the pixel having the highest potential is selected
as the first cluster centroid. The next centroids are found according to:

Pi = Pi−Pj× e
−4‖xi−x j‖2

r2
b , (7)

where Pj represents the highest potential, xj is the pixel with highest potential and rb

is the radius representing the neighbourhood. Equation 7 reduces the potential of the
neighbouring pixels; then, the next pixel with the highest potential is selected as the next
cluster centroid and the process is repeated until all the centroids have been found.

The advantage of the subtractive clustering algorithm is that the cluster centroids do
not change in different runs. This is due to the fact that the potential function relies on the
pixel values only (or another feature calculated from the pixels of the input image).

After the cluster centroids have been found, a clustering algorithm may be applied.
The combination of the K-means algorithm with the subtractive clustering proposed by
Dhanachandra et al. [30] was used in this study. Considering the fact that regions having
similar grayscale intensities can be merged into one cluster, the choice of the number
of clusters plays an important role to determine the correct segmentation of the lumen.
The merging of the lumen region with pixels of the background can occur in arteries
with a thin and low intensity wall. The lower the number of clusters, the higher the
probability that the lumen and the background regions become one cluster. Based on
several experiments, four clusters were found to be a stable choice to correctly identify
the region corresponding to the lumen in the images tested.

Because the lumen and the background usually have low intensities in MR images,
the next step selects the regions belonging to the cluster with low intensity. An image
with such regions is returned as a binary image, in which the regions are represented as
white and the background as black. The image is then submitted to the region growing
algorithm in order to obtain all regions of the image separately. Here, the region growing
is performed on the image corresponding to the cluster with low intensity values to obtain
a set with all regions of interest. The white pixels have been chosen as the seed of the
region growing algorithm, and the regions are merged when the pixels in the neighbour-
hood do not belong to another region previous identified and have the same intensity as
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the seed. When a region is found, another pixel not belonging to the identified region is
chosen as the seed and the process continues until all regions have been found. Although
the region growing algorithm has been chosen to separate the regions, the connected com-
ponent labelling algorithm could also be used to perform the same task without loss of
performance. Examples of the segmentation stage with and without previous contrast
enhancement are depicted in Figures 2 and 3.

Without contrast

With contrast

(a) (b) (c)

Figure 2: Example of the segmentation stage obtained from the 3D-T1W image with
and without previous contrast enhancement; the image obtained from the median filter
is shown in (a); the clustered image is shown in (b); and finally, the clusters of the low
intensity pixels found are shown in (c).

Without contrast

With contrast

(a) (b) (c)

Figure 3: Example of the segmentation stage obtained from the PDW image with and
without previous contrast enhancement; the image obtained from the median filter is
shown in (a); the clustered image is shown in (b); and finally, the clusters of the low
intensity pixels found are shown in (c).

2.2.3 Lumen identification

The lumen identification stage is the kernel of this study, which uses measures to evaluate
each region of interest obtained in the previous stage. Since the lumen is a region similar
to a circle, a set of indexes that maximize the function representing the roundness of the
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possible region corresponding to the lumen is calculated. Hence, three indexes are found
for each region in the segmented image:

• Circularity index (MR);

• Irregularity index (Ir);

• Centre index (d).

The process to identify the lumen requires maximizing a function composed of the
above-mentioned indexes. In order to avoid additional processing and increase the per-
formance of the method, regions with less than 1.5% of the total number of pixels of the
input image are discarded since they are usually associated to noise. The indexes of all
remaining regions are calculated.

Circularity indexes have been proposed in several studies [31–33] to quantify the
roundness of regions in images. Ritter and Cooper [32] proposed a new index for de-
termining the circularity of objects in images. The new index is called mean roundness,
which represents the ratio between the average radius and the distance between the radius
of each border pixel and the average radius:

MR =
1
N

N

∑
i=1

r̄b

|ri− r̄b|+ r̄b
. (8)

The larger the mean roundness (MR) index is, the more circular the object under anal-
ysis is. The proposed circularity index is independent of the image resolution [32].

An additional term was added to the mean roundness index to avoid pixels at the
border of the input image:

MR =
1
N

(
N

∑
i=1

r̄b

|ri− r̄b|+ r̄b

)
−nb, (9)

where nb is the number of pixels of the region that are located at the border of the image.
The modified MR index tries to reduce the circularity index of regions at the border of the
input image. Also, since no rotation, translation or scaling transforms are performed in
the proposed method, the location of the regions on the input image does not change.

In addition to the mean roundness index, the irregularity index has also been proposed
to avoid regions with irregular contours. The following irregularity index was used in this
study:

Ir = P∗
(

1
SD
− 1

GD

)
, (10)
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where P is the number of pixels of the contour, SD is the shortest diameter and the GD

is the largest diameter [34]. If the difference between SD and GD is equal to 0 (zero) or
close to it, the Ir index decreases, which means that the boundary is more regular.

In addition, a centre index (d) is used to identify the correct location of the lumen.
In general, the lumen is located close to the centre of the image. Hence, the distances
between the centre of the image and the centre of each region are calculated and used
to maximize the final index function. Hence, the inverse of the irregularity and centre
indexes are then used to maximize the proposed circularity index for each region accord-
ingly to:

E = MR+
1
Ir

+
1
d
. (11)

The irregularity and centre indexes are used to penalize the mean roundness index of re-
gions with irregular borders and those far from the centre of the input image, respectively.
The lower the irregularity index is, the larger its inverse will be. The same concept is also
applied to the inverse of the centre index. Therefore, regions with high MR, irregularity
and centre index values have a high probability of being the lumen.

The region that maximizes the circularity index is then submitted to the Chan-Vese
active contour algorithm [20] in order to refine the contours previously found. The binary
image representing the lumen region may not fit the true boundary of the lumen in the MR
image. Hence, the contour of such a region is used as the input of the Chan-Vese active
contour model, which is applied to the original image in order to fit the contour to the true
boundary. This refinement step plays an important role to avoid under- or over-estimation
of the contour, leading the contour closer to the true boundary of the lumen under analysis
and, consequently, better results.

The Chan-Vese active contour was proposed by Chan and Vese [20] to segment the
boundaries of objects in images based on the level set and Mumford-Shah models. The
Chan-Vese active contour model is based on the energy minimization of the variations
inside and outside the region as a level set problem, which can deal successfully with
topological variations. Since the gradient of the image is not used in the Chan-Vese model,
the method is recommended for the segmentation of medical images which commonly
have weak boundaries of the structures under analysis.

2.3 Quantitative analysis

The proposed method was validated by evaluating the contours and the areas of the re-
gions found. The following measures were used to compare the segmentations of the new
method and the manual method:



3 Results 77

• Dice coefficient;

• Polyline distance;

• Hausdorff distance.

The Dice coefficient represents the overlap between two regions, which is a ratio
between the intersection and the union of the regions. Here, this metric is important to
assess the under- or over-segmentation of the region identified by the automatic method
with respect to the corresponding manual method.

The polyline distance represents the average minimum distance between two sets of
points, i.e. image pixels, whereas the Hausdorff distance provides the maximum between
the greatest distances between such points.

Under- and over-estimation of the lumen affect the value of the Dice coefficient, since
it represents the ratio between the intersection and union of the regions under analysis.
However, the centroid difference between the manually segmented and the automatically
segmented lumen is low when the algorithm finds the correct location of the lumen, even
when the Dice coefficient is reduced. Therefore, the difference between the centroids of
the regions corresponding to the manual segmentation and the automatically segmented
lumen is calculated by using the Euclidean distance. The higher the Euclidean distance,
the farthest the regions are from each other.

3 Results

The proposed method was performed on each slice of the post-contrast 3D-T1W and
PDW images with the ground truths provided. The following parameters were used to
perform the automated segmentation: the mask of the median filter was set to 5x5; when
it was necessary to adjust the contrast, the value of α in Equation 2 was defined as equal
to the difference between the probabilities of the low and high intensities, as described by
Equation 5; the radius ra and rb used in the subtractive clustering were set to 1.2 and 1.8,
respectively; the percentage of disregarded regions was set at 1.5%; and the number of
iterations of the Chan-Vese active contour algorithm was set to 200. The 5x5 mask was
empirically determined as the most suitable template for removing noise from the images
without disturbing the edges of the regions of interest. The radius values ra and rb of
the subtractive clustering were empirically determined through several tests as the most
appropriate parameters for separating the regions of the input images. In addition, the
percentage of the disregarded regions was also experimentally found as the most suitable
one for the resolution of the images under evaluation. A higher percentage value could
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remove a region corresponding to the lumen, particularly in images where the lumen is
small. The values of all parameters were kept constant in the experiments. Examples of
the segmentation results and corresponding manual segmentation are shown in Figure 4.

(a) (b) (c) (d) (e) (f)

Figure 4: Examples of segmentation results obtained from the 3D-T1W images: Each
column represents one image belonging to patient 1, which is composed of six slices with
ground truth; the first row contains the input images; the second row represents the results
of the K-means with subtractive clustering; the third row shows the images with the lumen
that was identified by taking into account the modified mean roundness index; and finally,
the forth row shows the refined contour in green and the manual one in red.

In Figure 4, the green contours represent the results of the proposed method, whereas
the red contours represent the manual results. The lumen was correctly identified by the
proposed method as shown by the two results. The values of the validation measures
corresponding to the results shown in this figure (Figure 4) are given in Table 1.

Table 1: Values of the validation measures for the images in Figure 4.

Dice PD(px) HD(px) CD(px)

slice 1 0.75 2.05 5 2.03
slice 2 0.77 1.51 4.12 1.90
slice 3 0.80 1.26 5 3.59
slice 4 0.56 2.56 5 3.75
slice 5 0.78 1.58 4.24 2.82
slice 6 0.51 3.62 9.22 2.72

*PD = Polyline distance; HD = Hausdorff distance; CD = Centroid distance; px = pixels.
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The automatic segmentation obtained for slice 6 of patient 1 in Figure 4f, shows that
the result was overestimated compared to the manual one; however, it should be under-
stood that the centroids of both regions were well matched.

In order to show the impact of the centre index and the regions on the border of the
input image on the segmentation results, the images obtained with and without taking this
index and these regions into account are shown in Figure 5.

(a) (b) (c) (d)

Figure 5: Impact of the centre index (a - not taken into account and b - taken into account)
and of the regions on the border of the input image (c - not taken into account and d -
taken into account) on the segmentation of the lumen region.

The identified region in Figure 5a does not correspond to the correct location of the
lumen, despite its high value of mean roundness index. The correct lumen is represented
by the brightest circular area close to the centre of the image. In this case, the centre index
penalizes the value of the mean roundness index of the region close to the right top of the
image, reducing the value of this index. The result obtained with the centre index activated
is shown in Figure 5b. For the cases with regions that include pixels on the border of the
input image, the impact of the number of these pixels on the mean roundness index is
illustrated in Figures 5c and 5d. Here the number of these pixels contributes to reduce the
mean roundness index of such regions, which leads to good segmentation results (Figure
5d).

Figure 6 illustrates the influence of the refinement process of the segmentation contour
on the final result. In this figure, the red contour represents the contour of the binary mask
of the lumen identification step, whereas the green contour is the result of the Chan-Vese
active contour, i.e. the result of the refinement process from the red contour. In all cases
shown in this figure, the initial contour (in red) underestimated the true boundary of the
lumen, which was then corrected by the Chan-Vese model (green contour).

In order to illustrate the influence of the number of clusters, the images resulting from
the segmentation step taking into account three and four clusters are shown in Figure 7.

As shown in Figure 7a-c, the lumen boundary leaked across the vessel wall when three
clusters were used. This is due to the low intensity and the thinness of the vessel wall in
the regions where the leakage occurred. The segmentation of the image shown in Figure
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(a) (b) (c) (d)

Figure 6: Impact of the Chan-Vese active contour on the final segmentation result: The
red contour is the one obtained in the lumen identification step, and the green contour is
the one obtained by the refinement process of the red one.

(a) (b) (c) (d)

Figure 7: Influence of the number of clusters on the final lumen segmentation: The first
row represents the segmentation obtained using three clusters, whereas the second row
shows the segmentation obtained using four clusters.

7d was not affected by the number of clusters due to the higher grayscale intensity and
thickness of the vessel wall.

The average values of the Dice similarity, polyline distance, Hausdorff distance and
centroid distance of the automatically segmented lumens in comparison to the manual
ones are shown in Tables 2 and 3 for each patient, respectively. For each metric, the
average standard deviation was calculated using the pooled standard deviation formula.

The average measures obtained for the 3D-T1W images were better than those ob-
tained for the PDW images, reaching Dice coefficients ranging from 0.67 ± 0.18 to 0.91
± 0.04 (Table 2). The maximum Dice coefficient for the PDW images was 0.74 ± 0.16.
This not-so-good result is due to the poor quality of the PDW images when compared
to the 3D-T1W images. The polyline and Hausdorff distances were used to assess the
difference between the manual and automatic segmentations regarding the contours ob-
tained. For the 3D-T1W images, the polyline distance ranged from 1.06±0.28 to 4.13 ±
5.69 pixels, whereas for the Hausdorff distance the differences ranged from 2.58± 1.02
to 9.97 ± 9.65 pixels. On the other hand, for the PDW images, the distances calculated
by the polyline distance ranged from 1.44 ± 0.59 to 7.01 ± 4.98 pixels, whereas for the
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Table 2: Average measures obtained for the 3D-T1W images.

Dice ± std PD ± std (px) HD ± std (px) CD ± std (px)

Patient 1 0.70 ± 0.13 2.10 ± 0.88 5.43 ± 1.90 2.80 ± 0.77
Patient 2 0.90 ± 0.02 1.33 ± 0.15 2.78 ± 0.37 0.53 ± 0.20
Patient 3 0.68 ± 0.11 1.36 ± 0.48 2.99 ± 1.80 1.79 ± 0.98
Patient 4 0.67 ± 0.18 2.25 ± 2.88 6.98 ± 9.93 3.42 ± 5.14
Patient 5 0.71 ± 0.22 1.98 ± 2.16 4.77 ± 4.41 1.39 ± 1.49
Patient 6 0.76 ± 0.16 2.17 ± 2.16 8.08 ± 9.85 3.83 ± 4.60
Patient 7 0.77 ± 0.20 1.75 ± 1.42 4.42 ± 4.15 1.98 ± 2.24
Patient 8 0.85 ± 0.15 1.07 ± 0.36 2.58 ± 1.02 1.26 ± 0.81
Patient 9 0.82 ± 0.07 1.30 ± 0.27 3.33 ± 1.71 1.39 ± 1.16
Patient 10 0.74 ± 0.11 1.41 ± 0.96 4.00 ± 3.15 1.77 ± 1.78
Patient 11 0.85 ± 0.08 1.39 ± 0.98 3.78 ± 5.04 1.52 ± 2.98
Patient 12 0.73 ± 0.16 4.13 ± 5.69 9.97 ± 9.65 5.52 ± 7.46
Patient 13 0.91 ± 0.04 1.06 ± 0.28 3.17 ± 1.07 1.08 ± 0.60

Average 0.78 ± 0.14 1.79 ± 2.13 4.79 ± 5.42 2.18 ± 3.22

*PD=Polyline distance; HD=Hausdorff distance; CD=Centroid distance; px=pixels; std=standard
deviation.

Table 3: Average measures obtained for the PDW images.

Dice ± std PD ± std (px) HD ± std (px) CD ± std (px)

Patient 1 0.62 ± 0.12 3.14 ± 1.14 7.34 ± 3.52 2.23 ± 1.64
Patient 2 0.65 ± 0.25 3.35 ± 2.48 8.58 ± 5.90 3.89 ± 3.05
Patient 3 0.68 ± 0.10 1.44 ± 0.59 3.74 ± 2.42 2.07 ± 1.21
Patient 4 0.68 ± 0.21 1.64 ± 1.30 4.91 ± 4.11 2.14 ± 1.42
Patient 5 0.66 ± 0.14 1.89 ± 1.34 5.12 ± 2.87 1.81 ± 0.93
Patient 6 0.69 ± 0.15 4.43 ± 5.75 10.64 ± 11.55 5.13 ± 5.72
Patient 7 0.74 ± 0.16 1.52 ± 0.93 3.60 ± 2.07 2.19 ± 1.49
Patient 8 0.71 ± 0.26 1.94 ± 1.63 5.21 ± 4.83 2.66 ± 2.86
Patient 9 0.52 ± 0.23 3.15 ± 1.99 8.61 ± 6.08 3.74 ± 3.03
Patient 10 0.60 ± 0.25 2.81 ± 3.22 7.48 ± 7.78 3.58 ± 4.24
Patient 11 0.20 ± 0.26 6.89 ± 3.76 13.39 ± 6.27 5.21 ± 2.41
Patient 12 0.69 ± 0.24 2.70 ± 3.19 7.78 ± 8.96 3.42 ± 5.00
Patient 13 0.42 ± 0.23 7.01 ± 4.98 14.91 ± 7.62 6.53 ± 4.37

Average 0.61 ±0.21 3.22 ± 3.05 7.79 ± 6.47 3.43 ± 3.35

*PD=Polyline distance; HD=Hausdorff distance; CD=Centroid distance; px=pixels; std=standard
deviation.

Hausdorff distance the differences ranged from 3.60 ± 2.07 to 14.91 ± 7.62 pixels.
As indicated by Table 3, the lower Dice coefficient obtained for patient 11 was due to

the fact that the lumen was not well characterized, as shown in Figure 8.
Figure 8 shows that the K-means algorithm was not able to correctly separate the

whole region into clusters corresponding to the low intensity value because the region be-
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(a) (b) (c)

Figure 8: PDW images of patient 11 with the lumen not well characterized (the yellow
colour represents the manual delineation, i.e. the correct region of interest).

longing to the lumen under analysis was corrupted by high intensity values. As mentioned
earlier, the high quality of the 3D-T1W images and the good lumen characterization con-
tributed to the good performance of the proposed method. Some segmentation examples
of PDW images with the lumen properly characterized are shown in Figure 9.

Figure 9: Segmentation of PDW images with the lumen properly characterized (the yel-
low colour represents the manual delineation, i.e. the correct region of interest).

4 Discussion

The development of automatic methods to correctly identify and segment the lumen in
MR images is a challenge considering the low quality of input images, the presence of
stenosis and malformations of this structure. In this work an automatic method to segment
the lumen in MR images was presented. Since the lumen is approximately circular in axial
MR images, our method automatically evaluated the circularity of the regions segmented
by the K-means algorithm. In addition, an active contour algorithm was applied to further
refine the boundary of the identified region.

The proposed method has several advantages compared to the other methods found in
the literature. The main advantages are that the method is easily implemented and does
not need any kind of user interaction. Also, by using a circularity index, the region corre-
sponding to the lumen is identified without the use of complex algorithms. Although the
parameters were tuned taking into account the characteristics of the dataset used in this
article, most of these characteristics are commonly found in other related datasets, mak-
ing the chosen parameters also suitable for these datasets without needing to make any
significant changes in their values. In terms of the parameters of the pre-processing step,
the mask of the median-filter used is a suitable choice to attenuate the noise usually found
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in medical images without leading to excessive smoothing of the borders of the structures
of interest, and is commonly adopted in such studies. The amount of contrast enhance-
ment is determined by the value of the α parameter in Equation 2, which is automatically
calculated by using the PDF of the grayscale intensities of the input image. The most im-
portant parameters are the ones related to the segmentation step. The number of clusters
that are defined has an important role in the proposed method. The grayscale intensity of
the lumen in carotid MR images is well-defined and distinguishable from other structures
in the images. Hence, the number of clusters proposed here is suitable to be used in other
image datasets. Moreover, the number of clusters was defined by taking into account that
the thin and low intensity walls of the carotid arteries can cause the lumen boundary to
leak. Moreover, since this is a common characteristic found in MR images of carotid
arteries, the value of this parameter is appropriate to separate the regions without loss of
performance. On using the subtractive clustering algorithm, the ra and rb parameters may
affect the number of clusters to be generated [35]. However, since the subtractive cluster-
ing is only used to generate the centroids of the expected number of clusters, the values of
these parameters can be used in other related image datasets to successfully identify the
regions presented according to the same expected number.

Several difficulties that can affect the segmentation accuracy have been addressed
in this study. Although the mean roundness measure is an easy and efficient index to
identify circular shapes in images, the use of the mean radius also identifies regions not
corresponding to a circular pattern, such as the ones that include the border of the input
MR image. Hence, additional indexes are employed to penalize the mean roundness
index in such cases. Depending on the imaging examination angle, two circular regions
corresponding to the internal and external carotid arteries or the jugular vein can appear
in the input image, compromising the segmentation result when the circular pattern of
such regions is greater than the one of the lumen under study. Therefore, since the lumen
is commonly located close to the centre of the input image, the centre index is used to
penalize circular regions far from the centre. Consequently, the segmentation results are
improved.

The results of the quantitative analysis show the superior quality of the 3D-T1W im-
ages which produced better results compared to the PDW images. The centroid distance
showed that the location of the segmented lumen corresponds well to the location of
the associated manual segmentation, even when there is an under- or over-estimation
of the segmented lumen. The maximum average Dice coefficient was 0.91± 0.04 for
the 181 3D-T1W images, whereas for the 181 PDW images, the maximum average
was 0.74± 0.16 . On the other hand, the minimum average Dice was 0.67± 0.18 and
0.20± 0.26 for the same images, respectively. It should be pointed out that the segmen-
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tation errors relating to patient 11 contributed to the minimum Dice calculated from the
PDW images. The poor quality of the PDW images and the malformation of the lumen
contributed to the majority of the segmentation errors found. In addition, the incorrect ad-
justment of the manual segmentations with respect to the real location of the lumen could
distort the quantitative analysis. Since the manual segmentations were based on a com-
bination of several imaging modalities, a misalignment can exist between such images
and the images evaluated here (3D-T1W and PDW MR images). A new set of manual
segmentations should be built in order to measure the accuracy of the proposed method
against improved manual delineations. Nevertheless, the proposed method was able to
identify the correct location of the lumen even in noisy images and in images of only
reasonable quality.

The proposed method achieved a total average Dice similarity of 0.78 ± 0.14 for the
181 3D-T1W images and of 0.61 ± 0.21 for the 181 PDW images. Although the valida-
tion measures and the type of images used in the majority of related studies are different
from the ones presented here, our method is in accordance with the works that have been
published. According to Pratt’s Figure of Merit (FOM), the method proposed by Yang
et al. [24] achieved a similarity of 0.705 between the manually delineated and the seg-
mented lumen contours. Although a complete and simple automatic method to segment
the lumen has been proposed by Yang et al. [24], an analysis of the regions in the input im-
ages and the application of deformable models may improve the segmentation accuracy.
Also, this method presents the following limitations: the applied morphological opera-
tions can distort the region corresponding to the lumen, the used gradient based method is
not efficient to identify the desired edges on homogeneous regions, and additional algo-
rithms should be employed to refine the boundary found. On the other hand, the method
proposed by Adame et al. [22] achieved a correlation coefficient r of 0.94 between the
manually delineated and the segmented lumen contours. However, all regions of the input
image are processed to find the correct lumen, instead of evaluating only the regions lim-
ited by the wall boundary. In addition, the method proposed by Gao et al. [25] achieved
a correlation coefficient r equal to 0.99 in the segmentation of the lumen in IVUS im-
ages. However, the lumen segmentation is performed after the identification of the region
corresponding to the media-adventitia layer.

Manual editing could be considered to improve the results of the proposed method by
manually adjusting the detected contour towards the real boundary of the lumen, leading
to lower segmentation errors and, consequently, higher Dice coefficients. However, this
would lead to a more time-consuming and subjective solution.

In spite of the potential offered by the proposed method, some limitations exist. Since
the images showed regions of interest (ROI) acquired from the MRI exam, no additional
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pre-processing or delineation to limit the ROI was performed in the input images. How-
ever, the cropping of medical images represents an important step to generate the regions
surrounding the structures of interest. Since the MRI scan of carotid arteries is performed
using a large field of view, covering the whole region of the neck, the cropping of the im-
ages becomes necessary to remove undesirable structures. Centerline tracking algorithms
[36, 37] represent an alternative to find the centre of the artery in each slice and crop the
image in order to obtain the region surrounding that artery. The success of the segmenta-
tion depends on correctly setting up the parameters of the proposed method, mainly the
percentage of disregarded regions, which depends on the resolution of the input image.
Since small regions corresponding to noisy artifacts can also appear as circular regions in
some cases, the proposed method can fail to identify the correct lumen in these cases. The
higher the image resolution is, the higher the percentage of disregarded regions should be.
However, special attention must be taken when the lumen appears as a small region in the
input image since it can also be discarded when a high percentage of disregarded regions
is adopted. Although morphological operations could be effective to remove noisy re-
gions from the input image, the choice of the shape and size of the structuring element is
relevant to remove any noise efficiently and avoid the distortion of the region correspond-
ing to the lumen. A more efficient approach will be considered in the future in order
to correctly identify regions corresponding to noise without having to use ‘disregarding
percentages’.

