
SURVEY

The stochastic vehicle routing problem, a literature
review, part I: models

Jorge Oyola1 • Halvard Arntzen2 • David L. Woodruff3

Received: 7 October 2015 / Accepted: 21 October 2016 / Published online: 27 October 2016

� Springer-Verlag Berlin Heidelberg and EURO - The Association of European Operational Research

Societies 2016

Abstract Building on the work of Gendreau et al. (Eur J Oper Res 88(1):3–12;

1996), we review the past 20 years of scientific literature on stochastic vehicle

routing problems. The numerous variants of the problem that have been studied in

the literature are described and categorized.
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1 Introduction

Vehicle routing problems concern the challenge of selecting a set of routes for a

fleet of vehicles to serve the demands of a set of customers. Almost invariably, the

vehicles have limitations on the amount of goods they can carry, and the primary

goal of the decision-maker (DM) is most often to minimize the total transportation

cost. It thus makes sense to use the formulation of the (deterministic) capacitated

vehicle routing problem (CVRP) as a point of departure for this review of the

literature for stochastic variants.

The CVRP is defined over an undirected graph G(V, E), where V ¼ v0; . . .; vN is

a set of vertices and E ¼ ðvi; vjÞ : vi; vj 2 V ; i\j is a set of edges. There is a

symmetric matrix C ¼ ½cij� that corresponds to the travel costs along edge ðvi; vjÞ.

Most of the work was completed while the author was at Molde University College.
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Vertex v0 represents the depot where there is a homogeneous fleet of m vehicles

with capacity Q. A set of customers V n v0 with a non-negative known demand di
must be served. A solution to the CVRP consists of m delivery routes starting and

ending at the depot. Each customer must be visited once by exactly one vehicle. The

sum of the demands of the customers in the same route, must be less than or equal to

the vehicle’s capacity. A different approach where the demand corresponds to items

that must be collected from the customers leads to an equivalent problem. The

classic objective is minimization of total route cost (see, e.g., Toth and Vigo 2002)

but some formulations minimize total route length, total travel time or total cost.

In the real world one or more of the elements of the CVRP are uncertain. In order

to model this, one typically allows some parameters in the general formulation to be

represented as stochastic. When stochastic data are included in the problem, we

have a stochastic (capacitated) vehicle routing problem (SVRP or SCVRP).

Gendreau et al. (2014) provides a tutorial with a synthesis of some recent literature.

A thorough review of the early literature on the SVRP, including a concise

description of relevant solution concepts is found in Gendreau et al. (1996). We

provide a brief recap of some details here before launching into a thorough review

of papers since then.

Although demand, the presence of customers, travel times, and service times are

sometimes modeled as stochastic (Gendreau et al. 1996; Tan et al. 2007), the most

studied version of SVRP is the capacitated vehicle routing problem with stochastic

demand (CVRPSD) (Cordeau et al. 2007). This is a feature of many real-life

problems (see, e.g., Yang et al. 2000).

There is a striking difference between deterministic and stochastic VRP

formulations: for all SVRP variants, the DM must decide the solution (at least

partially) before the exact values of all parameters are completely known. In some

situations, constraints may be violated when the actual parameter values are

realized, e.g., the total realized demand of a planned route may actually exceed the

vehicle’s capacity. One can say that the solution (or the route) ‘‘fails’’ when it is

exercised with the realized data. In a deterministic problem the DM has complete

information when making the plans, so there is no similar concept of a solution

‘‘failing’’. There are two common ways of modeling stochastic problems: as a

chance constrained program (CCP) or as a stochastic program with recourse (SPR).

In the case of CCP, the problem is solved ensuring that the probability of route

failure is below a certain level and the cost of failures is typically ignored (Gendreau

et al. 1996; Tan et al. 2007). Although chance constrained problems can be

formulated with an expected value objective, in the SVRP literature, the objective is

typically deterministic. Consider a very abstract formulation where the objective

function is f(x) for a decision vector x and constraints are summarized by a set X .

We can then write a chance constrained program as:

min
x

f ðxÞ subject to Prob ðx 2 XÞ� 1 � a ;

where the DM provides a parameter value a giving the acceptable probability of

failing to meet the constraints. Of course, in less abstract formulations, the specific

constraints that are subject to failure are specified.

194 J. Oyola et al.

123



On the other hand, in SPR, one allows route failures, but the DM must define a

recourse policy, describing what actions to take in order to repair the solution after a

failure. The expected transportation cost (travel cost ? recourse policies cost) is

optimized. SPR is more difficult to solve, but objectives are more meaningful

(Gendreau et al. 1996).

The recourse policy is a modeling choice leading to different variants of an

SVRP formulation. For the CVRPSD, three common recourse policies are (Tan

et al. 2007; Secomandi and Margot 2009):

• The vehicle returns to depot to restock when capacity is attained or exceeded.

Service resumes at the customer where route failure occurred. This is known as

detour to depot (DTD).

• A preventive restocking can be done before a route failure occurs. Obviously, it

may be less costly to travel to the depot to restock from the actual location than

waiting for a route failure at a location further from the depot.

• After failure or after each customer is served and its demand becomes known,

the portion of a route that has not been served is re-optimized. A decision is

taken regarding which customer must be visited next, either as part of the regular

routing or on the way to replenishment at the depot.

In other SVRP formulations the recourse policy does not involve routing decisions

(as above), but a penalty for late/early arrivals or the extra time cost of the driver

can be part of the expected cost when time windows and/or stochastic service time

are taken into consideration (see, e.g., Li et al. 2010; Taş et al. 2013).

In the presence of stochastic data, any function of the data, such as a classic total

cost objective function, will be a random variable, so some choice must be made to

form a well-posed objective function. Most of the problems found in the SVRP

literature can be cast as two-stage stochastic programming problems that minimize

expected value. An abstract formulation (Birge and Louveaux 1997) is as follows:

min
x

f ðxÞ þ E½Qðx; nÞ� subject to x 2 X ;

where Qðx; nÞ is the optimal value of the second-stage problem

min
y

qðy; x; nÞ subject to y 2 Yðx; nÞ

Here x represents the first stage decisions that must be taken initially, before all

information is available. In most formulations these are routing decisions. The

function f ð�Þ evaluates the objective function for the first stage portion of the

decisions. The random variables that make the problem stochastic are represented

by n. These may be pickup quantities or travel times, etc. In general, n and its

realizations n are vector-valued. The second stage, or recourse, decisions are rep-

resented by y, which is evaluated using the function qð�Þ that can be parameterized

by x and n. For some problems, this is simply a calculation of cost but in other cases

a significant minimization is required. In most of the literature n is discrete, so the

expectation is computed using a sum.
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In this abstract formulation, we have summarized constraints using the sets X and

Y. Most of the formulations in the literature are constructed so that there is relatively

complete recourse (Kall and Wallace 1994), which in this formulation means that

Yðx; nÞ is non-empty for every x 2 X and every n with non-zero probability.

A focus of two-stage formulations is the need to compute the first stage decisions,

x, with the second stage decisions y used to compute, or estimate, an appropriate

second stage expected cost. However, we note that a few papers in the literature

seek methods for finding a good policy (dynamic programming approaches) or to

provide an algorithm for routing vehicles dynamically (rollout algorithms) in

addition to a good first stage decision.

One should note that SVRP papers usually come in one of two standard forms.

On one hand there are researchers who are mainly interested in the modeling of

SVRPs. They will need to formulate precise mathematical models describing what

is understood by a solution x, and algebraic expressions for objective functions and

constraints. On the other hand, we see researchers who are most interested in

algorithmic issues. In an ‘‘algorithmic’’ paper, the model formulation is often not

given algebraically. While input parameters are usually defined, there is often no

mathematical formulations of either objectives or constraints, and a ‘‘solution’’ can

be defined as ‘‘a set of routes’’ without further precision.

