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Abstract 

 
Due to their importance in industry, dynamic demand lot-sizing problems are frequently studied. 

This study consider dynamic lot-sizing problems with recent advances in problem and model 

formulation, and algorithms that enable large-scale problems to be effectively solved. 

Comprehensive review is given on model formulation of  dynamic lot-sizing problems, especially 

on capacitated lot-sizing (CLS) problem and the coordinated lot-sizing problem. Both 

approaches have their intercorrelated, where CLS can be employed  for single or multi 

level/stage, item, and some restrictions. When a need for joint setup replenishment exists, then 

the coordinated lot-sizing is the choice. Furthermore, both algorithmics and heuristics solution 

in the research of dynamic lot sizing are considered, followed by an illustration to provide an 

efficient algorithm. 

Keyword: Dynamic lot sizing,  modeling, algorithm, heuristics. 

1. INTRODUCTION 

Lot sizing problems are production 

planning problems with setups between 

production lots. By reason of these setups, it is 

often too costly to produce a given product in 

every period. On the other hand, generating 

fewer setups by producing large quantities to 

satisfy future demands results in high 

inventory holding costs. Thus, the objective is 

to determine the periods where production 

should occur, and the quantities to be 

produced, in order to satisfy demand while 

minimizing production, setup and inventory 

holding costs.  

Lot-sizing problems have been studied 

extensively for the past half century. Wagner 

and Whitin (1958) propose a forward 

algorithm for a general dynamic version of the 

uncapacitated economic lot-sizing model. 

Since then, various variants, including single-

item and multi-item, uncapacitated and 

capacitated lot-sizing problems, remain an 

important topic in Operations Research fields. 

However, the uncapacitated lot-sizing problem 

is an ideal case and hardly applicable to real-

world operations. Furthermore, the general 

capacitated lot-sizing problem is NP-hard (see 

Bitran and Yanasse, 1981) 

Capacitated dynamic lot sizing deals 

with the problem of determining time-phased 

production quantities that meet both given 

external demands and given capacity limits of 

the production system. The problem arises in 

production environments where the 

changeover of a resource from one product 

type to another causes setup time and/or setup 

costs.  

For the (single-level) capacitated lot 

sizing problem (CLSP) and the multi-level 

capacitated lot sizing problem (MLCLSP), the 

problem is to determine production quantities 

and periods only, without consideration of the 

actual production sequence of the orders 

within a time period. This type of modeling 

has the advantage that it allows a flexible 

resequencing of orders within a period, at 

predetermined cost. However, a detailed 

production plan must be generated in a 

subsequent planning step. (Sahling et al., 

2009)   

When concerned to the dynamic demand, 

the coordinated lot-size problem is the choice. 

It determines the time-phased replenishment 

schedule (i.e., timing and order quantity) that 

minimizes the sum of inventory and ordering 

costs for a family of items. A joint shared 

fixed setup cost is incurred each time one or 

more items of the product family are 

replenished, and a minor setup cost is charged 

for each item replenished. In addition, a unit 

cost is applied to each item ordered (see 
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Robinson et al., 2009). Coordinated lot-size 

problems are often encountered in production, 

procurement, and transportation planning  

The purpose of this paper  is to address a 

review of the  concepts of dynamic lot sizing. 

Throughout the paper, three relatively 

straightforward of  lot sizing concepts are 

illustrated, namely: Uncapacitated Single Item 

Lot Sizing Problem (USILSP), Capacitated 

Lot Sizing Problem (CLSP), and the 

Coordinated-Capacitated Lot Sizing Problem 

(CCLSP). The basic concepts of lot sizing 

problem is illustrated in Section 2, while the 

concepts of USILSP, CLSP and CCLSP are 

described intensively together with the 

problem extension and variants in section 3. 

Section 4 explains recent trends in algorithm 

approaching of lot sizing problems briefly, 

enriched by an illustration of lot sizing 

algorithm for a real case of production, and 

compilation of several heuristics based on 

designated problem of lot sizing.  

2. GENERAL OVERVIEW OF LOT-

SIZING PROBLEMS 

A variety of taxonomies are proposed 

for classifying lot-sizing problems. An 

important problem characteristic is the nature 

of demand. Static demand problems assume a 

stationary or constant demand pattern, while 

dynamic demand problems permit demand to 

vary. If all demand values are known for the 

duration of the planning horizon, the demand 

stream is defined as deterministic. Otherwise, 

the demand is considered to be stochastic.  