5 Conclusions

The development of a fully automatic segmentation method of the lumen and vessel wall
is an-ongoing and intensive focus of research. In this article a novel method was presented
for the automatic lumen segmentation in MR images of the carotid artery without user
interaction. The proposed method proved to be promising to identify the correct location
of the lumen.

The low quality of the input images and the malformation of the lumen, as well as
the misalignment and lack of manual interventions, contributed to the majority of the
segmentation errors found. Nevertheless, the results showed that a good overlap and low
point distances between the automatically segmented lumen and the associated manual
results can be achieved by the proposed method even in the presence of noise.

Future studies will be conducted to reduce the number of parameters used in the pro-
posed method and to tune automatically their values based on features of the input image.
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In addition, the segmentation of the vessel wall is going to be addressed in the next step
of our research.
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Abstract

Image assessment of the arterial system plays an important role in the diagnosis of car-
diovascular diseases. The segmentation of the lumen and media-adventitia in intravas-
cular (IVUS) images of the coronary artery is the first step towards the evaluation of the
morphology of the vessel under analysis and the identification of possible atherosclerotic
lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS
images of the coronary artery is presented. The proposed method relies on the K-means
algorithm and the mean roundness to identify the region corresponding to the potential lu-
men. An approach to identify and eliminate side branches on bifurcations is also proposed
to delimit the area with the potential lumen regions. Additionally, an active contour model
is applied to refine the contour of the lumen region. In order to evaluate the segmentation
accuracy, the results of the proposed method were compared against manual delineations
made by two experts in 326 IVUS images of the coronary artery. The average values of
the Jaccard measure, Hausdorff distance, percentage of area difference and Dice coeffi-
cient were 0.88 ± 0.06, 0.29 ± 0.17 mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in
324 IVUS images successfully segmented. Additionally, a comparison with the studies
found in the literature showed that the proposed method is slight better than the majority
of the related methods that have been proposed. Hence, the new automatic segmentation
method is shown to be effective in detecting the lumen in IVUS images without using
complex solutions and user interaction.
Keywords: Medical Imaging, Intravascular Ultrasound, Image Pre-processing, Image
Segmentation

1 Introduction

According to the World Health Organization (WHO), coronary artery diseases were re-
sponsible for the death of 7.3 million people around the world in 2008 [1]. Atheroscle-
rosis is an underlying disease responsible for the occurrence of heart attacks and strokes.
Atherosclerotic plaques are formed when fatty material and cholesterol are deposited in-
side the lumen of the artery, reducing the blood flow through the vessel and increasing
the risk of blood clots that can cause heart attacks and strokes. Thus, in order to prevent
such risks a treatment plan or even stenting procedures should be established based on
image-based technologies.

Technological advances in computerized systems for imaging-based diagnosis are
able to detect and analyze cardiovascular diseases. Intravascular Ultrasound (IVUS) is
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an imaging procedure that allows the evaluation of the arterial morphology by means of
the introduction of a catheter equipped with an ultrasound transducer inside the vessel to
be studied. The catheter slides through a guidewire placed in the blood vessel near the
segment of interest in order to acquired images of the affected region. Images acquired
from IVUS imaging systems allow experts to envisage atherosclerotic lesions and the
shape and size of the vessels under analysis.

The segmentation of IVUS images plays an important role in evaluating the morphol-
ogy of the vessel under study and obtaining important information such as the area and
diameter of the lumen, the presence and volume of atherosclerotic plaques and the iden-
tification of the atherosclerotic plaque components [2–5]. Since a large number of image
frames are acquired from a single IVUS exam, the manual identification of the structures
of interest becomes a time-consuming and laborious task. Therefore, the automatic seg-
mentation of IVUS images is demanded for expediting the assessment of the morphology
of the vessel and the treatment planning of atherosclerotic lesions.

The segmentation of the lumen and media-adventitia regions in IVUS images has
been an intensive focus of research [6]. The presence of calcifications, shadows, trans-
ducer reflection, speckle noises and bifurcations, as well as the variations of the grayscale
intensities inside the same structure, represent a challenge to the development of a fully
automatic segmentation method. The presence of the first two artefacts, i.e. calcifications
and shadows, is an obstacle to the efficient segmentation of the media-adventitia region,
whereas the transducer reflection and speckle noises represent a challenge to identify the
region corresponding to the lumen successfully. Additionally, the segmentation of the lu-
men in bifurcation regions represents a challenge due to the extension of the low-intensity
values from the lumen region to the borders of the IVUS image.

This article proposes a method to automatically detect the lumen boundary in IVUS
images of coronary arteries. An initial version of this method was applied in the seg-
mentation of the lumen in magnetic resonance (MR) images of carotid arteries [7]. The
approach was based on the assumption that the lumen is a low-intensity region with an
approximately circular shape. Thus, a circularity index, combined with a centre index and
the number of regions at the border of the image were used to find the region correspond-
ing to the lumen under analysis. In the current study, besides the assessment concerning
the suitability of the method to detect the lumen boundary of coronary arteries in IVUS
images using the same parameters as were established for the MR images, the method
has been improved in order to enhance its robustness, efficiency, automaticity and com-
petency. Hence, a new approach was developed to identify and remove side branches of
bifurcation regions so only the regions that potentially correspond to the lumen are se-
lected for further processing, avoiding bifurcation parts at the border of the image and
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enhancing therefore, the robustness of the method. Moreover, the regions at the border
are now discarded before computing the circularity index of each potential lumen region,
which boosts the performance of the method. Additionally, noisy regions are now au-
tomatically eliminated without the use of any predefined parameter, which increases the
automaticity. Finally, a post-processing step has now been added to smooth the contour
found for the lumen region, which leads to better segmentation results.

The remainder of the article is organized as follow: Section 2 presents the previ-
ous studies related to the segmentation of IVUS images. Section 3 provides a detailed
description of the proposed automatic lumen segmentation method. The results of the
segmentation, as well as the comparison with the manual delineations and related meth-
ods found in the literature, are given in Section 4. The advantages and limitations of the
proposed method are pointed out in Section 5. Finally, the conclusions are drawn up in
Section 6.

2 Previous studies

Several studies have been proposed to address the segmentation of the lumen and media-
adventitia in IVUS images acquired using different ranges of frequencies and with several
artefacts that hamper the segmentation successful. In summary, the studies can be divided
into approaches based on machine learning, probabilistic functions, deformable models,
region growing, thresholding and morphological operations.

Lo Vercio et al. [8] proposed a learning machine-based approach to segment the lu-
men and media-adventitia regions in IVUS images of coronary arteries. From the input
images, a set of features obtained using noise-reduction filters, texture and edge detector
operators was acquired and used as input to a Support Vector Machine (SVM) classifier,
which classify the likelihood of the pixels to belong to the lumen and background regions.
Hence, the classification between lumen and non-lumen, as well as between background
and non-background, was performed to determine the correct location of the lumen and
media-adventitia contours.

Another learning machine-based approach to segment the lumen and media-adventitia
contours in IVUS images of coronary arteries was tackled by Su et al. [9]. Two Artificial
Neural Networks (ANN) are used to classify the pixels inside a region of interest (ROI)
as belonging to the media-adventitia region. The first ANN is used to perform the initial
classification, whereas the second one performs the classification of the binary image
resultant from the first ANN in order to remove noises and refine the results. Then, the
pixels inside the region corresponding to the identified media-adventitia are classified as
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lumen and non-lumen by using the same ANNs. The contours of the regions are then
submitted to the Snake active contour model proposed by Kass et al. [10] in order to
adjust them to the true boundary of each region.

A study carried out by Destrempes et al. [11] proposed a fast-marching method
(FMM) to segment the lumen and media-adventitia boundaries in IVUS images of coro-
nary arteries. The proposed method relies on the minimization of a function that uses the
gradient of the image and the probability of the pixels to belong to a region corresponding
to one of the structures of the coronary artery: lumen, media, adventitia, and surrounding
tissues.

Mendizabal-Ruiz et al. [12] proposed an approach to find the lumen contour in IVUS
images of coronary arteries based on probabilistic functions. After the transformation of
the IVUS images into the polar coordinates domain, the probabilities of the pixels belong-
ing to the lumen region are used to find the correct contour by means of the minimization
of a cost function. The probabilities are calculated by using a sigmoid function and an
SVM classifier that receives texture features from Law’s filters, which are used to deal
with pixel intensities that increase due to the catheters with higher frequencies.

A parametric active contour model for the segmentation of lumen and media-
adventitia contours in IVUS images of coronary arteries was proposed by Vard et al.
[13]. For the lumen contour segmentation, a method based on the short-term autocor-
relation (STA) is used to remove speckle noise from the lumen region. The proposed
STA method, called normalized cumulative STA (NCSTA), is then used to produce a new
grayscale IVUS image without noise in the lumen region. The image resulting from the
NCSTA method generates a pressure force for a parametric active contour model that is
used to find the lumen contour.

A 3D-FMM method was proposed by Cardinal et al. [14] to segment the lumen and
media-adventitia contours in IVUS images of femoral arteries. The 3D-FMM method
is based on the Rayleigh probability density function (PDF) and a gradient function to
find the correct contour of each region, i.e. lumen and media-adventitia, by means of
the refinement of contours manually defined. Another study tackled by Cardinal et al.
[15] combines the PDF and gradient intensity obtained from the input images in order
to calculate the propagation speed of the 3D-FMM. In addition, the proposed method
automatically detects the initial contours of the lumen and media-adventitia borders to be
used by the 3D-FMM method.

Taki et al. [16] proposed a method based on thresholding and deformable models to
identify the contours of the lumen and media-adventitia regions in IVUS images. Regard-
ing the lumen contour identification, the evaluation of the pixels in the polar coordinates
domain is made in order to identify the ones with intensities higher than a pre-defined
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threshold T . If I(r,θ) > T , then the pixel is assumed to belong to the lumen border.
The initial contour of the lumen is then submitted to a parametric active contour and a
geometric model to adjust it to the true borders of the corresponding lumen region.

The combination of fuzzy clustering with morphological operation was proposed by
dos Santos et al. [17] to identify the lumen region in IVUS images. The fuzzy clustering
defined with two clusters was applied to the images after the transformation into the polar
coordinates domain. Then, the morphological closing operation was performed to obtain
more regular borders. The extracted contour was converted into the Cartesian coordinate
domain and overlapped with the IVUS images to present the final segmentation result.
Segmentation methods based on the Otsu’s threshold algorithm and morphological oper-
ations for the identification of the lumen region in IVUS image were also proposed by
Sofian et al. [18] and Moraes and Furuie [19].

Most of the above mentioned studies still required manual interventions, re-training of
the learning-based model and the transformation of the image into the polar coordinates
domain. In addition, the use of threshold values as proposed by Taki et al. [16] can fail to
identify the initial contour of the lumen in different datasets due to the usual variability of
the grayscale intensities. Hence, the development of a more robust, efficient, automated
and less complex solution was the goal of this study.

3 Materials and Methods

3.1 IVUS images used

This study was accomplished by using the IVUS images of coronary arteries selected
for the IVUS Segmentation Challenge described in Balocco et al. [20] that were kindly
provided by the authors. The images were acquired using a Si5 imaging system (Volcano
Corporation) equipped with an Eagle Eye catheter operating at a frequency of 20 MHz
[20]. A total of 326 images with ground truths provided were selected for validating the
proposed method. The manual delineations of the contours corresponding to the lumen
and media-adventitia regions were performed by two experts, and one of them repeated
the manual delineations about one week after the first delineations [20]. The images have
a resolution of 384x384 pixels and the pixel size is 0.026 mm x 0.026 mm. More details
about the IVUS images are available in Balocco et al. [20].
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Figure 1: Diagram of the proposed method.

3.2 Proposed method

The proposed lumen segmentation method is made up of three main stages: pre-
processing, segmentation and lumen identification. The diagram of the proposed method
is shown in Figure 1.

The pre-processing stage is necessary to minimize noise and adjust the contrast of
the input image. Then, the enhanced image is submitted to the segmentation stage in
order to separate the regions with low pixel values, which include the background and the
lumen. Relatively to the initial version [7], the method has three new steps in this stage:
the Gaussian pyramid, which is adopted to reduce the resolution of the input image; the
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elimination of regions at the border of the image; and the identification and removal of
side branches at the bifurcation regions. Additionally, connected component labelling
is employed here to separate all regions of the binary image corresponding to the low
intensity values instead of using the region growing algorithm proposed in the initial
version. The lumen identification stage uses two classification indexes to identify the
region corresponding to the lumen of the artery under analysis, which is then inputted
to an active contour algorithm for further refinement of the boundary. A post-processing
step is now included in the method in order to smooth the contour resultant from the active
contour algorithm, which leads to better segmentation results.

3.2.1 Pre-processing

The first step of the pre-processing stage is the use of a median filter with a mask of 5x5 to
minimize the noise in the original image. The median filter was chosen due to its ability
to remove noise without compromising the boundaries of the regions of interest.

The contrast enhancement step improves the brightness of the dark regions of the input
image. The gamma correction-based method proposed by Huang et al. [21] was employed
to avoid the overestimation of regions with low-level intensities. The method relies on
the probability density function (PDF) and the cumulative density function (CDF) of the
intensity values as:

T (l) = lmax× (l/lmax)
1−cd fw(l), (1)

where cd fw(l) is the weighting CDF of the intensity value l and lmax is the highest possible
intensity value. The weighting PDF (pd fw) and weighting CDF (cd fw) are defined as:

cd fw(l) =
lmax

∑
l=0

pd fw(l)
∑ pd fw

, (2)

and

pd fw(l) = pd fmax×
(

pd f (l)− pd fmin

pd fmax− pd fmin

)α

, (3)

where pd fmin is the minimum probability of the PDF, pd fmax is the maximum probability
of the PDF, ∑ pd fw = ∑

lmax
l=0 pd fw(l) and α is a parameter that controls the amount of

contrast enhancement. The value of the α parameter is determined by partitioning the
PDF of the grayscale intensities as proposed in our previous work [7]:

α =
t

∑
i=1

PDFmini−
N

∑
j=t+1

PDFmax j , (4)
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where PDFmin and PDFmax represent the probabilities of the low and high intensities of
the input image, respectively, t is the value obtained by the Otsu’s threshold algorithm and
N is the highest possible intensity value. Here, if the value of α is less than 0 (zero), the
contrast correction is not necessary since there are more pixels with high intensities.

3.2.2 Segmentation

The K-means clustering algorithm is a well-known method to separate regions with sim-
ilar characteristics (of intensity, for instance) in images. Finding the correct cluster cen-
troids to be used in the K-means algorithm is a challenging task because different images
have different cluster centroids. Subtractive clustering [22, 23] has been proposed as an
alternative approach to find the adequate number of cluster centroids based on the po-
tential of each pixel in the neighbourhood. The advantage of the subtractive clustering
algorithm is that the cluster centroids do not change in different runs. This is due to
the fact that the potential function relies on the pixel values only (or on another feature
calculated from the pixels of the input image).

Although subtractive clustering has been widely used in image segmentation and clas-
sification problems, the computational complexity of O(d2,N2), with N representing the
number of data points and d the dimensional number, has limited its application to large-
scale problems [24]. Hence, a reduction in the number of data points, i.e. pixels, is
necessary to reduce the computational time of the subtractive clustering algorithm. Here,
the Gaussian pyramid is applied to the input IVUS image in order to reduce its resolution
and consequently, the number of pixels to be used in the subtractive clustering algorithm.

The Gaussian pyramid is an image processing technique used to reduce the resolution
of images in repeated steps [25]. Pattern recognition, texture analysis and image com-
pression are examples for the use of the Gaussian pyramid. The pyramid is a sequence
of copies of the original image generated by recursively smoothing the image with a low-
pass filter and reducing its resolution by half. The following equation represents the basis
of the Gaussian pyramid:

gl(i, j) =
2

∑
m=−2

2

∑
n=−2

w(m,n)gl−1(2i+m,2 j+n), (5)

where l is a level of the pyramid, i and j are the pixel coordinates at the lth level, gl−1 is
the smoothed image at the level l− 1 and w(m,n) is a 5x5 low-pass filter applied to the
neighbourhood of the pixel (i, j). The original image is represented by g0, i.e. the image
at the level l = 0. The image at the level l = 1 is generated by smoothing g0 with w(m,n)

followed by downsampling the resulting image by a factor of two. The image at the level
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l = 2 is obtained by applying the same procedure on the image g1, i.e. the image at the
level l = 1. The process is repeated until the desired number of levels is reached. The
final result is a pyramid in which the base is the original image and the top represents the
smoothed image with the smallest resolution. The smoothing of the image is necessary
to avoid the aliasing effect generated when the resolution is reduced. An example of the
application of the Gaussian pyramid in order to reduce the resolution of an IVUS image
and accelerate the use of the subtractive clustering algorithm is shown in Figure 2.

Figure 2: Example of the Gaussian pyramid applied two times on a pre-processed IVUS
image (the second row shows the Gaussian pyramid results expanded to the size of the
original image).

Although the most common use of the Gaussian pyramid is compressing an input im-
age and multiscale processing at lower resolutions, here the goal is to generate a pyramid
of lower resolution images for the input image in order to select the one with the smallest
resolution, i.e. the image at the top of the pyramid, where the subtractive clustering algo-
rithm is then applied with lower computational time than if it was applied on the original
image. Here, the number of reductions performed by the Gaussian pyramid is defined
as equal to 2, leading to a pyramid with three levels in which the base is represented
by the input IVUS image with 384x384 pixels of resolution and the top represents the
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IVUS image with the smallest resolution of 96x96 pixels that is inputted to the subtrac-
tive clustering algorithm. Thereafter, the subsequent steps of the proposed method are
performed on the image with the smallest resolution in order to obtain a binary image
with the identified lumen, which is then restored to the input image resolution without
performing any processing on the higher resolution images of the pyramid. The choice of
the Gaussian pyramid was due to its simple implementation and ability to reduce the input
image resolution without losing important information about the structure of interest.

After the downsampling of the input image, the K-means algorithm with subtractive
clustering suggested in Dhanachandra et al. [26] is employed to separate the regions of
the image according to the grayscale intensity. The centroid of each cluster is found by
means of the subtractive clustering algorithm. After the centroids have been found, the
K-means clustering is applied to separate the regions of the image. As proposed in our
previous study, four clusters are used here to correctly identify the region corresponding to
the lumen. Since the lumen and background regions have low intensities in IVUS images,
the same approach employed is used to find the cluster having the regions with low-
intensity pixels for identifying the one representing the correct lumen. A binary image
with such regions is returned, in which the identified regions are represented by white
pixels and the background by black pixels. The image is then submitted to the connected
component labelling algorithm in order to obtain all regions of the image separately. Here,
the connected component labelling is performed on the image corresponding to the cluster
with low-intensity values to obtain a set with all regions of interest. Firstly, the algorithm
performs a pixel-by-pixel scan of the binary image from the top to bottom and left to right
in order to identify a white pixel and assign a label to it that relies on the evaluation of the
adjacent pixels that share the same intensity. If none of the neighbour pixels have until
then been labelled, a new label is assigned to the pixel under analysis. Otherwise, the
pixel under analysis receives a label assigned to a neighbour pixel. The process continues
until all pixels of the binary image have been labelled. Then, pixels having the same label
are merged to form a single region. Thereafter, each region is used as the input to the
lumen identification stage in order to find the one that represents the lumen.

3.2.3 Lumen identification

In our previous work, a set of measures was used to evaluate each region of interest
obtained by the region growing algorithm in order to identify the one corresponding to the
lumen in the MR images of carotid arteries. Hence, the mean roundness (MR), irregularity
(Ir) and centre (d) indexes are included in the following circularity function, which is used
to evaluate each region of the binary image:
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E = MR+
1
Ir

+
1
d
. (6)

The MR was proposed to determine the circularity of objects in images [27]. It consists
of calculating the ratio between the average radius and the distance between the radius of
each border pixel of the object and the average radius. The mean roundness is calculated
according to:

MR =
1
N

N

∑
i=1

r̄b

|ri− r̄b|+ r̄b
, (7)

where N is the number of pixels of the contour of the object under analysis, r̄b is the
average radius of the object, and ri is the radius at the contour pixel i. The larger the mean
roundness (MR) index is, the more circular the object under analysis is.

The following irregularity index is used to avoid regions with irregular contours:

Ir = P∗
(

1
SD
− 1

GD

)
, (8)

where P is the number of pixels of the contour, SD is the shortest diameter and GD is the
greatest diameter [28].

A centre index is also used to identify the correct location of the lumen. As described
in our previous work, the lumen is a circular-shaped region located close to the centre of
the input MR image. Hence, the distances between the centre of the image and the centre
of each region are calculated and used to penalize those far from the centre of the MR
image. The same concept can also be applied here due to the fact that the lumen is also
located close to the centre of an IVUS image.

The segmentation of the lumen close to bifurcations represents a challenge due to the
extension of the low-intensity values from the lumen region to the border of the input
image, which causes the establishment of a region representing this extension when the
cluster corresponding to the low-intensity values is built. Hence, in the initial version
of the proposed method, these regions were not assessed in the subsequent processing
steps, since the regions at the border of the image are discarded before the identification
of the lumen. Therefore, a new approach was developed to identify regions representing
bifurcations in order to distinguish these regions from the ones at the border of the bi-
nary images corresponding to low-intensity values. The proposed approach is based on
the generation of circles surrounding the regions of possible lumens, like the approach
proposed in de Macedo et al. [29]. However, here, the distances from the centres of the
input image to the pixels of the bifurcation regions at the borders are used to define the
radius of the circles, instead of the distance transform suggested in de Macedo et al. [29].
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Hence, the regions obtained by the connected component labelling algorithm are evalu-
ated to identify the one that is in the centre of the input image. Then, the number of pixels
of this region that are at the border are computed in order to verify if the region represents
a bifurcation. Once the region is identified as a bifurcation, the distances between the
centre of the image and each pixel of the region at the border are calculated. The radius
of the circle is then calculated according to:

r = min(dist(Cp,Bp))−min(dist(Cp,Rp)), (9)

where Cp is the pixel at the centre of the IVUS image, Bp is the set of pixels of the
bifurcation region that are at the border of the image and Rp is the set of all pixels of the
contour of the bifurcation. The circle generated is centred at the centre of the IVUS image
and the region outside this circle is removed from the binary image corresponding to the
low-intensity values. An example of the proposed approach applied to an IVUS image
with a bifurcation region is illustrated in Figure 3.

(a) (b) (c) (d)

Figure 3: Example of the identification and removal of the side branch of a bifurcation
region: a) Image pre-processed and reduced by the Gaussian pyramid; b) Binary image
corresponding to the cluster with low-intensity pixels; c) Binary image with the identified
bifurcation region (the circle generated by the proposed approach is shown in red); d)
Binary image without the part of the bifurcation region on the border.

As depicted in Figure 3c, the bifurcation region can be divided into two parts, i.e. one
inside the circle and the other outside. Since the part inside the circle contains the regions
with the possible lumen, the regions outside the circle are removed from the binary image
corresponding to the low-intensity values, leading to a new binary image that is then
submitted to the subsequent steps of the lumen identification stage.

Concavities, irregularities and holes inside the regions of the binary image correspond-
ing to the cluster with low-intensity values may be present due to high intensity values
inside the lumen under analysis. Since the high intensity values are identified as belong-
ing to another cluster when the K-means algorithm is applied, such artefacts are generated
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in the regions of the binary image. In order to attenuate the effect of these artefacts, the
convex hull algorithm is used here. The use of the convex hull algorithm instead of mor-
phological operations is to avoid underestimation and cutting of parts of the region of
interest when concavities are presented.

The convex hull of a set of points S is the smallest convex polygon containing all the
points of S [30]. The definition of convex hull relies on the concept of a convex set, which
is a region defined in a way that for every pair of points [a,b] belonging to a region, the
line joining such points must be totally inside the region. Here, for each region present in
the binary image obtained by the connected component labelling algorithm a correspon-
dent convex hull is generated i.e., the set of pixels representing the convex polygon that
includes all the white pixels of the region, before calculating the classification indexes
used to find the lumen region. An example of the application of the convex hull algorithm
is shown in Figure 4.

