987 research outputs found

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist

    Supervised learning and inference of semantic information from road scene images

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2013-2014Nowadays, vision sensors are employed in automotive industry to integrate advanced functionalities that assist humans while driving. However, autonomous vehicles is a hot field of research both in academic and industrial sectors and entails a step beyond ADAS. Particularly, several challenges arise from autonomous navigation in urban scenarios due to their naturalistic complexity in terms of structure and dynamic participants (e.g. pedestrians, vehicles, vegetation, etc.). Hence, providing image understanding capabilities to autonomous robotics platforms is an essential target because cameras can capture the 3D scene as perceived by a human. In fact, given this need for 3D scene understanding, there is an increasing interest on joint objects and scene labeling in the form of geometry and semantic inference of the relevant entities contained in urban environments. In this regard, this Thesis tackles two challenges: 1) the prediction of road intersections geometry and, 2) the detection and orientation estimation of cars, pedestrians and cyclists. Different features extracted from stereo images of the KITTI public urban dataset are employed. This Thesis proposes a supervised learning of discriminative models that rely on strong machine learning techniques for data mining visual features. For the first task, we use 2D occupancy grid maps that are built from the stereo sequences captured by a moving vehicle in a mid-sized city. Based on these bird?s eye view images, we propose a smart parameterization of the layout of straight roads and 4 intersecting roads. The dependencies between the proposed discrete random variables that define the layouts are represented with Probabilistic Graphical Models. Then, the problem is formulated as a structured prediction, in which we employ Conditional Random Fields (CRF) for learning and convex Belief Propagation (dcBP) and Branch and Bound (BB) for inference. For the validation of the proposed methodology, a set of tests are carried out, which are based on real images and synthetic images with varying levels of random noise. In relation to the object detection and orientation estimation challenge in road scenes, this Thesis goal is to compete in the international challenge known as KITTI evaluation benchmark, which encourages researchers to push forward the current state of the art on visual recognition methods, particularized for 3D urban scene understanding. This Thesis proposes to modify the successful part-based object detector known as DPM in order to learn richer models from 2.5D data (color and disparity). Therefore, we revisit the DPM framework, which is based on HOG features and mixture models trained with a latent SVM formulation. Next, this Thesis performs a set of modifications on top of DPM: I) An extension to the DPM training pipeline that accounts for 3D-aware features. II) A detailed analysis of the supervised parameter learning. III) Two additional approaches: "feature whitening" and "stereo consistency check". Additionally, a) we analyze the KITTI dataset and several subtleties regarding to the evaluation protocol; b) a large set of cross-validated experiments show the performance of our contributions and, c) finally, our best performing approach is publicly ranked on the KITTI website, being the first one that reports results with stereo data, yielding an increased object detection precision (3%-6%) for the class 'car' and ranking first for the class cyclist

    A comprehensive review of vehicle detection using computer vision

    Get PDF
    A crucial step in designing intelligent transport systems (ITS) is vehicle detection. The challenges of vehicle detection in urban roads arise because of camera position, background variations, occlusion, multiple foreground objects as well as vehicle pose. The current study provides a synopsis of state-of-the-art vehicle detection techniques, which are categorized according to motion and appearance-based techniques starting with frame differencing and background subtraction until feature extraction, a more complicated model in comparison. The advantages and disadvantages among the techniques are also highlighted with a conclusion as to the most accurate one for vehicle detection

    Vision-based traffic surveys in urban environments

    Get PDF
    This paper presents a state-of-the-art, vision-based vehicle detection and type classification to perform traffic surveys from a roadside closed-circuit television camera. Vehicles are detected using background subtraction based on a Gaussian mixture model that can cope with vehicles that become stationary over a significant period of time. Vehicle silhouettes are described using a combination of shape and appearance features using an intensity-based pyramid histogram of orientation gradients (HOG). Classification is performed using a support vector machine, which is trained on a small set of hand-labeled silhouette exemplars. These exemplars are identified using a model-based preclassifier that utilizes calibrated images mapped by Google Earth to provide accurately surveyed scene geometry matched to visible image landmarks. Kalman filters track the vehicles to enable classification by majority voting over several consecutive frames. The system counts vehicles and separates them into four categories: car, van, bus, and motorcycle (including bicycles). Experiments with real-world data have been undertaken to evaluate system performance and vehicle detection rates of 96.45% and classification accuracy of 95.70% have been achieved on this data.The authors gratefully acknowledge the Royal Borough of Kingston for providing the video data. S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement nº 600371, el Ministerio de Economía y Competitividad (COFUND2013-51509) and Banco Santander
    • …
    corecore