223 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    QoS support in satellite and wireless networks : study under the network simulator (NS-2)

    Get PDF
    Aquest projecte es basa en l'estudi de l'oferiment de qualitat de servei en xarxes wireless i satel·litals. Per això l'estudi de les tècniques de cross-layer i del IEEE 802.11e ha sigut el punt clau per al desenvolupament teòric d'aquest estudi. Usant el simulador de xarxes network simulator, a la part de simulacions es plantegen tres situacions: l'estudi de la xarxa satel·lital, l'estudi del mètode d'accés HCCA i la interconnexió de la xarxa satel·lital amb la wireless. Encara que aquest últim punt, incomplet en aquest projecte, ha de ser la continuació per a futures investigacions.Este proyecto se basa en el estudio del ofrecimiento de calidad de servicio en redes wireless y satelitales. Por eso el estudio de las técnicas de cross-layer y del IEEE 802.11eha sido el punto clave para el desarrollo teórico de este estudio. Usando el simulador de redes network simulator, en la parte de simulaciones se plantean tres situaciones: el estudio de la red satelital, el estudio del método de acceso HCCA y la interconexión de la red satelital con la wireless. Aunque este último punto, incompleto en este proyecto, tiene que ser la continuación para futuras investigaciones.This project is based on the study of offering quality of service in satellite and wireless networks. For that reason the study of the techniques of cross-layer and the IEEE 802.11e has been the key point for the theoretical development of this study. Using the software network simulator, in the part of simulations three situations consider: the study of the satellite network, the study of the access method HCCA and the interconnection of the satellite network with the wireless. Although this last point, incomplete in this work, must be the continuation for future investigations

    Optimization of the interoperability and dynamic spectrum management in mobile communications systems beyond 3G

    Get PDF
    The future wireless ecosystem will heterogeneously integrate a number of overlapped Radio Access Technologies (RATs) through a common platform. A major challenge arising from the heterogeneous network is the Radio Resource Management (RRM) strategy. A Common RRM (CRRM) module is needed in order to provide a step toward network convergence. This work aims at implementing HSDPA and IEEE 802.11e CRRM evaluation tools. Innovative enhancements to IEEE 802.11e have been pursued on the application of cross-layer signaling to improve Quality of Service (QoS) delivery, and provide more efficient usage of radio resources by adapting such parameters as arbitrary interframe spacing, a differentiated backoff procedure and transmission opportunities, as well as acknowledgment policies (where the most advised block size was found to be 12). Besides, the proposed cross-layer algorithm dynamically changes the size of the Arbitration Interframe Space (AIFS) and the Contention Window (CW) duration according to a periodically obtained fairness measure based on the Signal to Interference-plus-Noise Ratio (SINR) and transmission time, a delay constraint and the collision rate of a given machine. The throughput was increased in 2 Mb/s for all the values of the load that have been tested whilst satisfying more users than with the original standard. For the ad hoc mode an analytical model was proposed that allows for investigating collision free communications in a distributed environment. The addition of extra frequency spectrum bands and an integrated CRRM that enables spectrum aggregation was also addressed. RAT selection algorithms allow for determining the gains obtained by using WiFi as a backup network for HSDPA. The proposed RAT selection algorithm is based on the load of each system, without the need for a complex management system. Simulation results show that, in such scenario, for high system loads, exploiting localization while applying load suitability optimization based algorithm, can provide a marginal gain of up to 450 kb/s in the goodput. HSDPA was also studied in the context of cognitive radio, by considering two co-located BSs operating at different frequencies (in the 2 and 5 GHz bands) in the same cell. The system automatically chooses the frequency to serve each user with an optimal General Multi-Band Scheduling (GMBS) algorithm. It was shown that enabling the access to a secondary band, by using the proposed Integrated CRRM (iCRRM), an almost constant gain near 30 % was obtained in the throughput with the proposed optimal solution, compared to a system where users are first allocated in one of the two bands and later not able to handover between the bands. In this context, future cognitive radio scenarios where IEEE 802.11e ad hoc modes will be essential for giving access to the mobile users have been proposed

    Advanced Wireless LAN

    Get PDF
    The past two decades have witnessed starling advances in wireless LAN technologies that were stimulated by its increasing popularity in the home due to ease of installation, and in commercial complexes offering wireless access to their customers. This book presents some of the latest development status of wireless LAN, covering the topics on physical layer, MAC layer, QoS and systems. It provides an opportunity for both practitioners and researchers to explore the problems that arise in the rapidly developed technologies in wireless LAN

    VoIP Capacity Evaluation in IEEE 802.11e WLAN Environment

    Get PDF
    In this report, we present an analytical model for VoIP capacity in IEEE 802.11e WLAN. We illustrate performance results relative to typical codec rates of G.711 PCM (64 kbit/s), G.729 (8 kbit/s) and G.723 (6.3 kbit/s). G.729 and G.723 allow a greater capacity than G.711 which is constrained by throughput. This greater capacity is at the expense of small quality degradation due to the delay increase since G.729 and G.723 codecs are more delay sensitive than G.711. In our study we analyse the occurrence of CAPs (Controlled Access Periods) during the Contention Period (CP) and its effect of a promising increase in the VoIP over WLAN capacity. We also show that high data rates (up to 54 Mb/s) allow important VoIP capacity (up to 400 G.711 VoIP calls, 997 G.729 VoIP calls and 1045 G.723 VoIP calls)

    An Experimental Analysis of the Call Capacity of IEEE 802.11b Wireless Local Area Networks for VoIP Telephony

    Get PDF
    The use of the Internet to make phone calls is growing in popularity as the Voice over Internet protocol (VoIP) allows users to make phone calls virtually free of charge. The increased uptake of broadband services by domestic users will further increase the use of VoIP telephony. Furthermore, the emergence of low cost wireless networks (namely IEEE 802.11a/b/g WLANs) is expected to bring wireless VoIP into the mainstream. As the number of wireless hotspots increases more users will want to use VoIP calls wherever possible by connecting to open access points (AP). A major concern with VoIP is Quality of Service (QoS). In order for VoIP to be truly successful users must enjoy a similar perceived QoS as a call made over a traditional telephone network. There are many factors that influence QoS which include: throughput, packet delay, delay variation (or jitter), and packet loss. This thesis is an experimental study of the call capacity of an IEEE 802.11b network when using VoIP telephony. Experiments included increasing the number of VoIP stations and also increasing the level of background traffic until network saturation occurs. Results show that the network is capable of supporting at least 16 VoIP stations. Due to the operation of the IEEE 802.11 medium access control (MAC) mechanism, the AP acts as a bottleneck for all traffic destined for wireless stations, in that significant delays can be incurred by VoIP packets which can lead to a poor perceived QoS by users. Consequently the performance of the AP downlink is the critical component in determining VoIP call capacity
    corecore