The complexity of lot sizing problems 

depends on the features taken into account by 

the model. Karimi et al. (2003) explained that 

the characteristics affect the classifying, 

modelling and the complexity of lot sizing 

decisions including: (a) planning horizon, 

which is the time interval on which the master 

production schedule extends into the future, 

(b) number of levels, whether single-level or 

multi-level, (c) number of products, (d) 

capacity or resource constraints, include 

manpower, equipment, machines, budget, etc., 

(e) deterioration of items that influence the 

restrictions in the inventory holding time, (f) 

demand, and (g) setup structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Taxonomy of deterministic dynamic 

demand lot-sizing problems (Robinson,  2009) 

 

Fig 1. presents the six most commonly 

researched deterministic dynamic demand lot-

sizing models. The problems are classified 

according to three factors: (1) single or 

multiple items, (2) capacitated or 

uncapacitated replenishment quantities, and 

(3) joint or independent setup cost structures. 

The problem classes are represented by nodes 

and their structural relationships by arcs, 

where a problem node originating an arc is a 

generalization of the problem node 

terminating the arc. 

3. THE CONCEPTS OF LOT SIZING 

PROBLEMS 

Lot sizing problems are production 

planning problems with setups between 

production lots. Because of these setups, it is 

often too costly to produce a given product in 

every period. On the other hand, generating 

fewer setups by producing large quantities to 

satisfy future demands results in high 

inventory holding costs. Thus, the objective is 

to determine the periods where production 

should take place, and the quantities to be 

produced, in order to satisfy demand while 

minimizing production, setup and inventory 

holding costs. Other costs might also be 

considered. Examples are backorder cost, 

changeover cost, etc.  

3.1. Uncapacitated Single Item Lot Sizing 

Problem (USILSP) 
The USILSP considers a single (or 

aggregate) product, and the production 

capacity is assumed to be high enough to 
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never be binding in an optimal solution. 

USILSP is motivated by a possibility to 

aggregate products to obtain a single product 

(for example products which differ only in 

color can be considered as a single product) 

and where capacity is not a big concern. 

(Brahimi et al., 2006).  

USILSP is very often solved as a sub-

problem in several algorithms for more 

complex lot sizing problems. These are 

basically presented as LP/IP models. For this 

reason, one must study the different IP 

formulations of the USILSP.  

Let T be the length of the planning 

horizon and dt, pt, st, and ht be the demand, 

unit production cost, setup cost and inventory 

holding cost, respectively, in period t 

(t=1,. . .,T). The decision variables are: Xt, the 

quantity to be produced in period t; It, the 

inventory level at the end of period t; and Yt=1 

if a setup occurs in period t (Xt > 0) 

and zero otherwise. Also, let 

dqt=dq+dq+1+...+dt. 

 

A natural formulation of the problem is 

the following: 
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Assuming that without loss of generality, 

the stock at the beginning and the stock at the 

end of the planning horizon are zero. The 

objective function (1) is to minimizes the sum 

of setup, production and inventory holding 

costs over the whole N-period horizon. 

Constraints (2) are the inventory balance 

equations. They express that the entering stock 

(It-1) added to the current period production 

(Xt) are used to satisfy the demand (dt). What 

remains is kept in stock at the end of the 

period (It). Constraints (3) relate the 

continuous production variables Xt  to the 

binary setup variables Yt. 

 

 

 

3.1.1. Extensions of the standard problem of 

USILSP 

Besides the consideration of capacity 

limits, several other extensions of the USILSP 

have been studied in the literature. These 

include, among others, backlogging, multiple 

facilities, remanufacturing and time windows. 

Backlogging 
If backlogging is allowed, a stockout 

cost is incurred for each unit backordered per 

time unit. This policy can be incorporated into 

USILSP formulation as follows: 
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In this model, the additional parameter 

is bt which corresponds to the backlogging 

cost per period t. It is replaced by 
+
tI , the 

number of items held in stock until the end of 

period t, to distinguish it from 
−
tI , the quantity 

backlogged at the end of period t. The 

inventory balance constraints (7) and the non-

negativity constraints (10) are modified to 

consider the new variables. 

 

Remanufacturing 

The lot-sizing problem with a 

remanufacturing option is an extension of the 

classical Wagner–Whitin model. The 

additional feature is that in each period a 

deterministic amount of returned items 

(returns for short) enters the system. These 

returns can be remanufactured to satisfy 

demand besides regular manufacturing. This 

means that there are two types of inventory: 

the inventory of returns and the inventory of 

serviceables, where a serviceable is either a 

newly manufactured item or a remanufactured 

returned item. (Van den Heuvel and 

Wagelmans, 2008) 

Wang et al. (2011), addressed the 

single-item, dynamic lot-sizing problem for 

systems with remanufacturing and outsourcing. 

Therein, demand and return amounts are 

deterministic over a finite planning horizon. 

Demand may be satisfied by the 
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manufacturing of new items, remanufactured 

items, or outsourcing, but it cannot be 

backlogged. The objective is to determine the 

lot sizes for manufacturing, remanufacturing, 

and outsourcing that minimize the total cost, 

which consists of the holding costs for returns 

and manufactured/remanufactured products, 

setup costs, and outsourcing costs.  