(a) (b) (c) (d)

Figure 4: Example of the application of the convex hull algorithm: a) Image pre-processed
and reduced by the Gaussian pyramid; b) Result of the K-means with the subtractive clus-
tering algorithm; c) Binary image corresponding to the cluster with low-intensity pixels
(regions at the border corresponding to the background were previously removed); d)
Result of the convex hull algorithm applied to each region (white pixels) of the binary
image.

As depicted in Figure 4, the regions become more regular after the application of the
convex hull algorithm. Hence, the irregularity index is now redundant and the function
defined by Equation 6 is therefore, simplified to:

E = MR+
1
d
. (10)

In the initial version of the proposed method, the regions with less than 1.5% of the
total number of pixels of the input image were discarded from the lumen identification
procedure, since these regions usually represent small regions associated to noise. How-
ever, this empirically defined discarding criterion is not always robust. Hence, a new ap-
proach based on the morphological opening operation was developed in order to identify
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and disregard the small regions associated to noise. The morphological opening operation
is the erosion followed by the dilation of an image I by a structuring element SE. When
applied to binary images, the opening operation can smooth the borders of the regions
represented by white pixels, split regions connected by thin bridges and remove small
regions that represent noisy artefacts. The choice of the shape and size of the structuring
element is usually based on the shape of the regions of interest, and it plays an important
role in effectively achieving the desired results. Since the lumen is a circular-shaped re-
gion in IVUS images, a disk-shaped structuring element is used to perform the opening
operation. In addition, the size of the structuring element is adaptively defined according
to the approach proposed by Gao et al. [31] and formulated as:

So =
1
2

√
Ar

π
, (11)

where Ar is the area of the region under analysis. The opening operation with the adap-
tive structuring element is applied to each region obtained by the connected component
labelling algorithm. Hence, a region is not considered in the lumen identification step if
its size is equal or less than the size of the structuring element, and the region is removed
by the opening operation. Here, the morphological opening operation is only employed
to identify small regions corresponding to noise. Therefore, the smoothing of the regions
is not performed by the opening operation since the convex hull is previously applied
to correct the shape of the regions under analysis. A region identified as noise and re-
moved from the binary image by the opening operation is not selected for calculating the
circularity index defined in Equation 10.

Although the terms in Equation 10 are defined in different contexts, the objective
of using the centre index in the proposed circularity index is to penalize regions with
larger values of roundness that are distant from the centre of the input image. The value
of the circularity index proposed in Equation 10 is calculated for each region resultant
after the opening operation and the one with the maximum value is considered to be the
lumen of the artery under study. This region is resized to the original resolution of the
input IVUS image and then submitted to the Chan-Vese active contour algorithm [32] for
further refinement of the contour. The binary image representing the lumen region may
not fit the true boundary of the lumen in the IVUS image. Hence, the contour of such
a region is used as the input of the Chan-Vese active contour model, which is applied to
the original IVUS image in order to fit the contour to the true boundary. This refinement
step plays an important role in avoiding under- or over-estimating the contour, leading
the contour closer to the true boundary of the lumen under analysis and, consequently, to
better results. Since the gradient of the image is not used in the Chan-Vese model, the
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method is recommended for the segmentation of medical images which commonly have
weak boundaries of the structures of interest [33–36].

The post-processing step consists in smoothing the lumen contour by using the mor-
phological opening and dilation operations. The morphological opening operation was
employed to smooth the boundaries of the lumen region generated from the result of the
Chan-Vese active contour. A binary image is generated from the lumen contour such that
the region inside the contour is represented by white pixels. Then, the region is smoothed
by first applying the opening operation. Finally, the morphological dilation operation is
performed on the resulting region in order to restore its size as close as possible to the
size of the original region. The sizes of the structuring elements are defined according to
the size of the region under analysis and formulated as:

So =
1
2

√
Al

π
,Sd =

1
N

N

∑
i=1

√
(Coi−Crk)

2, (12)

where So and Sd are the sizes of the structuring element used in the morphological opening
and dilation operations, respectively, Al is the area of the lumen region, Co is the contour
of the region resulting from the opening operation, Cr is contour of the region obtained
from the lumen contour and N is the number of pixels of the contour Co. Coi is the ith

pixel of Co, and Crk is the kth pixel of Cr closest to Coi. The size So was proposed by
Gao et al. [31], whereas Sd is defined as the average distance between the contours Co and
Cr.

The steps performed in the automatic segmentation of the lumen in one IVUS image
are depicted in Figure 5.

3.3 Quantitative analysis

The contours obtained by the proposed method and the related manual delineations were
compared based on four measures: Jaccard measure (JM), Dice coefficient (DC), Haus-
dorff distance (HD) and percentage of area difference (PAD).

The Jaccard measure is calculated by means of the ratio between the size of the inter-
section and the size of the union of the regions corresponding to the automatic (Sauto) and
manual (Smanual) segmentations:

JM =
|Sauto∩Smanual|
|Sauto∪Smanual|

. (13)

The Jaccard measure is important to assess the overlap of the region identified by
the proposed method with respect to the corresponding manual delineation. Similarly,
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Figure 5: Example of the output images resulting from each step of the automatic seg-
mentation of the lumen in one IVUS image (the green contour in the image on the right of
the lumen identification step represents the final segmentation result). (The identification
of the bifurcation region step is not illustrated in this example since there was no side
branch in the IVUS image used.)
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the Dice coefficient is used to calculate the overlap between the automatic and manual
segmentations:

DC =
2∗ |Sauto∩Smanual|
|Sauto|+ |Smanual|

. (14)

The Hausdorff distance is important to assess the closeness of two contours, and it
is defined here as the maximum between the greatest distances between the pixels of the
automatic (Ca) and manual (Cm) contours:

HD(Ca,Cm) = max{max
a∈Ca

min
b∈Cm

d(a,b), max
b∈Cm

min
a∈Ca

d(a,b)}, (15)

where a and b are the pixels of contours Ca and Cm, respectively, and d(a,b) is the Eu-
clidean distance between these pixels.

The percentage of area difference (PAD) represents the difference between the areas
of the contour obtained from the automatic segmentation (Aauto) and the corresponding
manual delineation (Amanual) with respect to the area of the manual delineation:

PAD =
|Aauto−Amanual|

Amanual
. (16)

The lumen area and the average lumen diameter of the automatic and manual seg-
mentations were also calculated to compare the segmentation results by means of the
regression analysis and Bland-Altman analysis. The lumen area is the area inside the
contour of the lumen and the average lumen diameter (ALD) is defined as:

ALD =
1
N

N

∑
i=1

2∗ ri, (17)

where N is the number of pixels of the contour of the lumen and ri is the radius of the ith

pixel.

4 Results

The proposed method was implemented in MATLAB software (The Mathworks Inc., Nat-
ick, USA) and executed in a desktop computer equipped with an Intel i7-4700 HQ proces-
sor (2.4 GHz) and 16 GB of RAM memory. A comparison between the contours obtained
from the proposed method and those generated by manual delineations was performed in
order to evaluate the accuracy of the segmentation results. In addition, the results of the
proposed method were also compared with the ones reported in related studies found in
the literature. The details about the datasets and the validation measures of the studies
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used here to compare the segmentation results of the new automatic segmentation method
are shown in Table 1.

Table 1: Details about the datasets and the validation measures of the studies used to
compare the segmentation results of the proposed method.

Authors Catheter’s frequency Number of frames Validation measure(s)

Lo Vercio et al. [8] 20 MHz 149 JM and PAD
Su et al. [9] 20 MHz 461 JM and HD
Sofian et al. [18] 20 MHz 30 JM, HD, PAD and DC
Destrempes et al. [11] 40 MHz 3207 HD
Mendizabal-Ruiz et al. [12] 20 MHz and 40 MHz 585 JM, HD and DC
Cardinal et al. [15] 20 MHz 1593 HD
Vard et al. [13] 30 MHz 40 HD
Taki et al. [16] 30 MHz 60 HD

*JM = Jaccard measure; HD = Hausdorff distance; PAD = percentage of area difference; DC = Dice
coefficient; MHz = Megahertz

Since there are not any common validation measures in the studies indicated in Table
1, all measures described in Section 3.3 were calculated and the ones used in each of
these studies were selected to compare the performance of the proposed automatic lumen
segmentation.

The proposed automatic lumen segmentation was also compared with the results ob-
tained from the eight participant groups of the IVUS Segmentation Challenge held in the
2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop of the
Medical Image Computing & Computer Assisted Intervention (MICCAI) conference.

The results of the proposed method with the contrast enhancement activated and de-
activated were also taken into account in order to evaluate the improvement obtained by
adjusting the contrast of the input image.

4.1 Initialization of the parameters

The following parameters were defined to perform the automatic segmentation: the size
of the mask of the median filter was set to 5x5, which proved to be the most suitable
template for removing noise without affecting the edges of the lumen; when the contrast
enhancement was necessary, the value of the α parameter was defined as the difference
between the probability of the low and high intensities of the image, as described by Equa-
tion 4; the number of reductions performed by the Gaussian pyramid was automatically
defined as equal to 2, leading to images with a resolution of 96x96 to be processed by
the K-means with subtractive clustering; the radius ra and rb of the subtractive clustering



4 Results 111

algorithm were set to 1.2 and 1.8, respectively; and the number of iterations of the Chan-
Vese active contour algorithm was set to 500, which was higher when compared to our
previous study using MR images (200 iterations) due to the higher resolution of the IVUS
images under analysis.

4.2 Performance of the proposed method

Examples of the segmentation results and corresponding manual delineations are shown
in Figure 6.

(a) (b) (c) (d) (e)

Figure 6: Examples of segmentation results obtained by the automatic segmentation
method (a-e): The original IVUS images are shown in the first row, and the subsequent
rows depict the segmentation results and the corresponding manual delineations, respec-
tively. (The contours in green are the ones generated by the proposed method, whereas
the blue, red and yellow contours represent the manual delineations.)

In Figure 6, the green contours are the results obtained by the proposed method,
whereas the blue, red and yellow contours represent the related manual delineations. The
lumen was correctly identified in all images and is very close to the corresponding manual
delineations. Due to the subjective analysis of each expert, the automatically segmented
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contour is very close to corresponding manual delineation in some cases, while small
differences were produced in other cases as shown in Figure 6b.

The effect of the post-processing step on the lumen contour resulting from the Chan-
Vese active contour is shown in Figure 7.

(a) (b) (c)

Figure 7: Illustration of the post-processing step on the lumen contour: a) The contour
resulting from the Chan-Vese active contour; b) The result of the smoothing of the con-
tour; c) The smoothed contour (in green) along with a corresponding manual delineation
(in blue).

As shown in Figure 7a, the automatically segmented lumen contour can be somewhat
irregular and leak from the true boundary as depicted in the image of the third row. How-
ever, the lumen contours became more regular and smooth after the final post-processing
step, which leads to results very similar to the manual delineations (Figure 7c).
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The effectiveness of the proposed approach to identify and eliminate side branches of
bifurcation regions is apparent in Figure 8.

(a) (b) (c)

Figure 8: Examples of segmentation results after applying the proposed approach to iden-
tify bifurcation regions: a) The original IVUS images; b) The result of the automatic lu-
men segmentation (in green) along with the corresponding manual delineations (in blue,
red and yellow) before the identification of the bifurcation region; c) The result of the au-
tomatic lumen segmentation (in green) along with the corresponding manual delineations
(in blue, red and yellow) after the identification of the bifurcation region.

As shown in Figure 8b, the segmentation errors resulting from the automatic lumen
segmentation are due to the removal of the whole bifurcation region from the binary image
representing the low-intensity values before applying the circularity index in Equation
10, leading to the identification of another region as belonging to the potential lumen.
However, as shown in Figure 8c, the lumen was successfully segmented after applying
the proposed approach to identify and split the bifurcation region.
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From the 326 IVUS images used in the experiments, the proposed method successfully
segmented 324 images. The average values of the Jaccard measure, Hausdorff distance,
percentage of area difference and Dice coefficient of the automatically segmented lumen
in comparison with the three manual delineations of the correctly segmented images are
indicated in Tables 2 and 3. Additionally, the average values of the same four measures
obtained from the intra- and inter-observer analysis are indicated in Table 4.

Table 2: Average values of the Jaccard measure (JM), Hausdorff distance (HD), Percent-
age of area difference (PAD) and Dice coefficient (DC) obtained by the proposed method
without the application of the contrast enhancement.

Manual delineation 1 Manual delineation 2 Manual delineation 3 Average

JM 0.86±0.07 0.88±0.07 0.88±0.07 0.87±0.07
HD 0.30±0.17 0.29±0.18 0.30±0.19 0.30±0.18
PAD 0.12±0.08 0.08±0.07 0.08±0.08 0.09±0.08
DC 0.92±0.05 0.93±0.04 0.93±0.04 0.93±0.04

*The values of the Hausdorff distance (HD) are presented in millimeters; Manual delineation 1 represents
the tracing done by the expert 1, whereas the manual delineations 2 and 3 are the first and second tracings
of the expert 2, respectively.

Table 3: Average values of the Jaccard measure (JM), Hausdorff distance (HD), Percent-
age of area difference (PAD) and Dice coefficient (DC) obtained by the proposed method
with the application of the contrast enhancement.

Manual delineation 1 Manual delineation 2 Manual delineation 3 Average

JM 0.87±0.06 0.88±0.06 0.88±0.06 0.88±0.06
HD 0.29±0.15 0.29±0.17 0.29±0.18 0.29±0.17
PAD 0.11±0.07 0.08±0.07 0.08±0.08 0.09±0.07
DC 0.93±0.04 0.94±0.04 0.94±0.04 0.94±0.04

*The values of the Hausdorff distance (HD) are presented in millimeters; Manual delineation 1 represents
the tracing done by the expert 1, whereas the manual delineations 2 and 3 are the first and second tracings
of the expert 2, respectively.

As shown in Tables 2 and 3, the average values of the Jaccard measure, percentage of
area difference and Dice coefficient for the manual delineations 2 and 3 are better than
those obtained in comparison to the manual delineation 1. However, the results of the
Hausdorff distance are similar to almost all the manual delineations, except in the case
where the adjustment of the contrast of the images was not applied (Table 2), leading to a
decrease of the Hausdorff distance for the manual delineation 2. As shown in Table 3, the
average value of the Jaccard measure increased from 0.87 ± 0.07 to 0.88 ± 0.06 after the
application of the contrast enhancement. Additionally, an increase of the average value
of the Dice coefficient from 0.93 ± 0.04 to 0.94 ± 0.04 was also obtained after adjusting



4 Results 115

Table 4: Average values of the Jaccard measure (JM), Hausdorff distance (HD), Per-
centage of area difference (PAD) and Dice coefficient (DC) obtained from the intra- and
inter-observer analysis.

Exp 1 vs Exp 2 (1st) Exp 1 vs Exp 2 (2nd) Exp 2 (1st) vs Exp 2 (2nd) Average

JM 0.88 ± 0.05 0.87 ± 0.05 0.93 ± 0.05 0.89 ± 0.05
HD 0.28 ± 0.13 0.30 ± 0.13 0.17 ± 0.13 0.25 ± 0.13
PAD 0.11 ± 0.08 0.13 ± 0.08 0.04 ± 0.05 0.09 ± 0.07
DC 0.94 ± 0.03 0.93 ± 0.03 0.96 ± 0.03 0.94 ± 0.03

*Exp stands for Expert; 1st and 2nd indicate the first and second delineations of Expert 2, respectively; the
values of the Hausdorff distance (HD) are expressed in millimeters.

the contrast of the images. The Hausdorff distance also decreased from 0.30 ± 0.18 mm
to 0.29 ± 0.17 mm after adjusting the contrast of the images. In terms of the intra- and
inter-observer variability, the results of Table 4 show that the proposed method is also
in accordance with the average values computed from the comparison between Expert 1
and Expert 2. The average values of the Jaccard measure, Hausdorff distance, percentage
of area difference and Dice coefficient between both experts were 0.89 ± 0.05, 0.25 ±
0.13 mm, 0.09 ± 0.07 and 0.94 ± 0.03, respectively, which are very similar to the results
obtained by our method (see Tables 2 and 3).

The mean values of the lumen area and average lumen diameter calculated for each
manual delineation and for the corresponding automatically detected lumen are shown in
Table 5.

Table 5: Mean values of the lumen area (LA) and average lumen diameter (ALD) for the
manual delineations and the automatically segmented lumen after adjusting the contrast
of the images.

Manual delin. 1 Manual delin. 2 Manual delin. 3 Proposed method

Mean LA (mm2) 8.75 ± 3.73 8.03 ± 3.56 7.94 ± 3.55 7.93 ± 3.63
Mean ALD (mm) 3.11 ± 0.63 3.10 ± 0.68 3.08 ± 0.68 3.07 ± 0.71

*Manual delin. 1 represents the delineation done by Expert 1, whereas manual delin. 2 and manual delin.
3 are the first and second delineations of Expert 2, respectively.

The mean lumen area obtained from the proposed method was 7.93 ± 3.63 mm2,
which is close to the one obtained from the manual delineation 3 (7.94 ± 3.55 mm2).
Additionally, the mean value of the average lumen diameter of the automatically detected
lumen was also close to the one obtained from the manual delineation 3 (3.07 ± 0.71
mm and 3.08 ± 0.68 mm, respectively). Although the results of the proposed method
were closer to the manual delineation 3, no significant differences were found between
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the areas and average diameters of the automatically detected and manually delineated
lumen contours.

A comparison between the proposed automatic lumen segmentation and the methods
reported in the literature was also carried out, which led to the results shown in Tables 6
and 7.

Table 6: Jaccard measure (JM), Hausdorff distance (HD) and percentage of area differ-
ence (PAD) obtained from the general performance of the IVUS Segmentation Challenge
for the test images acquired at 20 MHz [20].

P1 P2 P3 P4 P5 P7 P8

JM 0.81±0.12 0.83±0.08 0.88±0.05 0.77±0.09 0.79±0.08 0.84±0.08 0.81±0.09
HD 0.47±0.39 0.51±0.25 0.34±0.14 0.47±0.22 0.46±0.30 0.38±0.26 0.42±0.22
PAD 0.14±0.13 0.14±0.12 0.06±0.05 0.15±0.12 0.16±0.09 0.11±0.12 0.11±0.11

*P stands for the participant group; Participant group 6 (P6) did not perform the segmentation of the lu-
men contour and it explains the absence of the average values of this participant group; the values of the
Hausdorff (HD) distance are presented in millimeters.

Table 7: Average measures obtained from the proposed method and the related ones found
in the literature.

Authors JM HD PAD DC

Lo Vercio et al. [8] 0.8300±0.0500 - 0.1800±0.0600 -
Su et al. [9] 0.9182 0.2243 - -
Sofian et al. [18] 0.8624±0.0193 0.5444±0.1290 0.0645±0.0509 0.9260±0.0111
Destrempes et al. [11] - 0.3300±0.0700 - -
Mendizabal-Ruiz et al.
[12]§

0.8671±0.0341 0.1398±0.0384 - 0.9283±0.0201

Vard et al. [13] - 0.3044±0.1853 - -
Cardinal et al. [15]† - 0.4300±0.3000 - -
Taki et al. [16] - 0.7081±0.2491 - -
Proposed method 0.8800±0.0600 0.2900±0.1700 0.0900±0.0700 0.9400±0.0400

*JM = Jaccard measure; HD = Hausdorff distance; PAD = Percentage of area difference; DC = Dice
coefficient.
§ Average values of the comparison between the method and the manual delineations of two observers.
† Result from the pre-interventional group. The HD for the post-interventional and follow-up groups were
0.46 ± 0.26 and 0.40 ±0.21, respectively. (See the study of Cardinal et al. [15] for more details.)

Table 6 shows the average measures of the general performance calculated from each
participant group of the IVUS Segmentation Challenge proposed at the MICCAI 2011
CVII workshop [20]. Table 6 demonstrates that the method proposed by Participant group
3 outperformed all the others presented at the challenge. The performance of our method
is comparable to the one proposed by this group. Regarding the results obtained after
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adjusting the contrast of the input images, the average value of the Jaccard measure ob-
tained from the proposed automatic lumen segmentation was 0.88 ± 0.06 against 0.88
± 0.05 presented by Participant group 3 at the IVUS Segmentation Challenge; the aver-
age Hausdorff distance of our method was 0.29 ± 0.17 mm against 0.34 ± 0.14 mm of
this participant group; and the average percentage of area difference obtained from our
method was 0.09 ± 0.07 against 0.06 ± 0.05 of the same group.

Table 7 shows the comparison between our automatic lumen segmentation approach
and related methods proposed in the literature. The comparison shows that our method is
in accordance with the ones proposed in the studies found, achieving results comparable
or even better than the ones of those methods.

The computational cost of the most important procedures in the segmentation and
identification stages of the proposed method when applied to each image of the dataset
used in this study is shown in Table 8.

Table 8: Computational cost of the most important procedures of the proposed method
when applied to each image (in seconds).

K-means Chan-Vese active contour Smoothing of the contour Total time

Average 1.5279 3.8694 0.3192 5.7165
Std 0.2322 1.1645 0.1452 1.5419

*Std = Standard deviation

The execution time of the Chan-Vese active contour is the highest among the other
algorithms involved, representing about 68% of the total time. The K-means with sub-
tractive clustering represents about 27% of the total time, whereas the smoothing of the
contour takes only 6% of the whole segmentation and identification of the lumen.

Linear regression analysis for the lumen area and average lumen diameter showed a
high correlation between the automatic segmentations and manual delineations, as shown
in Figures 9 and 10.

For the lumen area, the correlation coefficients of the proposed method compared to
the manual delineations 1, 2 and 3 were 0.985096, 0.975378 and 0.974440, respectively,
before adjusting the contrast of the input images; while for the case when the contrast ad-
justment was applied, the correlation coefficients were 0.985729, 0.974483 and 0.974314,
respectively. A slight improvement in the correlation coefficients between the automatic
segmentations and the manual delineations of Expert 1 was obtained after the application
of the contrast enhancement. Regarding the average lumen diameter, the correlation co-
efficients between the automatic segmentations and manual delineations 1, 2 and 3 were
0.977080, 0.972486 and 0.971514, respectively, before adjusting the contrast of the input
images. When the contrast enhancement was applied, the correlation coefficients were
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Figure 9: Area of the automatically segmented lumen versus the three corresponding
manual delineations before and after adjusting the contrast of the input images.

0.977346, 0.972354 and 0.971756, respectively. Similar to the lumen area, a slight im-
provement in the correlation coefficients of the average lumen diameter between the au-
tomatic segmentations and manual delineations 1 and 3 was also achieved after adjusting
the contrast of the input images.

The difference between the area calculated by the automatically segmented lumen and
the ones obtained from the three manual delineations is depicted in Figure 11 by Bland-
Altman plots. For the average lumen diameter, the difference between the automatic and
manual segmentations is represented in Figure 12.

Figure 11 shows a significant underestimation of the lumen area of the automatic
segmentation compared to the manual delineation 1, leading to average differences of
-0.89136 mm2 and -0.82174 mm2 before and after adjusting the contrast of the input
images, respectively. In contrast, the average difference between the automatically seg-
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Figure 10: Average lumen diameter of the automatically segmented lumen versus the
three manual delineations before and after adjusting the contrast of the input images.

mented lumen and the manual delineations 2 and 3 is small. The average differences of
the lumen area between the automatically segmented lumen and the manual delineation
2 were -0.16389 mm2 and -0.09497 mm2 before and after adjusting the contrast of the
images, respectively. For the manual delineation 3, the average differences were -0.07421
mm2 and -0.00808 mm2 before and after the adjustment of the contrast, respectively.

Regarding the average lumen diameter, a slight average difference was found between
the automatic and manual segmentations. For the manual delineation 1, the average dif-
ferences were -0.05160 mm and -0.03283 mm before and after the contrast enhancement
of the input images, respectively; for the manual delineation 2, the average differences
were -0.04473 mm and -0.02680 mm before and after the contrast enhancement, respec-
tively; and for the manual delineation 3, the average differences were -0.02701 mm and
-0.00963 mm before and after the contrast enhancement, respectively.
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Figure 11: Bland-Altman plots of the lumen area of the automatically segmented lumen
and the three corresponding manual delineations.

The linear regression and Bland-Altman analysis obtained from the delineations of
the two experts is depicted in Figure 13.

5 Discussion

The development of automatic segmentation methods applied to medical images plays an
important role in providing experts with auxiliary diagnosis tools for identifying various
types of pathological conditions. For example, the segmentation of the lumen and media-
adventitia regions in IVUS images represents an important step to quickly identify and
quantify possible atherosclerosis in arteries.
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Figure 12: Bland-Altman plots of the average lumen diameter of the automatically seg-
mented lumen and the three corresponding manual delineations.

