45 research outputs found

    Numerical Methods for Parasitic Extraction of Advanced Integrated Circuits

    Get PDF
    FFinFETs, also known as Fin Field Effect Transistors, are a type of non-planar transistors used in the modern integrated circuits. Fast and accurate parasitic capacitance and resistance extraction is crucial in the design and verification of Fin- FET integrated circuits. Though there are wide varieties of techniques available for parasitic extraction, FinFETs still pose tremendous challenges due to the complex geometries and user model of FinFETs. In this thesis, we propose three practical techniques for parasitic extraction of FinFET integrated circuits. The first technique we propose is to solve the dilemma that foundries and IP vendors face to protect the sensitive information which is prerequisite for accurate parasitic extraction. We propose an innovative solution to the challenge, by building a macro model around any region in 2D/3D on a circuit where foundries or IP vendors wish to hide information, yet the macro model allows accurate capacitance extraction inside and outside of the region. The second technique we present is to reduce the truncation error introduced by the traditional Neumann boundary condition. We make a fundamental contribution to the theory of field solvers by proposing a class of absorbing boundary conditions, which when placed on the boundary of the numerical region, will act as if the region extends to infinity. As a result, we can significantly reduce the size of the numerical region, which in turn reduces the run time without sacrificing accuracy. Finally, we improve the accuracy and efficiency of resistance extraction for Fin-FET with non-orthogonal resistivity interface through FVM and IFEM. The performance of FVM is comparable to FEM but with better stability since the conservation law is guaranteed. The IFEM is even better in both efficiency and mesh generation cost than other methods, including FDM, FEM and FVM. The proposed methods are based on rigorous mathematical derivations and verified through experimental results on practical example

    Numerical Methods for Parasitic Extraction of Advanced Integrated Circuits

    Get PDF
    FFinFETs, also known as Fin Field Effect Transistors, are a type of non-planar transistors used in the modern integrated circuits. Fast and accurate parasitic capacitance and resistance extraction is crucial in the design and verification of Fin- FET integrated circuits. Though there are wide varieties of techniques available for parasitic extraction, FinFETs still pose tremendous challenges due to the complex geometries and user model of FinFETs. In this thesis, we propose three practical techniques for parasitic extraction of FinFET integrated circuits. The first technique we propose is to solve the dilemma that foundries and IP vendors face to protect the sensitive information which is prerequisite for accurate parasitic extraction. We propose an innovative solution to the challenge, by building a macro model around any region in 2D/3D on a circuit where foundries or IP vendors wish to hide information, yet the macro model allows accurate capacitance extraction inside and outside of the region. The second technique we present is to reduce the truncation error introduced by the traditional Neumann boundary condition. We make a fundamental contribution to the theory of field solvers by proposing a class of absorbing boundary conditions, which when placed on the boundary of the numerical region, will act as if the region extends to infinity. As a result, we can significantly reduce the size of the numerical region, which in turn reduces the run time without sacrificing accuracy. Finally, we improve the accuracy and efficiency of resistance extraction for Fin-FET with non-orthogonal resistivity interface through FVM and IFEM. The performance of FVM is comparable to FEM but with better stability since the conservation law is guaranteed. The IFEM is even better in both efficiency and mesh generation cost than other methods, including FDM, FEM and FVM. The proposed methods are based on rigorous mathematical derivations and verified through experimental results on practical example

    Stretched coordinate PML in TLM

    Get PDF
    As with all differential equation based numerical methods, open boundary problems in TLM require special boundary treatments to be applied at the edges of the computational domain in order to accurately simulate the conditions of an infinite propagating medium. Particular consideration must be given to the choice of the domain truncation technique employed since this can result in the computation of inaccurate field solutions. Various techniques have been employed over the years to address this problem, where each method has shown varying degree of success depending on the nature of the problem under study. To date, the most popular methods employed are the matched boundary, analytical absorbing boundary conditions (ABCs) and the Perfectly Matched Layer (PML). Due to the low absorption capability of the matched boundary and analytical ABCs a significant distance must exist between the boundary and the features of the problem in order to ensure that an accurate solution is obtained. This substantially increases the overall computational burden. On the other hand, as extensively demonstrated in the Finite Difference Time Domain (FDTD) method, minimal reflections can be achieved with the PML over a wider frequency range and for wider angles of incidence. However, to date, only a handful of PML formulations have been demonstrated within the framework of the TLM method and, due to the instabilities observed, their application is not widely reported. The advancement of the PML theory has enabled the study of more complex geometries and media, especially within the FDTD and Finite Element (FE) methods. It can be argued that the advent of the PML within these numerical methods has contributed significantly to their overall usability since a higher accuracy can be achieved without compromising on the computational costs. It is imperative that such benefits are also realized in the TLM method. This thesis therefore aims to develop a PML formulation in TLM which demonstrates high effectiveness in a broad class of electromagnetic applications. Motivated by its suitability to general media the stretched coordinate PML theory will be basis of the PML formulation developed. The PML method developed in this thesis is referred to as the mapped TLM-PML due to the implementation approach taken which avoids the direct discretization of the PML equations but follows more closely to the classical TLM mapping of wave equations to equivalent transmission line quantities. In this manner the highly desired unconditionally stability of the TLM algorithm is maintained. Based on the mapping approach a direct stretching from real to complex space is thus applied to the transmission line parameters. This is shown to result in a complex propagation delay and complex frequency dependent line admittances/impedances. Consequently, this modifies the connect and scatter equations. A comprehensive derivation of the mapped TLM-PML theory is provided for the 2D and 3D TLM method. The 2D mapped TLM-PML formulation is demonstrated through a mapping of the shunt node. For the 3D case a process of mapping the Symmetrical Condensed Node (SCN) is formulated. The reflection performance of both the 2D and 3D formulations is characterised using the canonical rectangular waveguide application. Further investigation of the capability of the developed method in 3D TLM simulations is demonstrated by applying the mapped TLM-PML in: (i) the simulation of planar-periodic structures, (ii) radiation and scattering applications, and (iii) in terminating materially inhomogeneous domains. A performance comparison with previously proposed TLM-PML schemes demonstrates the superior temporal stability of the mapped TLM-PML

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    De subdomein FDTD methode

    Get PDF

    Annual Research Report 2020

    Get PDF

    The Deep Space Network

    Get PDF
    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations

    Switched-capacitor networks for image processing : analysis, synthesis, response bounding, and implementation

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 279-284).by Mark N. Seidel.Sc.D

    Applications

    Get PDF

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    corecore