 

Multiple facilities 

The idea of multiple facilities was also 

introduced by Zangwill (1969) who 

considered two cases: facilities in parallel and 

facilities in series. In the case of parallel 

facilities, there is no interaction between the 

facilities and each facility satisfies its own 

requirements. In the case of serial facilities, 

the output from one facility becomes the input 

to another facility and the last facility satisfies 

the demand. In the USILSP with multiple 

facilities, the different setup, production and 

inventory costs might differ from one facility 

to another. Essentially, what makes the 

problem particular with respect to the original 

USILSP is the additional transfer variables 

Wjkt which represent the quantities to be 

transferred from plant j to plant k during 

period t. This problem can be represented by 

the following model: 
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In this model, transfer costs between plants are 

considered in the objective function. Inventory 

balance equations are modified to consider 

transferred products between plants. 

 

Time windows 

Time windows have been recently 

considered in the literature of lot-sizing. In 

Lee et al. (2001), the problem is based on 

demand time windows which are fixed by 

customers and considered as grace periods 

during  which demand can be satisfied with no 

penalty; i.e. no inventory or backlogging costs 

are incurred when demands are completed 

within their time windows. Lee et al. assume 

special conditions on costs and study two 

cases: with and without backlogging. For the 

no-backlogging problem, an O(T
2
) algorithm 

is proposed. When backlogging is allowed, the 

problem is solved in O(T
3
). 

 

Other extensions 

The lot sizing model with cumulative 

capacities is an extension of dynamic lot 

sizing problem that concern to That each 

period has a production capacity, but unused 

capacity is transferred to the next period (Van 

den Heuvel and Wagelmans, 2008). This may 

be the case when capacity is not perishable, 

such as raw material or money. This is in 

contrast to the case of perishable capacity, 

such as time. Martel and Gascon (1995) 

introduce a dynamic lot sizing model with 

price changes and price-dependent holding 

costs. A dynamic programming approach is 

developed to solve it when solutions are 

restricted to sequential extreme flows, and 

results from location theory are used to derive 

an O(T
2
) algorithm which provides a provably 

optimal solution of an integer linear 

programming formulation of the general 

problem. Martel and Gascon also delivered a 

heuristic for the case where the inventory 

carrying rates and the order costs are constant, 

and where the item price can change once 

during the planning horizon. Permanent price 

increases, permanent price decreases and 

temporary price reductions are also considered. 

 

3.2. Capacitated Dynamic Lot Sizing 

Problems 

Capacitated dynamic lot sizing deals 

with the problem of determining time-phased 

production quantities that meet both given 

external demands and given capacity limits of 

the production system. The problem arises in 

production environments where the 

changeover of a resource from one product 

type to another causes setup time and/or setup 

costs. The CLSP is called a large bucket 

problem, because several items may be 

produced per period. Such a period typically 

represents a time slot of, say, one week in the 

real world. The planning horizon usually is 

less than six months. The decision variables 
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for the CLSP are given in Table 1 while Table 

2 provides the parameters. 

Table 1.     Decision Variable fo CLSP 

Symbol 
Definition 

Ijt 

qjt 
xjt 

Inventory for item j at the end of 

period t. 
Production quantity for item j in 

period t. 
Binary variable which indicates 

whether a setup for item j occurs in 

period t (xjt = 1) or not (xjt = 0). 
 

Table 2.     Parameters of CLSP 

Symbol Definition 

Ct 
djt 
hj 
Ij0 
J 
pj 
sj 
T 

Available capacity of the machine 

in period t. 
External demand for item j in 

period t. 
Non-negative holding costs for 

item j. 
Initial inventory for item j. 
Number of items. 
Capacity needs for producing one 

unit of item j. 
Non-negative setup costs for item j. 
Number of periods. 
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The objective (11) is to minimize the 

sum of setup and holding costs. Eq. (12) 

represents the inventory balances. Due to the 

restrictions (13), production of an item can 

only take place if the machine is set up for that 

particular item. Constraints (14) are the 

capacity constraints. The setup variables are 

defined to be binary (15) and the inequalities 

(16) are the nonnegativity conditions. 

Solving the CLSP optimally is known to 

be NP-hard. If positive setup times are 

incorporated into the model, the feasibility 

problem is NP-complete. Here, there are only 

a few attempts to solve the CLSP optimally, 

many authors have developed heuristics. 

3.2.1. Variants of CLSP 

Most lot sizing problems are hard to 

solve. They prove that the single item 

capacitated problem is NP hard for quite 

general objective functions. Problems with 

concave cost functions and no capacity limits 

or constant capacities are solvable in 

polynomial time. Also lot sizing with convex 

cost functions and no set up cost is 

polynomially solvable (Jans and Degraeve, 

2007). 