Evaluating the quality (i.e., the objective value) of a solution to an SVRP is not

straightforward. Several approaches have been used to tackle this issue. In some

cases a simulation is performed to generate a large number of possible realizations

(scenarios), and then the solution is evaluated on each realization, getting an

estimation of the quality (see, e.g., Juan et al. 2011). The quality of the solution is

sometimes possible to calculate analytically, given certain characteristics of the

problem (see, e.g., Laporte et al. 2010). A dynamic programming recursion can also

be sometimes used for evaluating solutions (see, e.g., Yang et al. 2000).

This survey proceeds in Sect. 2 with an overview of problem types found in the

SVRP literature. A summary of the literature is presented in Sect. 3. The paper

closes with some conclusions and connections with related literature. Part II of the

paper (Oyola et al. 2016) describes the literature concerning solution methods.

2 Types of problems

The stochasticity can be incorporated into the problem through different aspects

and, typically, one or two elements are considered as stochastic. This limitation is

likely due to the difficulty of solving a problem where many different parameters

are stochastic. A summary of the different problems that have been studied is

presented here.

2.1 The CVRP with stochastic demand—CVRPSD

In this version of the SVRP, the customer demands are stochastic and become

known only after the routes have been established. The problem is usually modeled

as a two-stage SPR.
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A study of the basic CVRPSD is found in Laporte et al. (2002) where an SPR

formulation is used with recourse action DTD. Two types of demand distributions

are considered theoretically, Poisson and normal. Computational tests are done for

both cases. The same problem is found in Jabali et al. (2014) where theoretically the

demands are treated as independent and identically distributed (IID); however, tests

are done using a normal distribution truncated at zero.

In the multi-compartment VRP with stochastic demands (Mendoza et al.

2010, 2011), each customer has a stochastic demand for different products, which

follows a known probability distribution. Such products need to be transported in

independent compartments in the vehicles. The recourse action is to travel to the

depot once the capacity of any of the compartments in the vehicle is reached.

Although the problem does not assume a particular probability distribution for the

demand, computational tests were performed on instances with demands following a

normal probability distribution.

A more recent paper by Goodson (2015) deals with a similar problem, where

each route is subject to a route duration limit L. A method for computing the

expected cost of the solutions is proposed; however, it works only with discrete

distributions. Due to this restriction a different method was used in Mendoza et al.

(2010, 2011), since results available for comparison were obtained assuming

demands with normal distribution.

The stochastic CVRP with restocking (Yang et al. 2000; Marinakis et al. 2013)

gives the option after each visit to choose between visiting the next customer in the

route or traveling back to the depot to restock, even if the vehicle capacity has not

been reached. This problem was formulated as an SPR in Yang et al. (2000) where

the recourse action was to travel to the depot and restock, continuing with the

planned route afterwards. The demand was assumed to be discrete, test instances

were generated using a discrete triangular distribution. In Secomandi (2003) the

single vehicle CVRPSD is studied in two versions, allowing restocking and with no

restocking. In both cases the demand is assumed to be discrete, having instances

with uniform discrete distribution.

A policy-based solution approach was taken in Marinakis et al. (2013). In this

work, route failures are not permitted, assuming that these can be avoided by

selecting a threshold value, such that when the residual load in a vehicle is less than

or equal to the threshold, the vehicle should go to the depot for preventive

restocking. This will only work under bounding conditions on the probability

distributions. The only additional assumption regarding the probability distribution

of the demands is that they are known and independent. For the computational tests,

the demands follow discrete uniform probability distributions.

A different approach to handling the dynamics uses re-optimization; after visiting

a customer the driver decides which customer to visit next, either directly or after

replenishing at the depot. The decision is taken on basis of the available capacity

and the expected demand of the unvisited customers. This problem was studied for

the particular case of a single vehicle (Secomandi 2000, 2001; Secomandi and

Margot 2009), where the probability distributions of the demands are discrete and

independent (discrete uniform in one of the cases; Secomandi 2000). The problem

was modeled as SPR, the recourse action is DTD. The computational tests are
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performed over instances with demands following discrete uniform probability

distributions.

The single vehicle VRP with stochastic demands was also studied in Novoa and

Storer (2009). A dynamic solution approach is used, where routing decisions are

taken depending on the current state of the system, which is updated every time the

vehicle arrives to a customer and demand is revealed. A simulation is used to

evaluate solutions. The demands are assumed to follow a known discrete

distribution, a discrete uniform was used in the tests. Split deliveries are accepted

when a failure occurs. If the vehicle capacity is exceeded, the service may be

finished in a not-immediate visit.

The single vehicle case of the CVRPSD has also been studied using a regular

recourse action DTD, involving two different types of stockout (Hjorring and Holt

1999). A normal stockout, means the vehicle does not have enough goods to serve a

customer. After restocking at the depot, the route is resumed starting with the

customer where the failure occurred. An exact stockout means the vehicle has just

enough goods to satisfy the demand of a particular customer. After restocking it will

resume the trip at the next customer in the route. The proposed approach may apply

for several probability distributions, but tests are performed using a discrete

distribution. The same problem was studied following a different approach (Rei

et al. 2010), where the demands are considered to have a known probability

distribution. The testing was performed on instances with demands that follow

normal probability distributions. Another version of the single vehicle case, where

demands are a normal random variable truncated at zero, was also studied (Rei et al.

2007). In the latter case, if a failure occurs, then partial delivery is performed and

the vehicle returns to the depot to restore capacity. In the cases where demands

follow a continuous probability distribution, exact stockouts are not considered.

An interesting variant of the single vehicle CVRPSD allows preventive restocking

(Bianchi et al. 2005). In this case, the vehicle can travel to the depot before the next

customer in the route to restock, even if a route failure has not occurred. The demands

are modeled as random variables with integer uniform distribution. Two ways of

evaluating the objective function are considered, a dynamic programming recursion

(Yang et al. 2000) and an approximation with the length of the a priori tour, without

considering the stockout cost and the preventive restocking cost.

Another variant of the single vehicle CVRPSD was modeled considering that

after a failure, no action is taken, and unserved customers will not be serviced

(Chepuri and Homem-de Mello 2005). A penalty must be paid to the customer

where the failure occurs and to the other unserved customers in the route, since the

vehicle will not resume the route. The authors claim that this is the situation in

several industries, where failures may result in lost revenue or emergency deliveries.

They were motivated by a liquid air distributor. Demands are considered to follow a

gamma distribution. The methods can exploit the special situation where the

parameters of the probability distribution are the same for all customers.

The VRP with time windows and stochastic demands (VRPTWSD) was also

studied in Chang (2005). Two categories of route failures are used, exact stockout

and excess of available capacity. In both cases the vehicle returns to depot.

Demands are assumed to follow a discrete uniform distribution. The problem is
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modeled as SPR. In the first stage late arrivals are not allowed, but waiting times

are. The objective is to minimize the routing cost of first stage, waiting times at fist

stage and the expected cost of recourse (DTD).

Another problem that has been studied is the combination of routing plus

clustering (designing delivery districts) (Haugland et al. 2007). In this case the

solution to the problem will have m contiguous districts, where all customers in the

same district are assigned to the same route. The clustering process is in the first

stage; i.e., it is done before the demands are realized. Tests were conducted using

data where it was assumed that each customer will order a known minimum demand

di plus a stochastic amount which follows a binomial probability distribution. The

decisions regarding the order in which the customers must be visited in each cluster

are taken after the demands become known. However, during the construction of the

districts, a restriction for the expected tour length within each district is imposed,

otherwise the solution will be a single district. The problem is modeled as SPR. The

recourse action is to plan the routing in each district with as many subtours as

needed so as to ensure that the total demand on every subtour is less than or equal to

the vehicle capacity and the routing cost is minimized.

The basic CVRPSD was extended to include time windows in Lei et al. (2011).

The problem is modeled as an SPR, and two types of failure are considered, the

vehicle capacity and the time windows. When there is a violation of the time

window for a particular customer, it must be served by an additional single trip,

which generates an extra cost. In addition, the vehicle must travel to the depot for

restoring capacity whenever it is exceeded. No specific assumption regarding the

demand distribution is made and the analysis of the expected cost of the solutions is

done for both continuous and discrete cases. For computational testing, demands are

generated following Poisson distributions.