The automatic segmentation of the lumen region in IVUS images of coronary arteries
was successfully tackled in this study. The use of unsupervised classification and circu-
larity index to identify the lumen region is the kernel of the proposed method. In our pre-
vious work, the initial version of the proposed method was applied to identify the lumen
region in MR images of carotid arteries. Based on the fact that the lumen is a circular-
shaped region with low-intensity values in axial black-blood MR images, the use of a
circularity index was proposed to identify the region corresponding to the correct lumen
among those obtained from the subtractive clustering algorithm. One goal of this study
was to assess the viability of the method for segmenting the lumen in IVUS images of
coronary arteries. Additionally, improvements were developed to make the method more
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Figure 13: Linear regression and Bland-Altman analysis concerning the lumen area and
average lumen diameter obtained from the delineations of the two experts.

robust, flexible, efficient and competent. Briefly, the original empirical criterion concern-
ing noise was redefined, side branches in bifurcations regions are now successfully tackle,
and the segmentation accuracy has been considerably improved.

5.1 Initialization of the parameters

The values of the parameters adopted in our previous study concerning MR images were
also employed here to show the ability of the proposed method in segmenting the lumen in
IVUS images. The mask of the median-filter used has also been used in many studies re-
lated to medical image segmentation; which therefore, indicates that it is a suitable choice
to attenuate the noise present in the input images without leading to excessive smoothing
of the borders of the structures of interest. The value of the α parameter in Equation 3
is automatically calculated by using the difference between the probabilities of the low
and high grayscale intensities of the input image as given by Equation 4. Hence, the
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adjustment of the contrast is not necessary if more pixels with high grayscale intensities
are present in the input image. The number of clusters that are defined has an important
role in the proposed method. In most cases, the grayscale intensity of the lumen in IVUS
images is well-defined and distinguishable from other structures in the images. Hence,
the number of clusters initially proposed in our previous study is also suitable in the seg-
mentation of the lumen in IVUS images. On using the subtractive clustering algorithm,
the ra and rb parameters may affect the number of clusters to be generated [23]. How-
ever, since the subtractive clustering is only used to generate the centroids of the expected
number of clusters, the values of these parameters can also be used to separate the regions
in IVUS images according to the same expected number. Regarding the downsampling of
the resolution of the input IVUS image, the Gaussian pyramid was implemented in such
way that it is automatically performed until the total number of pixels of the input image
is equal or less than 22500, which was found as appropriate to reduce the computational
cost of the subtractive clustering algorithm. Since all the IVUS images used have the
same resolution (384x384), the downsampling process was performed twice, leading to a
final image resolution of 96x96 (9216 pixels).

5.2 Performance of the proposed method

When compared to the related studies found in the literature, the proposed automatic
segmentation of the lumen does not require any kind of user interaction and is easily im-
plemented without using complex algorithms. The K-means with subtractive clustering is
used to separate the regions of the input IVUS image according to the expected number
of clusters. The subtractive clustering is only used as a prior step to find the appropriate
initial centroids to be used in the K-means clustering algorithm. Different results could be
produced when the centroids are randomly selected and used in the K-means clustering
algorithm. Since the result of the K-means clustering algorithm depends on the selection
of the initial centroids, we decided to use the subtractive clustering due to its stability to
find the same initial centroids even when the algorithm is executed several times. Ad-
ditionally, the subtractive clustering algorithm is easily implemented, although the com-
putational time increases in images with higher resolution. Once the initial centroids are
found, the traditional K-means clustering algorithm is applied to the input image.

Because the low-intensity values are associated to the lumen and background regions,
the connected component labelling algorithm is applied to obtain all regions of the cluster
belonging to the low-intensity values as a binary image. The regions corresponding to the
background of the IVUS image are at the border of the generated binary image. In our
previous work, a term representing the number of pixels of the region at the border of the
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image was added to reduce its circularity index. Here, the region is simply discarded from
the binary image to avoid additional processing. Additionally, the morphological open-
ing operation with adaptive size of the structuring element is proposed to remove noisy
artefacts without the need of a heuristic criterion as in the initial version. The morpho-
logical operations in the new post-processing step of the proposed method revealed that
they were effective in smoothing the lumen contour resulting from the Chan-Vese active
contour and removing possible irregularities.

An important contribution of this study is an effective approach to identify regions
corresponding to side branches in the input IVUS images. The low-intensity values of the
side branch extend from the lumen region to the border of the IVUS images when a bifur-
cation is presented. Hence, the bifurcation is represented by a single region with pixels at
the border of the input image when the cluster with low-intensity values is generated by
the K-means clustering algorithm. In order to avoid the elimination of this region in the
lumen identification step, an approach based on the delimitation of the potential lumen
region by a circle centred on the centre of the input IVUS image is proposed to separate
and remove the branch of the bifurcation region. The proposed approach proved to be ef-
fective in eliminating the side branches of bifurcation regions and therefore, in decreasing
the number of erroneous segmentations.

The average values of the measures described in Section 3.3 were obtained from the
324 IVUS images successfully segmented by the proposed method. The contrast en-
hancement of the IVUS images can improve the brightness of the region corresponding to
the intima layer, allowing a better distinction between this region and the lumen. Hence,
the segmentation accuracy obtained before and after adjusting the contrast of the input
image were compared. A slight improvement in the average values of the Jaccard mea-
sure and Dice coefficient was found when the contrast enhancement was applied. The
average value of the Jaccard measure was 0.87 ± 0.07 before adjusting the contrast of
the images, whereas a slight increasing to 0.88 ± 0.06 was achieved after the application
of the contrast. Additionally, the Hausdorff distance decreased from 0.30 ± 0.18 mm to
0.29 ± 0.17 mm after adjusting the contrast. Regarding the Bland-Altman analysis, the
average differences between the area calculated from the proposed method and the ones
obtained from the manual delineations reduced when the contrast enhancement was ap-
plied. Similar reductions of the bias were also obtained for the average lumen diameter.
When compared to the manual delineation 3, a reduction of the bias from -0.02701 mm to
-0.00963 mm was obtained before and after adjusting the contrast, respectively, leading to
an average distance less than one pixel between the automatic and manual segmentations.

The high complexity (O(d2,N2)) of the subtractive clustering algorithm makes it un-
feasible to be applied in images with higher resolutions due to the high number of pixels
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to be processed to find the centroids of the clusters. Hence, the reduction of the resolution
of the input image in order to decrease the computational cost of the subtractive cluster-
ing algorithm was tackled in this study. The Gaussian pyramid proved to be the most
suitable choice due to its simple implementation and effective reduction of the resolution
of the input image without losing important information on the structure of interest. The
effectiveness of the Gaussian pyramid can be perceived from the data in Table 8, which
indicates that the execution time of the K-means with the subtractive clustering algorithm
is low when compared to the average total time and the time required by the Chan-Vese
algorithm. This is due to the reduction of the number of pixels to be processed by the sub-
tractive clustering algorithm when the Gaussian pyramid was applied. The computational
cost of the Chan-Vese active contour was greater than that of the other algorithms. Since
re-initialization of the signed distance function of the contour is necessary at every step
of the contour evolution, the time consumed by the algorithm increases when applied to
images of higher resolution. However, it was decided to apply the Chan-Vese active con-
tour to the original IVUS image in order to take into account all the pixels of the lumen
region available in the full resolution of the input image.

5.3 Comparison with the intra- and inter-observer variability

In terms of the inter-observer variability, i.e. the comparison between the manual delin-
eations of Expert 1 and Expert 2, the results are close to the ones computed from our
method. The average values of the Jaccard measure, Hausdorff distance, percentage of
area difference and Dice coefficient of Expert 1 in comparison to the first delineation of
Expert 2 were 0.88 ± 0.05, 0.28 ± 0.13 mm, 0.11 ± 0.08 and 0.94 ± 0.03, respectively.
The average values for the same measures obtained from the comparison between the
proposed method after adjusting the contrast of the input images and the first delineation
of Expert 2 (represented by the manual delineation 2 in Table 3) were 0.88± 0.06, 0.29±
0.17 mm, 0.08 ± 0.07 and 0.94 ± 0.04, respectively. Regarding the comparison between
the manual delineation of Expert 1 and the second delineation of Expert 2, the average
values of the Jaccard measure, Hausdorff distance, percentage of area difference and Dice
coefficient were 0.87± 0.05, 0.30± 0.13 mm, 0.13± 0.08 and 0.93± 0.03, respectively.
The results of the proposed method for the same measures obtained from the compari-
son with the second delineation of Expert 2 (represented by the manual delineation 3 in
Table 3) were 0.88 ± 0.06, 0.29 ± 0.18 mm, 0.08 ± 0.08 and 0.94 ± 0.04, respectively,
which were slightly better than the ones obtained between Expert 1 and Expert 2 (second
delineation).
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The regression analysis showed that the segmentation results of the proposed method
are also close to ones obtained from the intra- and inter-observer variability. In terms of
the lumen area, the Pearson correlation coefficients between Expert 1 and the first and
second delineations of Expert 2 were 0.987866 and 0.986466, respectively. The regres-
sion analysis of the intra-observer variability showed a correlation coefficient of 0.992330
between the lumen areas of the first and second delineations of Expert 2. After the appli-
cation of the contrast enhancement, the automatic segmentation method obtained a cor-
relation coefficient of 0.985729, 0.974483 and 0.974314 with the lumen area calculated
from the manual delineations of Expert 1 and the first and second delineations of Ex-
pert 2, respectively. For the average lumen diameter, the correlation coefficients between
Expert 1 and the first and second delineations of Expert 2 were 0.981065 and 0.981453,
respectively, whereas the correlation coefficient between the first and second delineations
of Expert 2 was 0.990351. After adjusting the contrast of the input images, the automatic
segmentation of the lumen obtained a correlation coefficient of 0.977346, 0.972354 and
0.971756 with the average lumen diameter of the manual delineations of Expert 1 and
the first and second delineations of Expert 2, respectively. The Bland-Altman analysis
showed similar results between the proposed method and the intra- and inter-observer
variability. For the lumen area, the bias between Expert 1 and the first delineation of
Expert 2 were 0.708995 mm2, whereas for the second delineation of Expert 2 the bias
was 0.803415 mm2. The Bland-Altman analysis of the lumen area with respect to the
intra-observer variability showed a bias of 0.094420 mm2 between the first and second
delineations of Expert 2. The bias between the proposed method after adjusting the con-
trast of the images and the first delineation of Expert 2 was -0.09497 mm2, which is closer
to zero when compared to the bias between Expert 1 and the same delineation of Expert 2
(0.708995 mm2). For the average lumen diameter, the bias between Expert 1 and the first
delineation of Expert 2 was 0.006241 mm, whereas for the second delineation of Expert
2 the bias was 0.024817 mm. For the intra-observer variability, the bias of the average
lumen diameter between the first and second delineations of Expert 2 was 0.018575 mm.
The bias of the average lumen diameter between the proposed method after adjusting the
contrast of the images and the three manual delineations were -0.03283 mm, -0.02680
mm and -0.00963 mm. Compared to the manual delineations, the proposed method un-
derestimated the average lumen diameter. However, the results were similar to the intra-
and inter-observer variability.
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5.4 Comparison with other methods

A comparison with related studies found in the literature was carried out in order to vali-
date the accuracy of the proposed lumen segmentation method. The first comparison was
performed against the results obtained in the IVUS Segmentation Challenge [20]. The av-
erage values described in Table 6 showed that the method proposed by Participant group 3
outperformed the ones obtained from the other participant groups. A slight improvement
of the Hausdorff distance was obtained from our method when compared to the one of
Participant group 3 of the challenge (0.29 ± 0.17 mm vs 0.34 ± 0.14 mm, respectively).
Although no significant improvements were achieved when compared to the results of
this participant group, the segmentation of the lumen performed by our method is fully
automatic and there is no need for an initial user interaction. In contrast, the method pro-
posed by this group requires the initialization of a number of points to generate the initial
contours.

The results shown in Table 7 indicate that our method outperformed many of the
studies found in the literature. The value of the Dice coefficient of our method (0.9400
± 0.0400) is better than the values obtained by Sofian et al. [18] and Mendizabal-Ruiz
et al. [12] (0.9260± 0.0111 and 0.9283± 0.0201, respectively). The value of the Jaccard
measure (0.8800 ± 0.0600) was also better than the ones obtained from the studies under
comparison, except for the value obtained by Su et al. [9] (0.9182). The value of the
Hausdorff distance (0.2900 ± 0.1700 mm) is only greater than the ones obtained from
Su et al. [9] and Mendizabal-Ruiz et al. [12] (0.2243 mm and 0.1398 ± 0.0384 mm,
respectively). Finally, the value of the percentage of area difference (0.0900 ± 0.0700) is
only greater than the one obtained from Sofian et al. [18] (0.0645 ± 0.0509).

Although the results presented by Su et al. [9] are better than the ones obtained from
our method, a ROI surrounding the region corresponding to the media-adventitia region
must be delineated in the input image before the classification by the two ANN. In ad-
dition, the elimination of noise of the binary image resulting from the first classification
is performed by a second ANN. In contrast, morphological operations and the convex
hull algorithm are used here to identify noise and refine the regions to be evaluated in-
stead of using a complex ANN. In addition, the method proposed performs the lumen
segmentation in the whole image. Although the value of the percentage of area differ-
ence of the method proposed by Sofian et al. [18] is less than the one obtained from the
proposed method, the authors only used 30 IVUS images randomly selected from the
dataset provided by Balocco et al. [20] to perform the experiments. In the study tackled
by Mendizabal-Ruiz et al. [12], IVUS images acquired from catheters operating at fre-
quencies of 20 MHz and 40 MHz were taken into account. However, if only the images
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acquired from the frequency of 20 MHz were considered, then the average values of the
Dice, Jaccard and Hausdorff distance would be 0.9215 ± 0.0217, 0.8555 ± 0.0363 and
0.1421 ± 0.0371 mm, respectively.

In terms of the computational cost, the average total time of the proposed method
is also in accordance with the related studies found in the literature. The average total
time of the proposed method to process each one of the 326 IVUS images was 5.7165 ±
1.5419 seconds. Gao et al. [31] reported an average total time of 8.13 ± 6.05 seconds for
the lumen segmentation step of their automated framework. The average total time of the
lumen segmentation carried out by Mendizabal-Ruiz et al. [12] was 4.51 seconds.

5.5 Limitations

The proposed method has two limitations. The first limitation regards the number of pa-
rameters of the clustering algorithm. The K-means algorithm with subtractive clustering
used requires three parameters: the number of clusters and the radius ra and rb represent-
ing the neighbourhood of the pixels under analysis. Although the proposed method with
the same parameters adopted in our previous study for MR images was able to identify
the lumen region in IVUS images, a fully automatic segmentation without any empirical
parameters increases the reliability and robustness of the method. Hence, future studies
will be conducted to effectively separate the regions present in the input images without
any kind of parameter.

The second limitation regards the segmentation of IVUS images acquired from a fre-
quency of 40 MHz. Since speckle noise in these images is higher when compared to
IVUS images acquired at a frequency of 20 MHz, the application of most efficient fil-
ters to minimize the effects of such noisy artefacts will be considered in future research
projects to enable segmentation on images acquired from catheters operating at different
frequencies. In addition, texture analysis will also be considered instead of using only the
grayscale intensity of the pixels in the K-means algorithm.

6 Conclusions

The segmentation of the lumen and media-adventitia regions in IVUS images is an in-
tensive focus of research and plays an important role in assessing the presence and pro-
gression of atherosclerosis. A fully automatic segmentation of the lumen in IVUS images
of coronary arteries was proposed in this article. Compared to our previous study, new
solutions were developed to enhance the robustness, efficiency and automaticity of the
proposed method. Additionally, a new approach to successfully identify and remove side
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branches of bifurcation regions was also proposed to avoid the elimination of the potential
lumen regions from the subsequent processing steps. The improved method proved to be
effective in identifying the regions corresponding to the lumen without user interaction
and any change in the values of the method parameters.

Modifications were also accomplished to improve the shape of the lumen contour and
the segmentation accuracy. The qualitative analysis showed that the visual shape of the lu-
men contour produced by the new contour correction step was better than the one obtained
from the Chan-Vese active contour algorithm, leading to smoother and more regular fi-
nal contours. The quantitative analysis demonstrated that the segmentation results of the
new automatic segmentation method are in accordance with the manual delineations per-
formed by two experts. Additionally, the proposed method showed results close to the
ones obtained from the inter-observer variability.

An effective approach to reduce the number of parameters of the subtractive cluster-
ing algorithm, as well as the application of the method proposed here to IVUS images
acquired from catheters operating at different frequencies, are expected to be addressed
in future research work.
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Abstract

Segmentation methods have assumed an important role in image-based diagnostic of sev-
eral cardiovascular diseases. Particularly, the segmentation of the boundary of the carotid
artery is demanded in the detection and characterization of atherosclerosis and assessment
of the disease progression. In this article, a fully automatic approach for the segmentation
of the carotid artery boundary in Proton Density Weighted Magnetic Resonance Images is
presented. The approach relies on the expansion of the lumen contour based on a distance
map built using the gray-weighted distance relatively to the centre of the identified lumen
region in the image under analysis. Then, the Snake model with a modified weighted
external energy based on the combination of a balloon force along with a Gradient Vector
Flow based external energy is applied to the expanded contour towards the correct bound-
ary of the carotid artery. The average values of the Dice coefficient, Polyline distance,
mean contour distance and centroid distance found in the segmentation of 139 carotid
arteries were 0.83 ± 0.11, 2.70 ± 1.69 pixels, 2.79 ± 1.89 pixels and 3.44 ± 2.82 pix-
els, respectively. The segmentation results of the proposed approach were also compared
against the ones obtained by related approaches found in the literature, which confirmed
the outstanding of the new approach. Additionally, the proposed weighted external energy
for the Snake model shown to be robust to carotid arteries with large thickness and weak
boundary edges.
Keywords: Medical imaging, Magnetic resonance imaging, Image segmentation, Snake
model, Gray-weighted distance

1 Introduction

Cardiovascular diseases are the leading cause of death and disability in the world. The
most common underlying disease process is atherosclerosis, which is still the most dan-
gerous disease that affects the majority of people around the world [1]. The accumulation
of fatty material and cholesterol in the walls of the arterial system is the underlying con-
dition to the formation of the so called atherosclerotic plaques, which can progressively
obstruct the blood through the artery and lead to heart attacks and strokes. The rupture
of atherosclerotic plaques lodged in the carotid artery might lead to acute thrombus for-
mation with acute carotid occlusion and/or generating embolic debris to the intracranial
circulation, two factors that might lead to a stroke. Therefore, an early diagnostic is im-
portant to rapidly establish a treatment planning for preventing the onset or recurrence of
symptoms.
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Magnetic resonance imaging (MRI) has been widely used in non-invasive image-
based diagnostic of the carotid artery. Particularly, magnetic resonance (MR) images
have been successfully used in the characterization of atherosclerotic plaques, enabling
the assessment of the disease progression [2]. Computer-aided methods for the analysis
of the carotid artery in MR images play an important role to expedite the identification
and assessment of possible atherosclerosis and, consequently, the design of the best treat-
ment planning to prevent future symptomatic events. The quantification of atherosclerotic
plaques and their main components allows the experts to evaluate the progression and re-
gression of the disease, the establishment of the mostly suitable treatment for the patient
and evaluate the necessity for a surgical or endovascular procedure. Additionally, the
evaluation of the atherosclerotic plaque components plays an important role in identify-
ing patients with higher risk for future symptomatic events [3–5].

Usually, the identification of the carotid artery is the first step towards the quantitative
evaluation of the morphology of the vessel wall and the evaluation of the presence and
progression of atherosclerosis. However, the manual delineation of the lumen and carotid
wall boundaries is a laborious and time-consuming task taking into account the high num-
ber of slices acquired in a single imaging exam. Approaches based on surface graph cuts
[6, 7], ellipse fitting [8, 9], difference of Gaussian [10] and active contour models [11–18]
were proposed in the literature for the segmentation of the lumen and carotid wall bound-
aries in MR images. However, the main limitation of the aforementioned methods is the
necessity for manual interventions and the expansion of the lumen contour according to a
fixed value as in Ladak et al. [12], van ’t Klooster et al. [15], Saba et al. [17] and Gao et al.
[18]. In images with different resolutions, a heuristic value can fail to appropriately di-
late the contour outward the lumen region. Additionally, the gradient information usually
adopted in active contour models is insufficient to overcome weak boundaries commonly
found on MR images of the carotid artery. Therefore, the expansion of the lumen contour
without using any heuristic value is required for the fully automatic segmentation of the
lumen and carotid wall boundaries, which is highly demanded to rapidly provide to the
clinical experts the region of the vessel to be evaluated. The use of the image intensity
in the external energy commonly adopted in active contour models is also important to
improve the segmentation in carotid arteries with weak boundaries.

This article proposes a novel fully automatic approach to segment the lumen and outer
boundaries of the carotid artery in Proton Density Weighted (PDW) MR images. The pro-
posed approach performs the segmentation of the carotid artery boundaries using a gray-
weighted distance map and the Snake model with a modified external energy that relies on
Gradient Vector Flow and balloon forces. Briefly, the first step of the new approach is the
identification of the lumen contour using the mean roundness criterium proposed in Jodas
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et al. [19]. Then, since the magnitude of the gradient along the lumen region prevents the
lumen contour to reach the boundary of the carotid artery, the gray-weighted distance map
is employed to expand the contour outward the lumen region towards the carotid artery
boundary. Then, the region inside the expanded contour is discarded and the contour is
used to initiate the Snake model in order to segment the carotid artery boundary. Since
the Snake model is a particular case of deformable models, the identified lumen contour
might be deformed and moved using the concept of curve evolution to find the boundary
of the carotid artery based on geometrical properties and image information.

This study provides three main contributions: The use of a gray-weighted distance
map to automatically expand the lumen contour outward the lumen region; the combi-
nation of a balloon force along with a Gradient Vector Flow based external energy in
the Snake model to handle the segmentation of the boundaries of carotid arteries with
large thickness and weak edges; the detailed assessment of the accuracy of the proposed
approach using a challenge PDW MR image dataset.

The remainder of this article is organized as follow: Section 2 describes the proposed
automatic segmentation approach. Section 3 presents segmentation results obtained by the
proposed approach and their comparison against the corresponding manual delineations.
The advantages and limitations of the proposed approach are identified in Section 4. Fi-
nally, the conclusions are drawn in Section 5.

2 Materials and Methods

2.1 MR images used

The MR images of the carotid artery selected for this study were used in research by van
Engelen et al. [20] and kindly provided by the authors on request. The proposed segmen-
tation approach was performed on images that are the regions of interest surrounding the
carotid arteries. A registration procedure was previously performed to match the original
MR images with the corresponding histology images, which only contained the region
of the artery under study [20]. Once the matching was completed, the MR images were
cropped to obtain only the part that matched the histology images [20]. The original
dataset was composed of five MRI scans acquired from thirteen patients: T1-weighted
(T1W), Proton Density Weighted (PDW), Time-of-Flight (TOF) and two 3D-T1W scans.
The first three MRI scans were acquired without administration of intravenous (IV) con-
trast media, whereas the 3D-T1W scan was acquired with and without contrast media.
The post-contrast 3D-T1W scan was performed 4.6±3.4 minutes after the administration
of the contrast media. Each MRI scan is composed of approximately 17.7±4.8 slices
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per patient; each slice has a pixel size of 0.25 mm x 0.25 mm. CTA images were also
acquired to provide details for the registration with the histology images and to facilitate
the manual segmentation of the lumen, vessel wall and plaque components. More details
about the MRI scans are available in van Engelen et al. [20].

In order to overcome the lack of manual delineations in the original dataset and mis-
alignments of the provided contour with the PDW MR images resulting from the registra-
tion step described in van Engelen et al. [20] that may affect the quantitative analysis on
the segmentation accuracy, the lumen and carotid walls were manually delineated on the
230 PDW MR images of the thirteen patients. The new manual delineations were made
by a physician of the Neuroradiology Department from the Centro Hospitalar São João,
in Porto, Portugal, with the supervision of an experienced physician from the same de-
partment. The manual contours for the lumen and carotid walls of the images belonging
to eight patients were established based on the PDW MR images only; the delineations
of the images belonging to four patients were made with the additional visual examina-
tion of the corresponding 3D-T1W MR images; and the PDW MR images of one patient
were not manually segmented due to their low quality and the presence of strong noise
artefacts; additionally, the images of patients 11 and 13 were not used due to the impossi-
bility of identifying the structures of interest. Hence, 185 PDW MR images with manual
delineations of the lumen and carotid boundaries were used in this study.

