10,819 research outputs found

    Estimating prognosis in patients with acute myocardial infarction using personalized computational heart models

    Get PDF
    Biomechanical computational models have potential prognostic utility in patients after an acute ST-segment–elevation myocardial infarction (STEMI). In a proof-of-concept study, we defined two groups (1) an acute STEMI group (n = 6, 83% male, age 54 ± 12 years) complicated by left ventricular (LV) systolic dysfunction; (2) an age- and sex- matched hyper-control group (n = 6, 83% male, age 46 ± 14 years), no prior history of cardiovascular disease and normal systolic blood pressure (SBP < 130 mmHg). Cardiac MRI was performed in the patients (2 days & 6 months post-STEMI) and the volunteers, and biomechanical heart models were synthesized for each subject. The candidate parameters included normalized active tension (ATnorm) and active tension at the resting sarcomere length (Treq, reflecting required contractility). Myocardial contractility was inversely determined from personalized heart models by matching CMR-imaged LV dynamics. Compared with controls, patients with recent STEMI exhibited increased LV wall active tension when normalized by SBP. We observed a linear relationship between Treq 2 days post-MI and global longitudinal strain 6 months later (r = 0.86; p = 0.03). Treq may be associated with changes in LV function in the longer term in STEMI patients complicated by LV dysfunction. Further studies seem warranted

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method

    Get PDF
    Detailed models of the biomechanics of the heart are important both for developing improved interventions for patients with heart disease and also for patient risk stratification and treatment planning. For instance, stress distributions in the heart affect cardiac remodelling, but such distributions are not presently accessible in patients. Biomechanical models of the heart offer detailed three-dimensional deformation, stress and strain fields that can supplement conventional clinical data. In this work, we introduce dynamic computational models of the human left ventricle (LV) that are derived from clinical imaging data obtained from a healthy subject and from a patient with a myocardial infarction (MI). Both models incorporate a detailed invariant-based orthotropic description of the passive elasticity of the ventricular myocardium along with a detailed biophysical model of active tension generation in the ventricular muscle. These constitutive models are employed within a dynamic simulation framework that accounts for the inertia of the ventricular muscle and the blood that is based on an immersed boundary (IB) method with a finite element description of the structural mechanics. The geometry of the models is based on data obtained non-invasively by cardiac magnetic resonance (CMR). CMR imaging data are also used to estimate the parameters of the passive and active constitutive models, which are determined so that the simulated end-diastolic and end-systolic volumes agree with the corresponding volumes determined from the CMR imaging studies. Using these models, we simulate LV dynamics from end-diastole to end-systole. The results of our simulations are shown to be in good agreement with subject-specific CMR-derived strain measurements and also with earlier clinical studies on human LV strain distributions

    A coupled mitral valve -- left ventricle model with fluid-structure interaction

    Full text link
    Understanding the interaction between the valves and walls of the heart is important in assessing and subsequently treating heart dysfunction. With advancements in cardiac imaging, nonlinear mechanics and computational techniques, it is now possible to explore the mechanics of valve-heart interactions using anatomically and physiologically realistic models. This study presents an integrated model of the mitral valve (MV) coupled to the left ventricle (LV), with the geometry derived from in vivo clinical magnetic resonance images. Numerical simulations using this coupled MV-LV model are developed using an immersed boundary/finite element method. The model incorporates detailed valvular features, left ventricular contraction, nonlinear soft tissue mechanics, and fluid-mediated interactions between the MV and LV wall. We use the model to simulate the cardiac function from diastole to systole, and investigate how myocardial active relaxation function affects the LV pump function. The results of the new model agree with in vivo measurements, and demonstrate that the diastolic filling pressure increases significantly with impaired myocardial active relaxation to maintain the normal cardiac output. The coupled model has the potential to advance fundamental knowledge of mechanisms underlying MV-LV interaction, and help in risk stratification and optimization of therapies for heart diseases.Comment: 25 pages, 6 figure

    User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias.