Another extension of the CVRPSD can be found in Erera et al. (2010), where each

tour duration must be feasible for all demand realizations. The problem, named the

vehicle routing problem with stochastic demands and duration constraints (VRPSD-

DC), it is modeled as an SPR. The non-splittable detour-to-depot recourse is used, i.e.,

if the demand of customer i is greater than the remaining capacity, the vehicle must

travel first to the depot to restock capacity before serving customer i. The demands are

assumed to follow a discrete uniform probability distribution. Two alternatives are

consider to handle the exact stockouts, either to travel back to the depot and restock

capacity or to identify the stockout just after arriving to the next customer. The

objective function of the VRPSD-DC is to minimize the sum of the a priori total travel

time, the expected additional travel time due to recourse actions and a penalty term

for using more than m vehicles (in case they are required).

A new recourse strategy for the CVRPSD was proposed in Ak and Erera (2007)

called the ‘‘pair locally coordinated’’ (PLC) operating scheme and it is presented as

extension of the DTD. The demands are assumed to follow discrete, independent

and identical probability distributions. The idea behind PLC is that some (not

necessarily all) routes are matched together to create a route pair and routes are in at

most one route pair. If a vehicle exceeds its capacity, its partner adds any unserved

customer to the end of its route, which operates using the DTD scheme. One of the

routes in the pair is labeled ‘‘type I route’’ and the other is ‘‘type II’’. Routes not in
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pairs, are also type II. A failure will occur when visiting a customer, if adding its

demand, the capacity of the vehicle would be exceeded. Demand cannot be split, so

if the capacity is exceeded, the demand is collected after the recourse action: if a

vehicle is serving a type I route, once a failure occurs, the vehicle returns to depot

and the unserved customers are added to end of the planned route of the vehicle

serving its type II route pair. If the vehicle serving a type II route experiences a

failure, then it returns to the depot to unload, and then resumes the route in the first

unserved customer of its route. Paired vehicles serving type II routes should wait at

the final customer of their route, until the vehicle serving their paired type I route is

traveling to the depot. The testing was performed on instances with demands that

follow a discrete probability distribution that is the same for all customers.

The concept of PLC (Ak and Erera 2007) was also used in Zhu et al. (2014) as

part of a paired cooperative reoptimization (PCR) for the CVRPSD. This strategy is

proposed to be used for a pair of vehicles. The demand is assumed to follow a

uniform discrete probability distribution. The problem is modeled as an SPR with

DTD as recourse action, in addition partial reoptimization of routes is applied as

described in Secomandi and Margot (2009). The two vehicles can communicate and

dynamically modify their routes and the information about locations, residual

capacities and unvisited customers is available to both vehicles. The model

considers three assumptions: the service time is ignored, vehicles travel at the same

speed and do not have idle time. Even though the strategy is proposed for a pair of

vehicles, the authors briefly mention that the multi-vehicle case is solved by

clustering the customers into groups and serving every group by a pair of vehicles.

The CVRPSD was formulated as a set partitioning problem and the associated

column generation subproblem is solved using a dynamic programming scheme in

Christiansen and Lysgaard (2007). In principle the demands can follow any

probability distribution with accumulative property (the sum of two or more

independent variables follows the same distribution). However, the tests were

performed on instances with Poisson demands. The recourse action for the vehicle is

to return to depot when a customer’s demand is greater than the residual capacity. If

the vehicle becomes exactly depleted, it will not go to depot. It continues the route

until a customer with positive demand is found, then it goes to the depot to restock.

The same problem was later studied in Goodson et al. (2012), where after

generating a set of routes, a set partitioning problem is solved. In that way the best

solution that can be constructed using a subset of the routes is found. The problem is

also modeled as an SPR and uses DTD as recourse action.

Mendoza and Villegas (2013) worked with the same type of problem with an

unlimited fleet of vehicles with capacity Q. The demand follows a known

probability distribution, in the tests Poisson is used. The problem is formulated as an

SPR and the recourse action is DTD.

The same problem and formulation as in Christiansen and Lysgaard (2007) was

recently considered in Gauvin et al. (2014), where the CVRPSD was also

formulated as an SPR. The recourse action is DTD, with the particular feature

that in case of exact stockout, the vehicle returns to the customer where the failure

occurred, after restoring capacity at the depot. The demand is assumed to follow a

Poisson distribution.
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A different approach that includes a limit on the duration of the routes in the

CVRPSD was presented in Mendoza et al. (2015). The problem is modeled as a

CCP and as an SPR. In the first case, the probability of the total duration of a route

being greater than the maximum duration must be lower than a given threshold. In

the second case, the violations to the maximum duration are included as a penalty in

the objective function (expected cost of overtime). The objective is to minimize the

total expected duration of routes.

The CVRPSD was studied using a different approach in Sungur et al. (2008), as

the robust vehicle routing problem (RVRP). A solution that is feasible for all

demands that belong to a bounded uncertainty set is said to be robust. Constraints

that depend on the uncertainty set replace the connectivity and capacity constraints

in the original model. The solution for the RVRP is a route that optimizes the

objective function when all uncertain parameters are assumed to have the worst case

value. The resulting problem is reported to be not significantly more difficult than

solving the deterministic counterpart. It is assumed that the bounded uncertainty set

captures all uncertainty of interest and the a priori route is feasible for every demand

realization within the bounded uncertainty set, so no recourse actions or costs are

considered.

Another robust approach can be found in Lee et al. (2012), where the robust

CVRP with deadlines and travel time/demand uncertainty is studied. In this version

of the problem, there is a deadline assigned to every customer i. This can be seen as

a specific case of time windows, where the earliest starting time is equal to zero. The

objective is to minimize the total distance, which is deterministic since there is no

uncertainty associated with the distances. The stochastic parameters are the travel

time (which may include the service time) and the demand. There is no recourse

action in case of failure, since the robustness of a solution is evaluated as the

percentage of scenarios (from a set) in which the solution is feasible. This has some

similarity with a CCP. Scenarios are generated assuming that demands follow a

normal distribution and travel times follow a distribution based on truncated normal.

Such scenarios are used just to evaluate and compare the robustness of found

solutions. During the search a uniform distribution is assumed.

A more recent version of the robust CVRPSD can be found in Gounaris et al.

(2013). The probability distribution of the demands is unknown. However, it is

assumed that all possible realizations of the demands are known (i.e., the support is

known). Several deterministic formulations of the CVRP are reformulated into

robust CVRP: two-index vehicle flow (Laporte et al. 1985), Miller–Tucker–Zemlin

(MTZ) (Kulkarni and Bhave 1985), precedence formulation obtained from MTZ

(Gounaris et al. 2013), commodity flow (Gouveia 1995) and vehicle assignment

formulation (Golden et al. 1977). Two demand supports are considered, budget and

factor support. In the budget support, the customers are partitioned in four

geographic areas. Customers’ demands can deviate from their nominal values at

most a%, but the cumulative demand in each area cannot exceed the nominal value

by more than b%. In the factor model support, the demand of a customer depends on

the nominal value and an additive disturbance that depends on several independent

factors. As in the budget support, the cumulative demand in each area cannot exceed

the nominal value by more than b%.
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The CVRP with stochastic demands and time windows was recently studied in

Zhang et al. (2016). For each customer i there is a time window ½ei; li�. If the vehicle

arrives before ei, it should wait until ei. If the time when the demand is fully served

(a recourse may be needed) is later than li, a penalty proportional to the lateness

must be paid. Service times are not considered. Three different models are

presented. The objective in the first model is to minimize the expected total cost

(total distance of the a priori solution ? expected cost of recourse action, DTD ?

expected penalty cost for late and early arrivals). In the second model the goal is to

maximize the sum of on-time delivery probabilities to customers, penalties and

recourse costs are ignored. In the third model, the objective function of model one is

modified by including the fixed cost of using the vehicles multiplied by a large

number (hierarchical objective). A constraint specifying a minimum probability of

on-time arrival for each customer is included. This last model has characteristics

from both CCP and SPR. A stockout is considered to occur when a customer is

visited and the capacity of the vehicle has been exceeded or the remaining capacity

becomes zero. A preventive restocking policy is compared to the DTD. The

preventive restocking policy allows a vehicle to return to the depot before a stockout

occurs. After servicing a customer, if the remaining capacity of the vehicle is less

than a given threshold, the vehicle returns to the depot to restock, otherwise it

travels to the next customer in the route. If a stockout occurs, DTD applies. This

policy is evaluated in all the models. A simple illustrative example is presented.

