1,581 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Combining heuristics with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty

    Get PDF
    The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doctoral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana (INGPhD-12-2020).Peer ReviewedPostprint (published version

    The stochastic vehicle routing problem : a literature review, part I : models

    Get PDF
    Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12; 1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems. The numerous variants of the problem that have been studied in the literature are described and categorized. Keywords: vehicle routing (VRP), stochastic programming, SVRPpublishedVersio

    Demand robust counterpart open capacitated vehicle routing problem time windows and deadline model of garbage transportation with LINGO 13.0

    Get PDF
    Demand robust counterpart-open capacitated vehicle routing problem with time windows and deadline (DRC-OCVRPtw,d) model formed and explained in this paper, is the model used to find the minimum distance and the time needed for vehicles to transport garbage in Sukarami Sub-District, Palembang that consists of the time it takes for the vehicle to pass through the route. Time needed to transport garbage to the vehicle is called time windows. Combination of the thoses times is called deadline. The farther the distance passed by vehicle and the more garbage transported, the longer the deadline is needed. This DRC-OCVRPtw,d model is completed by LINGO 13.0 to obtain the optimal route and time deadline for Sukarami Sub-District. The model shows that the improved model of open vehicle routing problem involving the robustness, time windows and deadline can achieve the optimal routes that enable driver to save operational time in picking up the garbage compared to similar problem not involving no-time windows and deadline stated in previous research

    Fleet dimensioning and scheduling in the Brazilian ethanol industry: a fuzzy logic approach

    Get PDF
    This work solves a real-world multi-depot vehicle routing problem (MDVRP) with a homogeneous fleet and capacitated depots. A pipeline company wants to establish a vehicle policy in order to own part of its fleet and serve its customers for a period of one year. The company also wants to know the schedule of the visits for collecting ethanol from 261 producers and taking it to their three terminals located in Brazil. This problem presents uncertain demand, since weather conditions impact the final crop and uncertain depot capacity. Due to the vagueness of managers’ speech, this problem also presents uncertain travel time. In this paper, fuzzy logic is used to model uncertainty and vagueness and to split the initial instance into smaller ones. Besides solving a real-world problem with fuzzy demand, fuzzy depot capacity and fuzzy travel time, this paper contributes with a decision making tool that reports different solutions for different uncertainty levels.Este trabalho resolve um problema de roteamento de veĂ­culos multi-depĂłsito do mundo real (MDVRP) com frota homogĂȘnea e depĂłsitos capacitados. Uma empresa de pipeline deseja estabelecer uma polĂ­tica de veĂ­culos para possuir parte de sua frota e atender seus clientes por um perĂ­odo de um ano. A empresa tambĂ©m quer saber o agendamento das visitas para coleta de etanol de 261 produtores e retirada para seus trĂȘs terminais localizados no Brasil. Este problema apresenta incertezas de demanda, jĂĄ que as condiçÔes climĂĄticas impactam a safra final e depĂłsito de capacidade incerta. Devido Ă  imprecisĂŁo do discurso dos gerentes, este problema tambĂ©m apresenta tempo de viagem incerto. Neste artigo, a lĂłgica fuzzy Ă© usada para modelar a incerteza e vagueza e dividir a instĂąncia inicial em outras menores. AlĂ©m de resolver um problema do mundo real com demanda difusa, capacidade de depĂłsito difusa e tempo de viagens difusas, este artigo contribui com uma ferramenta de tomada de decisĂŁo que relata diferentes soluçÔes para diferentes nĂ­veis de incerteza
    • 

    corecore