497 research outputs found

    DYNAMIC LOT-SIZING PROBLEMS: A Review on Model and Efficient Algorithm

    Get PDF
    Due to their importance in industry, dynamic demand lot-sizing problems are frequently studied.This study consider dynamic lot-sizing problems with recent advances in problem and modelformulation, and algorithms that enable large-scale problems to be effectively solved.Comprehensive review is given on model formulation of dynamic lot-sizing problems, especiallyon capacitated lot-sizing (CLS) problem and the coordinated lot-sizing problem. Bothapproaches have their intercorrelated, where CLS can be employed for single or multilevel/stage, item, and some restrictions. When a need for joint setup replenishment exists, thenthe coordinated lot-sizing is the choice. Furthermore, both algorithmics and heuristics solutionin the research of dynamic lot sizing are considered, followed by an illustration to provide anefficient algorithm

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    A Mixed Integer Programming Model Formulation for Solving the Lot-Sizing Problem

    Get PDF
    This paper addresses a mixed integer programming (MIP) formulation for the multi-item uncapacitated lot-sizing problem that is inspired from the trailer manufacturer. The proposed MIP model has been utilized to find out the optimum order quantity, optimum order time, and the minimum total cost of purchasing, ordering, and holding over the predefined planning horizon. This problem is known as NP-hard problem. The model was presented in an optimal software form using LINGO 13.0.Comment: 9 pages, 1 figure, 13 tables; International Journal of Computer Science Issues, Vol. 9, Issue 2, No 1, March 201

    An Integrated Strategy for a Production Planning and Warehouse Layout Problem: Modeling and Solution Approaches

    Get PDF
    We study a real-world production warehousing case, where the company always faces the challenge to find available space for their products and to manage the items in the warehouse. To resolve the problem, an integrated strategy that combines warehouse layout with the capacitated lot-sizing problem is presented, which have been traditionally treated separately in the existing literature. We develop a mixed integer linear programming model to formulate the integrated optimization problem with the objective of minimizing the total cost of production and warehouse operations. The problem with real data is a large-scale instance that is beyond the capability of optimization solvers. A novel Lagrangian relax-and-fix heuristic approach and its variants are proposed to solve the large-scale problem. The preliminary numerical results from the heuristic approaches are reported

    Lot-Sizing Problem for a Multi-Item Multi-level Capacitated Batch Production System with Setup Carryover, Emission Control and Backlogging using a Dynamic Program and Decomposition Heuristic

    Get PDF
    Wagner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-Sizing Problem (ELSP), which is widely applied in inventory control, production planning, and capacity planning. The original algorithm runs in O(T^2) time, where T is the number of periods of the problem instance. Afterward few linear-time algorithms have been developed to solve the Wagner-Whitin (WW) lot-sizing problem; examples include the ELSP and equivalent Single Machine Batch-Sizing Problem (SMBSP). This dissertation revisits the algorithms for ELSPs and SMBSPs under WW cost structure, presents a new efficient linear-time algorithm, and compares the developed algorithm against comparable ones in the literature. The developed algorithm employs both lists and stacks data structure, which is completely a different approach than the rest of the algorithms for ELSPs and SMBSPs. Analysis of the developed algorithm shows that it executes fewer number of basic actions throughout the algorithm and hence it improves the CPU time by a maximum of 51.40% for ELSPs and 29.03% for SMBSPs. It can be concluded that the new algorithm is faster than existing algorithms for both ELSPs and SMBSPs. Lot-sizing decisions are crucial because these decisions help the manufacturer determine the quantity and time to produce an item with a minimum cost. The efficiency and productivity of a system is completely dependent upon the right choice of lot-sizes. Therefore, developing and improving solution procedures for lot-sizing problems is key. This dissertation addresses the classical Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) and an extension of the MLCLSP with a Setup Carryover, Backlogging and Emission control. An item Dantzig Wolfe (DW) decomposition technique with an embedded Column Generation (CG) procedure is used to solve the problem. The original problem is decomposed into a master problem and a number of subproblems, which are solved using dynamic programming approach. Since the subproblems are solved independently, the solution of the subproblems often becomes infeasible for the master problem. A multi-step iterative Capacity Allocation (CA) heuristic is used to tackle this infeasibility. A Linear Programming (LP) based improvement procedure is used to refine the solutions obtained from the heuristic method. A comparative study of the proposed heuristic for the first problem (MLCLSP) is conducted and the results demonstrate that the proposed heuristic provide less optimality gap in comparison with that obtained in the literature. The Setup Carryover Assignment Problem (SCAP), which consists of determining the setup carryover plan of multiple items for a given lot-size over a finite planning horizon is modelled as a problem of finding Maximum Weighted Independent Set (MWIS) in a chain of cliques. The SCAP is formulated using a clique constraint and it is proved that the incidence matrix of the SCAP has totally unimodular structure and the LP relaxation of the proposed SCAP formulation always provides integer optimum solution. Moreover, an alternative proof that the relaxed ILP guarantees integer solution is presented in this dissertation. Thus, the SCAP and the special case of the MWIS in a chain of cliques are solvable in polynomial time