Authors stated that further studies are required to assess the performance of the

models and the preventive restocking policy.

2.2 The capacitated arc routing problem with stochastic demand—
CARPSD

The CARPSD was introduced by Fleury et al. (2002), the problem was presented as

the stochastic capacitated arc routing problem (SCARP). The problem is defined on

an undirected graph, where a set of edges (not necessarily all the edges in the graph)

have a non-negative stochastic demand of items that must be collected and a set of

vehicles with identical limited capacity is based at the depot. The problem is

modeled as SPR, if total demand of a route is greater than the vehicle capacity, a trip

to the depot has to be performed. The objective of SCARP is to find a solution for

which the variations due to the random event realizations in the number of trips (and

the cost) are minimum. The problem is not solved directly, instead a deterministic

model is used to find solutions that are subjected to a sensitivity study by computing

estimators of the average total cost and the standard deviation of the total cost.

These computations are done by generating different scenarios. Demands of edges

that require service are assumed to follow a truncated normal distribution, in a way

that demands are greater than zero and less than or equal to the vehicle capacity. A

similar problem and models are presented in Fleury et al. (2005b). The SCARP was

also studied in Fleury et al. (2004), where a few additional assumptions are

considered: the average demand of an edge is small, compared to the vehicle

capacity. A trip cannot be interrupted more than once. In a robust solution, route

failures are not common, if they occur it is more likely to happen just before the last
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edge to be served. Demands are also assumed to follow a truncated normal

distribution.

The same problem was studied in Fleury et al. (2005a). Some theoretical analysis

is done on the problem and five variants are considered: the minimization of the

average cost, C, of the solution to the stochastic problem, minimization of C with

bounds on the number of vehicles, minimizing C plus a fixed constant multiplied by

the standard deviation of C, minimizing C under the condition that its standard

deviation be less than a fixed value, and minimizing C under the conditions that the

probability of having a route failure is less than a fixed value, for every route.

In the capacitated arc routing problem with stochastic demands (Laporte et al.

2010) there is a subset of edges with a non-negative demand of items that must be

collected, a depot with a set of trucks and a vertex (dump site) that may or may not

be different from the depot. The edge demands follow a known probability

distribution, it can be either discrete or continuous and it is distributed uniformly

along the edge. The edges can be traversed any number of times, but must be served

just once. The recourse action is to travel to the dump site when the capacity of any

vehicle is reached and resume its route at the point of failure. Just one failure is

allowed per route. Test instances are generated using demands that follow Poisson

distributions.

A similar problem was studied in Christiansen et al. (2009), but in this case the

demands on the edges are assumed to have a Poisson probability distribution. This

implies that if the edge is divided in a number of segments, the demand on each

segment will also have a Poisson distribution. The computation of an approximate

expected number of failures, consider a range of segments from one to a sufficiently

large integer number. The routes start and end at the depot. A failure occurs when

the actual accumulated demand exceeds the capacity of the vehicle. It is assumed

that the total demand is revealed gradually along the edge and in case of failure the

vehicle returns to depot using the end point of the edge that gives it a shorter

distance to the depot. Several failures are allowed per route.

The mixed capacitated general routing problem MCGRP with probabilistic

demands was proposed in Beraldi et al. (2015). In this problem, a homogenous fleet

of vehicles has to satisfy the demand of customers which can be located in the

vertices or along the edges or arcs. The problem is modeled as a chance constraint

programming (CCP). For each route, the probability of not exceeding the vehicle

capacity should be greater than or equal to a given parameter a. The objective is to

minimize the total traveling cost. For a subset of arcs, edges and vertices the

demand may be known with certainty, for the others, the demand follows a

multivariate normal distribution. The problem is named MCGRP with probabilistic

constraints (MCGRPPC). A deterministic equivalent formulation of the problem is

obtained by replacing each probabilistic constraint (one for each route) with an

additional set of variables and constraints.

2.3 The CVRP with stochastic customers (and demand)—CVRPSCD

The customers’ presence has also been modeled as stochastic in several variants.

The most interesting formulations are as SPR, where the routing is done for a given
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set of possible customers (stage 1), and then the presence is revealed, meaning that

some customers in the original set have demand 0, and do not need a visit. The

recourse action is to modify routes (stage 2). The demand at the present customers

can be deterministic, but even more interesting are the formulations where demands

are also stochastic, giving the CVRPSCD problem class. Pioneering work on such

problems is discussed in Gendreau et al. (1996), where the CVRPSCD problem is

described as ‘‘exceedingly difficult’’.

A further extension of the problem based on a case study, was solved as a

dynamic and stochastic problem in Hvattum et al. (2006). It is the case of a

distribution company, where the customers can call at any time of the day, in

addition there is a stochastic demand associated with the customers. Some of the

calls are received before the vehicles are dispatched. The problem was modeled as

an SPR, where the recourse action is using new vehicles and/or rearranging the

customers already planned in a route. This problem does not have relatively

complete recourse since feasibility in the first stage, does not imply feasibility in the

second stage due to the customers’ time windows. The number of customers that

appear at each time interval follows a Poisson probability distribution. Every

demand already registered in the historical database is assigned an equal probability

of reappearing as the demand associated with a new customer.

Another problem dealing with package delivery was presented in Zhong et al.

(2007) where strategic and operational (daily) routes are created. Customer requests

and locations are not known with certainty when designing the strategic routes.

However, this information is revealed before vehicles are routed for every

operational route. The learning curve (and forgetting curve) of the drivers regarding

the different areas is taken into consideration and the time used to serve a set of

customers varies from driver to driver. Due to this, the operational routes are

designed so that day-to-day variations are minimized. Even though there are no

constraints regarding the capacity, there is a time constraint: the vehicle must return

to depot within the driver’s work shift. Customers are grouped into cells, which are

each served by a single driver. Some cells are grouped into core areas that are

assigned to the same driver every day. The rest of the cells are not assigned during

strategic routing and can be served by any driver in the operational routes. The

number of customers in each cell is assumed to follow a normal distribution. The

problem of designing the strategic routes is modeled as CCP and the result of it is a

nonlinear generalized assignment problem.

A vehicle routing problem with stochastic customers was studied in Sörensen and

Sevaux (2009) as an example of a stochastic version of the CVRP. In this case

customers need to book the service ahead, and cancellations on short notice are

allowed. This problem is used to test the flexibility of solutions, measured as the

possibility of being adapted/repaired after cancellations are realized and still having

a high performance. An option to deal with this problem is to include all customers

in the route, and remove the customers that do not require service, once this

information becomes known. Customers need service with 0.5 probability.

Customers not requiring service are not visited.

A different version of the CVRPSD with time windows was proposed in Erera

et al. (2009). Each day the customers to be visited are a subset of all the customers
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because the demand quantity, which is uncertain, can be zero. Customers may have

one or two time windows. Each day, customers are assigned to two routes: primary

and backup. The recourse action is to move customers to a backup route. Customers

are visited in the order that they appear in the route and those that do not require a

service that day are skipped. The research was motivated by a collaboration with a

beer, wine, and spirits distributor. Here are the key ideas of the approach: customers

are divided into two sets, regular (with a high probability of placing an order for that

day) and irregular, the former are included into the planned routes and the latter are

added dynamically to operational routes. Regular customers are assigned to two

routes, for each weekday: primary and backup. Customers can be moved to a

backup route to regain feasibility or improve costs, this is done every day after

demand realizations and the result is the operational routes. Each customer i places

an order a given day with probability pi. The discrete random variable, that

represents the quantity that must be delivered to customer i, if an order is placed is

qi. The probability mass function of qi is known. For each customer the service must

start within its time window(s).

