178,233 research outputs found

    In silico evolution of diauxic growth

    Get PDF
    The glucose effect is a well known phenomenon whereby cells, when presented with two different nutrients, show a diauxic growth pattern, i.e. an episode of exponential growth followed by a lag phase of reduced growth followed by a second phase of exponential growth. Diauxic growth is usually thought of as a an adaptation to maximise biomass production in an environment offering two or more carbon sources. While diauxic growth has been studied widely both experimentally and theoretically, the hypothesis that diauxic growth is a strategy to increase overall growth has remained an unconfirmed conjecture. Here, we present a minimal mathematical model of a bacterial nutrient uptake system and metabolism. We subject this model to artificial evolution to test under which conditions diauxic growth evolves. As a result, we find that, indeed, sequential uptake of nutrients emerges if there is competition for nutrients and the metabolism/uptake system is capacity limited. However, we also find that diauxic growth is a secondary effect of this system and that the speed-up of nutrient uptake is a much larger effect. Notably, this speed-up of nutrient uptake coincides with an overall reduction of efficiency. Our two main conclusions are: (i) Cells competing for the same nutrients evolve rapid but inefficient growth dynamics. (ii) In the deterministic models we use here no substantial lag-phase evolves. This suggests that the lag-phase is a consequence of stochastic gene expression

    Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    Get PDF
    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions

    Investment Incentives and Electricity Spot Market Design

    Get PDF
    In liberalized electricity markets strategic firms compete in an environment characterized by fluctuating demand and non-storability of electricity. While spot market design under those conditions by now is well understood, a rigorous analysis of investment incentives is still missing. Existing models, as the peak-load-pricing approach, analyze welfare optimal investment and find that optimal investment is higher with more competitive spot markets. In this article we want to extend the analysis to investment decisions of strategic firms that anticipate competition on many consecutive spot markets with fluctuating (and possibly uncertain) demand. We study how the degree of spot market competition affects investment incentives and welfare and provide an application of the model to electricity market data. Our results show that more competitive spot market prices strictly decrease investment incentives of strategic firms. The reduction of investment incentives can be so intense to even offset the beneficial impact of more competitive spot market design. Those results obtain with and without free entry. Our analysis thus demonstrates that investment incentives necessarily have to be taken into account for a meaningful assessment of proper electricity spot market design

    Occurrence, morphology and growth of understory saplings in Swedish forests

    Get PDF
    Growing demands for a multipurpose forestry leads to increased use of silvicultural systems that avoid clear-cutting. Regeneration in such systems is based on establishment and ingrowth of new seedlings under a more or less closed canopy. At long-term forestry planning reliable ingrowth models are needed to predict the future wood production. The objectives of this thesis were to review the field of ingrowth in established stands, to develop a model for prediction of ingrowth for the planning system Heureka and to deepen the insight in the ingrowth process by a case study. The ingrowth model consisted of four parts, describing: Probability for occurrence of saplings (1-39 mm diameter at breast height (DBH)) on plots with r = 5 m. Number of saplings on stocked plots (plots with saplings of target species). Probability for ingrowth of a sapling over 39 mm DBH during a 5-year period. Diameter of ingrown trees at the end of the 5-year period. The model was based on data from permanent plots at the National Forest Inventory. Separate functions were developed for seven species and species groups. Picea abies saplings had the widest distribution and occurred on 58 % of 12 469 representative plots in established forests. Betula spp. saplings occurred on 50 % of the plots, while the occurrence of saplings of other species was less than 20 %. Sapling density on stocked plots was highest for Betula spp, in average 10 per plot. Average ingrowth rate was 14.6 stems per ha and year, and P. abies made up more than half of this. The ingrowth varied according to the different functions with age, density and species composition of the stand and the moisture and fertility of the site. Growth and morphology of young conifers was examined in a species experiment on a clearcut and in shelterwoods of three different densities (41 – 124 stems per hectare). The largest intra-specific differences between clearcut and shelterwood were found for Pinus spp, while moderate differences were found for Picea spp. For Pinus spp, stem height and diameter decreased, while the stem slenderness increased with increasing shelterwood density. Moreover, the number of branches per whorl and the crown ratio decreased with increasing shelterwood density. The proportion of biomass in roots, stem, branches and needles was analysed as a function of estimated irradiance transmission for each individual. The proportion of stem decreased and the proportion of branches increased with increasing irradiance for Pinus spp. No significant trends were found for Picea spp