    Get PDF
    BackgroundData obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia.MethodsMulti-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias.ResultsACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated.ConclusionUser-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias

    Automatic segmentation of the left ventricle cavity and myocardium in MRI data

    Get PDF
    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method

    Load-Independent And Regional Measures Of Cardiac Function Via Real-Time Mri

    Get PDF
    LOAD-INDEPENDENT AND REGIONAL MEASURES OF CARDIAC FUNCTION VIA REAL-TIME MRI Francisco Jose Contijoch Robert C Gorman, MD Expansion of infarcted tissue during left ventricular (LV) remodeling after a myocardial infarction is associated with poor long-term prognosis. Several interventions have been developed to limit infarct expansion by modifying the material properties of the infarcted or surrounding borderzone tissue. Measures of myocardial function and material properties can be obtained non-invasively via imaging. However, these measures are sensitive to variations in loading conditions and acquisition of load-independent measures have been limited by surgically invasive procedures and limited spatial resolution. In this dissertation, a real-time magnetic resonance imaging (MRI) technique was validated in clinical patients and instrumented animals, several technical improvements in MRI acquisition and reconstruction were presented for improved imaging resolution, load-independent measures were obtained in animal studies via non-invasive imaging, and regional variations in function were measured in both na�ve and post-infarction animals. Specifically, a golden-angle radial MRI acquisition with non-Cartesian SENSE-based reconstruction with an exposure time less than 95 ms and a frame rate above 89 fps allows for accurate estimation of LV slice volume in clinical patients and instrumented animals. Two technical developments were pursued to improve image quality and spatial resolution. First, the slice volume obtained can be used as a self-navigator signal to generate retrospectively-gated, high-resolution datasets of multiple beat morphologies. Second, cross-correlation of the ECG with previously observed values resulted in accurate interpretation of cardiac phase in patients with arrhythmias and allowed for multi-shot imaging of dynamic scenarios. Synchronizing the measured LV slice volume with an LV pressure signal allowed for pressure-volume loops and corresponding load-independent measures of function to be obtained in instrumented animals. Acquiring LV slice volume at multiple slice locations revealed regional differences in contractile function. Motion-tracking of the myocardium during real-time imaging allowed for differences in contractile function between normal, borderzone, and infarcted myocardium to be measured. Lastly, application of real-time imaging to patients with arrhythmias revealed the variable impact of ectopic beats on global hemodynamic function, depending on frequency and ectopic pattern. This work established the feasibility of obtaining load-independent measures of function via real-time MRI and illustrated regional variations in cardiac function

    Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction

    Get PDF
    In this research, we hypothesized that novel biomechanical parameters are discriminative in patients following acute ST-segment elevation myocardial infarction (STEMI). To identify these biomechanical biomarkers and bring computational biomechanics ‘closer to the clinic’, we applied state-of-the-art multiphysics cardiac modelling combined with advanced machine learning and multivariate statistical inference to a clinical database of myocardial infarction. We obtained data from 11 STEMI patients (ClinicalTrials.gov NCT01717573) and 27 healthy volunteers, and developed personalized mathematical models for the left ventricle (LV) using an immersed boundary method. Subject-specific constitutive parameters were achieved by matching to clinical measurements. We have shown, for the first time, that compared with healthy controls, patients with STEMI exhibited increased LV wall active tension when normalized by systolic blood pressure, which suggests an increased demand on the contractile reserve of remote functional myocardium. The statistical analysis reveals that the required patient-specific contractility, normalized active tension and the systolic myofilament kinematics have the strongest explanatory power for identifying the myocardial function changes post-MI. We further observed a strong correlation between two biomarkers and the changes in LV ejection fraction at six months from baseline (the required contractility (r = − 0.79, p < 0.01) and the systolic myofilament kinematics (r = 0.70, p = 0.02)). The clinical and prognostic significance of these biomechanical parameters merits further scrutinization
    corecore