2.4 Probabilistic multi-vehicle pickup and delivery problem—MPDP

This problem is described as a fleet of vehicles that must serve a set of customers’

requests (Beraldi et al. 2010), where each request specifies an origin and a

destination and the origin must be visited before the destination. At the depot there

may be a cargo transfer between vehicles, so a request can be served by two routes,

one for pickup and one for delivery. A fixed number of routes is designed. There are

no restrictions on the capacity and the vehicles perform two routes per day. In a

solution to the deterministic problem, each vertex V n 0 is part of a single route, the

pickup visit is done before delivery optimizing a given performance indicator. A

customer may or may not require a service. A Bernoulli random variable is

associated with every customer i, it takes value one with probability pi, if i requires

a service, and zero with probability 1 � pi otherwise. The problem is modeled as a

two-stage SPR. In the first stage, m routes are designed, with m equal to twice the

number of vehicles, since they perform two routes per day, satisfying that each

vertex is visited once and precedence constraints (delivery performed after pickup).

In the second stage, after information about the requests is available, the customers

are served in the same order as in the a priori route. Customers with no service

requirement are skipped, which is considered to be the recourse action.

2.5 The CVRP with stochastic travel times (and service times)

Travel time has also been considered as the element that brings stochasticity to the

CVRP. A version of the CVRP with soft time windows and stochastic travel times is

found in Ando and Taniguchi (2006). In this model, a vehicle is allowed to make

several routes per day and all goods from each customer must be loaded at the

vehicle at the same time. The total weight of the goods in one route must not exceed

the capacity of the vehicle. In addition, there is a hard time window for the depot. A

triangular distribution is estimated for the travel time using real data. The objective
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of the problem is to minimize the total cost, which is given by the fixed cost of using

vehicles, the operational costs and penalties for arriving outside time windows. The

penalty for late/early arrivals can be seen as a recourse. The service time is assumed

to be deterministic. Tests are performed for the single vehicle case.

A multi-objective approach to the CVRP with soft time windows and stochastic

travel times (SCVRPSTW) is found in Russell and Urban (2008). In SCVRPSTW

the demand is known in advance, and there is a deterministic service time and a time

window associated with each customer. Servicing outside the time window is

allowed at a cost, either for earliness or lateness. Three objectives are taken into

consideration, the minimization of the number of vehicles, the total distance

traveled and the total expected penalties for earliness and lateness in the service.

Travel times are assumed to follow a shifted gamma, but the analysis and the tests

are performed using a special case of gamma, the Erlang distribution. Due to the

additive property of the gamma distribution, minimizing the total distance traveled

is equivalent to minimize the expected travel time. The problem is modeled as an

SPR, the recourse being the cost for servicing outside the time windows. The

authors indicate that the problem could be modeled as a CCP; however, no tests

were conducted for that case.

Another version of CVRP with stochastic travel times includes simultaneous

pick-ups and deliveries (Zhang et al. 2012), where each customer can have both

pick-ups and delivery demands. The vehicle has a maximum travel time B. The

problem is modeled as CCP, so in a feasible solution the probability that the vehicle

travel time be less than or equal to B must be greater than or equal to a given

parameter. Testing is performed on instances with travel time following a normal

distribution.

A variant of the problem including soft time windows was modeled as SPR (Taş

et al. 2013) with an extra cost for servicing the customers outside the time windows.

In addition, there is an overtime cost when the route time is longer than a certain

value. The recourse cost is given by these penalties. In this formulation, the demand

is deterministic and the travel time is assumed to follow a Gamma probability

distribution. The objective is to minimize the sum of transportation costs and service

costs. Transportation costs are the total distance, the fixed cost of using the vehicles

and the total expected cost of overtime. Service costs are incurred for early or late

arrivals at customers’ locations. The same problem can be found in a more recent

paper by Taş et al. (2014b).

A CVRP with time windows and stochastic travel and service times is studied in

Li et al. (2010). Here the problem is modeled using both a CCP and an SPR model.

In the CCP approach two aspects are considered, the probability of arriving at each

customer within the time windows and the probability of finishing a route within a

certain given time. In the second approach, the expected value of some extra costs is

computed: the penalty for arriving after the deadline of the time windows and the

cost of the driver overtime. The travel times and service times are assumed to follow

a normal probability distribution.

In Kenyon and Morton (2003) an uncapacitated VRP with stochastic travel and

service time is described and two different problems are studied. The minimization

of the completion time, which is the duration of the longest route, is one of the
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problems. The second problem is the maximization of the probability of completing

the operation within a predefined target time. In the second stage, no route

reoptimizations or recourse actions are allowed after the times are realized. The two

models are analyzed theoretically, including the computation of bounds and how

they are connected to the deterministic model that uses the expected value of the

parameters. In the tests reported, the travel times are assumed to follow a discrete

distribution as well as a uniform distribution. Tests with stochastic service times

were not reported.

An interesting queueing approach is used by Woensel et al. (2007) to model

routing problems with time-dependent travel time. The travel time is assumed to

depend on traffic congestion. There is a limit for the maximum length of every route

L and a deterministic service time. The expected travel time is calculated

analytically together with the variance. The variance enables the evaluation of the

risk involved. Time-dependent speeds are obtained using queueing models.

Assuming that traffic conditions are stationary, there is a relationship between flow

(number of vehicles), density (number of cars on a road segment) and speed. The

time horizon is divided into a certain number of discrete periods and a different

travel speed is associated with each period. Each segment of the route is considered

as a service station where the vehicles arrive at one rate k and get served at a rate l.

The objective function is to minimize total travel time, subject to capacity and

length constraints. A modification of the objective function is also considered by

adding the variance of the travel times, multiplied by a factor.

A VRP with stochastic time-dependent travel times was studied in Lecluyse et al.

(2009). The objective is to minimize the sum of the expected travel times plus the

weighted standard deviation of the travel times. Travel times are assumed to follow

a lognormal distribution. The traffic conditions are assumed to be the result of two

aspects: the congestion (congested and rush-hours) and the road and /or weather

conditions (good and bad).

A stochastic vehicle routing problem with soft time windows under travel and

service time uncertainties was studied in Zhang et al. (2013). The objective is to

minimize the summation of the fixed cost of vehicles (multiplied by a large

number), expected travel times, cost of early arrivals, cost of late arrivals and cost of

excess route duration. This is a hierarchical optimization objective, where the

number of vehicles is minimized with a higher priority. A minimum probability of

on-time arrival (CCP) is assured. Each customer can have a different customer

service-level constraint. There is a time window ½ei; li� assigned to every customer.

If the vehicle arrives before ei it must wait, if arrives late (later than li) a penalty

proportional to the lateness must be paid. Travel and service times are random

variables with probability distributions that are assumed to be known and

independent. Tests were performed with travel times following a lognormal

distribution and service times a normal probability distribution.

The CVRP with deadlines under travel time uncertainty was modeled by

Adulyasak and Jaillet (2016) using two different approaches: as a robust problem

and as a stochastic problem. In the stochastic approach the probability distribution

of travel time is assumed to be known (Normal in the tests). The objective is to

minimize the sum of probability of deadline violations. In the robust approach, on
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the other hand, the exact probability distribution is unknown but it is described by

an interval and a mean. The objective is to optimize a performance measure, the

lateness index, which takes the value of zero if the travel time meets the deadline.

Both approaches are extended using fixed service times, random service time and by

replacing the deadline with a soft time window.