 

Several variants of the CLSP covered include: 

Time windows 

Lee et al. (2001), were the first to study 

the uncapacitated problem with delivery time 

windows and discuss its applications in the 

context of supply chain collaboration. Under 

the assumption of non-speculative costs, they 

provided two optimal algorithms for the cases 

where backlogging is allowed and prohibited 

with computational complexities O(T
3
) and 

O(T
2
), respectively, where T is the length of 

the planning horizon. Hwang and Jaruphongsa 

(2006) extended these results to model 

speculative costs and provided an optimal 

algorithm that runs in O(nT
3
) time, where n is 

the number of demands.  

Under capacity constraints, however, a 

demand may require several replenishments in 

multiple periods. That is, demand splitting 

cannot be avoided in the presence of 

production capacity. It is worth noting that, if 

demand-splitting is not allowed, the problem 

becomes NP-hard (reduction to a 2-Partition 

problem). (Hwang et al., 2010).  Furthermore, 

in the capacitated problem with delivery time 

windows (CP_TW), not only may a demand 

need to be split for production purposes, but, 

also, it is allowed to be released in multiple 

dispatches during the appropriate time window. 

The following parameters and decision 

variables for a mathematical formulation of 

the CP_TW are as follows: 
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Parameters 

• C  is the production capacity in each 

period. 

• di  is the required quantity for demand i = 

1,....,n. 

• Kt  is the fixed setup cost of production in 

period t = 1,....,T. 

• Pit  is the unit production cost plus holding 

cost to satisfy 

• demand  i = 1,...,n by the production in 

period t =1,....,Li. 

 

Decision variables 

• yit  is the amount of demand i = 1,...., n 

produced in period t =1,....,Li. 

• zt  equals to 1 if there is a setup in period t, 

and 0 otherwise, for t = 1,....,T.. 

 

Formulation 
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When there is sufficient capacity to 

accommodate all the demands, 

i.e. tCd
tLi

i

i

≤∑
≤:

for all  t=1,...,T, this assumption 

guarantees a feasible solution to the CP with 

delivery time windows. 

 

Lot sizing and scheduling problem 
The other problem variants that can be 

identified together with an associated 

reference including: the economic lot 

scheduling problem (ELSP), the discrete lot 

sizing and scheduling problem (DLSP), the 

continuous setup lot sizing problem (CSLP), 

the proportional lot sizing and scheduling 

problem (PLSP). ELSP is a single-level, 

multi-item problem with stationary demand. 

The time is continuous and planning horizon is 

infinite. Solving the ELSP where capacity 

restrictions are involved is NP-hard (Li and 

Meissner, 2011). The NP-hard problem DLSP 

subdivides the (macro) periods of the CLSP 

into several (micro) periods. The fundamental 

assumption of the DLSP is the so-called all-or-

nothing production, which means only one 

item may be produced per period, and, if so, 

the production amount would be as much as 

using full capacity (Karimi  et al., 2003).  

The basic idea behind the PLSP (Drexl 

and Haase, 1995) is to use the remaining 

capacity for scheduling a second item in the 

particular period, if the capacity of a period is 

not used in full. The underlying assumption of 

the PLSP is that the setup state of the machine 

can be changed at most once per period. 

Production in a period could take place only if 

the machine is properly set up either at the 

beginning or at the end of the period. Hence, 

at most two products may be produced per 

period. 

 

Some other variants based on restrictions 
Sahling et al. (2009) proposed multi-

level CLSP subjected to multi-period setup 

that carried over via a heuristic solution 

(MLCLSP-L). This model allows to carry over 

the setup state of a resource to the next periods 

following the setup. This leads to more 

efficient setup patterns and shorter planning-

induced flow times. The solution was based on 

the fix-and-optimize heuristic.  

In systems with a large demand size it is 

necesarry to consider a finite number of setups 

and inventory holding costs. Guu and Zhang 

(2002) introduced the multiple lot sizing 

problem in production systems with random 

process yield losses governed by the 

interrupted geometric (IG) distribution. This 

problem can be identified as an imperfect 

production process with known yield loss 

characteristics. Here, a dynamic upper bound 

on the optimal lot size is derived by an O(nD) 

algorithm, where n and D are the two-state 

variables. Furthermore, in the study of 

multiple lot-sizing problem with rigid demand, 

the cost structure and yield distribution are 

two main factors to determine the behavior of 

such problems. The decision problem is to 

select an initial production run size to 

minimize the expected total costs of possibly 

multiple runs for filing the demand. A 

dynamic programming can be applied to solve 

the problem (Guu, 1999). 