2.2 Proposed approach

The diagram of the proposed automatic approach for segmenting the carotid wall bound-
ary in PDW MR images is depicted in Figure 1.

Here, the segmentation of the lumen boundary was performed using the method pro-
posed in our previous study [19], which relies on the circularity index calculated from
each region identified by the K-means algorithm with subtractive clustering. The identi-
fied lumen contour is then submitted to the vessel wall segmentation stage to expand it to
the outer boundary of the carotid artery. In the vessel wall segmentation stage, the lumen
contour is expanded in two iterations: the first iteration consists in expanding the contour
outward the lumen region by means of the application of the Snake active contour with
ellipse constraint in the grayscale distance map of the input MR image; and the second
iteration completes the expansion to the true boundary of the carotid artery based on the
Snake active contour with a weighted external energy.
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Figure 1: Diagram of the proposed approach for segmenting the carotid artery boundaries
in PDW MR images.

2.2.1 Distance map

Edge detector operators rely on the gradient of the input image to find significant vari-
ations on the grayscale intensities of the regions under analysis. In Black-Blood MR
images of the carotid artery, the lumen is a region with low intensity values surrounded
by high intensity values corresponding to the region of the vessel wall. Hence, significant
variations of the grayscale intensity between the lumen and vessel wall regions represent
a challenge to expand the lumen contour towards the boundary of the carotid artery.

External energies used in the Snake model usually rely on the magnitude of the gra-
dient vectors to decrease the evolution of the initial contours towards the boundaries of
the structures of interest. However, the high magnitude of the gradient vectors around the
lumen region can hinder the expansion of the identified lumen contour towards the bound-
ary of the carotid artery under analysis. Approaches based on heuristic values in order to
expand the lumen contour in the direction of the boundary of the carotid artery may still
fail due to the lack of robustness against changes in the resolution of the input image.
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Therefore, an efficient and dynamic approach to avoid the edges between the lumen and
carotid wall is proposed in this study.

Distance transform is a method applied to binary or grayscale images to assign a value
to each pixel of the object of interest that represents the nearest distance to the pixels of
the image background. The distance transform has been successfully used in many image
processing and analysis problems such as in skeletonization [21], edge detection [22] and
minimal path extraction [23] problems.

Geodesic time represents the gray-weighted distance between two pixels p and q in a
grayscale image and it is defined as the sum of the pixel intensities along the minimum
cost path connecting these two pixels (p and q). The geodesic time was proposed by
Soille [24] and it is calculated as the mean of two adjacent pixels of the grayscale image
f along the minimum path:

t f (P) =
l

∑
i=1

f (pi−1)+ f (pi)

2
, (1)

where f (pi− 1) and f (pi) are the intensity of two adjacent pixels along the minimum
cost path t f (P), and l is the length of the path P. Starting from the pixel p, the minimum
cost relatively to the pixel q is calculated from a 3x3 neighborhood of each pixel along
the path according to Equation 1. The geodesic time assures that there is only one path
with minimum cost between p and q. Hence, the geodesic time is the smallest amount of
time, i.e., cost, between the pixels p and q:

t f (p,q) = min{t f (P)|P connects p and q}. (2)

Figure 2 illustrates an example of the gray-weighted distance calculated from a centre
pixel to each pixel at the border of a 5x5 matrix.

As shown in Figure 2, the distance along the path connecting the centre pixel to each
pixel at the border of the matrix increases according to the intensity values. The higher
the pixel intensities along the path, the larger will be the distance from the starting pixel to
the ending pixel. Considering the low intensity of the lumen region of the carotid artery
in Black-Blood MR images, the distances from the centre of the lumen to all pixels at
the border of the input image start to increase significantly as the paths reach the edge
between the lumen and the vessel wall regions. Hence, the expansion of the identified
lumen contour beyond the boundary of the lumen region can be performed by decreasing
the contour evolution as the values of the distance map increase. Examples of the gray-
weighted distance applied to PDW MR images of carotid arteries are illustrated in Figure
3.
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Figure 2: Example of the gray-weighted distance applied to a 5x5 matrix: a) A 5x5
matrix with grayscale intensities; b) The gray-weighted distance calculated from the pixel
highlighted in red to each pixel at the border of the matrix. (The arrows indicates the path
with minimum cost.)

Figure 3: Examples of the gray-weighted distance applied to PDW MR images of carotid
arteries: The first row shows the images with the segmented lumen contours represented
in green (the starting points of the gray-weighted distance are the red dots that represent
the centres of the lumen contours). The second row shows the distance maps calculated
by Equation 1.

As shown in Figure 3, the grayscale intensities of the images corresponding to the
distance maps (second row) represent the distances from the centres of the lumen contours
to all pixels at the border of the images. The higher the intensity values are, the larger will
be the distances from the centre of the lumen. The distances inside the lumen region start
to increase close to the edge of the lumen boundary.

2.2.2 Active contour model

Deformable models have been widely used in the segmentation of boundaries of struc-
tures presented in medical images [25–29]. Active contours, or Snakes, were proposed by
Kass et al. [30] to find boundaries of regions in images through the evolution of curves,
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i.e., contours, controlled by internal and external energies. Hence, active contour mod-
els combine geometrical properties, image information and constraints to move contours
towards the true boundaries of the structures of interest [31]. The active contour model
proposed by Kass et al. [30] performs the evolution of the curve C(s) = [x(s),y(s)], s ∈
[0,1] based on the minimization of the energy function defined as:

E(C) =
∫ 1

0
Eint(C(s))+Eext(C(s))+Econ(C(s)) ds, (3)

where Eint is the internal energy of the contour, Eext is the external energy calculated from
the input image and Econ is a constraint energy restricting the evolution of the contour. The
internal energy Eint controls the elasticity and curvature of the contour, and it is defined
as:

Eint(C(s)) =
∫ 1

0

1
2
(
α|C′(s)|2 +β |C′′(s)|2

)
, (4)

where C′(s) and C′′(s) are the first and second derivatives of the contour C(s), respec-
tively, and α and β are weights that control the elasticity and curvature of the contour,
respectively. The external energy Eext forces the contour to move towards the boundary of
the structure of interest based on the image information. In the absence of external ener-
gies, the geometrical properties controlled by the internal energy is responsible to evolve
the contour.

The active contour model proposed by Kass et al. [30] has been extensively used
in tasks of image processing and analysis, particularly in the segmentation of medical
images. However, the gradient of the input image commonly used as external energy
provides limited capture range and poor convergence to concavities. Hence, the initial
contour needs to be placed close to the boundary of the structure of interest. Balloon
forces [32] have been proposed to increase the amplitude and range of the contour to be
evolved:

Fballoon = kn(s), (5)

where n(s) is a unit vector perpendicular to each point of the contour to be deformed, and
k is a weight that defines the amplitude of the unit vector force. The sign of k defines
the orientation of the contour, i.e., the ability to inflate or deflate around the structure of
interest. A positive value of k will make the contour to inflate until it fits the boundary of
interest, whereas a negative value will be responsible to deflate the contour. Balloon forces
have been successfully applied to increase the pressure force of active contour models,
leading the contours to fit the boundaries of interest even when the initial contours are
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distant from the structures. However, balloon forces may cause the segmentation contour
to leak weak edges due to the amplitude and strengthen of the unit vectors.

Xu and Prince [33] proposed a new external force called Gradient Vector Flow (GVF)
to increase the capture range and handle with concavities in the structures of interest by
diffusing the gradient vectors of an edge map calculated from the input image. Although
successfully used as an external energy for active contour models, the main disadvantage
of the GVF method is the inability to deal with weak edges that can cause the contour to
leak the true boundary. Liu and Bovik [34] proposed an new external energy for the Snake
model based on the decomposition of the Laplacian operator. The new external energy is
called Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow (NNGVF),
which is based on the convolution of two templates used to maintain the low-frequency
components of the image obtained by a gradient operator, suppress noisy artefacts and
increase the edge-preservation. Since the convolution is performed in larger neighbour-
hoods, the NNGVF performs the noise reduction and the capturing of more information
to calculate the diffusion vectors in regions with weak edges.

Although the NNGVF provides better results when compared to the GVF, the evolu-
tion of the contour in structures with large areas is still the most challenge in the segmen-
tation of medical images. Examples of segmentation results obtained by the Snake model
with the NNGVF applied to PDW MR images of carotid arteries are shown in Figure 4.

Figure 4: Examples of incomplete convergence of the lumen contours to the boundaries
of carotid arteries resulting from the Snake model with the NNGVF applied to PDW MR
images. (The identified lumen contours are depicted in green, the blue contours represent
the lumen contours expanded beyond the boundaries of the lumen regions by using the
images resulting from the gray-weighted distance, and the red contours are the results of
the Snake model with the NNGVF initialized with the blue contours.)

In Figure 4, the contours in red represent the results of the Snake model with the
NNGVF. The incomplete convergence of the initial contours represented in blue to the
true boundaries of the carotid arteries is due to the variations of the grayscale intensities
inside the carotid wall and the high distance to the boundaries of interest.

In order to overcome the limited range covered by the GVF, Khadidos et al. [35]
proposed a new external energy for the Snake model based on the combination of the
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GVF and balloon based forces. Hence, a weighted factor based on the intensity of the
magnitude of the gradient and the difference between the directions of the balloon forces
and the gradient vectors is introduced to control the evolution of the initial contour [35]:

Eext = (Fballoon ∗ (1−Ω))+(FGV F ∗Ω), (6)

where Fballoon is the balloon force calculated from the contour to be deformed, FGV F is
the external energy calculated from the GVF based force and Ω is defined as:

Ω = h1−(AD−ε). (7)

The value of h at each pixel (x,y) of the contour to be deformed is defined as the
average value of the intensities inside a semi-circular region centered at (x,y):

h(x,y) =
1
N ∑

(i, j)∈S
f (i, j), (8)

where f (i, j) is the intensity value at pixel (i, j) of the image with the edges detected by a
gradient operator, S is the region inside the semi-circle centred at the contour pixel (x,y),
and N is the number of pixels of the region S.

The value of AD at each contour pixel (x,y) is defined as the average of the difference
between the angle of the balloon force and the angle of each gradient vector inside a
cone-shaped region ahead the contour pixel (x,y) under analysis:

AD(x,y) =
1

M ∗π
∑

(i, j)∈T
θ(i, j), (9)

where θ(i, j) is the angle between the balloon force at the contour pixel (x,y) and the
gradient vector at the pixel (i, j), T contains the pixels ahead the contour pixel (x,y) that
are inside the cone-shaped region, and M is the number of pixels of this cone-shaped
region.

Given an edge map image f obtained by a gradient operator with edges represented by
high intensity values and non-edge regions represented by low intensity values, the basic
idea of the external energy proposed by Khadidos et al. [35] is to apply the balloon forces
to continue the evolution of the contour when a homogeneous region with low intensities
is found. In contrast, when an edge is found, the GVF based force is applied to fit the
contour to this edge.

The weighted external energy was proposed to force the expansion of the contour in
homogeneous regions, and attenuate the evolution in heterogeneous regions close to the
desired boundary. However, the leakage of the contour remains a major challenge due
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to low intensity values in regions with weak edges. Since the average value h of the
intensities inside the semi-circular region tends to zero close to weak edges, the balloon
forces predominate the external energy proposed in Equation 6, leading the contour to
leak the true boundary of the region of interest. Hence, a modification of the weighted
external energy defined in Equation 6 is proposed in this study to improve the results
in weak boundaries. The modification consists in replacing the average value h by the
entropy of the intensity values ahead the contour pixel (x,y) of the contour to be deformed
by using the following formulation:

h(x,y) = 1− 1
entropy(P)+1

, (10)

where entropy(P) is the entropy of the pixels inside the semi-circle centred at the contour
pixel P located on the (x,y) coordinates:

entropy =−
N

∑
i=1

pi ∗ log2(pi), (11)

where N is the highest possible intensity value, and pi is the probability of occurrence
of the intensity value i. An entropy close or equal to zero represents a homogeneous
region; whereas an entropy greater than zero, indicates a heterogeneous region. Hence,
in homogeneous region the value of h tends to 0 (zero) and the balloon force is prevalent
on the weighted external energy. On the other hand, the value of h tends to 1 (one) when
the region is heterogeneous, leading to the application of the GVF in Equation 6. Unlike
the average of the grayscale intensities, the entropy is more sensitive to the variation of
the intensities inside the region ahead the pixel of the contour to be deformed. Hence, the
GVF in Equation 6 tends to be applied in regions with high entropy, leading the contour
to stop in weak boundaries. Besides the use of the entropy, a weighting factor is proposed
to decrease the evolution of the contour when regions with low intensities are found:

A(x,y) =
1
N ∑

i, j∈S
f (i, j), (12)

where N is the number of pixels inside the semi-circular region S, and (x,y) is a pixel of
the contour. In Black-Blood MR images, the region outside the vessel wall is composed of
low intensity values. Therefore, the proposed weighting factor attenuates the evolution in
regions with low intensities, while maintaining the evolution in regions with high intensity
pixels. The GVF in Equation 6 was replaced by the NNGVF to handle more efficiently
with regions corrupted by noise, and the following modified weighted external energy is
proposed to find the boundaries of carotid arteries:
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Eext = A∗ ((Fballoon ∗ (1−Ω))+(FNNGV F ∗Ω)), (13)

where A is the weighting factor calculated for each contour pixel as defined in Equation
12. The regions S and T used to calculate the values of AD and h defined in Equations 9
and 10 were defined as semi-circular shaped regions to improve the capture range of the
pixels ahead the pixel of the contour to be expanded towards the boundary of the carotid
artery.

2.2.3 Ellipse constraint

Variations in the intensities of the input image can be responsible for fitting the identi-
fied lumen contour in local regions and hindering its evolution beyond the boundary of
the lumen region, leading the contour to assume an irregular shape. Parts of the lumen
contour with incomplete evolution still remain inside or close to the boundary of the lu-
men region, which could impede the evolution towards the true boundary of the carotid
artery. Therefore, a geometrical constraint is employed here to force the lumen contour to
completely expand beyond the boundary of the lumen region and avoid local incomplete
evolutions in regions with non-uniform grayscale intensity.

The constraint Econ in Equation 3 is employed to control the geometrical shape of the
contour. In this study, the ellipse constraint proposed in Ray et al. [36] and Wang et al.
[31] is used to maintain the ellipsoid shape of the expanded contour:

xi−λ (cx + r1 ∗ cos(θi−θm)∗ cos(θm)− r2 ∗ sin(θi−θm)∗ sin(θm)),

yi−λ (cy + r1 ∗ cos(θi−θm)∗ sin(θm)+ r2 ∗ sin(θi−θm)∗ cos(θm)),
(14)

where [cx,cy] is the centroid of the contour, θm is the angle of the major axis of the contour
with respect to x-axis, r1 and r2 are the radius of the major and minor axis of the contour,
respectively, θi is the angle of the ith pixel of the contour with respect to its major axis,
and xi and yi are the ith pixels of the contour. The employed constraint penalizes the pixels
of contours that are assuming non-ellipsoid shapes.

The Equation 14 is integrated into the Snake model defined by Equation 3, which is
applied to the images resulting from the gray-weighted distance proposed in Equation 1
to expand the lumen contour beyond the boundaries of the lumen region. Examples of the
expansion of the lumen contour performed by the Snake model with the ellipse constraint
are shown in Figures 5 and 6.

As shown in Figure 5b, the lumen and carotid wall boundaries in the images repre-
senting the distance maps progressively increase the magnitudes and convergence of the
gradient vectors. It is due to the fact that the gradient magnitude of the distance map
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(a) (b) (c) (d)

Figure 5: Examples of the expansion of lumen contours resulting from the Snake model
with ellipse constraint applied to images obtained based on the gray-weighted distance: a)
Original MR images with the segmented lumen contours in green; b) The gradient vectors
(in orange) calculated from the images obtained based on the gray-weighted distance;
c) The expanded lumen contours (in blue) overlapped on the images representing the
distance maps; d) The expanded lumen contours overlapped on the original MR images.

Figure 6: Examples of the expansion of lumen contours performed by the Snake model
without (first row) and with (second row) taking into account the ellipse constraint.

image is proportional to the distance value associated to each pixel [37]. Therefore, the
magnitude of the gradient vectors tends to increase at regions with higher distances calcu-
lated with respect to the centre of the lumen region, leading the contour to expand beyond
the boundaries of the lumen region as shown in Figure 5d.

In Figure 6, the contours generated by the Snake model without taking into account
the ellipse constraint were trapped by grayscale intensity variations inside the carotid
wall. Particularly, the examples shown in the first row of Figure 6 depicted an incomplete
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evolution of the contours caused by gradient vectors with high magnitudes in the low
intensities regions close to the lumen boundary. However, after the employment of the
ellipse constraint, the contours overcome the regions with high intensity variations and
maintain their shapes more regular when compared to the ones obtained by the Snake
model without taking into account the ellipse constraint.

2.3 Validation measures

The contours segmented by the proposed approach and the corresponding manual delin-
eations were compared based on four measures: Dice coefficient (DC), Polyline distance
(PD), mean contour distance (MCD) and centroid distance (CD). The Dice coefficient is
used to calculate the overlap between the automatic (Sauto) and manual (Smanual) segmen-
tations:

DC =
2∗ |Sauto∩Smanual|
|Sauto|+ |Smanual|

. (15)

The Polyline distance represents the average minimum distance between two sets of
points, i.e., image pixels, and indicates how far one set is from the other one, being calcu-
lated as:

Ds(B1,B2) =
d(B1,B2)+d(B2,B1)

N(B1)+N(B2)
, (16)

where B1 and B2 are the two sets of points under comparison, N(B1) and N(B2) are the
number of points in B1 and B2, respectively, and d(B1,B2) = ∑v∈B1 min{d(v,s)} and
d(B2,B1) = ∑s∈B2 min{d(s,v)}.

An under- and over-estimation of the segmented region may affect the values calcu-
lated by the Dice coefficient. However, the centroid difference between the contour seg-
mented by the proposed approach and the corresponding manual delineation is low when
the approach finds the correct location of the region. Therefore, the centroid difference
was also employed according to:

CD =
√

(xs− xg)2 +(ys− yg)2, (17)

where (xs,ys) and (xg,yg) represent the centroids of the segmented region and of the corre-
sponding manual delineation, respectively. The higher the centroid distance, the greater
the distance between the regions.

The lumen area, total carotid area, average lumen diameter, average carotid diameter
and vessel wall thickness of the automatic and manual segmentations of the lumen and
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carotid artery contours were also calculated to compare the segmentation results by means
of the linear regression analysis and Bland-Altman analysis. The lumen area and the total
carotid area are the absolute areas inside the contours of the lumen and carotid artery,
respectively, and the average diameter (AVD) of the segmented contours is defined as:

AV D =
1
N

N

∑
i=1

2∗ ri, (18)

where N is the number of pixels of the contour and ri is the radius of pixel ith. The vessel
wall thickness is defined as the mean distance between the segmented contours of the
lumen and carotid artery.

3 Experimental results

A comparison between the contours obtained by the proposed approach and the corre-
sponding ones generated by manual delineations was performed in order to evaluate the
accuracy of the segmentation results.

3.1 Initialization of the parameters

The parameters used to segment the boundaries of the carotid arteries in the experimental
image dataset are indicated in Table 1.

Table 1: Values of the parameters used in the segmentation of the carotid artery boundaries
under analysis.

Parameter 1st step 2nd step

α 0.05 0.05
β 0 1
µ 0.02 0.02
κ 1 1
σ 1 1
Radius of the semi-circle 5 5
Number of iterations 150 500

The value of parameter α was set to 0.05 to avoid the contour to become too rigid
in regions with large areas. The value of β was set to 1 (one) in the second step of the
proposed approach in order to the final contour of the carotid artery may be more smooth.
The value of κ was also set to 1 (one) to avoid the excessive amplitude of the balloon force
defined in Equation 5. The value of σ was set to 1 (one) to avoid the excessive smoothing
of the boundaries of interest and consequently, the weakening and displacement of the
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gradient vectors obtained by the NNGVF. The value of µ and the radius of the semi-circle
defined in Equations 9 and 10 were defined experimentally by combining and testing a
set of values on the images of three patients randomly selected. In this tuning process, the
values chosen for µ varied from 0.01 to 0.07 with intervals of 0.01, whereas the values
selected for the radius of the semi-circle were between 2 and 10. The mean Polyline
distance was calculated for each combination of the values of µ and the radius of the
semi-circle. The value of µ and the corresponding radius that provided the minimum
average Polyline distance for the images of the three patients were chosen to be the best
for the dataset under study. Due to the high computational cost of the ellipse constraint,
the number of iterations used in the first step of the proposed approach was lower than
the one used in the second step. However, the value chosen here was able to successfully
expand the lumen contour beyond the boundary of the lumen region. Table 2 shows the
average values of the Polyline distance for each combination of the parameter µ with
the radius of the semi-circle. The average values found for the Dice coefficient, Polyline
distance, mean contour distance and centroid distance that led the best combination of µ

and the radius of the semi-circle are shown in Table 3.

Table 2: The average values of the Polyline distance (in pixels) for each combination of
parameter µ and the radius of the semi-circular region. (The value in bold is the minimum
average Polyline distance obtained from the images of the three patients used for tuning
these parameters.)

PPPPPPPPµ

Radius 2 3 4 5 6 7 8 9 10

0.01 4.0117 2.8806 2.6332 2.4892 2.5602 2.5722 2.6396 2.7048 2.7265
0.02 3.4291 2.6974 2.5738 2.4675 2.598 2.7162 2.7595 2.8254 2.8547
0.03 3.203 2.6762 2.5468 2.5519 2.7642 2.8216 2.8431 2.9811 3.0341
0.04 3.0366 2.6938 2.5171 2.7535 2.9772 3.1496 3.1824 3.1831 3.327
0.05 2.9615 2.5438 2.6402 2.9168 3.1949 3.3402 3.4034 3.5569 3.6093
0.06 2.717 2.7496 2.9286 3.9539 3.4282 3.6216 3.6871 3.7895 3.8347
0.07 2.9005 3.0912 3.3454 3.6456 3.8288 3.9332 3.9784 3.9583 4.0072

Table 3: Average values found for the Dice coefficient, Polyline distance, mean contour
distance and centroid distance that led to the best combination of µ and the radius of the
semi-circle.

Validation measure Weighted external energy NNGVF

Dice coefficient 0.8625 ± 0.0863 0.7666 ± 0.1202
Polyline distance (px) 2.4675 ± 1.7135 4.001 ± 2.7791
Mean contour distance (px) 2.4561 ± 1.6779 3.2355 ± 1.5508
Centroid distance (px) 2.9309 ± 2.6268 5.2198 ± 2.9887
*NNGVF=Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow; px=pixels.
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3.2 Performance of the proposed method

Examples of carotid artery boundaries segmented by the proposed approach and the cor-
responding manual delineations are shown in Figure 7.

Figure 7: Examples of carotid artery boundaries segmented by the proposed approach:
In the first row, original PDW MR images; in the second row, lumen contours (in green)
along with the contours expanded based on the images obtained by the gray-weighted
distance (in magenta) which were then used to initiate the segmentation of the carotid
artery boundaries; in the third row, carotid artery boundaries segmented by the Snake
model with the proposed weighted external energy (in red) and the corresponding manual
delineations (in blue).

The lumen contours shown in green in the second row of Figure 7 were obtained by
the automatic method proposed in Jodas et al. [19] for the segmentation of the lumen re-
gion, whereas the ones obtained from these contours by their expansion, using the Snake
model with the ellipse constraint on the images obtained by the gray-weighted distance,
are represented in magenta. In the third row of the same figure, the contours illustrated
in red are the carotid artery boundaries found by the Snake model with the proposed
weighted external energy, and the contours shown in blue are the corresponding manual
delineations. From the images shown, it is possible to notice that the carotid artery bound-
aries were correctly segmented in all images, being the automated results very close to
the corresponding manual delineations.

The comparison performed between the carotid artery boundaries obtained by the
Snake model with the proposed weighted external energy and those generated by only
taking into account the forces calculated by the NNGVF is depicted in Figure 8.

As shown in the second row of Figure 8, the proposed approach is effective to expand
the lumen contour to the true boundary of the carotid artery. The incomplete evolution
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Figure 8: Comparison between the carotid artery boundaries obtained by the Snake model
with the proposed weighted external energy (in red) and the ones generated by only taking
into account the forces calculated by the NNGVF (in yellow). (The corresponding manual
delineations are shown in blue; the original PDW MR images are shown in the first row.)

of the lumen contour when only the forces calculated by the NNGVF are used owes to
the large thickness and grayscale intensity variations inside the wall of the carotid artery
under analysis.