A time-dependent VRP with soft time windows and stochastic travel times was

introduced in Taş et al. (2014a). In this problem, the travel times (speed of vehicles)

are assumed to be different at different times of the day. The objective is to

minimize the transportation costs (distance traveled, number of vehicles and

expected overtime) and the service costs (penalty for early and late servicing). The

problem is modeled as SPR, a penalty for servicing outside the time windows and

the overtime cost must be paid as recourse action. Two versions of the model are

studied, with and without service times. In the model without service times, the

exact values of the mean and the variance of the arrival times are calculated. In the

model with service times, these parameters are approximated. The travel times are

assumed to follow a gamma distribution.

A cash transportation vehicle routing and scheduling problem under stochastic

travel times was presented in Yan et al. (2014). In this problem, the variations in

vehicle routes and schedules, together with the stochastic travel times are taken into

consideration, with the goal of securing vehicles safety and reducing stochastic

disturbances. It is desired to have variations on the planned daily routes, so the

vehicles would be more difficult to track for robbers. There are no capacity

constraints and multiple trips during the planning period are allowed. Each customer

(demand point) has a soft time window. The potential movements of the vehicles are

formulated using the time–space network flow technique. The idea is to formulate

changes in time and space for routes and schedules. Changes in time mean that

arrival times will vary day by day. Changes in space mean that the sequence of

customers will vary day by day. The objective is to minimize the operating costs

with an unanticipated penalty cost, while considering variations in vehicle routes

and schedules. Unanticipated penalties are related to early and late arrival costs. The

problem is modeled as SPR, and the recourse action is the unanticipated penalty cost

for violating the planned operation time windows. The vehicles are often robbed

while being held at a demand point or during the route. To minimize the holding

time at customers, a risk cost of robbery is used, it increases with the amount of

money in the vehicle and the number of customers visited. The schedules are

changed as a mechanism to reduce the risk of being robbed during the route. A

similarity concept is introduced, where the potential current planned route is

compared to previously planned routes. There is a maximum allowed similarity with

the planned routes of previous days, it is smaller when the preceding day is closer.

Similarities in both time and space are considered. The travel times are simplified as

a discrete distribution from a continuous truncated normal. The travel time range is

divided into periods, each of them becomes associated with a discrete travel time

and a probability, which is estimated using a truncated normal distribution.

A VRP with time windows and stochastic travel times was studied in Ehmke

et al. (2015). The service must start at each customer i within the time window

½ei; li�. If the vehicle arrives earlier than ei, it will have to wait. The problem is
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modeled as CCP. The probability of the vehicle arriving at customer i, before li,

must be greater than or equal to a given level a. The travel times are assumed to be

normal, but it is shown by simulation that the analysis will hold even if the

distributions are not normal. The number of vehicles and the total duration of the

routes are minimized.

The distance-constrained CVRP with stochastic travel and service times

(DCVRPSTT), which was originally introduced by Laporte et al. (1992), is

modeled using a different approach in a recent paper by Gómez et al. (2016). This

new approach is interesting since no assumptions are made on the probability

distribution. The stochastic travel and service times are modeled with Phase-type

(PH) distributions (Neuts 1981), where a random time interval is modeled as being

composed of a number of exponentially distributed segments. There exists a PH

distribution arbitrarily close to any positive distribution. The objective function is to

minimize the total expected duration, subject to a service-level condition, where

every route must finish before a threshold T with a probability greater than b.

The CVRP with stochastic travel times was studied using a different approach in

Solano-Charris et al. (2015), as a robust CVRP. The travel times are modeled by

discrete scenarios, which are not associated with probability distributions. The

objective of this problem is to minimize the worst cost (total cost of the routes) over

all scenarios. A lexicographic approach is used to break ties.

The CVRP with hard time windows and stochastic travel and service time, was

studied in Miranda and Conceição (2016). In this case, for every customer i, the

service has to start within the range ½ei; li�. If the vehicle arrives earlier than ei, it

must wait. The problem is modeled with hierarchical optimization objectives; first

the number of vehicles is minimized, later the operating costs (mean travel time).

This is achieved by multiplying the number of vehicles by a large number in the

objective function. The problem is modeled as CCP, and the probability of arriving

earlier than li for every customer i must be greater than ai: The travel and service

times are assumed to follow a normal distribution.

2.6 The VRP with stochastic service times

In some types of services, the variability of the travel time is considered small,

compared to variability of the service time. Due to that, the travel time might be

considered as a deterministic parameter and the stochasticity of the problem is given

by the service time. In Lei et al. (2012) the number of vehicles and their capacity is

considered unlimited and a stochastic service time is associated with each customer.

There is an overtime cost if the route time exceeds a given value. The sum of travel

costs, expected service and overtime costs are minimized. The service time is

assumed to follow a continuous probability distribution. During the testing, service

times in the instances are assumed to be normally distributed.

A VRP with hard time windows and stochastic service times (VRPTW-ST) was

studied in Errico et al. (2016). The problem is modeled as SPR and the objective is

to minimize the total expected cost (travel costs ? cost of recourse actions).

Customers that cannot be served within their time windows are skipped at a penalty

cost. The recourse cost is a combination of a penalty cost and the variation in the
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travel cost. The probability of a route being feasible must be greater than a given

threshold (CCP). It is assumed that a route requires just one recourse action. An

evaluation time is introduced; after arriving at each customer i a constant time is

used to evaluate the service time. Once this evaluation time has passed, the service

time becomes known. Two versions of the recourse policy are considered, skip

current and skip next. In the former, once it is found that the route becomes

infeasible due to a time window violation in the next customer, the current customer

is not serviced (evaluation time is counted). In the latter, given the same situation,

the service is provided at the current customer, but the next in the route is skipped.

In both cases a penalty is paid. It is assumed that the service times probability

distributions are discrete with finite support (discrete triangular distribution in the

tests).

2.7 The CARP with stochastic service times

The routing problem in daily road maintenance operations is formulated as a

variation of the arc routing problem, where the travel and service times are

considered stochastic in Chen et al. (2014). Each day some segments of the road

network need to be monitored, which is an operation performed using a fleet of

vehicles. Each monitoring service is associated with an estimated service time and

each segment of the road is associated with a stochastic travel time. The objective is

to determine a set of monitoring routes of minimum cost and the total service

duration of each vehicle must not exceed a given threshold L. The problem is

modeled using both CCP and SPR. In the CCP formulation, the objective is to

minimize the total service cost, while the probability of the total service duration

being greater than L must be kept below a given value for each route. The total

service cost includes the total fixed cost of using the vehicles and the total

deadheading cost (traveling over a segment of road without servicing it). Travel and

service times are considered to follow a normal distribution.

In the SPR approach, the objective is to minimize the total service cost and the

expected recourse cost. Weights can be assigned to prioritize any of the costs. Two

recourse alternatives are considered: when a failure is expected to occur in a

particular arc aij, different than the last one, once the service previous to the arc aij is

finished, the vehicle travels back to the depot and the rest of the services are

rescheduled for the next day, at a cost. The other alternative is that the vehicle

serves all the arcs that belong to the original route and are located in the shortest

path between arc aij and the depot. In this case the recourse cost includes not only

the penalty for rescheduling some services for the next day, but also the excess

duration of the work.

2.8 The VRPSTW with stochastic service times and probabilistic customers

The courier delivery problem (CDP) is presented in Sungur et al. (2010) as a variant

of the VRPSTW. In the CDP the customers appear probabilistically and service

times are stochastic. The objective is to create regular routes, which are later
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adapted to the demand realizations every day. Delivery requests arrive daily from

potential customers. Location and time windows are known, but not the service

time. There is a limited number of couriers and a hard time window at the depot.

The first goal when solving the problem is to construct the master plan. The second

goal is to modify the master plan to construct daily schedules, in a way that the

number of customers served is maximized, route similarity (with respect to the

master plan) is maintained, penalties for earliness and lateness are minimized, as

well as the total time (travel, waiting and service time). The objective function is

modeled as a weighted sum of all these goals. Similarity is measured as the number

of customers in a daily route that are within a certain distance from any customer in

the same master plan route. The recourse action is partial rescheduling. In

computational tests, the service times are assumed to follow a lognormal probability

distribution, and real-world data is used to introduce uncertainty.