Another complexity in lot sizing 

problem deal with in the numerous decisions a 

buyer has to make over time is the price 

increases or decreases to which many items 
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are subjected. These price changes may take 

many forms such as a temporary low price, a 

permanent price increase, a permanent price 

decrease, etc., and are often known a few 

weeks in advance. Such changes must be 

carefully monitored and shrewdly acted upon 

by the buyer if she or he wants to minimize 

the total costs of acquiring, ordering and 

holding inventory. Here, Martel  and Gascon 

(1997) proposed a dynamic programming to 

solve this problem due to a restriction of 

sequential extreme flows by deriving an O(T
2
) 

algorithm. A heuristic was also developed for 

the case where the inventory carrying rates 

and the order costs are constant, and where the 

item price can change once during the 

planning horizon. In another case, Li and 

Meissner, 2011, developed Mixed Integer 

Non- Linear Programming (MINLP) model 

for the cost minimizing problem when a 

capacity competition occured due to the 

complexity of time-varying demand with cost 

functions and economies of scale arising from 

dynamic lot-sizing costs. It is assumed that in 

the competition, each firm can replenish 

inventory at the beginning of each period in a 

finite planning horizon. Fixed as well as 

variable production costs incur for each 

production setup, along with inventory 

carrying costs. The individual production lots 

of each firm are limited by a constant capacity 

restriction, which is purchased up front for the 

planning horizon. The capacity can be 

purchased from a spot market, and the 

capacity acquisition cost fluctuates with the 

total capacity demand of all the competing 

firms.  

Further, Pan et al. (2008) addressed  the 

capacitated dynamic lot sizing problem arising 

in closed-loop supply chain where returned 

products are collected from customers. These 

returned products can either be disposed or be 

remanufactured to be sold as new ones again; 

hence the market demands can be satisfied by 

either newly produced products or 

remanufactured ones. The capacities of 

production, disposal and remanufacturing are 

limited, and backlogging is not allowed. A 

mode capacitated dynamic lot sizing problem 

with production, disposal and remanufacturing 

options is proposed to give a good 

approximation for such requirements. While, 

for a production of multi product with the 

inventories are replenished jointly whenever a 

common batch production occurs, and the 

output of any production batch always 

produces each individual product along a fixed 

ratio, then it is become a dynamic lot sizing 

with a joint replenishment model. To solve 

such problem, suppose that there are multiple 

types of products sharing the same production 

process, and assume that each batch will 

generate the same number of “units” of all 

products, then the planning horizon can be 

based on multiple discrete time periods, where 

each period has a demand of each product and 

a known cost structure. The decision is the 

production quantity in each period and 

inventory levels of all products will increase 

by the same quantity due to the assumption of 

scaled demand (see Lu and Qi, 2011). 

 

3.3. Coordinated Dynamic Demand Lot 

Sizing 

The coordinated dynamic demand lot 

sizing problem is an extension work of 

Robinson et al. (2008). For dynamic demand, 

coordinated lot-size problem determines the 

time-phased replenishment schedule (i.e., 

timing and order quantity) that minimizes the 

sum of inventory and ordering costs for a 

family of items. A joint shared fixed setup cost 

is incurred each time one or more items of the 

product family are replenished, and a minor 

setup cost is charged for each item replenished. 

In addition, a unit cost is applied to each item 

ordered. Demand is assumed to be 

deterministic but dynamic over the planning 

horizon and must be met through current 

orders or inventory. Coordinated lot-size 

problems are often encountered in production, 

procurement, and transportation planning.  

 

3.3.1. Coordinated uncapacitated lot-sizing 

problem (CULSP) 

The CULSP’s objective is to minimize 

total system costs, which includes a joint setup 

cost for each time period any item in the 

product family is replenished, an item setup 

cost for each item replenished in each time 

period and inventory costs. The joint setup 

cost complicates the solution of the CULSP, 

which is known to be NP-complete. Robinson 

et al. (2009) present the four most significant 

problem formulations: (a) Traditional (TRAD) 

product unit formulation, (b) Shortest path 

(SPATH) formulation, (c) Arborescent 
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network (ARBNET) formulation, and (d) 

Exact requirements (EXREQ) formulation. 

Among them, EXREQ showed the superiority 

over ARBNET in term of CPU times.  The 

formulation is as follows. Consider a T-period 

planning horizon. For i = 1, . . . , I and t = 

1, . . . , T , define, dit , the demand for the item 

i in period t; sit , setup cost for item i in period 

t; St , joint setup cost in period t; cit , variable 

per unit cost for item i in period t; and hit , the 

per unit inventory holding cost for item i in 

period t. The decision variables include: xit , 

order size for item i in period t; Iit , ending 

inventory of item i in period t; Yit =1 if item i 

is replenished in period t and Zt = 1 if a joint 

setup occurs in period t. For a specified setting 

of the joint setup variables, the resulting 

ULSPs are easily solved as I independent 

shortest path problems. Consider I items over 

a T-period planning horizon with T’=T +1. 