    Improvement to an existing multi-level capacitated lot sizing problem considering setup carryover, backlogging, and emission control

    Get PDF
    This paper presents a multi-level, multi-item, multi-period capacitated lot-sizing problem. The lot-sizing problem studies can obtain production quantities, setup decisions and inventory levels in each period fulfilling the demand requirements with limited capacity resources, considering the Bill of Material (BOM) structure while simultaneously minimizing the production, inventory, and machine setup costs. The paper proposes an exact solution to Chowdhury et al. (2018)\u27s[1] developed model, which considers the backlogging cost, setup carryover & greenhouse gas emission control to its model complexity. The problem contemplates the Dantzig-Wolfe (D.W.) decomposition to decompose the multi-level capacitated problem into a single-item uncapacitated lot-sizing sub-problem. To avoid the infeasibilities of the weighted problem (WP), an artificial variable is introduced, and the Big-M method is employed in the D.W. decomposition to produce an always feasible master problem. In addition, Wagner & Whitin\u27s[2] forward recursion algorithm is also incorporated in the solution approach for both end and component items to provide the minimum cost production plan. Introducing artificial variables in the D.W. decomposition method is a novel approach to solving the MLCLSP model. A better performance was achieved regarding reduced computational time (reduced by 50%) and optimality gap (reduced by 97.3%) in comparison to Chowdhury et al. (2018)\u27s[1] developed model

    Fuzzy Mathematical Model For A Lot-Sizing Problem In Closed-Loop Supply Chain

    Get PDF
    The aim of lot sizing problems is to determine the periods where production takes place and the quantities to be produced in order to satisfy the customer demand while minimizing the total cost. Due to its importance on the efficiency of the production and inventory systems, Lot sizing problems are one of the most challenging production planning problems and have been studied for many years with different modeling features. In this paper, we propose a fuzzy mathematical model for the single-item capacitated lot-sizing problem in closed-loop supply chain. The possibility approach is chosen to convert the fuzzy mathematical model to crisp mathematical model. The obtained crisp model is in the form of mixed integer linear programming (MILP), which can be solved by existing solver in crisp environment to find optimal solution. Due to the complexity of the problems harmony search (HS) algorithm and genetic algorithm (GA) have been used to solve the model for fifteen problem. To verify the performance of the algorithm, we computationally compared the results obtained by the algorithms with the results of the branch-and-bound method. Additionally, Taguchi method was used to calibrate the parameters of the meta-heuristic algorithms. The computational results show that, the objective values obtained by HS are better from GA results for large dimensions test problems, also CPU time obtained by HS are better than GA for Large dimensions

    Integrated Models and Algorithms for Automotive Supply Chain Optimization

    Get PDF
    The automotive industry is one of the most important economic sectors, and the efficiency of its supply chain is crucial for ensuring its profitability. Developing and applying techniques to optimize automotive supply chains can lead to favorable economic outcomes and customer satisfaction. In this dissertation, we develop integrated models and algorithms for automotive supply chain optimization. Our objective is to explore methods that can increase the competitiveness of the automotive supply chain via maximizing efficiency and service levels. Based on interactions with an automotive industry supplier, we define an automotive supply chain planning problem at a detailed operational level while taking into account realistic assumptions such as sequence-dependent setups on parallel machines, auxiliary resource assignments, and multiple types of costs. We model the research problem of interest using mixed-integer linear programming. Given the problem’s NP-hard complexity, we develop a hybrid metaheuristic approach, including a constructive heuristic and an effective encoding-decoding strategy, to minimize the total integrated cost of production setups, inventory holding, transportation, and production outsourcing. Furthermore, since there are often conflicting objectives of interest in automotive supply chains, we investigate simultaneously optimizing total cost and customer service level via a multiobjective optimization methodology. Finally, we analyze the impact of adding an additional transportation mode, which offers a cost vs. delivery time option to the manufacturer, on total integrated cost. Our results demonstrate the promising performance of the proposed solution approaches to analyze the integrated cost minimization problem to near optimality in a timely manner, lowering the cost of the automotive supply chain. The proposed bicriteria, hybrid metaheuristic offers decision makers several options to trade-off cost with service level via identified Pareto-optimal solutions. The effect of the available additional transportation mode’s lead time is found to be bigger than its cost on the total integrated cost measure under study
    corecore