2.9 The CVRP with stochastic demands and travel costs

A robust CVRP is defined by Sörensen and Sevaux (2009) as the problem of finding

a solution with a high performance, across most possible outcomes. In such a

framework, the CVRP with stochastic demands and travel cost is studied. Demands

and travel costs are uniformly distributed. There is a maximum travel cost per route.

Some penalties are associated with unsatisfied demand and travel times greater than

the maximum. In this problem the regular objective function is replaced by an

average cost computed on a set of stochastic parameter realizations. Another way to

measure the robustness is to assess the highest cost evaluated on the same set.

2.10 Stochastic multi-objective approaches

The SVRP literature includes some work on problems where the decision-maker

faces several optimization criteria, with formulations resembling a multi-objective

structure.

A multi-objective CVRPSD was initially formulated with three objectives: to

minimize travel time, driver remuneration and number of vehicles in Tan et al. (2007).

The demands are assumed to follow a normal probability distribution. It was found that

two of the objectives, travel time and number of vehicles, are not in conflict, i.e., it is

possible to minimize them together. In the motivating case, the travel time is computed

as the Euclidean distance. The problem is modeled as an SPR, with recourse action

DTD. In addition, there is an extra cost if the route length exceeds a time limit B.

A multi-objective approach to the CVRP with soft time windows and stochastic

travel times (SCVRPSTW) was presented in Russell and Urban (2008). Three

objectives are optimized, the minimization of the number of vehicles, the total distance

traveled and the total expected penalties for earliness and lateness in the service.

A CVRP with stochastic demands was formulated assuming a percentage of the

vehicle’s capacity is reserved as a safety stock in the model of Juan et al. (2011).

The routing (stage 1) is done assuming a capacity limit lower than the maximum for

the vehicles. Slack capacity can be used to cope with excess in cumulative demands.

Two criteria are optimized, one of them is the total expected cost and the other is the
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reliability, measured as the probability of the solution suffering a route failure. A set

of solutions representing a tradeoff between these two criteria is given to the

decision-maker. The demands are assumed to follow a known parametric or

empirical probability distribution (discrete or continuous); however, the testing is

performed on instances with demands that have a lognormal probability distribution.

The problem is modeled as SPR: the recourse action is DTD, whenever there is a

failure.

An extension of the CVRP was made to include location, allocation and routing

decisions under the risk of disruption (Ahmadi-Javid and Seddighi 2013). In this

approach a set of potential producer-distributors is considered. The capacities vary

randomly due to disruptions. Due to this, the actual capacity of the producer-

distributor is assumed to follow a discrete probability distribution (discrete uniform

in the tests). The decision regarding which potential producer-distributors should be

opened has to be made. There is a set of customers with known, non-negative

demands, each of which is allocated to one producer-distributor. The customers are

served by a set of vehicles which might suffer disruptions, so the number of times

per year that a vehicle can visit the customers allocated to it follows a discrete

probability distribution (Binomial in the tests). The problem is modeled as an SPR.

In case of disruptions in the producer-distributor location, a risk mitigation strategy

has to be used to satisfy the customers’ demand. In the case of vehicle disruptions,

another vehicle is dispatched. In both cases the recourse action represents an extra

cost. The decision-maker is presented with three different solutions, related to three

different types of risk policies (moderate, cautious and pessimistic). For each risk

policy, there is a different risk measurement, expected cost for moderate,

conditional value-at-risk for cautious and worst case for pessimistic.

In some papers the problems may not be formulated as multi-objective, and no

mention of it is done in the paper. Still, the approach can have similarities to multi-

objective models, as a tradeoff solution set is obtained by changing parameters in

the model. Examples of this can be found in Lecluyse et al. (2009) where a VRP

with stochastic time-dependent travel times was presented, and in Zhang et al.

(2013) about the stochastic VRP with soft time windows under travel and service

time uncertainties.

3 Summary

3.1 Tables

Table 1 shows a list of all abbreviations and acronyms used in this section.

In Table 2 there is a summary of surveyed papers dealing with the CVRPSD,

where the demand is assumed to follow a continuous probability distribution.

In Table 3 there is a summary of surveyed papers dealing with the CVRPSD

where the demand is assumed to follow a discrete probability distribution.

In Table 4 there is a summary of surveyed papers dealing with the CARPSD

In Table 5 there is a summary of surveyed papers dealing with the CVRP with

stochastic customers and demands.
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Table 1 Notation

Abbreviation/acronym Method

AN Analytically

CCP Chance constraint programming

CARPSD Capacitated arc routing problem with stochastic demands

CVRPSD Capacitated vehicle routing problem with stochastic demands

DTD Detour to depot

DVC Deadline violation cost

NSDTD Non-splittable detour to depot

OC Overtime cost

PLC Pair locally coordinated

ROPT Reoptimization

SI Simulation

TW Time windows

TWVC Time windows violation cost

Table 2 Summary of papers dealing with the CVRPSD with continuous demand distribution

Author Probability

distribution

Recourse action Evaluation

Laporte et al. (2002) Normal DTD AN

Chepuri and Homem-

de Mello (2005)

Gamma Penalty paid to unserved customers SI

Rei et al. (2007) Truncated

normal

DTD AN

Tan et al. (2007) Normal DTD, extra cost for routes longer than a limit

value

SI

Sungur et al. (2008) Unknown

(bounded)

None SI

Sörensen and Sevaux

(2009)a

Uniform Fixed cost for exceeding route cost. Fixed cost

per unit violating capacity

SI

Rei et al. (2010) Any. Normal

reported

DTD SI

Mendoza et al. (2010) Any. Normal

reported

DTD AN

Mendoza et al. (2011) Any. Normal

reported

DTD AN

Juan et al. (2011) Any.

Lognormal

reported

DTD SI

Lee et al. (2012) Normal None AN

Jabali et al. (2014) Truncated

normal

DTD AN

Goodson (2015) Any. Normal

reported

DTD AN

a Paper deals with the CVRP with stochastic demands and stochastic travel costs
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In Table 6 there is a summary of surveyed papers dealing with the CVRP with

stochastic travel time (and service time).

In Table 7 there is a summary of surveyed papers dealing with the VRP with a

multi-objective approach.

3.2 Most common types of problems

The most studied SVRP continues to be the CVRPSD. Table 8 shows the attention

that different models have received in the literature. It is measured as the percentage

Table 3 Summary of papers dealing with the CVRPSD with discrete demand distribution

Author Probability distribution Recourse action Evaluation

Hjorring and Holt

(1999)

Several. Discrete reported DTD (not while exact

stockout)

AN

Yang et al. (2000) Discrete. Discrete triangular

reported

DTD, preventive restocking AN

Secomandi (2000) Discrete uniform DTD, ROPT AN

Secomandi (2001) Discrete. Discrete uniform

reported

DTD, ROPT AN

Laporte et al. (2002) Poisson DTD AN

Secomandi (2003) Discrete. Discrete uniform

reported

DTD, ROPT AN

Bianchi et al. (2005) Discrete uniform DTD, preventive restocking AN

Chang (2005) Discrete uniform DTD, TWVC AN

Haugland et al. (2007) Binomial. A minimum amount

will be demanded

DTD (deterministic) AN

Ak and Erera (2007) Discrete PLC AN

Christiansen and

Lysgaard (2007)

Any with accumulative property.