The demand for item i in periods t’  through t 

− 1 is Dit’t . The total cost of ordering Dit’t units 

in period t’  and serving demand through 

period t – 1 for item i is                                                        

Cit’t = sit’ + cit’Dit’t + ∑
−

+=

−

1

1'

'1',

t

tr

titti Dh . The decision 

variable Yit’t = 1 if Dit’t units of item i are 

ordered  in period t’, 0 otherwise. And by 

adding a the binary decision variable wit’t = 

1if and only if a replenishment is scheduled in 

time t’  to cover the demand for item i from 

period t’  through period t, and define 

ir

t

t

r

tk

ik

t

tr

iritittit dhdcsC ∑ ∑∑
+

−

==









++=

1'

1

''

''''  as the sum 

of the item production and inventory costs 

associated with wit’t.  

 

The EXREQ formulation is: 
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3.3.2. Coordinated capacitated lot-sizing 

problem (CCLSP) 

The CCLSP contains both the 

complicating constraints associated with 

capacitated replenishment and the joint setup 

decision variables resulting in a NP-complete 

problem. Four alternative mathematical 

formulations are proposed by Robinson, et al., 

shown that the most effective solution is by 

EXREQ formulation. Item setup cost sit’ (28) 

and decision variable Yit’  (29) are introduced 

to decouple the item and family setup 

constraints of EXREQ formulation for 

uncapacitated problem. Define w’it’t as the 

fraction of the total demand for item i from 

period t’ to period t that is served from an 

order in period t’ and titC '

∩

 as the sum of the 

variable per unit order and inventory holding 

costs for producing item i in period t’, where 

∑ ∑
+=

−

=

∩

+=
t

tq

q

tk

iqikittit dhcC
1'

1

'

'' )( .   

 

 The EXREQ formulation for this 

problem is as follows: 
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The two important modeling features are 

compact structure of constraint set (27), which 

insures that all demand is met, and the 

surrogate aggregate inventory constraint (31). 

 

4. ALGORITHM, ILLUSTRATION AND 

HEURISTICS METHODS 

4.1. Algorithm and Illustration   

Proofs from complexity theory as well 

as computational experiments indicate that 

most lot sizing problems are hard to solve. 

However, various solution techniques have 

been used to solve them. For instance, meta-

heuristics such as tabu search, genetic 

algorithms and simulated annealing, have 

become popular and efficient tools for solving 

hard combinatorial optimization problems. 

(Jans and Degraeve, 2007).  

The single item capacitated problem is 

NP hard for quite general objective functions. 

Problems with concave cost functions and no 

capacity limits (Wagner and Whitin, 1958) or 

constant capacities are solvable in polynomial 

time. Also lot sizing with convex cost 

functions and no set up cost is polynomially 

solvable. They proposed a dynamic 

programming (DP) recursion for the single 

item uncapacitated lot sizing problem. They 

prove that there exists an optimal solution that 

satisfies the following property: st-1xt = 0, ∀t 

∈ T. (see Van den Heuvel and Wagelmans, 

2005) This property implies that there exists 

an optimal solution in which one never 

produces in a period and at the same time has 

inventory coming in from the previous period. 

As a consequence, production in one period 

satisfies the demand for an integral number of 

consecutive periods. 

Now, the attention is turn on the 

Wagner-Whitin (WW) algrorithm for a finite-

horizon, discrete-time model with 

deterministic but non-stationary demand for a 

single product at a single stage as developed 

by Muckstadt and Sapra (2010). In a finite-

horizon discrete-time model,  the length of the 

planning horizon is finite and the order 

placement decisions  are made at discrete 

intervals of time. Here, three types of costs 

considered in this environment:  the fixed 

ordering cost, procurement cost that is 

incurred only when an order is placed, and 

holding cost that is charged every period in 

proportion to the amount of on-hand inventory 

at a period’s end. 

The WW algorithm is based on the 

assumption and notation as follows: 

• Kt  = fixed ordering cost 

• ht  = holding cost per unit per period 

• Ct is the per-unit purchasing cost � Ct + 

ht ≥Ct+1 for all t  

• dt is the known deterministic demand in 

period t  

• xt to represent the inventory at the 

beginning of period t before the order-

placement decision is made  

• For simplicity, assumed that lead time is 

zero 

• yt is the on-hand inventory after the order-

placement decision is made and the order 

is received, or equivalent to xt plus the 

order quantity. Here yt ≥ xt   

• The fixed cost is equal to K if yt > xt ; 

otherwise it is 0. 

Equivalently, the fixed cost as K·δt   where 

 

 

 

• The purchasing cost is equal to the 

product of the unit purchasing cost C and 

the order quantity yt −xt .  

