339 research outputs found

    Capturing lexical variation in MT evaluation using automatically built sense-cluster inventories

    Get PDF
    The strict character of most of the existing Machine Translation (MT) evaluation metrics does not permit them to capture lexical variation in translation. However, a central issue in MT evaluation is the high correlation that the metrics should have with human judgments of translation quality. In order to achieve a higher correlation, the identification of sense correspondences between the compared translations becomes really important. Given that most metrics are looking for exact correspondences, the evaluation results are often misleading concerning translation quality. Apart from that, existing metrics do not permit one to make a conclusive estimation of the impact of Word Sense Disambiguation techniques into MT systems. In this paper, we show how information acquired by an unsupervised semantic analysis method can be used to render MT evaluation more sensitive to lexical semantics. The sense inventories built by this data-driven method are incorporated into METEOR: they replace WordNet for evaluation in English and render METEOR’s synonymy module operable in French. The evaluation results demonstrate that the use of these inventories gives rise to an increase in the number of matches and the correlation with human judgments of translation quality, compared to precision-based metrics

    Capturing Lexical Variation in MT Evaluation Using Automatically Built Sense-Cluster Inventories

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Capturing lexical variation in MT evaluation using automatically built sense-cluster inventories

    Get PDF
    Abstract. The strict character of most of the existing Machine Translation (MT) evaluation metrics does not permit them to capture lexical variation in translation. However, a central issue in MT evaluation is the high correlation that the metrics should have with human judgments of translation quality. In order to achieve a higher correlation, the identification of sense correspondences between the compared translations becomes really important. Given that most metrics are looking for exact correspondences, the evaluation results are often misleading concerning translation quality. Apart from that, existing metrics do not permit one to make a conclusive estimation of the impact of Word Sense Disambiguation techniques into MT systems. In this paper, we show how information acquired by an unsupervised semantic analysis method can be used to render MT evaluation more sensitive to lexical semantics. The sense inventories built by this data-driven method are incorporated into METEOR: they replace WordNet for evaluation in English and render METEOR's synonymy module operable in French. The evaluation results demonstrate that the use of these inventories gives rise to an increase in the number of matches and the correlation with human judgments of translation quality, compared to precision-based metrics

    An algorithm for cross-lingual sense-clustering tested in a MT evaluation setting

    Get PDF
    Unsupervised sense induction methods offer a solution to the problem of scarcity of semantic resources. These methods automatically extract semantic information from textual data and create resources adapted to specific applications and domains of interest. In this paper, we present a clustering algorithm for cross-lingual sense induction which generates bilingual semantic inventories from parallel corpora. We describe the clustering procedure and the obtained resources. We then proceed to a large-scale evaluation by integrating the resources into a Machine Translation (MT) metric (METEOR). We show that the use of the data-driven sense-cluster inventories leads to better correlation with human judgments of translation quality, compared to precision-based metrics, and to improvements similar to those obtained when a handcrafted semantic resource is used

