28 research outputs found

    Overview of carbon-based circuits and systems

    Get PDF
    This paper presents an overview of the state of the art on carbon-based circuits and systems made up of carbon nanotubes and graphene transistors. A tutorial description of the most important devices and their potential benefits and limitations is given, trying to identify their suitability to implement analog and digital circuits and systems. Main electrical models reported so far for the design of carbon-based field-effect devices are surveyed, and the main sizing parameters required to implement such devices in practical integrated circuits are analyzed. The solutions proposed by cutting-edge integrated circuits and devices are discussed, identifying current trends, challenges and opportunities for the circuits and systems community1

    Imperfection-Aware Design of CNFET Digital VLSI Circuits

    Get PDF
    Carbon nanotube field-effect transistor (CNFET) is one of the promising candidates as extensions to silicon CMOS devices. The CNFET, which is a 1-D structure with a near-ballistic transport capability, can potentially offer excellent device characteristics and order-of-magnitude better energy-delay product over standard CMOS devices. Significant challenges in CNT synthesis prevent CNFETs today from achieving such ideal benefits. CNT density variation and metallic CNTs are the dominant type of CNT variations/imperfections that cause performance variation, large static power consumption, and yield degradation. We present an imperfection-aware design technique for CNFET digital VLSI circuits by: 1) Analytical models that are developed to analyze and quantify the effects of CNT density variation on device characteristics, gate and system levels delays. The analytical models, which were validated by comparison to real experimental/simulation data, enables us to examine the space of CNFET combinational, sequential and memory cells circuits to minimize delay variations. Using these model, we drive CNFET processing and circuit design guidelines to manage/overcome CNT density variation. 2) Analytical models that are developed to analyze the effects of metallic CNTs on device characteristics, gate and system levels delay and power consumption. Using our presented analytical models, which are again validated by comparison with simulation data, it is shown that the static power dissipation is a more critical issue than the delay and the dynamic power of CNFET circuits in the presence of m-CNTs. 3) CNT density variation and metallic CNTs can result in functional failure of CNFET circuits. The complete and compact model for CNFET probability of failure that consider CNT density variation and m-CNTs is presented. This analytical model is applied to analyze the logical functional failures. The presented model is extended to predict opportunities and limitations of CNFET technology at todays Gigascale integration and beyond.\u2

    New Logic Synthesis As Nanotechnology Enabler (invited paper)

    Get PDF
    Nanoelectronics comprises a variety of devices whose electrical properties are more complex as compared to CMOS, thus enabling new computational paradigms. The potentially large space for innovation has to be explored in the search for technologies that can support large-scale and high- performance circuit design. Within this space, we analyze a set of emerging technologies characterized by a similar computational abstraction at the design level, i.e., a binary comparator or a majority voter. We demonstrate that new logic synthesis techniques, natively supporting this abstraction, are the technology enablers. We describe models and data-structures for logic design using emerging technologies and we show results of applying new synthesis algorithms and tools. We conclude that new logic synthesis methods are required to both evaluate emerging technologies and to achieve the best results in terms of area, power and performance

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    Appropriateness of Imperfect CNFET Based Circuits for Error Resilient Computing Systems

