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ABSTRACT

FinFETs, also known as Fin Field Effect Transistors, are a type of non-planar

transistors used in the modern integrated circuits. Fast and accurate parasitic ca-

pacitance and resistance extraction is crucial in the design and verification of Fin-

FET integrated circuits. Though there are wide varieties of techniques available for

parasitic extraction, FinFETs still pose tremendous challenges due to the complex

geometries and user model of FinFETs. In this thesis, we propose three practical

techniques for parasitic extraction of FinFET integrated circuits.

The first technique we propose is to solve the dilemma that foundries and IP

vendors face to protect the sensitive information which is prerequisite for accurate

parasitic extraction. We propose an innovative solution to the challenge, by building

a macro model around any region in 2D/3D on a circuit where foundries or IP

vendors wish to hide information, yet the macro model allows accurate capacitance

extraction inside and outside of the region.

The second technique we present is to reduce the truncation error introduced by

the traditional Neumann boundary condition. We make a fundamental contribution

to the theory of field solvers by proposing a class of absorbing boundary conditions,

which when placed on the boundary of the numerical region, will act as if the region

extends to infinity. As a result, we can significantly reduce the size of the numerical

region, which in turn reduces the run time without sacrificing accuracy.

Finally, we improve the accuracy and efficiency of resistance extraction for Fin-

FET with non-orthogonal resistivity interface through FVM and IFEM. The perfor-

mance of FVM is comparable to FEM but with better stability since the conservation

law is guaranteed. The IFEM is even better in both efficiency and mesh generation
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cost than other methods, including FDM, FEM and FVM.

The proposed methods are based on rigorous mathematical derivations and veri-

fied through experimental results on practical examples.
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1. INTRODUCTION

1.1 Background

FinFETs, also known as Fin Field Effect Transistors, are a type of non-planar

transistors used in the modern integrated circuits. It uses a conducting channel that

rises above the level of the insulator, creating a thin silicon structure, shaped like a

fin. In a traditional planar transistor, the current between source and drain is closely

related to the ratio W
L

where W and L are the width and length of the device respec-

tively. As the industry process technology scales down, L is decreased to improve the

drive strength of the transistor which results in high susceptibility to variability when

leakage control become an important issue to take into consideration. As shown in

Fig. 1.1, a tri-gate transistor designed by intel, the gate surrounds the channel on all

three sides and has much better control so that all the charge below the transistor

is removed. It has better control over the sub-threshold leakage. Since there is no

bulk capacitance, which results in small sub-threshold swing. Thus the transistor

has faster switching speed. Since the gate delay can be considered as the inverse

of the frequency, lower gate delay means faster frequency which is demonstrated in

Fig. 1.2. Furthermore, the tri-gate configuration provides a steeper sub-threshold

slope (SS) effectively reducing leakage current, thereby decreasing dynamic power

consumption and increasing device performance.

1.2 Overview of Our Work

In this dissertation, we solve three practical problems in FinFET integrated cir-

cuits.

In order to perform accurate parasitic extraction, foundries must provide the

cross-section profile of devices, and IP vendors must provide sufficient layout in-

1



Figure 1.1: Traditional Planar transistor and Tri-Gate FinFETs. Reprinted from [1].

formation. However foundries and IP vendors are increasingly reluctant to reveal

such sensitive information, especially for advanced devices, like FinFET. Therefore,

the industry is faced with the following challenges: i) foundries/IP vendors need

to protect their trade secrets, ii) EDA vendors need to integrate foundry data into

extraction tools, and iii) IC designers need to have the accurate parasitic data.

We propose an innovative and practical solution to these challenges, by building a

macro model around any region in 2D/3D on a circuit where foundries or IP vendors

wish to hide information, yet the macro model allows accurate capacitance extraction

inside and outside of the region. We first give algorithms to construct the macro

model. Then we describe how existing extraction algorithms can interface with the

macro model to perform extraction for the entire circuit at the same accuracy as if

complete information were given. The macro model can be used in FDM/FEM and

Floating Random Walk (FRW), due to an equivalence theorem we proved. Finally,

we propose the concept of equivalent profile, and describe how to find one based on

the macro model.