Poisson reported

DTD (not while exact

stockout)

AN

Novoa and Storer

(2009)

Discrete. Discrete uniform

reported

DTD, ROPT SI

Secomandi and Margot

(2009)

Discrete. Discrete uniform

reported

DTD, ROPT AN

Erera et al. (2010) Discrete Uniform NSDTD AN

Lei et al. (2011) Any. Poisson reported TWVC, DTD AN

Goodson et al. (2012) Poisson DTD AN

Mendoza and Villegas

(2013)

Any known. Poisson reported DTD AN

Marinakis et al. (2013) Any. Discrete uniform reported None AN

Gounaris et al. (2013) Unknown. Realizations are known None SI

Gauvin et al. (2014) Poisson DTD AN

Zhu et al. (2014) Discrete uniform DTD, ROPT AN

Mendoza et al. (2015) Poisson DTD/CCP AN

Zhang et al. (2016) Discrete TWVC, DTD, Preventive

restocking/CCP
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of papers where the corresponding problem/model appears (values are rounded to

the closest integer). Values do not add up to 100% since one paper may describe

more than one problem. Some models that could be relevant for dealing with real-

world problems, have received little attention, as the VRP with stochastic travel and

service times, or the VRP with stochastic service times.

3.3 Evaluation of the solutions

The quality of the solutions are evaluated using either a closed form that computes

the expected value of an objective function, simulation or by an algebraic

approximation of the closed form expected values. In most of the cases (67%) the

evaluation is done by expressing such objective functions in closed form. This

represents an advantage since for any possible solution, the expected value can be

computed. However, the assumptions made on the probability distribution of the

stochastic parameters represents a limitation on the model and its application in

real-life problems. We noticed that the algebraic approximation has been used just

recently, but it can be expected that it will become more popular. Such

Table 4 Summary of papers dealing with the CARPSD

Author Probability distribution Recourse action Evaluation

Fleury et al. (2002) Truncated normal DTD SI

Fleury et al. (2004) Truncated normal DTD AN

Fleury et al. (2005b) Truncated normal DTD SI

Fleury et al. (2005a) Truncated normal DTD SI

Christiansen et al. (2009) Poisson DTD AN

Laporte et al. (2010) Any. Poisson reported DTD AN

Beraldi et al. (2015)a Multivariate normal CCP SI

a Paper deals with the mixed capacitated general routing problem with probabilistic constraints

Table 5 Papers dealing with the CVRP with stochastic customers and demands

Author Probability distribution Recourse action Evaluation

Hvattum et al.

(2006)

Number of customers, Poisson.

Demands, discrete uniform

New vehicles/rearranging

customers

SI

Zhong et al.

(2007)

Normal CCP AN

Sörensen and

Sevaux (2009)

Discrete Customer not requiring

service are skipped

SI

Erera et al. (2009) Discrete Move customers to a backup

route

SI

Beraldi et al.

(2010)a

Bernoulli Customer not requiring

service are skipped

AN

a Paper deals with the probabilistic multi-vehicle pickup and delivery problem

The stochastic vehicle routing problem... 215

123



approximation may be seen as a tradeoff between the accuracy but complexity of

the closed form and the simplicity of the simulation.

3.4 Common recourse actions

In the problems modeled as SPR a recourse action is required. The most common in

the literature is the detour-to-depot (DTD). Such recourse action is the most

common in problems with stochastic demand. Its widespread use may stem from the

fact that it is very simple to understand and model. However, the applicability of the

models in real-life problems may benefit from using more complex and efficient

Table 6 Summary of papers dealing with the CVRP with stochastic travel time (and service time)

Author Probability distribution Recourse action Evaluation

Kenyon and Morton (2003)a Discrete, uniform (travel time) None AN

Ando and Taniguchi (2006) Triangular TWVC SI

Woensel et al. (2007) – OC AN

Russell and Urban (2008) Shifted gamma TWVC AN

Lecluyse et al. (2009) Lognormal AN

(approx)

Li et al. (2010)a Normal TWVC, OC/CCP SI

Zhang et al. (2012) Normal CCP AN

Lee et al. (2012) Truncated normal None AN

Lei et al. (2012)b Normal OC AN

Taş et al. (2013) Gamma TWVC, OC AN

Zhang et al. (2013)a Lognormal TWVC, OC/CCP AN

(approx)

Adulyasak and Jaillet

(2016)

Known. Normal reported DVC AN

Chen et al. (2014)c Normal Reschedule/CCP SI

Taş et al. (2014b) Gamma TWVC, OC AN

Taş et al. (2014a) Gamma TWVC, OC AN

(approx)

Yan et al. (2014) Discrete TWVC AN

Ehmke et al. (2015) Normal CCP AN

(approx)

Gómez et al. (2016)a Modeled using phase-type

distribution

CCP SI

Solano-Charris et al. (2015) Discrete scenarios Robust AN

Errico et al. (2016)b Discrete. Triangular reported Cost for skipping

customers

AN

Miranda and Conceição

(2016)

Normal CCP AN

(approx)

a Paper deals with the VRP with stochastic travel and service times

b Paper deals with the VRP with stochastic service times

c Paper deals with the CARP with stochastic travel and service times
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recourse actions. Table 9 shows the percentage of models where a recourse actions

is used, here it is limited to the most common. It may happen that a single model

includes more than one recourse action, so the values do not add up to 100%. The

values in the table are rounded to the nearest integer.

Table 7 Summary of papers dealing with a multi-objective approach

Author Probability distribution Recourse action Evaluation

Tan et al. (2007) Normal DTD. Extra cost for routes

longer than a limit value

SI

Russell and

Urban (2008)

Shifted gamma TWVC AN

Lecluyse et al.

(2009)

Lognormal AN

(approx)

Juan et al.

(2011)

Any. Lognormal reported DTD SI

Ahmadi-Javid

and Seddighi

(2013)

Discrete. Discrete uniform reported

(capacity) Binomial reported (number

of visits)

Cost for covering the lack of

capacity or hiring extra

vehicles

AN

Zhang et al.

(2013)

Lognormal TWVC. OC/CCP AN

(approx)

Table 8 Models found in the

literature
Type of problem Percentage of papers

CVRPSD 49

CVRP with stochastic travel times 19

CARPSD 9

Stochastic multi-objective VRP 9

Others 9

VRP with stochastic travel and service times 6

CVRPSCD 6

VRP with stochastic service times 3

Table 9 Types of recourse

actions
Recourse action Percentage of models

DTD 50

TWVC 21

OC 13

ROPT 12

Others 10

Preventive restocking 6
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4 Conclusions

In order to survey the past 20 years of research on stochastic VRPs, we found it

necessary to limit the scope of the survey to what we consider ‘‘core’’ stochastic

VRP papers. Needless to say, there is a vast literature on optimization problems

relating to VRPs, which is beyond the scope of this survey. Related problem types

include Traveling Salesman Problems (TSP), Inventory Routing Problems (IRP),

and Fleet Size and Mix VRP (FSMVRP). In all of these classes there are several

papers on stochastic variants of the problems. We refer the reader to general surveys

by Coelho et al. (2014) and Andersson et al. (2010) on IRP, Hoff et al. (2010) on

FSMVRP, Pillac et al. (2013) on dynamic VRP.

An important feature in the stochastic CVRP is the source of stochasticity. This

may be the demand, the travel time, the presence of customers and the service time,

among others. The CVRPSD (capacitated vehicle routing problem with stochastic

demand) has been by far the most studied version of the problem.

Another important distinguishing feature of stochastic vehicle routing problems

is the recourse policy, which describes the actions to take in order to repair the

solution after a failure. Three popular actions are as follows:

• The vehicle returns to depot to restock when capacity is attained or exceeded.

Service resumes at the customer where route failure occurred.

• A preventive restocking can be done before a route failure occurs.

• Re-optimizing the portion of a route that has not been served after failure or after

each customer is served and its demand becomes known.

In other SVRP formulations the recourse policy does not involve routing decisions

(as in the DTD case), but a penalty for late/early arrivals or the extra time cost of the

driver, can be part of the expected cost when time windows and/or stochastic service

time are taken into consideration. Preventative restocking and partial re-optimiza-

tion seem to be more realistic, but require more sophistication. With improving

solver technology and ongoing research, we see the field moving more in this

direction.

Looking to the future we expect to see increasing interest in multi-stage SVRP,

where there are multiple recourse actions. We also foresee more interest in multiple-

objectives as well as so-called robust optimization, which guards against a worst-

case or bad-case. Of course, it is difficult to predict the future with certainty, hence

the need for stochastic programming.
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