707 research outputs found

    Robust capacitated trees and networks with uniform demands

    Full text link
    We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in case of terminals with uniform demands. Formally, we are given a graph, capacity and cost functions on the edges, a root, a subset of nodes called terminals, and a bound k on the number of edge failures. We first study the problem where k = 1 and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Second, we consider the problem of computing a minimum-cost survivable network, i.e., a network that covers the root and terminals even after the removal of any k edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a cut-set based formulation, a flow based one, and a bilevel one (with an attacker and a defender). We propose algorithms to solve each formulation and compare their efficiency

    Regenerator Location Problem and survivable extensions: A hub covering location perspective

    Get PDF
    Cataloged from PDF version of article.In a telecommunications network the reach of an optical signal is the maximum distance it can traverse before its quality degrades. Regenerators are devices to extend the optical reach. The regenerator placement problem seeks to place the minimum number of regenerators in an optical network so as to facilitate the communication of a signal between any node pair. In this study, the Regenerator Location Problem is revisited from the hub location perspective directing our focus to applications arising in transportation settings. Two new dimensions involving the challenges of survivability are introduced to the problem. Under partial survivability, our designs hedge against failures in the regeneration equipment only, whereas under full survivability failures on any of the network nodes are accounted for by the utilization of extra regeneration equipment. All three variations of the problem are studied in a unifying framework involving the introduction of individual flow-based compact formulations as well as cut formulations and the implementation of branch and cut algorithms based on the cut formulations. Extensive computational experiments are conducted in order to evaluate the performance of the proposed solution methodologies and to gain insights from realistic instances. (C) 2014 Elsevier Ltd. All rights reserved

    An information-theoretic view of network management

    Get PDF
    We present an information-theoretic framework for network management for recovery from nonergodic link failures. Building on recent work in the field of network coding, we describe the input-output relations of network nodes in terms of network codes. This very general concept of network behavior as a code provides a way to quantify essential management information as that needed to switch among different codes (behaviors) for different failure scenarios. We compare two types of recovery schemes, receiver-based and network-wide, and consider two formulations for quantifying network management. The first is a centralized formulation where network behavior is described by an overall code determining the behavior of every node, and the management requirement is taken as the logarithm of the number of such codes that the network may switch among. For this formulation, we give bounds, many of which are tight, on management requirements for various network connection problems in terms of basic parameters such as the number of source processes and the number of links in a minimum source-receiver cut. Our results include a lower bound for arbitrary connections and an upper bound for multitransmitter multicast connections, for linear receiver-based and network-wide recovery from all single link failures. The second is a node-based formulation where the management requirement is taken as the sum over all nodes of the logarithm of the number of different behaviors for each node. We show that the minimum node-based requirement for failures of links adjacent to a single receiver is achieved with receiver-based schemes

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    An oil pipeline design problem

    Get PDF
    Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et l’Aide à la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574

    Valid Inequalities and Facets for Multi-Module (Survivable) Capacitated Network Design Problem

    Get PDF
    In this dissertation, we develop new methodologies and algorithms to solve the multi-module (survivable) network design problem. Many real-world decision-making problems can be modeled as network design problems, especially on networks with capacity requirements on arcs or edges. In most cases, network design problems of this type that have been studied involve different types of capacity sizes (modules), and we call them the multi-module capacitated network design (MMND) problem. MMND problems arise in various industrial applications, such as transportation, telecommunication, power grid, data centers, and oil production, among many others. In the first part of the dissertation, we study the polyhedral structure of the MMND problem. We summarize current literature on polyhedral study of MMND, which generates the family of the so-called cutset inequalities based on the traditional mixed integer rounding (MIR). We then introduce a new family of inequalities for MMND based on the so-called n-step MIR, and show that various classes of cutset inequalities in the literature are special cases of these inequalities. We do so by studying a mixed integer set, the cutset polyhedron, which is closely related to MMND. We We also study the strength of this family of inequalities by providing some facet-defining conditions. These inequalities are then tested on MMND instances, and our computational results show that these classes of inequalities are very effective for solving MMND problems. Generalizations of these inequalities for some variants of MMND are also discussed. Network design problems have many generalizations depending on the application. In the second part of the dissertation, we study a highly applicable form of SND, referred to as multi-module SND (MM-SND), in which transmission capacities on edges can be sum of integer multiples of differently sized capacity modules. For the first time, we formulate MM-SND as a mixed integer program (MIP) using preconfigured-cycles (p-cycles) to reroute flow on failed edges. We derive several classes of valid inequalities for this MIP, and show that the valid inequalities previously developed in the literature for single-module SND are special cases of our inequalities. Furthermore, we show that our valid inequalities are facet-defining for MM-SND in many cases. Our computational results, using a heuristic separation algorithm, show that these inequalities are very effective in solving MM-SND. In particular they are more effective than compared to using single-module inequalities alone. Lastly, we generalize the inequalities for MMND for other mixed integer sets relaxed from MMND and the cutset polyhedron. These inequalities also generalize several valid inequalities in the literature. We conclude the dissertation by summarizing the work and pointing out potential directions for future research

    The Multilayer Capacitated Survivable IP Network Design Problem : valid inequalities and Branch-and-Cut

    No full text
    Telecommunication networks can be seen as the stacking of several layers like, for instance, IP-over-Optical networks. This infrastructure has to be sufficiently survivable to restore the traffic in the event of a failure. Moreover, it should have adequate capacities so that the demands can be routed between the origin-destinations. In this paper we consider the Multilayer Capacitated Survivable IP Network Design problem. We study two variants of this problem with simple and multiple capacities. We give two multicommodity flow formulations for each variant of this problem and describe some valid inequalities. In particular, we characterize valid inequalities obtained using Chvatal-Gomory procedure from the well known Cutset inequalities. We show that some of these inequalities are facet defining. We discuss separation routines for all the valid inequalities. Using these results, we develop a Branch-and-Cut algorithm and a Branch-and-Cut-and-Price algorithm for each variant and present extensive computational results

    K Pair of disjoint paths Algorithm for Protection in WDM Optical Networks

    Get PDF
    Survivable routing in wavelength division multiplexing (WDM) optical networks has been proven to be NP-hard problem. There is a trade-off between the computational time and the optimality of solutions in existing approaches to the problem. Existing heuristic approaches purely based the graph algorithms are efficient in computational time but do not offer optimal solutions and may fail in some cases even when a solution exists. Meanwhile, the integer linear programming (ILP) models offer optimal solutions but are intractable even with moderate scale networks. In this paper, we introduce a new algorithm for finding K pairs of disjoint paths which are employed as K candidate pairs for each connection in the ILP models. We introduce an ILP model for dedicated path protection in which the number of decision variables is mainly dependant on traffic requests and the constant K, not on the network siz
    corecore