2



Figure 1.2: FinFET Sub-threshold Slope and Gate Delay Improvements. Reprinted
from [1].

Our second project focuses on the error introduced by the Neumann boundary

conditions. Due to the increasing 3D effects of FinFET and local interconnect,

3D field solvers become popular for parasitic capacitance extraction of full custom

circuits, IPs, and packages. Traditional field solvers based on FDM/FEM/FRW

assume Dirichlet or Neumann boundary conditions on the outer boundary of the

numerical region. To ensure high accuracy, the numerical region should be large so

that the electric field on the boundary will not interfere with the conductors.

We propose a class of absorbing boundary conditions, which when placed on the

boundary of the numerical region, will act as if the region extends to infinity. As

a result, we can significantly reduce the size of the numerical region, which in turn

reduces the run time without sacrificing accuracy. Our absorbing boundary con-

ditions are mathematically derived and proved to be superior than the traditional

boundaries and previous absorbing boundaries. In particular, we prove the asymp-

totic error of the proposed n-th order absorbing boundary is O(1/rn+2), while the

3



error of Neumann boundary is O(1/r2), where r is the size of the numerical region.

Based on our first order absorbing boundary condition, we also propose an equiva-

lent dielectric layer approach that can be easily adopted by any existing field solver.

This novel method is effective in improving the run time and accuracy in capaci-

tance problems for multi-layer dielectric and Silicon On Insulator (SOI) cases, over

previous boundary conditions for uniform or non-uniform meshes.

The third problem we investigate is doing resistance extraction with non-orthogonal

conductivity interface. Many commercial field solvers for resistance extraction are

based on finite difference method (FDM) or finite element method (FEM). The lin-

ear systems are easy to construct with FDM, but the mesh must be orthogonal. To

approximate the non-orthogonal interface, it requires very dense mesh which leads

to huge computational cost to achieve high accuracy. On the other hand, FEM is

feasible to non-orthogonal interface with the proper mesh fitting the interface. How-

ever, it is expensive to construct the local linear system. FEM does not follow the

conservation law, which makes it struggle to stability and low accuracy for coarse

mesh. Besides, it is not trivial to generate the triangular or quadrilateral mesh for

FEM.

We introduce for the first time finite volume method (FVM) for resistance ex-

traction. FVM is similar to FEM which allows non-orthogonal mesh while at the

same time, the linear system is easy to construct. In addition, the robustness is com-

parable to FDM, due to the conservation law is always guaranteed. Our method,

a second-order accurate FVM, is based on the latest development in computational

physics. Experimental results show that this new scheme is effective in improving

the run time and accuracy for resistance extraction. However, both FEM and FVM

are faced with the dilemma of unexpected high mesh generation costs. We need to

generate new mesh again to adapt to any geometrical change, even it is very trivial.

4



We also introduced immersed finite element method (IFEM) to solve the dilemma.

It can maintain the Cartesian grid and FDM scheme for the regions without non-

orthogonal interface or boundary, while applying the extended FEM scheme for the

grid cells with interface lines cutting through. It is rather simple and efficient to build

local matrix for the cells along the interface line which avoids the heavy burden to

build FEM local matrix for all triangle cells. The approach to build local system can

be extended to multiple disjoint interface lines cutting through a single cells which

can be applied to even coarser rectangle mesh.

1.3 Outline

The major contribution of the dissertation is presenting several novel approaches

that resolve the practical problem for the existing parasitic extraction methods in

terms of intellectual property, accuracy and adaptability. The rest of the dissertation

is organized as follows. Chapter 2 presents the macro model of advanced devices for

parasitic extraction. Chapter 3 gives detailed description of the absorbing bound-

ary conditions and the applications. Chapter 4 summarizes numerical methods for

resistance extraction including FDM, FEM, FVM and IFEM, and compares the per-

formance for practical problems.
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2. MACRO MODEL OF ADVANCED DEVICES FOR PARASITIC

EXTRACTION ∗

In this chapter, we discuss the macro model construction and its applications for

the parasitic extraction.