    Middlemen: the visible market makers

    Get PDF
    This paper presents a search-theoretic model where middlemen can emerge endogenously to intermediate between ex ante homogeneous buyers and sellers in the presence of coordination frictions. Middlemen set price to compete in the market, and hold an inventory to provide a high matching service. I show that middlemen's inventories can mitigate trade imbalances and interact with price competition, generating an interesting tradeoff for the equilibrium price determination. The competitive limit emerges when middlemen guarantee excess demand will never occur. Conditions are characterized under which middlemen carry out the short-side principle for the market price to be Walrasian

    Fiscal Equalization and Yardstick Competition

    Get PDF
    A multi-jurisdictional system is thought to improve, through yardstick competition, accountability. At the same time equalization programs, a common feature of multi-jurisdictional systems, are thought to be a prerequisite for both efficiency of the internal market and the equity objective of the equal treatment of equals. This paper shows that such programs, by reducing the information context of comparisons across jurisdictions, introduce perverse fiscal incentives and thus reduce accountability. The consequence of this is that equilibrium rent-taking increases with the intensity of equalization transfers.equalization transfer programs, fiscal capacity, rent-seeking, fiscal federalism

    How much do we really lose?—Yield losses in the proximity of natural landscape elements in agricultural landscapes

    Get PDF
    Natural landscape elements (NLEs) in agricultural landscapes contribute to biodiversity and ecosystem services, but are also regarded as an obstacle for large‐scale agricultural production. However, the effects of NLEs on crop yield have rarely been measured. Here, we investigated how different bordering structures, such as agricultural roads, field‐to‐field borders, forests, hedgerows, and kettle holes, influence agricultural yields. We hypothesized that (a) yield values at field borders differ from mid‐field yields and that (b) the extent of this change in yields depends on the bordering structure. We measured winter wheat yields along transects with log‐scaled distances from the border into the agricultural field within two intensively managed agricultural landscapes in Germany (2014 near Göttingen, and 2015–2017 in the Uckermark). We observed a yield loss adjacent to every investigated bordering structure of 11%–38% in comparison with mid‐field yields. However, depending on the bordering structure, this yield loss disappeared at different distances. While the proximity of kettle holes did not affect yields more than neighboring agricultural fields, woody landscape elements had strong effects on winter wheat yields. Notably, 95% of mid‐field yields could already be reached at a distance of 11.3 m from a kettle hole and at a distance of 17.8 m from hedgerows as well as forest borders. Our findings suggest that yield losses are especially relevant directly adjacent to woody landscape elements, but not adjacent to in‐field water bodies. This highlights the potential to simultaneously counteract yield losses close to the field border and enhance biodiversity by combining different NLEs in agricultural landscapes such as creating strips of extensive grassland vegetation between woody landscape elements and agricultural fields. In conclusion, our results can be used to quantify ecocompensations to find optimal solutions for the delivery of productive and regulative ecosystem services in heterogeneous agricultural landscapes

    Nonlocal competition and logistic growth: patterns, defects and fronts

    Full text link
    Logistic growth of diffusing reactants on spatial domains with long range competition is studied. The bifurcations cascade involved in the transition from the homogenous state to a spatially modulated stable solution is presented, and a distinction is made between a modulated phase, dominated by single or few wavenumbers, and the spiky phase, where localized colonies are separated by depleted region. The characteristic defects in the periodic structure are presented for each phase, together with the invasion dynamics in case of local initiation. It is shown that the basic length scale that controls the bifurcation is the width of the Fisher front, and that the total population grows as this width decreases. A mix of analytic results and extensive numerical simulations yields a comprehensive examination of the possible phases for logistic growth in the presence of nonlocal competition

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los
    • 

    corecore