    D6.2 Integrated Final Version of the Components for Lexical Acquisition

    Get PDF
    The PANACEA project has addressed one of the most critical bottlenecks that threaten the development of technologies to support multilingualism in Europe, and to process the huge quantity of multilingual data produced annually. Any attempt at automated language processing, particularly Machine Translation (MT), depends on the availability of language-specific resources. Such Language Resources (LR) contain information about the language\u27s lexicon, i.e. the words of the language and the characteristics of their use. In Natural Language Processing (NLP), LRs contribute information about the syntactic and semantic behaviour of words - i.e. their grammar and their meaning - which inform downstream applications such as MT. To date, many LRs have been generated by hand, requiring significant manual labour from linguistic experts. However, proceeding manually, it is impossible to supply LRs for every possible pair of European languages, textual domain, and genre, which are needed by MT developers. Moreover, an LR for a given language can never be considered complete nor final because of the characteristics of natural language, which continually undergoes changes, especially spurred on by the emergence of new knowledge domains and new technologies. PANACEA has addressed this challenge by building a factory of LRs that progressively automates the stages involved in the acquisition, production, updating and maintenance of LRs required by MT systems. The existence of such a factory will significantly cut down the cost, time and human effort required to build LRs. WP6 has addressed the lexical acquisition component of the LR factory, that is, the techniques for automated extraction of key lexical information from texts, and the automatic collation of lexical information into LRs in a standardized format. The goal of WP6 has been to take existing techniques capable of acquiring syntactic and semantic information from corpus data, improving upon them, adapting and applying them to multiple languages, and turning them into powerful and flexible techniques capable of supporting massive applications. One focus for improving the scalability and portability of lexical acquisition techniques has been to extend exiting techniques with more powerful, less "supervised" methods. In NLP, the amount of supervision refers to the amount of manual annotation which must be applied to a text corpus before machine learning or other techniques are applied to the data to compile a lexicon. More manual annotation means more accurate training data, and thus a more accurate LR. However, given that it is impractical from a cost and time perspective to manually annotate the vast amounts of data required for multilingual MT across domains, it is important to develop techniques which can learn from corpora with less supervision. Less supervised methods are capable of supporting both large-scale acquisition and efficient domain adaptation, even in the domains where data is scarce. Another focus of lexical acquisition in PANACEA has been the need of LR users to tune the accuracy level of LRs. Some applications may require increased precision, or accuracy, where the application requires a high degree of confidence in the lexical information used. At other times a greater level of coverage may be required, with information about more words at the expense of some degree of accuracy. Lexical acquisition in PANACEA has investigated confidence thresholds for lexical acquisition to ensure that the ultimate users of LRs can generate lexical data from the PANACEA factory at the desired level of accuracy

    Delving into the uncharted territories of Word Sense Disambiguation

    Get PDF
    The automatic disambiguation of word senses, i.e. Word Sense Disambiguation, is a long-standing task in the field of Natural Language Processing; an AI-complete problem that took its first steps more than half a century ago, and which, to date, has apparently attained human-like performances on standard evaluation benchmarks. Unfortunately, the steady evolution that the task experienced over time in terms of sheer performance has not been followed hand in hand by adequate theoretical support, nor by careful error analysis. Furthermore, we believe that the lack of an exhaustive bird’s eye view which accounts for the sort of high-end and unrealistic computational architectures that systems will soon need in order to further refine their performances could lead the field to a dead angle in a few years. In essence, taking advantage of the current moment of great accomplishments and renewed interest in the task, we argue that Word Sense Disambiguation is mature enough for researchers to really observe the extent of the results hitherto obtained, evaluate what is actually missing, and answer the much sought for question: “are current state-of-the-art systems really able to effectively solve lexical ambiguity?” Driven by the desire to become both architects and participants in this period of pondering, we have identified a few macro-areas representatives of the challenges of automatic disambiguation. From this point of view, in this thesis, we propose experimental solutions and empirical tools so as to bring to the attention of the Word Sense Disambiguation community unusual and unexplored points of view. We hope these will represent a new perspective through which to best observe the current state of disambiguation, as well as to foresee future paths for the task to evolve on. Specifically, 1q) prompted by the growing concern about the rise in performance being closely linked to the demand for more and more unrealistic computational architectures in all areas of application of Deep Learning related techniques, we 1a) provide evidence for the undisclosed potential of approaches based on knowledge-bases, via the exploitation of syntagmatic information. Moreover, 2q) driven by the dissatisfaction with the use of cognitively-inaccurate, finite inventories of word senses in Word Sense Disambiguation, we 2a) introduce an approach based on Definition Modeling paradigms to generate contextual definitions for target words and phrases, hence going beyond the limits set by specific lexical-semantic inventories. Finally, 3q) moved by the desire to analyze the real implications beyond the idea of “machines performing disambiguation on par with their human counterparts” we 3a) put forward a detailed analysis of the shared errors affecting current state-of-the-art systems based on diverse approaches for Word Sense Disambiguation, and highlight, by means of a novel evaluation dataset tailored to represent common and critical issues shared by all systems, performances way lower than those usually reported in the current literature