2.1 Background

In order to perform accurate parasitic extraction, foundries must provide cross-

section profile information in their PDK (Process Design Kit) to foundry customers.

Examples of such information are:

• the height and width of diffusion, field poly and gate poly,

• the shape of conformal dielectric near devices,

• the dielectric constants for gate oxide and spacer,

• the geometry of dummy poly and dummy diffusion,

• the 3D shape of multi-finger FinFET,

• the shape of contact, etc.

LPE (Layout Parasitic Extraction) tools rely on the profile information to accu-

rately perform extraction. Field solvers that are most accurate, such as [2][3][4] all

need the profile information to set up Laplacian equations. Rule-based tools, such as

[5][6][7], all need the profile information to feed field solvers to generate extraction

rules.

∗Reprinted from “Macro Model of Advanced Devices for Parasitic Extraction” by Yuhan Zhou,
Yong Zhang, Vivek Sarin, Wangqi Qiu, Weiping Shi, 2016. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 35, 1721-1729, Copyright 2016 by IEEE.
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However foundries are reluctant to reveal such sensitive information for advanced

devices such as FinFET. Foundries are faced with the dilemma of revealing more in-

formation at the risk of compromising sensitive trade-secrets, or not revealing enough

information and suffer performance loss due to inaccurate extraction. Similarly, IP

vendors must reveal layout of IP cells in order for the users to extract parasitic

information near the IP cells.

Until now, the foundries use a number of ad hoc approaches to deal with the

problem. For example, the foundry may reveal an approximated or altered pro-

file. However, to do so may cause uncontrollable error when extracting capacitance

between device pins, such as between source and gate, drain and gate, etc. The ten-

dency of compact model for advanced nodes is to rely on extraction tools to extract

fringing parasitic capacitance between device pins, rather than using closed-form

expressions. For advanced process, no existing approach seems to work due to the

complexity of the geometry near the devices and infinite possibilities by which the

device may interact with nearby interconnect.

In this chapter, we solve the dilemma by proposing a macro model for any region

in 2D/3D chosen by the foundries or IP vendors, which we call a black box. A

macro model accurately describes the electric field relation between the boundary

nodes and internal nodes of the black box, without revealing geometrical or profile

information inside of the black box. Since the ratio of the number of boundary nodes

to internal nodes goes to zero as the mesh size increases, it is theoretically impossible

to reverse engineer the detailed information inside of the black box from the macro

model. For resistance macro model, the same techniques presented in this chapter

can be applied. But for inductance macro model, more study is needed.
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2.2 Extraction flow using Macro Model

In [8][9], macro models were built to speedup hierarchical capacitance extraction,

where the layout and profile information are fully disclosed. In this chapter, the

macro models are built and applied under different conditions, for a different purpose.

The concept was first presented by us in [10]. In this section, we will introduce the

macro model concept for Finite Difference Method (FDM) first, then describe the

capacitance extraction flow using macro model.

A closed region which contains one or more conductors is a black box denoted

as B. In general, a black box can be any shape, though a 2D rectangle or 3D cube

makes computation easier. The surface of the black box is denoted as B. There are

uniform or non-uniform discretized mesh on B. Those grid points on B are called

port nodes.

In general, when electric potential is applied to each port node separately as

vector Vp(B), it results in electric flux normal to the Gaussian surface B. The

electric flux is denoted as Dp(B,V).

A Macro model for FDM is a matrix Mp×p, where p is the number of port nodes.

Any column k of the matrix represents the flux at each port node when one volt is

applied to kth port node and zero volt to all other port nodes. A 2D macro model

is described in Def. 1, and 3D modes have similar definition.

Fig. 2.1 is the macro model application flow. The foundry uses the real cross

section profile to build the macro models while hiding original profile information.

The EDA vendors provide LPE tools that support macro models. Designers will

combine the macro models provided by the foundry and LPE tools provided by the

EDA vendors to perform extractions for actual circuits.
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Definition 1: Macro Model for FDM in 2D

Black Box Region:
[xmin, xmax]× [ymin, ymax]

Port Nodes:
Pk = (xk, yk), k = 1, 2, ..., p.