    Get PDF
    With superior device performance consistently reported in extremely scaled dimensions, low dimensional materials (LDMs), including Carbon Nanotube Field Effect Transistor (CNFET) based technology, have shown the potential to outperform silicon for future transistors in advanced technology nodes. Studies have also demonstrated orders of magnitude improvement in energy efficiency possible with LDMs, in comparison to silicon at competing technology nodes. However, the current fabrication processes for these materials suffer from process imperfections and still appear to be inadequate to compete with silicon for the mainstream high volume manufacturing. Among the LDMs, CNFETs are the most widely studied and closest to high volume manufacturing. Recent works have shown a significant increase in the complexity of CNFET based systems, including demonstration of a 16-bit microprocessor. However, the design of such systems has involved significantly wider-than-usual transistors and avoidance of certain logic combinations. The resulting complexity of several thousand transistors in such systems is still far from the requirements of high-performance general-purpose computing systems having billions of transistors. With the current progress of the process to fabricate CNFETs, their introduction in mainstream manufacturing is expected to take several more years. For an earlier technology adoption, CNFETs appear to be suited for error-resilient computing systems where errors during computation can be tolerated to a certain degree. Such systems relax the need for precise circuits and a perfect process while leveraging the potential energy benefits of CNFET technology in comparison to conventional Si technology. In this thesis, we explore the potential applications using an imperfect CNFET process for error-resilient computing systems, including the impact of the process imperfections at the system level and methods to improve it. The current most widely adopted fabrication process for CNFETs (separation and placement of solution-based CNTs) still suffers from process imperfections, mainly from open CNTs due to missing of CNTs (in trenches connecting source and drain of CNFET). A fair evaluation of the performance of CNFET based circuits should thus take into consideration the effect of open CNTs, resulting in reduced drive currents. At the circuit level, this leads to failures in meeting 1) the minimum frequency requirement (due to an increase in critical path delay), and 2) the noise suppression requirement. We present a methodology to accurately capture the effect of open CNT imperfection in the state-of-the-art CNFET model, for circuit-level performance evaluation (both delay and glitch vulnerability) of CNFET based circuits using SPICE. A Monte Carlo simulation framework is also provided to investigate the statistical effect of open CNT imperfection on circuit-level performance. We introduce essential metrics to evaluate glitch vulnerability and also provide an effective link between glitch vulnerability and circuit topology. The past few years have observed significant growth of interest in approximate computing for a wide range of applications, including signal processing, data mining, machine learning, image, video processing, etc. In such applications, the result quality is not compromised appreciably, even in the presence of few errors during computation. The ability to tolerate few errors during computation relaxes the need to have precise circuits. Thus the approximate circuits can be designed, with lesser nodes, reduced stages, and reduced capacitance at few nodes. Consequently, the approximate circuits could reduce critical path delays and enhanced noise suppression in comparison to precise circuits. We present a systematic methodology utilizing Reduced Ordered Binary Decision Diagrams (ROBDD) for generating approximate circuits by taking an example of 16-bit parallel prefix CNFET adder. The approximate adder generated using the proposed algorithm has ~ 5x reduction in the average number of nodes failing glitch criteria (along paths to primary output) and 43.4% lesser Energy Delay Product (EDP) even at high open CNT imperfection, in comparison to the ideal case of no open CNT imperfection, at a mean relative error of 3.3%. The recent boom of deep learning has been made possible by VLSI technology advancement resulting in hardware systems, which can support deep learning algorithms. These hardware systems intend to satisfy the high-energy efficiency requirement of such algorithms. The hardware supporting such algorithms adopts neuromorphic-computing architectures with significantly less energy compared to traditional Von Neumann architectures. Deep Neural Networks (DNNs) belonging to deep learning domain find its use in a wide range of applications such as image classification, speech recognition, etc. Recent hardware systems have demonstrated the implementation of complex neural networks at significantly less power. However, the complexity of applications and depths of DNNs are expected to drastically increase in the future, imposing a demanding requirement in terms of scalability and energy efficiency of hardware technology. CNFET technology can be an excellent alternative to meet the aggressive energy efficiency requirement for future DNNs. However, degradation in circuit-level performance due to open CNT imperfection can result in timing failure, thus distorting the shape of non-linear activation function, leading to a significant degradation in classification accuracy. We present a framework to obtain sigmoid activation function considering the effect of open CNT imperfection. A digital neuron is explored to generate the sigmoid activation function, which deviates from the ideal case under imperfect process and reduced time period (increased clock frequency). The inherent error resilience of DNNs, on the other hand, can be utilized to mitigate the impact of imperfect process and maintain the shape of the activation function. We use pruning of synaptic weights, which, combined with the proposed approximate neuron, significantly reduces the chance of timing failures and helps to maintain the activation function shape even at high process imperfection and higher clock frequencies. We also provide a framework to obtain classification accuracy of Deep Belief Networks (class of DNNs based on unsupervised learning) using the activation functions obtained from SPICE simulations. By using both approximate neurons and pruning of synaptic weights, we achieve excellent system accuracy (only < 0.5% accuracy drop) with 25% improvement in speed, significant EDP advantage (56.7% less) even at high process imperfection, in comparison to a base configuration of the precise neuron and no pruning with the ideal process, at no area penalty. In conclusion, this thesis provides directions for the potential applicability of CNFET based technology for error-resilient computing systems. For this purpose, we present methodologies, which provide approaches to assess and design CNFET based circuits, considering process imperfections. We accomplish a DBN framework for digit recognition, considering activation functions from SPICE simulations incorporating process imperfections. We demonstrate the effectiveness of using approximate neuron and synaptic weight pruning to mitigate the impact of high process imperfection on system accuracy

    Editorial

    Get PDF
    In recent years, we have observed spectacular advancements in the area of nano-circuits and systems at several levels, from the fabrication material and device levels to the system and application levels. New emerging materials provide us with a wealth of new devices such as (silicon) nanowires, graphene, and carbon nanotubes fabricated in various technologies. Applications of these devices are vast and include, but are not limited to, new computing and memory structures, super-capacitors, as well as nano-bio-sensors based on the molecular combination of molecular probes to electronic devices. This special issue of the Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) has the purpose to collect some selected contributions to the workshop as well as other works in this domain, all subject to peer review. In particular, this issue focuses on two specific topics: biomedical circuits and systems, and 3-D integrated circuits and systems. This choice is motivated by a synergy of the spontaneous contributions in these areas as well as by the importance of these fields. We will review these two areas at large before briefly summarizing the contributions

    Overcoming nanoscale variations through statistical error compensation

    Get PDF
    Increasingly severe parameter variations that are observed in advanced nanoscale technologies create great obstacles in designing high-performance, next-generation digital integrated circuits (ICs). Conventional design principles impose increased design margins in power supply, device sizing, and operating frequency, leading to overly conservative designs which prevent the realization of potential benefits from nanotechnology advances. In response, robust digital circuit design techniques have been developed to overcome processing non-idealities. Statistical error compensation (SEC) is a class of system-level, communication-inspired techniques for designing energy efficient and robust systems. In this thesis, stochastic sensor network on chip (SSNOC), a known SEC technique, is applied to a computational kernel implemented with carbon nanotube field-effect transistors (CNFETs). With the aid of a well developed CNFET delay distribution modeling method, circuit simulations show up to 90× improvement of the SSNOC-based design in the circuit yield over the conventional design. The results verify the robustness of an SEC-based design under CNFET-specific variations. The error resiliency of SEC allows CNFET circuits to operate with reduced design margins under relaxed processing requirements, while concurrently maintaining the desired application-level performance
    corecore