Regarding the quantitative analysis, the Dice coefficients between the carotid artery
boundaries obtained by the Snake model with the proposed weighted external energy (in
red) and the corresponding manual delineations (in blue) shown in the second row of
Figure 8 were 0.97, 0.96, 0.93 and 0.97, respectively. In contrast, the Dice coefficients
between the Snake model with the NNGVF (in yellow) and the corresponding manual
delineations (in blue) were 0.65, 0.72, 0.71 and 0.87, respectively. The distribution of the
Dice coefficients calculated from the segmented lumen and carotid artery regions and the
corresponding manual delineations are depicted according to intervals of 0.2 in Figures 9
and 10, respectively.

In terms of the lumen segmentation results, the interval of Dice coefficients between
0 and 0.20 includes the images erroneously segmented. From the 185 PDW MR images
used in the experiments, the lumen region was successfully segmented in 139 images.
As depicted in Figure 9, the images with Dice coefficients between 0 and 0.20 represent
26% (49 images) of the total segmentation results. The images with Dice coefficients
ranging from 0.21 to 0.40 (4 images) and from 0.41 to 0.60 (11 images) represent only
2% and 6%, respectively, of the total segmentation of the lumen regions. In contrast,
the resultant images with Dice coefficients ranging from 0.61 to 0.80 (42 images) and
from 0.81 to 1.00 (79 images) represent 23% and 43% of the total segmented images,
respectively, reaching in total the greatest percentage of the total number of images used
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Figure 9: Intervals of Dice coefficients calculated from the segmented lumen regions and
the corresponding manual delineations.

Figure 10: Intervals of Dice coefficients calculated from the segmented carotid artery
regions and the corresponding manual delineations.

in the experiments. Regarding the segmentation of the carotid artery boundaries, the
number of images having Dice coefficients between 0.81 and 0.90 is higher for the Snake
model with the proposed weighted external energy in comparison with the Snake model
with only the forces calculated by the NNGVF. As shown in Figure 10, 90 images with
Dice coefficients between 0.81 and 1.00 were successfully segmented. In contrast, the
number of images with Dice coefficients in the same interval decreased to 76 when the
Snake model with only the NNGVF forces was employed.

The average values found for the Dice coefficient, Polyline distance, mean contour
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distance and centroid distance of the segmented lumen contours in comparison with the
corresponding manual delineations are indicated in Table 4. Additionally, the average
values of the same quantitative measures calculated from the segmented carotid artery
boundaries and the corresponding manual delineations are indicated in Table 5.

Table 4: Average values found for the Dice coefficient, Polyline distance (PD), mean
contour distance (MCD) and centroid distance (CD) concerning the lumen segmentation.

Dice ± std PD ± std (px) MCD ± std (px) CD ± std (px)

Patient 1 0.86 ± 0.06 1.50 ± 0.57 1.39 ± 0.51 1.95 ± 1.03
Patient 2 0.71 ± 0.17 2.65 ± 1.26 2.60 ± 1.70 3.30 ± 2.51
Patient 3 0.81 ± 0.17 1.24 ± 1.28 0.77 ± 0.50 1.49 ± 1.88
Patient 4 0.48 ± 0.21 2.24 ± 0.30 1.63 ± 0.67 1.63 ± 0.05
Patient 5 0.82 ± 0.10 0.78 ± 0.27 0.69 ± 0.18 0.96 ± 0.42
Patient 6 0.75 ± 0.15 2.51 ± 2.81 2.62 ± 3.62 3.24 ± 4.92
Patient 7 0.78 ± 0.11 1.16 ± 0.29 1.11 ± 0.37 1.55 ± 0.63
Patient 8 0.83 ± 0.12 1.15 ± 0.59 1.18 ± 0.68 1.22 ± 0.74
Patient 9 0.73 ± 0.22 1.14 ± 0.67 1.03 ± 0.85 1.45 ± 0.95
Patient 10 0.69 ± 0.22 1.81 ± 2.38 1.90 ± 2.99 2.03 ± 3.32
Patient 12 0.69 ± 0.21 2.07 ± 2.60 2.09 ± 3.14 2.43 ± 3.15

Average 0.76 ± 0.17 1.49 ± 1.53 1.40 ± 1.81 1.80 ± 2.20

*px = pixels; std = standard deviation.

In terms of the lumen segmentation results, the average values of the Dice coefficient
obtained from patient 1 are greater than the ones obtained from the other patients, as
indicated in Table 4. In contrast, the averages values of the Polyline, mean contour and
centroid distances are lower for patient 5 relatively to the averages values of the other
patients. As indicated in Table 5, the results obtained using the Snake model with the
proposed weighted external energy for the segmentation of the carotid artery boundaries
are better than the majority obtained using the Snake model with the NNGVF. Regarding
the average values of the validation measures, the Dice coefficient increased from 0.80 ±
0.11 to 0.83 ± 0.11 when the proposed weighted external energy was used in the Snake
model. The averages values of the Polyline distance decreased from 3.01 ± 2.05 pixels
to 2.70 ± 1.69 pixels after the usage of the Snake model with the proposed weighted
external energy. Additionally, the average value of the centroid distance obtained for the
proposed approach is lower than the one obtained for the Snake model with the NNGVF
(3.44 ± 2.82 pixels against 4.18 ± 2.97, respectively).

The Linear regression and Bland-Altman analysis concerning the lumen area and the
average lumen diameter showed a good correlation between the segmented lumen con-
tours and the corresponding manual delineations, as can be observed in Figure 11. The
linear regression and Bland-Altman analysis for the total carotid area, average carotid
diameter and vessel wall thickness calculated concerning the segmented carotid artery
boundaries and the corresponding manual delineations are depicted in Figures 12 and 13.
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Table 5: Averages values found for the Dice coefficient, Polyline distance (PD), mean
contour distance (MCD) and centroid distance (CD) regarding the segmentation of the
carotid artery boundaries.

Method Dice ± std PD ± std (px) MCD ± std (px) CD ± std (px)

Patient 1 Proposed weighted external energy 0.80 ± 0.08 4.36 ± 1.91 4.09 ± 1.66 5.45 ± 2.84
NNGVF 0.79 ± 0.07 4.49 ± 1.84 4.07 ± 1.28 6.35 ± 2.52

Patient 2 Proposed weighted external energy 0.77 ± 0.11 3.51 ± 1.68 3.62 ± 2.13 4.92 ± 3.30
NNGVF 0.75 ± 0.11 3.56 ± 1.49 3.69 ± 1.49 4.81 ± 3.05

Patient 3 Proposed weighted external energy 0.92 ± 0.04 1.19 ± 0.55 1.20 ± 0.52 1.23 ± 1.21
NNGVF 0.80 ± 0.12 3.72 ± 3.88 2.38 ± 1.37 4.80 ± 3.55

Patient 4 Proposed weighted external energy 0.85 ± 0.06 2.07 ± 1.02 2.23 ± 1.14 2.76 ± 2.44
NNGVF 0.78 ± 0.02 2.72 ± 0.56 2.77 ± 1.00 4.27 ± 1.08

Patient 5 Proposed weighted external energy 0.76 ± 0.14 3.06 ± 1.85 3.17 ± 1.94 4.08 ± 3.45
NNGVF 0.81 ± 0.12 2.29 ± 1.40 2.36 ± 1.32 3.56 ± 3.20

Patient 6 Proposed weighted external energy 0.77 ± 0.12 3.99 ± 2.37 4.41 ± 3.07 5.86 ± 4.32
NNGVF 0.81 ± 0.12 2.93 ± 2.13 3.24 ± 2.76 5.08 ± 4.20

Patient 7 Proposed weighted external energy 0.88 ± 0.05 2.09 ± 0.90 2.20 ± 1.01 2.88 ± 1.73
NNGVF 0.82 ± 0.10 2.88 ± 1.66 2.83 ± 1.45 3.97 ± 2.62

Patient 8 Proposed weighted external energy 0.87 ± 0.06 2.05 ± 0.83 2.20 ± 0.95 2.25 ± 1.23
NNGVF 0.88 ± 0.05 1.69 ± 0.63 1.88 ± 0.78 2.26 ± 1.28

Patient 9 Proposed weighted external energy 0.83 ± 0.09 2.82 ± 1.34 2.93 ± 1.57 3.40 ± 2.44
NNGVF 0.72 ± 0.13 4.04 ± 1.71 3.70 ± 1.49 5.07 ± 2.56

Patient 10 Proposed weighted external energy 0.82 ± 0.10 2.43 ± 1.64 2.50 ± 1.85 2.97 ± 2.03
NNGVF 0.80 ± 0.11 2.44 ± 1.38 2.61 ± 1.65 3.54 ± 2.87

Patient 12 Proposed weighted external energy 0.77 ± 0.19 3.19 ± 2.17 3.18 ± 2.36 4.26 ± 4.04
NNGVF 0.77 ± 0.18 3.10 ± 2.02 3.16 ± 2.21 4.46 ± 3.77

Average ± Std Proposed weighted external energy 0.83 ± 0.11 2.70 ± 1.69 2.79 ± 1.89 3.44 ± 2.82
NNGVF 0.80 ± 0.11 3.01 ± 2.05 2.87 ± 1.67 4.18 ± 2.97

*NNGVF = Neighbourhood-Extending and Noise-Smoothing Gradient Vector Flow; std = standard deviation; px = pixels.

As shown in Figure 11a, the Spearman correlation between the segmented lumen con-
tours and the corresponding manual delineations was high and similar for both measures,
reaching a value of 0.8811 and 0.8764 for the lumen area and average lumen diameter,
respectively. For the segmentation of the carotid artery boundaries, the Spearman corre-
lation between the total carotid areas obtained from the Snake model with the proposed
weighted external energy and the corresponding areas generated from the manual delin-
eations was 0.7956, which is higher in comparison with the correlation coefficient of the
segmentation results obtained by the Snake model with the NNGVF (0.7338). Regarding
the average carotid diameter, the Spearman correlation between the segmentations ob-
tained by the proposed approach and the corresponding manual delineations was 0.7974,
which is also better than the one obtained from the comparison between the Snake model
with the NNGVF and the manual delineations (0.7333). Additionally, the Spearman
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(a) (b)

Lumen area

Average lumen diameter

Figure 11: Linear regression (a) and Bland-Altman analysis (b) concerning the lumen
area and average lumen diameter calculated from the segmented lumen contours and the
corresponding manual delineations.

correlation between the proposed approach and the corresponding manual delineations
showed also better results in comparison with the Snake model with the NNGVF regard-
ing the vessel wall thickness (0.6308 and 0.6041, respectively). The differences between
the segmented lumen contours and the corresponding manual delineations are shown in
the Bland-Altman plots of Figure 11b. The Bland-Altman analysis of the carotid artery
boundaries segmented by the Snake model with the proposed weighted external energy
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(a) (b)

Total carotid area

Average carotid diameter

Vessel wall thickness

Figure 12: Linear regression (a) and Bland-Altman analysis (b) concerning the total
carotid area, average carotid diameter and vessel wall thickness calculated from the
carotid artery contours segmented by the Snake model with the proposed weighted ex-
ternal energy and the corresponding manual delineations.
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(a) (b)

Total carotid area

Average carotid diameter

Vessel wall thickness

Figure 13: Linear regression (a) and Bland-Altman analysis (b) concerning the total
carotid area, average carotid diameter and vessel wall thickness calculated from the
carotid artery contours segmented by the Snake model with the NNGVF and the cor-
responding manual delineations.
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and NNGVF are depicted in Figures 12b and 13b, respectively. Regarding the lumen
area, the average difference between the segmented lumen contours and the corresponding
manual delineations was 13.50 pixels. For the average lumen diameter, the average dif-
ference between the segmented and manually delineated lumen contours was 0.21 pixels.
For the total carotid area and average carotid diameter, the average differences between
the proposed approach and manual delineations were 90 and 1.8 pixels, respectively. The
average difference between the vessel wall thickness calculated from the carotid artery
boundaries segmented by the proposed approach and the ones calculated from corre-
sponding manual delineations was 1.2 pixels. The high average difference of the total
carotid area was due to the similar intensities in regions close to the boundaries of the
carotid arteries, which makes the distinction between the carotid boundaries and the im-
age background more difficult. Examples of carotid artery boundaries segmented by the
proposed approach in images with background regions having intensities similar to the
ones of the carotid artery boundaries are illustrated in Figure 14.

(a) (b) (c)

Figure 14: Examples of carotid artery boundaries segmented by the proposed approach
in PDW MR images with indistinguishable boundaries: The first row shows the original
PDW MR images and the second row presents the segmented carotid artery boundaries (in
red) along with the corresponding manual delineations (in yellow). (The differences found
between the areas of the segmented and manually delineated carotid artery boundaries
shown in images (a-c) were 399 pixels, 297 pixels and 582 pixels, respectively.)

As depicted in Figure 14, the carotid artery boundaries segmented by the Snake model
with the proposed weighted external energy overestimated the corresponding manual de-
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lineations due to the similar grayscale intensities surrounding the true boundaries of in-
terest, leading to the increase of the difference between the areas of the automatically
segmented and manually delineated carotid artery boundaries.

4 Discussion

The development of automatic segmentation methods dedicated to medical images plays
an important role in providing experts with auxiliary diagnosis tools for identifying var-
ious types of diseases. For example, the segmentation of the lumen and carotid artery
boundaries in MR images represents an important step to quickly identify and quantify
possible atherosclerosis in arteries. The segmentation of the carotid artery boundaries in
PDW MR images was successfully tackled in this study. The use of the images obtained
by the gray-weighted distance to expand the lumen contour beyond the boundary of the
lumen region in the input image represents an important contribution to correctly identify
the boundary of the carotid artery. Additionally, the usage of the proposed weighted ex-
ternal energy in the Snake model proved to be effective in expanding the lumen contours
towards the boundaries of carotid arteries even in cases of large thickness. The modifica-
tion in the external energy proposed by Khadidos et al. [35] makes the convergence of the
lumen contours more robust, stable and appropriate for carotid arteries with weak edges.

4.1 Initialization of the parameters

The convergence of the lumen contour to the boundary of the carotid artery under analysis
depends on the value of parameter α defined for the elasticity term of the Snake model.
When the value of α decreases, the contour elasticity is increased, leading to an easier
evolution towards the boundary of interest. In contrast, the contour becomes more rigid
as the value of α increases, leading the contour to deflate even in regions with large cap-
ture range provided by the gradient vectors. Hence, it was decided to use a low value
for parameter α in order to avoid the swift convergence and shrinking of the lumen con-
tour. Parameter β defined for the curvature term in Equation 3 is employed to control
the smoothness and bend of the contour. The higher is the value of β , the more smooth
the contour is. In the second step of the proposed approach, the value of β was set to
1 (one) in order to smooth the final contour of the carotid artery boundary. Parameter µ

represents a regularization term that controls the tradeoff between the Laplacian operator
and the gradient of the image’s edge map defined for the NNGVF. The value of the µ

depends on the amount of noise in the image under analysis. The higher is the value of
µ , more diffuse are the gradient vectors. In this study, the low value of µ determined by
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the parameter tuning procedure plays an important role to avoid the excessive diffusion
of the gradient vectors and the evolution of the lumen contour beyond the boundary of
the carotid artery under analysis. Parameter κ is responsible for the strength of the bal-
loon forces and therefore, used to inflate or deflate the contour to be deformed. When
the value of κ increases, the amplitude of the unit vectors defined by the balloon force
also increases, leading the contour to pass through weak edges. Since the lumen con-
tour needs to be inflated from the lumen region to the boundary of the carotid artery, the
value of κ was set 1 (one) to avoid the excessive amplitude of the balloon forces. Pa-
rameter σ is used in the Gaussian filter and has an important role to control the amount
of smoothness of the image and the capture range of the gradient vectors. A large value
for σ will cause the boundaries to become more smooth and distorted and therefore, the
capture range of the gradient vectors will be also increased. In order to avoid excessive
distortion of the boundaries of the input image, the value of σ was set to 1 (one). The
number of iterations defined for the first step of the carotid artery boundary segmentation
was lower than the one of the second step due to the high computational cost imposed by
the ellipse constraint. However, the value chosen in this study was sufficient to expand
successfully the lumen contour beyond the boundary of the lumen region. The radius of
the disk-shaped template used to calculate the values of AD and h defined in Equations 9
and 10 plays an important role in the correct determination of the carotid artery boundary.
Since the entropy of the pixels ahead the lumen contour to be expanded is responsible for
the convergence to the carotid artery boundary of interest, a large number of pixels could
increase the entropy and lead to a fast and incomplete evolution of the lumen contour. In
contrast, a low number of pixels may still decrease the entropy defined in Equation 11
and, consequently, lead the lumen contour to leak the true boundary of the carotid artery.
Hence, the parameter tuning procedure was important to determine the best radius for
the dataset used in the experiments. The same values for α , β , µ and σ defined for the
proposed weighted external energy were also used in the NNGVF formulation.

Although the parameters’ values established for the proposed approach were able to
efficiently identify the boundaries of the carotid arteries in the images used in this study,
the convergence of the lumen contour is mostly dependent on the parameters of the in-
ternal energy of the Snake model, the amplitude of the balloon forces and the number of
iterations used to perform the convergence of the contour until it fits the desirable bound-
ary. Changing the image resolution may still affect the segmentation results, leading the
lumen contour to an incomplete and slow convergence in images with higher resolutions.
However, the proposed approach might be easily adapted to initialize and adjust the afore-
mentioned parameters for other MR image datasets.



164

4.2 Performance of the proposed approach

The distance map proposed in this study proved to be effective in expanding the lumen
contour beyond the boundary of the lumen region and therefore, to avoid the gradient
vectors that can hinder the contour to converge to the boundary of the carotid artery under
analysis. Along with the ellipse constraint, the contour resultant from the Snake model
applied to the image representing the distance map becomes more regular and without
concavities that may be caused by low intensities regions close to the lumen of the carotid
artery.

The modification in the weighted external energy proposed by Khadidos et al. [35]
is shown to be successful in converging the lumen contours to the boundaries of carotid
arteries with large thickness. The evolution of the lumen contour may still fail due to the
diffusion of the gradient vectors in regions with large intensity variations. Balloon forces
have been proposed to improve the convergence of the contour based on the strength of
the unit vectors in each pixel of the contour to be expanded, leading to a rapid conver-
gence even in regions with large areas. However, the balloon forces still fail in fitting the
contour in regions having weak edges, which causes the contour to leak the boundary of
interest. Hence, the combination of balloon forces and the GVF based external energy
represents an important approach to handle at the same time with the quick evolution
of the contour in regions with larges areas and the decrease of the contour evolution in
weak edges of the structures under analysis. The use of the entropy instead of the average
intensities in Equation 8 improves the convergence of the lumen contour in weak edges
of the carotid artery boundary of interest due to the sensitivity of the entropy in regions
with high variations of the grayscale intensities. Additionally, the penalty term defined in
Equation 12 proved to be effective in decreasing the contour evolution when dark regions
corresponding to the background of the image are found.

Regarding the total carotid area, the Bland-Altman analysis depicted in Figures 12b
and 13b showed a significant difference between the segmented carotid artery boundaries
and the corresponding manual delineations. The bias corresponding to the difference
between the total carotid areas calculated from the results obtained by the proposed ap-
proach and the ones of the corresponding manual delineations was 89.59 pixels, with a
standard deviation of 289.26 pixels. For the average carotid diameter, the bias between
the carotid artery boundaries segmented by the proposed approach and the corresponding
manual delineations was 1.79 pixels, with standard deviation of 5.04 pixels. The bias be-
tween the vessel wall thickness calculated from carotid artery boundaries obtained by the
proposed approach and the ones of the corresponding manual delineations was 1.17 pixels
with standard deviation of 2.32 pixels. In some cases, the manual delineations can under-
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estimate the corresponding carotid artery contours obtained by the Snake model with the
proposed weighted external energy. Since the proposed weighted external energy relies
on the similarity of the grayscale intensities of the input image, the segmentation error
is due to regions with intensities similar to the ones close to the boundary of the carotid
artery to be segmented. The gradient vectors of the carotid artery boundary are weaker
than the ones of the lumen region, making the segmentation more difficult and susceptible
to errors due to the leakage of the contour beyond the true boundary of the carotid artery
under analysis.

A comparison with recent studies found in the literature was carried out in order to
validate the accuracy of the approach proposed here. Although a direct comparison is
hardly possible since the validation measures and the image dataset used in this study
are different from the ones used in studies found in the literature, the results obtained
from our approach proposed to segment the carotid artery boundaries in PDW MR im-
ages are comparable to the ones reported in the related studies found. The average value
of the Degree of Similarity (DoS) between the automatic and manual segmentations of
the carotid artery boundaries reported by van ’t Klooster et al. [15] was 75.3%. The aver-
age value of the DoS between the automatic and manual segmentations of the boundaries
of the Common Carotid Artery (CCA) reported by Gao et al. [18] was 82.7%. The Jac-
card similarity between the automatic and manual segmentations of the boundaries of
carotid arteries reported by Saba et al. [17] was 0.71 ± 0.08. The average value of the
Dice coefficient between the carotid artery boundaries obtained by our approach and the
corresponding contours manually delineated was 0.83 ± 0.11 (82.61% ± 10.84%). The
Jaccard similarity obtained from the comparison between the carotid arteries segmented
by the proposed approach and the corresponding manual delineations was 0.72 ± 0.15.
The main limitation of the study carried out by van ’t Klooster et al. [15] is that the signal
profile vector with a specific length is necessary to find the edges of the lumen and carotid
artery boundaries. Additionally, the gradient information is insufficient to handle with
weak edges commonly found in MR images of carotid arteries. Although the approach
proposed by Saba et al. [17] is similar to the one proposed in this article, its main lim-
itation is the expansion of the lumen contour beyond the boundary of the lumen region
by using a heuristic value. Similarly, the method proposed by Gao et al. [18] also relies
on the expansion of the lumen contour based on a heuristic value, although the method is
fully automatic. In contrast, our proposed approach to segment the boundaries of carotid
arteries in PDW MR images is fully automatic and the expansion of the lumen contours
is completely performed by using the distance map without any use of heuristic values.
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4.3 Limitations

The proposed approach has two limitations. The first one regards the segmentation of
carotid arteries with calcifications. Calcifications appears as dark regions in PDW MR
images and therefore, the convergence of the lumen contours towards the boundaries of
carotid arteries may be compromised due to the strength of the gradient vectors that avoid
the expansion of the contour when calcified regions are found. Hence, future studies will
be conducted to effectively identify local regions inside the carotid artery that represent
possible calcifications. The second limitation regards the segmentation of the lumen and
carotid artery boundaries in regions representing bifurcations. Although bifurcation re-
gions have been identified and delineated by the physician in the PDW MR images, the
carotid artery boundary manually delineated in the input image having the higher Dice
coefficient with the segmented carotid artery boundary was chosen to evaluate the accu-
racy of the result. Hence, the segmentation of the lumen and carotid artery boundaries in
bifurcation regions is expected to be considered in future researches.

5 Conclusions

The segmentation of the lumen and carotid artery boundaries plays an important role in
assessing the progression of atherosclerosis. An automatic approach for the segmentation
of carotid artery boundaries in PDW MR images was presented in this article. The main
contribution of this study is an efficient and robust approach based on the gray-weighted
distance map to expand the lumen contour towards the boundary of the carotid artery
without the use of any heuristic values. Additionally, the lumen contour expanded by
the Snake model with the ellipse constraint applied to the distance map image is used to
identify the final boundary of the carotid artery based on the Snake model along with the
modified weighted external energy. The proposed approach proved to be also robust in
identifying the boundaries of carotid arteries that have large thickness and weak edges.

The comparison between the carotid artery boundaries segmented by the proposed ap-
proach and the corresponding manual delineations showed that the usage of the proposed
weighted external energy in the Snake model is more effective than if only the NNGVF
is used. Additionally, the proposed approach outperformed the results reported in related
studies found in the literature.