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    ParaSense: parallel corpora for word sense disambiguation

    Get PDF

    The Status of Coronals in Standard American English . An Optimality-Theoretic Account

    Get PDF
    Coronals are very special sound segments. There is abundant evidence from various fields of phonetics which clearly establishes coronals as a class of consonants appropriate for phonological analysis. The set of coronals is stable across varieties of English unlike other consonant types, e.g. labials and dorsals, which are subject to a greater or lesser degree of variation. Coronals exhibit stability in inventories crosslinguistically, but they simultaneously display flexibility in alternations, i.e. assimilation, deletion, epenthesis, and dissimilation, when it is required by the contradictory forces of perception and production. The two main, opposing types of alternation that coronals in SAE participate in are examined. These are weakening phenomena, i.e. assimilation and deletion, and strengthening phenomena, i.e. epenthesis and dissimilation. Coronals are notorious for their contradictory behavior, especially in alternations. This type of behavior can be accounted for within a phonetically grounded OT framework that unites both phonetic and phonological aspects of alternations. Various sets of inherently conflicting FAITHFULNESS and MARKEDNESS constraints that are needed for an OT analysis of SAE alternations are intoduced

    A distributional investigation of German verbs

    Get PDF
    Diese Dissertation bietet eine empirische Untersuchung deutscher Verben auf der Grundlage statistischer Beschreibungen, die aus einem großen deutschen Textkorpus gewonnen wurden. In einem kurzen Überblick über linguistische Theorien zur lexikalischen Semantik von Verben skizziere ich die Idee, dass die Verbbedeutung wesentlich von seiner Argumentstruktur (der Anzahl und Art der Argumente, die zusammen mit dem Verb auftreten) und seiner Aspektstruktur (Eigenschaften, die den zeitlichen Ablauf des vom Verb denotierten Ereignisses bestimmen) abhängt. Anschließend erstelle ich statistische Beschreibungen von Verben, die auf diesen beiden unterschiedlichen Bedeutungsfacetten basieren. Insbesondere untersuche ich verbale Subkategorisierung, Selektionspräferenzen und Aspekt. Alle diese Modellierungsstrategien werden anhand einer gemeinsamen Aufgabe, der Verbklassifikation, bewertet. Ich zeige, dass im Rahmen von maschinellem Lernen erworbene Merkmale, die verbale lexikalische Aspekte erfassen, für eine Anwendung von Vorteil sind, die Argumentstrukturen betrifft, nämlich semantische Rollenkennzeichnung. Darüber hinaus zeige ich, dass Merkmale, die die verbale Argumentstruktur erfassen, bei der Aufgabe, ein Verb nach seiner Aspektklasse zu klassifizieren, gut funktionieren. Diese Ergebnisse bestätigen, dass diese beiden Facetten der Verbbedeutung auf grundsätzliche Weise zusammenhängen.This dissertation provides an empirical investigation of German verbs conducted on the basis of statistical descriptions acquired from a large corpus of German text. In a brief overview of the linguistic theory pertaining to the lexical semantics of verbs, I outline the idea that verb meaning is composed of argument structure (the number and types of arguments that co-occur with a verb) and aspectual structure (properties describing the temporal progression of an event referenced by the verb). I then produce statistical descriptions of verbs according to these two distinct facets of meaning: In particular, I examine verbal subcategorisation, selectional preferences, and aspectual type. All three of these modelling strategies are evaluated on a common task, automatic verb classification. I demonstrate that automatically acquired features capturing verbal lexical aspect are beneficial for an application that concerns argument structure, namely semantic role labelling. Furthermore, I demonstrate that features capturing verbal argument structure perform well on the task of classifying a verb for its aspectual type. These findings suggest that these two facets of verb meaning are related in an underlying way
    corecore