• Finally, the leftover inventory at the end 

of period t is yt −dt , and the 

corresponding holding cost is         h(yt 

−dt).  



 >

otherwise ,0

,1 tt

t

xy
δ
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• Combining the three terms, the total cost 

in period t as  

  

The algorithm is as follows: 

• Define F(t) to be the optimal cost from 

period 1 through period t when inventory 

at the end of period t is zero.  

• Define 
s

tς  to be the minimum cost over 

periods 1 through t when the inventory 

level at the end of period t is zero and 

period t’s demand is satisfied by an order 

placed in period s.  

• The optimal cost over periods 1 through 

s−1 is equal to F(s−1).  

• The cost incurred between periods s and t 

includes the fixed cost incurred in period s 

and the holding costs incurred in periods s, 

s+1, . . . , t.  

• The holding cost in period s is 

proportional to the inventory at the end of 

period s, which is equal to the sum of the 

demands in periods s+1, s+2, . . . , t.  

 

The steps are like this: 

• Step 1: Set t = 2, v = 1 and F(1) = K. 

• Step 2: order is placed in period 1, 

determine whether to place an order in 

period 1 or in period 2 to satisfy period 

2’s demand. When the order is placed in 

period 2, the total cost is F(1)+K2 = 

K1+K2 since no inventory is carried into 

period 2. When the order placed in period 

1 is for d1+d2 units, the total cost is 

212

1

2 )1( hdKhdF +=+=ς          (4.1)                              

� Choose the decision with the least 

total cost for periods 1 and 2. That is, 
{ }2121 ,min)2( hdKKKF ++=  

� and Set v = 2 if K1+K2 < K1+hd2. 

Otherwise, v remains unchanged. 

• Step 3. Consider the t-period problem. 

Given v, the demand for period t is 

satisfied by placing the order in one of the 

periods v, v + 1, v + 2, . . . , t. Compute 
t

t

t

t

v

t

v

t ςςςς ,,...,, 11 −+  using  (4.1) and find 

{ }t

t

t

t

v

t

v

ttF ςςςς ,,...,,min)( 11 −+=  

• Step 4. Set t ←t +1. Stop if t = T +1. 

Otherwise, go to Step 3.  

 

As an illustration, using a production 

data of MJOINT company – Yogyakarta, 

Indonesia (a producer of leather products), the 

working of the above algorithm is resulted as 

follows: 

 

Table 3.     Demand (order) of Leather 

Products - MJOINT co., 2011 

Leather Color (ft
2
) Period 

(t) 

2011 
D. 

Brown 
Black Tobacco Red Aggregate 

March 509 567 617 162 1855 

April 1128 1063 816 409 3416 

May 634 606 1029 217 2486 

Junei 398 350 707 225 1680 

July 505 577 825 288 2195 

Total 3173 3162 3994 1301 11630 

 

Known that, the ordering cost is Rp 

1.750.000 (Rupiahs) and holding cost is Rp 

700 per ft
2
/month. The results are as follows: 

 

Table 4. The Production Schedule for 

MJOINT case, 2011. 

Period (t) 1 2 3 4 5 

Demand (dt) 1855 3416 2486 1680 2195 

Order Quantity (yt 

– xt) 
1855 3416 4166 1680 2195 

Beginning of 

Period Inv. (xt) 
0 0 0 0 0 

End of Period Inv. 

(xt+1) 
0 0 1680 0 0 

Cost in Period t 

(thousand rupiahs) 
1.750 1.750 2.926 0 

1.75

0 

   

As seen on Table 4, the total cost as 

composed by order and holding cost for the 

whole periods is minimum as if the 

procurement designed for each period. This 

result is obtained based on the WW algorithm 

and it is effective in the situation that there is 

no capacity limitation and the demand is 

deterministic.  

Most of algorithms in lot sizing have 

been developed based on their difference in 

the computational complexity. The WW 

algorithm may require a number of 

calculations proportional to T
2
, where T is the 

length of the planning horizon. In some 

occasions it is named O(n
2
) or O(T

2
) algorithm. 

Another approach has been given by the 

Wagelmans–Hoesel–Kolen algorithm which 

requires calculations proportional to T logT. 

Hence this method is more efficient in finding 

)dh(y)xC(yK ttttt −+−+δ
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the optimal solution. (Aggarwal and Park, 

1992). Along with more restrictions to the 

problem, several algorithm is developed by 

giving more constraints respresenting those 

restrictions, such as in a reverse (product 

recovery) model, used products arrive to be 

stored and to be remanufactured at minimum 

cost. Richter and Sombrutzki (2000) present 

the WW algorithm applied to determine the 

periods in which used products are 

remanufactured or new products are produced. 