Futures studies will be conducted to efficiently segment the lumen and carotid artery
boundaries in PDW MR images having bifurcations regions. The segmentation of the
carotid artery boundaries using other MR image datasets is also expected in order to
assess the parameter tuning procedure and the segmentation results in images obtained
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with higher resolutions and different acquisition settings. Moreover, the segmentation of
the boundaries of carotid arteries having calcified regions is also expected to be addressed
in order to avoid the local convergence and incomplete evolution of the segmented lumen
contours.
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Abstract

The identification of atherosclerotic plaque components, extraction and analysis of their
morphology represent an important role towards the prediction of cardiovascular events.
In this article, the classification of regions representing calcified components in Com-
puted Tomography Angiography (CTA) images of the carotid artery is tackled. The
proposed classification model has two main steps: the classification per pixel and the
classification per region. Features extracted from each pixel inside the carotid artery are
submitted to four classifiers in order to determine the correct class, i.e. calcification or
non-calcification. Then, geometrical and intensity features extracted from each candi-
date region resulting from the pixel classification step are submitted to the classification
per region in order to determine the correct regions of calcified components. In order to
evaluate the classification accuracy, the results of the proposed classification model were
compared against ground truths of calcifications obtained from micro Computed Tomog-
raphy images of excised atherosclerotic plaques that were registered with in vivo CTA
images. The average values of the Spearman correlation coefficient obtained by the Lin-
ear Discriminant Classifier were higher than 0.80 for the relative volume of the calcified
components. Moreover, the average values of the absolute error between the relative vol-
umes of the classified calcium regions and the ones calculated from the corresponding
ground truths were lower than 3%. The new classification model seems to be adequate as
an auxiliary diagnostic tool for identifying calcifications and allowing their morphology
assessment.
Keywords: Medical Imaging, Pattern Recognition, Classification, Atherosclerosis, Com-
puted Tomography Angiography

1 Introduction

Cardiovascular diseases represent one of the main causes of the increasing number of
deaths around the world. Therefore, the early diagnosis of pathological conditions is
important to minimize clinical cases such as heart attacks, transient ischemic attacks and
even the occurrence of strokes. In a broader research study, Mendis et al. [1] revealed
alarming numbers regarding cardiovascular disease prevention and control: according to
World Health Organization, cardiovascular diseases represented 31% of deaths of people
in the world in 2011; and in 2008, cardiovascular diseases were responsible for the death
of more than 17 millions of people with less than 60-year-old [1].
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Atherosclerosis is an underlying disease responsible for the occurrence of heart at-
tacks and strokes. Atherosclerotic plaques are formed when fatty material and cholesterol
are deposited inside the wall of the artery. In an advanced stage, an atherosclerosis is com-
posed by lipid core, fibrous tissue, intraplaque hemorrhage and calcifications. Atheroscle-
rosis reduces the blood flow through the artery, leading to serious complications such as
heart attacks and strokes. Hence, in order to prevent such risks, a treatment or rehabilita-
tion plan should be designed based on imaging exams.

Technological advances in computational systems for imaging-based diagnosis allow
the detection and assessment of atherosclerotic lesions. Computed Tomography (CT),
Magnetic Resonance (MR) and ultrasound are examples of less invasive imaging modal-
ities that have been widely used in evaluating the presence and assess the morphology
of atherosclerotic plaques [2–4]. Although x-ray angiography allows the assessment of
the lumen diameter, this imaging modality does not provide enough quality to identify
the components of atherosclerotic plaques [5]. The correct diagnosis of atherosclerotic
plaque components is performed based on images of the carotid artery acquired from ul-
trasound, CT and MR examinations in a noninvasive way, which allows the visualization
of such plaques and the identification of the associated components.

Previous studies [6–11] have confirmed the importance of the atherosclerotic plaque
components in evaluating the risks of cerebrovascular diseases. The assessment of the
atherosclerotic plaque composition is important to identify risks related to plaque rup-
ture and embolization, as well as risks to transient ischemic attacks, amaurosis fugax and
strokes. Although visual analysis has been proposed for quantifying the atherosclerotic
plaque composition in images, the intra and intervariability between experts might impair
the correct diagnosis. Therefore, the development of computational algorithms plays an
important role to expedite the assessment of atherosclerotic plaques and avoid the inter-
variability between experts.

Computational algorithms have been proposed to segment atherosclerotic plaques and
associated components in images [12], which allows the assessment of the plaques in
order to predict the risk to cardiovascular and cerebrovascular diseases more quickly.
Techniques of image processing, clustering and supervised classification are examples of
computational approaches suggested in several studies for identifying the main compo-
nents of atherosclerotic plaques in a semiautomatic or automatic way [12].

According to several studies, the presence of calcifications represents an advanced
stage of the atherosclerosis [13] [14]. Therefore, this article proposes the classification of
calcified components in CTA images of the carotid artery. Briefly, the proposed classi-
fication model has two main steps: the classification per pixel and the classification per
region. In the first step, intensity and distance features extracted from each pixel inside the
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carotid artery are submitted to four classifiers in order to obtain the candidate regions rep-
resenting calcified components. Thereafter, geometrical and intensity features extracted
from each candidate region are submitted to the classification per region step in order to
determine the regions corresponding to true calcifications.

One of the main contributions of this study is the ability of the proposed model to over-
come possible classification errors induced by misalignments of the registration between
micro CT images of excised atherosclerotic plaques and related in vivo CTA images.
Briefly, the used ground truths of the calcified components were obtained from micro CT
images. Parts of the lumen and other regions with intensity similar to calcifications in
CTA images may affect the classification results, leading to erroneously determination
of the calcium regions; however, the proposed classification model seems to be robust to
these errors. In addition, since the presence of outliers and the distances of each pixel to
the contours of the lumen and carotid artery under analysis can influence the final classi-
fication results, a study on these factors was also performed.

The remainder of this article is organized as follow: Section 2 introduces previous
studies related to the classification of atherosclerotic plaque components in images ac-
quired by well-know imaging modalities. Section 3 presents a description of the pro-
posed classification model. Section 4 presents the classification results obtained by the
proposed classification model and the comparison between these results and the corre-
sponding ground truths. The advantages and limitations of the proposed model are dis-
cussed in Section 5. Finally, the conclusions are drawn in Section 6.

2 Previous studies

Several studies have been proposed to identify atherosclerotic plaque components in MR
and CTA images of carotid and coronary arteries. Vukadinovic et al. [15] proposed the
segmentation of calcium regions in atherosclerotic plaques of the carotid artery in CTA
images based on the following steps: a level set approach is used to segment the lumen of
the carotid artery in the CTA image under analysis; then, features of the candidate calcium
regions are extracted and used to classify them as belonging to calcium or non-calcium
components; afterwards, features are extracted to classify the pixels as inside or outside
the carotid wall; and then, an ellipse fitting procedure is used to detect the carotid wall
boundary. In this work, the lumen and calcium regions are combined to delineate the
contour of the carotid wall since the calcium appears in the inner region of the carotid
artery.



178

van Engelen et al. [16] proposed the classification of atherosclerotic plaque compo-
nents in CTA and MR images of the carotid artery. The main objective of this study was
to handle the misalignments between in vivo and histological images of atherosclerosis
by measuring the probability and dice overlap of each voxel relatively to the correspond-
ing ground truth. The combination of features extracted from each voxel of the CTA and
MR images was also addressed. After the registration of the in vivo with histological
and micro CT images, each component of the ground truth was binarized and blurred
with a Gaussian filter in order to create soft labels that indicate the probability of each
voxel to belonging to an atherosclerotic plaque component. Additionally, the rejection of
outliers was also performed to address the misalignments of the plaque components man-
ually delineated in histological images with the corresponding CTA and MR images. For
the classification of the plaque components into calcification, fibrous tissue and lipid-rich
necrotic core, 23 features were extracted from each voxel and submitted to a Linear Dis-
criminant Classifier, which provided better results than a Support Vector Machine (SVM)
with a Radial Basis Function (RBF) kernel.

Wintermark et al. [17] proposed the identification of atherosclerotic plaque compo-
nents in CTA images of the carotid artery based on the analysis of the Hounsfield Unit
(HU) values. The HU values obtained from a 2x2 mm square template centred at each
pixel of the CTA image under analysis are used in a linear mixed model to obtain the
appropriate mean HU values for each atherosclerotic plaque component. In terms of the
classification results, the calcium regions classified based on the intensity obtained from
the CTA images were in perfect accordance with the corresponding ground truths manu-
ally delineated in histological images.

de Graaf et al. [18] proposed an automatic method to identify the atherosclerotic
plaque components in CTA images of the coronary artery. The extraction of each com-
ponent was performed by using two approaches: fixed threshold and dynamic threshold.
The first approach is based on fixed HU values for extracting each plaque component,
whereas the second one defines the cut-off values based on the luminal intensity. The
dynamic threshold is based on the fact that the lower the luminal intensity is, the lower
will be the HU value of the atherosclerotic plaque. Thus, the HU values of each plaque
component are defined based on the luminal attenuation.

The main limitation of the above-mentioned studies regards the usage of fixed HU
values for identifying the atherosclerotic plaque components, as in Vukadinovic et al.
[15], Wintermark et al. [17] and de Graaf et al. [18]. Additionally, the identification of
calcified regions in atherosclerotic lesions can be more effective when features extracted
from CTA images are used in the classification process. Hence, instead of using images
acquired by different imaging modalities as is suggested in van Engelen et al. [16], the
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proposed approach uses only CTA images.

3 Materials and Methods

3.1 CTA images used

The images of the carotid artery selected for this study were used in research by van Enge-
len et al. [16] and kindly provided by the authors on request. The proposed classification
method was performed on images that are regions of interest surrounding the carotid arter-
ies. A registration procedure was previously performed to align the original MR images
with the corresponding histological images, which only contained the region of the arter-
ies under study [16]. Once the alignment was completed, the MR images were cropped to
obtain only the part that matched the histological images [16]. The original dataset was
composed of five MRI scans acquired from thirteen patients: T1-weighted (T1W), Proton
Density Weighted (PDW), Time-of-Flight (TOF) and two 3D-T1W scans. The first three
MRI scans were acquired without administration of intravenous contrast media, whereas
the 3D-T1W scans were acquired with and without contrast media. The post-contrast 3D-
T1W scan was performed 4.6±3.4 minutes after the administration of the contrast media.
Each MR imaging scan is composed of approximately 17.7±4.8 slices per patient; each
slice has a pixel size of 0.25 mm x 0.25 mm. CTA images were also acquired to provide
details for the registration of these images with the histological images and to facilitate
the manual segmentations of the lumen, vessel wall and plaque components. The manual
delineations of the lumen and carotid wall in the CTA and MR images were also provided.
More details about the MR and CTA imaging datasets are available in van Engelen et al.
[16].

From the original image dataset, we used all CTA images with their corresponding
ground truth of the atherosclerotic plaque components and manual delineations of the
contours of the lumen and carotid wall made by one expert. In total, 230 CTA images
are available with the dataset provided. The ground truths of the atherosclerotic plaque
components are available in 177 CTA images and the manual delineations of the lumen
and carotid wall are available in 184 CTA images. The manual delineations of the fibrous
tissue and lipid-rich necrotic core were made on the histological images, whereas the
ground truths of the calcified components were obtained by using a fixed threshold value
on the micro CT images acquired from the excised plaques [16].
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3.2 Proposed method

The proposed classification model has two main steps, as depicted in Figure 1.

Figure 1: Diagram of the proposed classification model.

The classification per pixel represents the first step of the proposed model and it con-
sists in classifying each pixel inside the carotid wall provided by the ground truth as
belonging or not to calcifications. Features extracted from the following CTA images are
used in this step: the original image, the original image after been smoothed by a Gaus-
sian filter, the original image after been smoothed by a mean filter and the same input
image after the application of a Sigmoid filter. The second step consists in classifying the
regions resultant from the previous step in order to determine the ones that represent true
calcifications of the atherosclerotic lesions. Hence, geometrical and intensity features of
the regions obtained by the first step are extracted and submitted to the second step which
performs the classification per region.

3.2.1 Feature extraction

Feature extraction plays an important role in the accuracy of the classification result.
Calcifications are characterized as regions having the highest intensity in CTA images.
However, features extracted from the lumen region represent a challenge for classifying
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the calcified components due to the similarity of their intensity values. Moreover, small
regions corresponding to image noise could also be classified as calcifications. Hence, the
model proposed in this study takes into account the intensities of the calcium and lumen
regions, as well as geometrical features extracted from the candidate regions previously
classified in the pixel classification step.

The following filters are applied to highlight the calcium regions relatively to other
structures present in the original CTA images: a Gaussian filter with a standard deviation
σ ; a mean filter with a NxN neighbourhood; and a Sigmoid filter that is applied to high-
light a range of intensities and attenuate the intensities outside this range. The Gaussian
and mean filters are used to smooth the original CTA images in order to remove noise arte-
facts, whereas the Sigmoid filter is employed to improve the contrast of regions having
high intensities. The Sigmoid filter is based on a pixel-wise function defined as:

f (x) = min+
max−min

1+ e
β−x

α

, (1)

where min and max are the minimum and maximum intensities of the resultant image
f (x), respectively, and α and β are enhancing parameters defined according to the in-
tensities of the structure to be enhanced. Examples of CTA images obtained after the
application of the above-mentioned imaging filters are illustrated in Figure 2.

The brightest regions corresponding to the possible calcifications are enhanced by the
application of the Sigmoid filter, as one can realize in Figure 2d. For the pixel classifica-
tion step, the intensity features obtained from each pixel of the original and filtered CTA
images are used as inputs for the classifiers. Table 1 indicates the features used in the two
steps of the proposed classification model.

Two additional features are used in the pixel classification step: the distances of the
pixel under analysis to the boundaries of the lumen and wall of the carotid artery. In
addition, the average intensities of the lumen and carotid wall regions in the original CTA
image were also used.

3.2.2 Outliers removal

Detection of outliers represents an important task in data analysis and one of the most
important pre-processing steps for improving the robustness, performance and accuracy
of a classification model. An outlier is characterized as an observation that is far from the
remainder ones in a dataset. The presence of outliers often decreases the performance and
accuracy of the used classifier due to the increase of the observations variance. Hence,
the removal of outliers plays an important role to reduce the observations variance and
improve the accuracy of the associated classification model.
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(a) (b) (c) (d)

Figure 2: Examples of images resulting from the Gaussian, mean, and Sigmoid filters:
a) Original CTA images; b) Images resulting from the original images after applying a
Gaussian filter with σ = 2, c) a mean filter with N = 3, and d) a Sigmoid filter with
α = 50 and β = 256.

Table 1: Features used in the proposed classification model.

Id. Classification per pixel Id. Classification per region

F1 Intensity of the original image F21 Percentage of the area relatively to the carotid wall
F2 Intensity of the image (Gaussian filter) F22 Area of the region
F3 Intensity of the image (Mean filter) F23 Average intensity of the lumen †
F4 Intensity of the image (Sigmoid filter) F24 Average intensity of the carotid wall †
F5 Average intensity (Original image)* F25 Distance of the centroid of the region to the lumen
F6 Average intensity (Gaussian filter)* F26 Distance of the centroid of the region to the carotid wall
F7 Average intensity (Mean filter)*
F8 Average intensity (Sigmoid filter)*
F9 Minimum intensity (Original image)*
F10 Minimum intensity (Gaussian filter)*
F11 Minimum intensity (Mean filter)*
F12 Minimum intensity (Sigmoid filter)*
F13 Maximum intensity (Original image)*
F14 Maximum intensity (Gaussian filter)*
F15 Maximum intensity (Mean filter)*
F16 Maximum intensity (Sigmoid filter)*
F17 Average intensity of the lumen †
F18 Average intensity of the carotid wall †
F19 Distance of the pixel to the lumen contour
F20 Distance of the pixel to the carotid wall contour

*Features extracted from a 3x3 neighbourhood centred at each pixel of the original and filtered CTA images.
†Features extracted from the original CTA image.

Regarding the classification of calcified regions, the outliers are often related to pixels
corresponding to misalignments of the histological images with the MR and CTA images
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resultant from the registration step [16]. Therefore, the identification and removal of these
pixels from the training and testing sets were tackled.

The boxplot analysis is an important statistical tool used to evaluate the distribution
and variability of the observations under study. Additionally, abnormal observations can
also be identified by means of boxplots. An approach based on boxplots is proposed
in this study to detect and remove outliers before the training phase of the classification
process. Firstly, the examples of the training set are separated into calcifications and non-
calcifications. Then, boxplots of each intensity feature extracted from the pixels of the
input CTA image that are inside the carotid wall are generated and combined in order to
provide the distribution of the training examples for all features used. An illustration of
the combined boxplots built is presented in Figure 3.

(a) (b)

Figure 3: Example of outliers detected by using boxplots built from all features and pixels
of the images used in the classification model: a) Boxplot of the calcified examples with
the outliers represented in red; b) Boxplot of the non-calcified examples with the outliers
represented in red. (The identification of each feature is indicated in Table 1 in column
“Classification per pixel”.)

From the boxplots in Figure 3, it is possible to notice that the outliers of the features
F4, F8, F12 and F16 (see Table 1) in the non-calcified components represented by the
highest intensity values might belong to calcified regions (Figure 3b). Likewise, the out-
liers in the calcified components represented by the lowest intensity values and the ones
of the feature F12 represented by the highest intensity values (Figure 3a) may belong to
non-calcified regions. The outliers belonging to each class, i.e. calcification and non-
calcification subsets, are evaluated in order to find the ones that are present in all features.
Then, these outliers are removed from the corresponding subset. The boxplot analysis
continues until all outliers have been removed. A new training set without the outliers
found is generated and submitted to the classification model.
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3.2.3 Training and testing of the classifiers

After selecting the features and removing the outliers, a set of classifiers is used for the
classification model. Decision tree, Support Vector Machine (SVM), Naive Bayes and
Linear Discriminant Classifier (LDC) were selected to perform the classification of the
pixels and, subsequently, the candidate regions representing possible calcified regions in
atherosclerotic lesions.

Decision Trees are one of the most simple and effective models used in inductive in-
ference. A decision tree is trained according to a training set and then, other examples are
classified according to the same tree model. The graphical representation of the decision
tree is composed of lines that are used to identify the decision to be made (for example,
"yes" or "no") and nodes to identify the issues to be decided. Each branch formed by lines
and nodes ends in a leaf node that identifies the most likely consequence of the sequence
of decisions made. The choice of Decision Tree is due to the simple implementation,
performance and effectiveness in classifying problems involving sequential decisions.

Support Vector Machines have been adopted for the classification of patterns into
two classes separated by a decision hyperplane. The decision hyperplane is a surface
that separates the input data into two classes. The goal of a SVM is to find an optimal
decision hyperplane, which keeps a maximal gap between the examples under analysis.
Building an optimal hyperplane as a decision surface is a fundamental step for increasing
the separation between the examples to be classified. However, problems that are not
linearly separable are common in many classification problems. Hence, the mapping of
the nonlinear training set into a linearly separable space is necessary to determine an
optimal decision hyperplane. The linearly separable space is called feature space, which
is generated by a kernel function that maps the input examples of the nonlinear space onto
a space in which the examples are linearly separable. Linear, polynomial, Radial Basis
Function (RBF) and Hyperbolic tangent are examples of kernel functions used in several
classification problems tackled by SVMs. SVMs are appropriate for binary classification
problems. In this study, a SVM was used with RBF, linear and polynomial based kernels.

The Naive Bayes classifier is one of the most simple and effective probabilistic models
used in many types of classification problems. Given an example x in the training phase,
the Naive Bayes classifier calculates a distribution Pr(x|c) for each class c = {−1,1},
which represents the probability of the example x to belong to class c. In the testing phase,
the distribution with the highest probability generated from each example is calculated.
The conditional probability used in the Naive Bayes classifier is defined as:

P(ci|x) =
p(ci)p(x|ci)

p(x)
, (2)
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where P(ci|x) is the posterior probability, i.e. the probability of the example x belonging to
class ci, p(ci) is the probability of occurring class ci, p(x|ci) is the probability of occurring
the example x given class ci and p(x) is the probability of occurring the example x. Class
ci with the maximum posterior probability is assigned to the input example x. The Naive
Bayes classifier can also be extended to examples having more than one feature; in such
cases, example x is represented by a vector of features. Prior probabilities p(x|ci) of
the features are calculated and combined to obtain posterior probability P(ci|x) of the
example x.

The LDC is a simple technique used for detecting the group or class having the average
value closer to the one of the test examples. The average of each group is obtained from
the features of all examples belonging to that group [19]. The LDC is defined as:

δk(x) = xT
∑
−1

µk−
1
2

µ
T
k ∑

−1
µk + log(πk), (3)

where δk(x) is the posterior probability, i.e. the probability of the example x belonging to
class k, k is the class, x is the vector of features, ∑ is the covariance matrix and µk is the
mean of class k. Likewise the Naive Bayes classifier, the example represented by feature
vector x is assigned to class k that have the maximum posterior probability δk(x).

The proposed classification approach has two main steps: the first step concerns the
classification of each pixel of the original and filtered CTA images inside the mask of the
ground truth, whereas in the second step the classification of the candidate regions result-
ing from the first step is performed to identify the ones that correspond to true calcified
regions. Hence, two models were developed for each step of the classifier under analysis.

Leave-one-out and k-fold cross-validation were performed in the CTA images of the
thirteen patients under study. The leave-one-out cross-validation was applied in repeat-
edly steps, with the images of 12 patients used in the training step and the images of the
remaining 13th patient used for testing the classifiers. The k-fold cross-validation method
consists in dividing the data set into mutually exclusive subsets of the same size. A sub-
set is used for testing the classifier and the k− 1 subsets are employed for building the
model of the classifier. This process is performed k times by alternating the subset of
observations used for testing the classifier.

In order to evaluate the influence of the distance features and of the outliers removal
process, the approaches indicated in Table 2 were studied.

Two new sets of training and testing examples were generated from each approach
indicated in Table 2 for each iteration of the leave-one-out and k-fold cross-validation
techniques. Additionally, the outliers removal was performed in each iteration of the
two cross-validation techniques. Hence, four models of each classifier were built in the
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Table 2: Approaches adopted to verify the influence of the distance features and of the
outliers removal process.

Outlier removal Usage of the distances to the lumen and carotid wall
Approach 1 No Yes
Approach 2 No No
Approach 3 Yes Yes
Approach 4 Yes No

training step of the pixel classification step.
For the training of the classifiers in the pixel classification step, a binary image of the

carotid wall obtained from the ground truth corresponding to the atherosclerotic plaque
components was built for selecting only the pixels of the CTA images that are inside the
carotid artery. Then, the features extracted from each pixel were submitted to the classifier
corresponding to each approach indicated in Table 2.

As to the region classification step, the region corresponding to the lipid-rich necrotic
core is used as reference for the non-calcified class. The choice of the lipid-rich necrotic
core is due to the intensity and geometrical features that differ from the calcium com-
ponents in CTA images, making it appropriate for a binary classification in the region
classification step. The features of the regions of the binary images resultant from each
approach of the pixel classification step were extracted and submitted to the classifiers
that perform the classification of each potential calcified region.

Regarding the testing of the classifiers under analysis, the pixels inside the manually
delineated carotid wall were used for testing and validating the accuracy of the chosen
classifiers. The extraction of the pixels inside the binary image representing the carotid
wall is illustrated in Figure 4.

For the pixel classification step, the intensity and distance features described in Table
1 were extracted from the original and filtered CTA images belonging to the testing set for
the classification process. The intensities of each pixel of the original CTA image inside
the previously identified regions along with geometrical features of each candidate region
were then submitted to the classifiers that perform the classification per region.

4 Results

The accuracy of the classification solution proposed in this study was evaluated by means
of the absolute error and Spearman correlation between the areas and volumes of the
classified calcium regions and those calculated from the corresponding ground truths.
The relative and absolute areas and volumes of the calcium regions were calculated to
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(a) (b) (c)

Testing

Training

(d) (e) (f)

Figure 4: Illustration of the procedure used to select the pixels inside the carotid wall for
extracting the features to be used in the pixel classification step of the proposed classifi-
cation model: a) The ground truth of the atherosclerotic plaque components; b) Binary
image of the ground truth with the carotid wall represented in white; c) Part of the orig-
inal CTA image inside the carotid wall; d) The manual delineations of the lumen and
carotid wall; e) Binary image obtained from the manual delineations with the carotid wall
represented in white; f) Part of the original CTA image inside the carotid wall.

evaluate the results generated by the classification model. The relative area and volume
represent the percentage of the calcium region occupied in the total area and volume
of the carotid artery. The absolute area and volume are the total area and volume of
the related calcium region, respectively. The evaluation by means of the Area Under the
Curve (AUC), sensitivity and specificity was not possible due to the existent misalignment
between the ground truths obtained from the micro CT images and the corresponding in

vivo CTA images.
The following parameters were defined to perform the classification process: the value

of parameter σ of the Gaussian filter was defined as equal to 2; the values of α and
β parameters of the Sigmoid filter were defined as equal to 50 and 256, respectively;
neighbourhood NxN of the mean filter was set to 3x3; the number of iterations to remove
outliers of the training and testing sets was defined as equal to 50; the value of k of
the k-fold cross-validation approach was set to 10 since this is the most used value in
several classification problems; the values of σ and of penalty term C of the RBF kernel
were defined as equal to 1 (one) since these values have been commonly used in several
studies; and the best order of the polynomial kernel was defined as equal to 3.