Also, the problem is extended to include 

additional variable manufacturing and 

remanufacturing cost (Richter and Weber, 

2001). In fact, a generalized form of 

replenishment procedure it also includes 

backordering as well as replenishment cost 

that depend to the period in which the 

replenishment occurs. However, the algorithm 

has received extremely limited acceptance in 

practice (Silver and Peterson, 1985). In futher, 

the WW model could be represented as single 

source network since it is work out for single 

stage and item (Zangwill, 1969). When 

exposing it to the multi-stage again it can be 

represented as a decision network solution as 

developed by Gencer et al. (1998). For an 

O(n
2
) dynamic programming algorithm for lot 

sizing with inventory bounds and fixed costs, 

a solution can be obtained by utilizing a 

hierarchy of two layers of value functions 

(Alper and Simge, 2007)  

When the problem faces a condition of 

limited capacity or capacitated problem, it can 

refer to an O(T
3
) algorithm and its extension as 

well. (see Okhrin and Richter, 2011). At last, 

as it develops, most discussed paper showed 

that an effective ways to solve kind of an 

extension in lot sizing problem is by 

employing heuristic methods. 

4.2.  Heuristics 
Most well-known heuristics for lot-

sizing problem are called the Silver–Meal and 

the Least Unit Cost heuristics. (see Ganas and 

Papachristos, 1997). Both heuristics are order 

T methods for computing a procurement plan. 

Although these approaches are very simple to 

implement, they do not necessarily obtain an 

optimal solution.  

More efficient tools are meta-heuristics 

that including genetic algorithm, simulated 

annealing and tabu search. This heuristic is 

applicable to both uncapacitated or otherwise, 

including it extension as refer to single and 

multi item as a work of Jans and Degraeve 

(2006). The following table lists the major 

articles reviewed in this review and their 

associated research methodologies particularly 

in their proposed heuristics.  

Table 5.     Lot Sizing Problem and Heuristic 

Methods 

 Authors 
Problem 

Solution 

Method 
Sahling, et 

al., 2009 
Multi-level 

capacitated with 

linked lot size 

Fix-and-

optimize 

algorithm 
Heuvel and 

Wagelmans, 

2008  

The capacitated 

lot-sizing 

problem with 

linear costs 

Dynamic 

programming 

Xie and 

Dong, 2002 
General 

capacitated lot 

sizing problem 

(and with 

overtiming) 

Genetic 

algorithm 

Gaafar, 

2006 
Dynamic lot 

sizing with 

batch ordering 

Genetic 

algorithm 

compared to 

a modified 

Silver-Meal 

heuristic 
Hop and 

Tabucanon, 

2005 

Lot-sizing 

problem with 

self-adjustment 

operation rate 

Genetic 

algorithm  

Eduardo 

and Barron, 

2010 

Lot-sizing 

problem with 

self-adjustment 

operation rate 

A proof that 

Wagner 

Whitin 

method is 

more 

efficient than 

genetic 

algorithm 

developed by 

Hop and 

Tabucanon 
  

Minner, 

2009  
Multi-product 

dynamic 

demand lot-

sizing with 

limited 

warehouse 

capacity 

Simple 

heuristics 

approach 

including 

constructive, 

smoothing 

and saving 

approach 
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Table 5.     Lot Sizing Problem and Heuristic 

Methods (Continued) 

 Authors 
Problem 

Solution 

Method 
Lee, et al., 

2005 
Multi-product 

dynamic lot-

sizing and 

shipping 

problem 
 

Network 

model 
 

Li, et al., 

2007 
Capacitated 

production 

planning 

problems with 

batch 

processing and 

remanufacturing 
 

Genetic 

algorithm  

Narayanan 

and 

Robinson, 

2010  

Coordinated 

capacitated lot 

size problem 

Six phase 

heuristic and 

simulated 

annealing 

meta-

heuristic  
 

Lyu and 

Lee, 2001 
Dynamic lot 

sizing problem 
Parallel 

algorithm 
` 

 

CONCLUSION  

The numerous extensions of the basic 

lot sizing problem demonstrate that it can be 

used to model a variety of industrial problems. 

Lot sizing problems are challenging because 

many extensions are very difficult to solve. 

Several techniques have been discussed to 

tighten the model formulations. Some proofs 

reveal that the general algorithm of WW 

model has already led to promising a good 

result and enable to carry over some 

extensions. As shown on the result of 

MJOINT case, it is important to note that it 

will be more effective to determine a 

production schedule if it correspond to a 

dynamic demand but deterministic. Not only 

for obtaining a schedule but also more in its 

management aspects. Further, more 

opportunities for extending the WW model are 

still largely unexplored. The contribution of a 

heuristic method also should be appreciated as 

a comparison with other algorithms which 

may give more effective in problem structure. 
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