Examples of the classification results per pixel and per region obtained by each clas-
sifier under analysis are shown in Figure 5.
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(c) (d)

(a) (b)

Figure 5: Examples of classification results obtained by each classifier under comparison
in the pixel and region classification steps.

As shown in Figure 5a, the lumen region of the CTA image under study overestimated
the size of the lumen of the related ground truth obtained from the manual delineation,
causing that part of the lumen in the input image be used in the pixel classification step.
Hence, the referred part of the lumen was classified as calcification due to the similarity
of its grayscale intensity with the grayscale intensity of true calcified regions. In these
cases, the region classification step plays an important role to evaluate the geometrical
properties of the candidate regions previously classified by the pixel classification step in
order to select those that represent true calcifications. After the classification per region,
the mentioned part of the lumen was disregarded and only the region corresponding to a
calcification remained in the final classification result. The results provided by the SVM
with the RBF and polynomial kernels, as well as the results of the LDC classifier, are
also in accordance with the ground truth as shown in Figure 5a. The examples illustrated
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in Figure 5b-c also show the good accordance of the results obtained by most of the
classifiers under analysis with the corresponding ground truths.

Examples resultant from each approach indicated in Table 2 in the pixel classification
step are shown in Figure 6.

(a) (b) (c) (d) (e) (f)

Figure 6: Examples of classification results obtained by each approach indicated in Ta-
ble 2 in the pixel classification step: a) Original CTA images; b) Classification results
obtained by Approach 1; c) Classification results obtained by Approach 2; d) Classifica-
tion results obtained by Approach 3; e) Classification results obtained by Approach 4; f)
Corresponding ground truths of the calcified components.

The classification results were improved after the outliers removal as can be perceived
in Figure 6(d-e), mainly in the case of the CTA image shown in the third row.

Regarding the comparison of the computational results with the ground truths, the
LDC obtained better results than the remainder classifiers as can be perceived in the ex-
amples of Figure 5.

The average error and Spearman correlation between the computational results and the
corresponding ground truths as to the k-fold cross-validation technique for each approach
and classifier are shown in Figure 7, Figure 8 and Figure 9. In addition, the average bias
of the relative areas and volumes are indicated in Tables 3 and 4.

Regarding the relative percentage of the classified calcium regions with respect to the
total area of the carotid wall, the average absolute errors decreased for almost of the clas-
sifiers after the employment of the classification per region, mainly for Approaches 3 and
4, as can be observed in Figure 7. Additionally, the average absolute errors obtained from
the classification performed by the LDC were lower than those obtained from the other
classifiers, mainly for Approaches 1 and 2. In terms of the results obtained by Approach
3, the average absolute error of the relative area obtained from the LDC results decreased
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(a) (b)

Figure 7: Average absolute errors of the relative areas and volumes obtained from the
k-fold cross-validation technique for the classifications (a) per pixel and (b) per region.
(The first row represents the average absolute errors for the relative area, and the second
row the average absolute errors for the relative volume of the classified calcium regions.)

Table 3: Average bias obtained as to the relative areas of the classified calcium regions in
each approach and classifier of the k-fold cross validation technique.

Decision tree SVM - RBF SVM - Linear SVM - Poly Naive Bayes LDC

Approach 1
Per pixel 7.19 ± 12.07 -2.08 ± 5.98 -3.82 ± 5.23 54.19 ± 28.29 48.75 ± 42.00 -0.06 ± 4.74
Per region 1.23 ± 6.43 -2.59 ± 5.81 -3.82 ± 5.23 -2.80 ± 5.06 -2.47 ± 5.56 -1.20 ± 3.96

Approach 2
Per pixel 3.55 ± 7.27 -3.29 ± 5.12 -3.82 ± 5.23 -3.15 ± 4.85 53.36 ± 41.70 0.29 ± 4.60
Per region 0.46 ± 4.90 -3.42 ± 5.17 -3.82 ± 5.23 -3.16 ± 4.86 -2.49 ± 5.73 -0.70 ± 4.05

Approach 3
Per pixel 16.18 ± 16.16 2.94 ± 9.87 1.77 ± 7.85 34.79 ± 26.47 52.07 ± 42.17 11.67 ± 11.94
Per region 8.95 ± 17.19 0.18 ± 7.54 -0.31 ± 6.02 -2.46 ± 9.23 -2.63 ± 5.64 1.89 ± 5.67

Approach 4
Per pixel 15.49 ± 15.87 6.92 ± 10.97 3.09 ± 8.16 6.04 ± 9.97 54.99 ± 41.49 11.60 ± 12.18
Per region 9.55 ± 17.11 0.76 ± 8.05 0.07 ± 6.17 1.59 ± 5.99 -2.58 ± 5.62 1.92 ± 5.55

*The values are expressed in percentage.

from 12.3183% to 4.0718% after the employment of the classification per region on the
results obtained from the classification per pixel step. Similar improvements were also
obtained for Approach 4, in which the average absolute error of the relative area de-
creased from 12.219% to 4.0643% after the classification per region. As shown in Figure
7 (plots of the second row), a significant reduction of the absolute errors of the relative
volume was also achieved after classifying each region resultant from the pixel classifi-
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(a) (b)

Figure 8: Average absolute errors of the absolute areas and volumes obtained by the k-
fold cross-validation technique for the classifications (a) per pixel and (b) per region. (The
first row represents the average absolute errors for the absolute area, and the second row
the average absolute errors for the absolute volume of the classified calcium regions.)

Table 4: Average bias obtained as to the relative volumes of the classified calcium regions
in each approach and classifier of the k-fold cross validation technique.

Decision tree SVM - RBF SVM - Linear SVM - Poly Naive Bayes LDC

Approach 1
Per voxel 7.81 ± 10.79 -2.08 ± 4.14 -3.79 ± 3.38 49.13 ± 23.88 41.23 ± 35.88 0.42 ± 3.95
Per region 1.17 ± 3.55 -2.70 ± 3.92 -3.79 ± 3.39 -2.90 ± 3.65 -2.47 ± 2.87 -1.22 ± 2.34

Approach 2
Per voxel 3.10 ± 2.12 -3.08 ± 3.39 -3.79 ± 3.39 -2.89 ± 3.14 45.26 ± 37.04 0.65 ± 3.25
Per region 0.35 ± 1.72 -3.43 ± 3.31 -3.79 ± 3.39 -2.90 ± 3.15 -2.47 ± 3.02 -0.82 ± 1.87

Approach 3
Per voxel 14.06 ± 10.92 2.32 ± 7.54 1.81 ± 6.07 37.39 ± 19.33 44.32 ± 36.55 10.71 ± 8.96
Per region 6.46 ± 10.19 -0.54 ± 5.10 -0.72 ± 4.31 0.22 ± 9.82 -2.57 ± 3.29 1.74 ± 1.94

Approach 4
Per voxel 13.29 ± 10.60 6.08 ± 7.89 2.96 ± 5.85 5.40 ± 7.10 46.76 ± 36.77 10.63 ± 9.10
Per region 6.92 ± 10.73 -0.22 ± 4.66 -0.62 ± 4.05 1.55 ± 3.30 -2.51 ± 3.06 1.81 ± 1.77

*The values are expressed in percentage.

cation step, leading the absolute error of Approaches 3 and 4 to decrease from 10.9399%
and 10.8359% to 2.0247% and 2.1402%, respectively. In terms of the absolute area and
volume of the calcifications, similar improvements were also found with the classification
per region as shown in Figure 8. Additionally, the average absolute errors of the absolute
area and volume of the calcium regions were also lower for the LDC in all approaches
(Figure 8b).
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(a) (b)

Figure 9: Spearman correlation coefficients of the relative and absolute areas and volumes
obtained by the k-fold cross-validation technique for the classifications (a) per pixel and
(b) per region. (The first row represents the Spearman correlation coefficients for the
relative area and volume of the classified calcium regions, whereas the second row the
Spearman correlation coefficient of the absolute area and volume of the same regions.)

Improvements on the Spearman correlation coefficients were also achieved from the
classification of the candidate regions resultant from the pixel classification step. As
shown in Figure 9b, a significant increase of the correlation coefficients between the
area and volume of the classification results and those calculated from the correspond-
ing ground truths was obtained after the region classification step for most of the classi-
fiers used, mainly for Approaches 3 and 4. Moreover, the results obtained by the LDC
were also better than the ones obtained from the other classifiers. Regarding the results
obtained by the LDC, the Spearman correlation coefficient between the relative area cal-
culated from the classified calcium regions and the ones obtained from the corresponding
ground truths was 0.136 for Approach 3 of the pixel classification step. The correlation
coefficient for the same approach increased to 0.553 after the application of the classi-
fication per region. Regarding the relative volume obtained by using Approach 3, the
Spearman correlation coefficient increased from 0 (zero) to 0.850 after the application
of the classification per region. With respect to Approach 4, the Spearman correlation
coefficients between the relative area and volume of the classification results and those
calculated from the ground truths were 0.1415 and -0.044, respectively, for the pixel clas-
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sification step. The correlation coefficients increased to 0.557 and 0.828, respectively,
after the classification of the candidate regions obtained from the pixel classification step.
Similar improvements in the Spearman correlation coefficients of the absolute area and
volume of the calcium regions were also achieved for all approaches and classifiers as
shown in Figure 9 (plots of the second row).

Similar results were also achieved by means of the leave-one-out cross-validation
technique as illustrated in Figure 10, Figure 11 and Figure 12. In addition, the aver-
age bias of the relative area and volume obtained from the leave-one-out cross-validation
technique are indicated in Tables 5 and 6.

(a) (b)

Figure 10: Average absolute errors of the relative areas and volumes obtained from the
leave-one-out cross-validation technique for the classifications (a) per pixel and (b) per
region. (The first row represents the average absolute errors for the relative area, and the
second row the average absolute errors for the relative volume of the classified calcium
regions.)

Similar to the k-fold cross-validation technique, the results obtained by the LDC were
also better than the ones generated by the remainder classifiers. In terms of the relative
area, the average absolute errors obtained by the LDC in the pixel classification step were
2.4926%, 2.4578%, 12.479% and 12.270% for Approaches 1, 2, 3 and 4, respectively.
After the application of the classification per region, the average absolute errors were
2.557%, 2.379%, 4.0989% and 4.0659% for the same Approaches, respectively. It is
possible to notice a significant reduction of the average absolute errors of the relative area
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(a) (b)

Figure 11: Average absolute errors of the absolute areas and volumes obtained from the
leave-one-out cross-validation technique for the classifications (a) per pixel and (b) per
region. (The first row represents the average absolute errors for the absolute area, and the
second row the average absolute errors for the absolute volume of the classified calcium
regions.)

Table 5: Average bias obtained as to the relative areas of the classified calcium regions in
each approach and classifier of the leave-one-out cross validation technique.

Decision tree SVM - RBF SVM - Linear SVM - Poly Naive Bayes LDC

Approach 1
Per pixel 6.06 ± 10.00 -2.05 ± 5.95 -3.82 ± 5.23 53.32 ± 31.08 48.94 ± 41.87 -0.44 ± 4.08
Per region 1.31 ± 6.76 -2.63 ± 5.70 -3.82 ± 5.23 -3.04 ± 4.96 -2.41 ± 5.64 -0.99 ± 4.18

Approach 2
Per pixel 3.32 ± 7.38 -3.25 ± 5.09 -3.82 ± 5.23 -3.08 ± 4.95 53.41 ± 41.62 -0.08 ± 4.03
Per region 0.33 ± 4.98 -3.38 ± 5.14 -3.82 ± 5.23 -3.09 ± 4.96 -2.43 ± 5.79 -0.53 ± 3.88

Approach 3
Per pixel 16.56 ± 16.62 3.30 ± 10.27 2.26 ± 8.35 32.92 ± 26.41 52.31 ± 42.02 11.84 ± 12.44
Per region 9.73 ± 17.42 0.39 ± 8.04 0.09 ± 6.76 -2.13 ± 9.42 -2.56 ± 5.76 2.03 ± 5.63

Approach 4
Per pixel 15.83 ± 16.56 7.24 ± 11.24 3.20 ± 8.32 6.20 ± 10.08 55.16 ± 41.36 11.67 ± 12.50
Per region 10.38 ± 17.40 1.01 ± 8.50 0.24 ± 6.39 1.74 ± 6.11 -2.51 ± 5.72 2.03 ± 5.49

*The values are expressed in percentage.

obtained from Approaches 3 and 4 after the region classification step. For the absolute
error of the relative volume, the average values obtained from Approaches 1, 2, 3 and 4
were 2.1309%, 1.8922%, 10.996% and 10.804%, respectively, for the pixel classification
step. After the classification per region, the average absolute errors decreased to 1.9087%,
1.5630%, 2.1509% and 2.1866%, respectively, for the same Approaches. A significant
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(a) (b)

Figure 12: Spearman correlation coefficients of the relative and absolute areas and vol-
umes obtained from the leave-one-out cross-validation technique for the classifications
(a) per pixel and (b) per region. (The first row represents the Spearman correlation co-
efficients for the relative area and volume of the classified calcium regions, whereas the
second row the Spearman correlation coefficients of the absolute area and volume.)

Table 6: Average bias obtained as to the relative volumes of the classified calcium regions
in each approach and classifier of the leave-one-out cross validation technique.

Decision tree SVM - RBF SVM - Linear SVM - Poly Nave Bayes LDC

Approach 1
Per voxel 6.53 ± 9.37 -2.02 ± 4.19 -3.79 ± 3.39 47.41 ± 27.00 41.47 ± 35.81 -0.03 ± 3.32
Per region 1.18 ± 4.30 -2.69 ± 3.95 -3.79 ± 3.39 -3.19 ± 3.48 -2.39 ± 2.95 -1.02 ± 2.66

Approach 2
Per voxel 3.16 ± 2.39 -3.04 ± 3.39 -3.79 ± 3.39 2.81 ± 3.29 45.33 ± 36.95 0.19 ± 2.70
Per region 0.27 ± 2.19 -3.40 ± 3.32 -3.79 ± 3.39 -2.82 ± 3.29 -2.40 ± 3.08 -0.61 ± 2.11

Approach 3
Per voxel 14.43 ± 11.36 2.69 ± 7.71 2.19 ± 6.15 34.00 ± 20.27 44.60 ± 36.45 10.80 ± 9.48
Per region 7.25 ± 9.96 -0.41 ± 5.23 -0.49 ± 4.48 0.54 ± 9.69 -2.51 ± 3.38 1.87 ± 1.91

Approach 4
Per voxel 13.57 ± 11.34 6.37 ± 8.04 3.00 ± 5.88 5.53 ± 7.14 46.95 ± 36.64 10.63 ± 9.46
Per region 7.71 ± 10.43 0.01 ± 4.91 -0.48 ± 4.06 1.67 ± 3.38 -2.47 ± 3.14 1.91 ± 1.77

*The values are expressed in percentage.

reduction of the absolute error was also achieved for Approaches 3 and 4. As shown
in Figure 11, regarding the average absolute errors for the absolute area and volume of
the calcium regions, a similar decreasing behaviour was found after the classification per
region step.
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The Spearman correlation coefficients obtained from the leave-one-out cross-
validation technique were similar to the ones calculated for the k-fold cross-validation
technique, showing the stability of the suggested classification model. The LDC classifier
also showed better results than the other classifiers. The Spearman correlation coefficients
between the relative areas of the classification results and the ones calculated from the cor-
responding ground truths were 0.6991, 0.7310, 0.1234 and 0.1352, for Approaches 1, 2, 3
and 4, respectively, in the pixel classification step. The Spearman correlation coefficients
obtained from the region classification step were 0.6530, 0.7002, 0.5410 and 0.5630 for
the same Approaches, leading to a significant increase of the correlation coefficients for
Approaches 3 and 4. Similar improvements were also obtained from the relative volumes.
The correlation coefficients between the relative volumes of the classification results and
the ones calculated from the corresponding ground truths were 0.6465, 0.6960, -0.0385
and -0.0660 for Approaches 1, 2, 3 and 4, respectively, in the pixel classification step.
On the other hand, the correlation coefficients obtained after the classification per region
step were 0.6850, 0.7900, 0.8280 and 0.8060 for the same Approaches. Likewise the rel-
ative area, significant improvements in the absolute areas of the classified calcium regions
were also achieved for Approaches 3 and 4 after the region classification step as can be
perceived in Figure 12 (plots of the second row).

5 Discussion

The characterization of atherosclerotic plaque components plays an important role to-
wards the evaluation of the disease progression. The composition of atherosclerotic
plaques has been addressed as an important factor for evaluating the risks of plaque rup-
ture, as well as risks for embolization and neurological events. Previous studies sug-
gested that the presence of calcified components in atherosclerotic plaques represents an
advanced stage of the disease.

The classification of calcium regions in CTA images of the carotid artery was success-
fully tackled in this study. Firstly, the proposed classification model performs the classifi-
cation of each pixel inside the carotid artery in order to obtain the candidate regions rep-
resenting the calcifications of the atherosclerosis. Then, the regions previously identified
are submitted to the region classification step in order to identify the ones that represent
true calcifications based on geometrical and intensity features extracted from each region.
Misalignments between the histological images and the corresponding in vivo CTA im-
ages resulting from the used registration procedure might affect the classification results
due to the selection of parts of the lumen and other regions having intensity similar to the
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one of calcified components. Hence, pixels belonging to regions corresponding to other
structures of the carotid artery may affect the accuracy of the results. Hence, a second
step to identify and maintain only the regions correctly representing calcifications was
included in the proposed classification model, leading to results significantly better than
the ones exclusively obtained by the classification per pixel step.

Besides the assessment of regions that do not correspond to true calcifications of the
atherosclerotic lesions, the removal of outliers represents an important approach to in-
crease the performance of the classifiers and provide a better separation of the pixels
belonging to each class, i.e. calcium and non-calcium regions. The presence of outliers
decreases the ability of the classifiers in separating the classes and determining the correct
class of the input pixel, leading to errors in the classification results and, consequently, the
decreasing of the accuracy of the classification model. Hence, an approach to remove out-
liers of the pixels selected for training and testing the classifiers in each cross-validation
iteration was proposed in this study. The boxplots of the pixels belonging to each class
was generated and evaluated to determine the presence of outliers in the experimental
dataset based on all intensity features extracted from each pixel to be classified. Hence,
common pixels representing outliers in all features were removed before the training and
testing processes. The outliers removal approach proposed here proved to be effective
in determining the correct class of each pixel and improving the shapes of the calcified
regions to make them as close as possible to the ones of the corresponding ground truths.

The areas and volumes of the calcium regions in the CTA images used in this study
are often larger than the ones of the corresponding calcifications in the ground truth. The
ground truth of the calcified components was obtained using micro CT images of the
excised plaques as described in van Engelen et al. [16]. According to van Engelen et al.
[16], the blooming artefacts often present in CTA images may cause the overestimation of
the calcium components. The bias of the areas and volumes resulting from Approaches 3
and 4 showed a positive value when compared to Approaches 1 and 2. The average bias
of the relative area obtained from the classification per region in Approaches 1, 2, 3 and 4
were -1.20 ± 3.96%, -0.70 ± 4.05%, 1.89 ± 5.67% and 1.92 ± 5.55%, respectively, for
the classification results of the LDC in the k-fold cross-validation technique. In terms of
the relative volume, the average bias obtained from the LDC in the k-fold cross-validation
technique in the region classification step were -1.22 ± 2.34%, -0.82 ± 1.87%, 1.74 ±
1.94% and 1.81 ± 1.77% for Approaches 1, 2, 3 and 4, respectively. Regarding the
leave-one-out cross validation technique, the average bias of the relative areas obtained
by the LDC for Approaches 1, 2, 3 and 4 were -0.99 ± 4.18%, -0.53 ± 3.88%, 2.03
± 5.63% and 2.03 ± 5.49%, respectively, for the region classification step. Similarly,
the average bias of the relative volumes obtained from the same Approaches were -1.02
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± 2.66%, -0.61 ± 2.11%, 1.87 ± 1.91% and 1.91 ± 1.77%, respectively, concerning
the results generated by the LDC in the region classification step. Similarly to the k-
fold cross validation technique, the average bias of Approaches 3 and 4 overestimated
the ground truth relatively to Approaches 1 and 2. The outliers removal is responsible
for the overestimation of the calcium regions classified by Approaches 3 and 4. After
removing the outliers from the training and testing sets in each iteration of the cross-
validation technique, the good separation of the examples belonging to each class induces
the classifier to assign the correct class to the pixels under analysis. Hence, the calcified
components tend to overestimate the corresponding ground truths since all pixels of the
calcium regions are correctly classified.

The Spearman correlation of the relative and absolute areas of the classified calcium
regions decreased in Approaches 3 and 4 in comparison to the results obtained from Ap-
proaches 1 and 2 in the region classification step. As previously discussed, the overes-
timation of the calcifications after the outliers removal is responsible for affecting the
size of the classified components, leading the area of the calcified regions to increase
significantly in some cases. Since the areas of the classified calcium regions increase
in comparison to the correspondent ground truths, the Spearman correlation coefficients
also decreased. As to the distance features, no significant differences were found when
the distances of each pixel to the lumen and carotid wall contours were removed from
the classification process. Hence, the classification model could be designed with only 18
intensity features in the pixel classification step.

The classification results obtained by the LDC are better than those obtained by the
other classifiers that are often used in many classification problems. The results obtained
by van Engelen et al. [16] also indicated the better performance of the LDC in comparison
to a SVM with a RBF kernel. Other studies have also indicated the superior performance
of the LDC in classifying atherosclerotic plaque components in images [20] [21] [22].
Although decision trees have been widely used in several studies dealing with different
classification problems, the large number of decisions makes the tree more complex and
prone to overfitting. Additionally, small changes in the input values may still cause sig-
nificant changes in the model of the decision tree. As shown in Figure 9 and Figure 12,
the Spearman correlation coefficients obtained from the decision tree were better for Ap-
proaches 1 and 2 of the pixel and region classification steps, achieving results equivalent
to the ones of the LDC. However, the correlation coefficients obtained from the decision
tree decreased significantly in Approaches 3 and 4. Improvements in the results obtained
by the Naive Bayes classifier were also achieved after applying the region classification
step. However, the results are still of lower quality than those of the LDC. Although
the Naive Bayes classifier is simple and independent of irrelevant features, an important
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condition for better results is that the features might be conditionally independent for the
given class. The results of the LDC were stable in all approaches, which indicates that
this classifier is more effective to classify atherosclerotic plaque components, particularly
the calcified regions as proposed in this study.

The main limitation of the proposed classification model is the number of features
used to perform the identification of calcified and non-calcified regions. Dimensionality
reduction is often used to decrease the computational cost of the classifiers and represents
an important step towards the selection of the relevant features to be used in classification
models. The outliers removal has been performed to avoid the incorrect assignment of the
correct class to each pixel due to the misalignments between the ground truths manually
delineated in histological images and the input CTA images. However, the number of
pixels of the calcified components is significantly lower than the ones belonging to the
non-calcified regions. The relative area of the calcified components is low with respect to
the total area of the carotid wall and the outliers removal might decrease the number of
examples of the calcified components. Hence, manual delineations made directly in the
CTA images represent an effective approach to avoid the removal of pixels with important
information for the classification process.

Despite the above-mentioned limitation, the classification in two steps of calcium re-
gions in CTA images of the carotid artery seems to be effective in eliminating regions not
belonging to the true calcifications of the atherosclerotic lesions.

6 Conclusions

The characterization of atherosclerosis is an intensive focus of research and represents an
important step in evaluating the progression of the disease. The classification of calcified
components in CTA images of carotid arteries was proposed in this article. In the pro-
posed classification model, the original CTA images are submitted to a step that processes
the classification of each pixel inside the carotid artery wall. Then, the candidate regions
are submitted to the next step that performs the classification per region in order to iden-
tify those ones corresponding to true calcified components. Additionally, the proposed
outliers removal approach proved to be effective in improving the separation of the pixels
belonging to each class, i.e. calcified and non-calcified regions, leading the shapes of the
classified calcium regions close to the ones of the corresponding ground truths.

In this study, the region classification step was proposed to effectively handle the in-
correct classification of regions resultant from misalignments of the ground truths with
the corresponding in vivo CTA images. The method proved to be effective in eliminating
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regions that do not correspond to true calcified components, leading to improvements of
the classification results and, consequently, a more efficient, reliable and accurate classi-
fication model.
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