Macro Model Matrix:
Mp×p
specifying Dp = MVp

2.3 Construction of Macro Model for FDM

In this section, we present an algorithm to build a macro model. The algorithm

is performed at the foundry side. Although the following description and equations

are for the 2D case, they are valid for 3D as well. In Fig. 2.2, the boundary of a 2D

black-box is indicated by the dashed line.

We discretize the black box with a mesh. For each mesh grid node, we assign

a variable representing the potential at that node. There are three types of nodes.

The first type are nodes within the dielectric inside the region, which we call internal

nodes and let Vi be the vector of potentials on such nodes. The second type are nodes

on the equipotential surface of conductors inside the black box with the assumption

that all the conductors are ideal conductors. We call them conductor nodes, and let

Vc be the vector of potentials on such nodes. Floating conductors are treated as

dielectric with ε = 1000, although other methods can be used to achieve the same

effect. The third type are nodes on the boundary of the black box, which we call port

nodes as stated before, and let Vp be the vector of potentials on them. A port node

may be on a conductor, but it is still called a port node. In such a case, conductors

inside of the black box extends to the outside, Vc is uniquely determined by Vp.

In a capacitance extraction problem, in order to compute the flux on a Gaussian
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Figure 2.1: Macro model construction and application flow for foundry, EDA vendor
and designer.

surface, the potential distribution over the whole domain must be determined. When

such dependency relationship within the black box is hidden, the macro model ma-

trix M enables the interaction of the black box with the neighbors outside without

revealing detailed information inside of the black box.

Use FDM [11] on the mesh, the Laplacian equation becomes the following linear

system. Matrix A is a 5-point stencil for 2D and 7-point stencil for 3D, except for
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Figure 2.2: Demonstration of 2D MOSFET with black box enclosed by dashed lines.

the rows/columns corresponding to the conductor nodes.

 Aii Aip

Api App


 Vi

Vp

 =

 0

Dp

 , (2.1)

rearrange the first row of the equation, we get

AiiVi = −AipVp . (2.2)

Plugging to the second row of the original system (2.1), we are able to get port
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nodes flux

Dp = (App −ApiAii
−1Aip)Vp . (2.3)

Since the foundry has complete information on the region, it can compute

M = App −ApiAii
−1Aip , (2.4)

and give matrix M as PDK (Process Design Kit). Matrix M describes relationship

between Vp and Dp. The macro model consists of two parts:

• Matrix M or a low rank approximation of it.

• The coordinates of the port nodes at B.

Coordinates of conductor nodes inside of the black box are not needed.

There are far more internal nodes than port nodes. If the number of mesh grid in

each direction (X, Y or Z) is k, then the ratio of number of port nodes to the number

of internal nodes is O(k) to O(k2) in 2D, and O(k2) to O(k3) in 3D. In such a case,

App, Aii and Aip, which describe conductors and dielectric distribution inside of

the black box, can not be recognized from M. Therefore it is impossible to derive

detailed information about internal nodes from port nodes.

Now we discuss how to efficiently compute M defined in (2.4). Matrix Aii is

sparse and SPD (symmetric positive definite). If the dimension of Aii is small, a

direct factorization of Aii will be sufficient to compute M. If Aii is large, iterative

methods can be used to compute ApiA
−1
ii Aip as follows. Let

X = ApiAii
−1Aip = ApiY , (2.5)
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where

Y = A−1ii Aip . (2.6)

Therefore, we first solve

AiiY = Aip , (2.7)

for Y using iterative method, and then compute X = ApiY. Please note that X and

Y are matrices, not vectors. Therefore, there are multiple right-hand-sides in linear

systems (2.7). A good preconditioner can be constructed, to be used repeatedly for

the multiple right-hand-sides.

2.4 Using of Macro Model by FDM field Solver

In this section, we shall discuss how EDA vendors can integrate the macro model

into LPE tools.

LPE tools are either based directly on field solvers, or indirectly, through rules

and patterns which must be determined using field solvers. Therefore it is sufficient

to show how field solvers can utilize the macro model.

Fig. 2.2 is a 2D example application where a macro model for the black box is

given, but no dielectric and conductor information in the black box is given. In this

example, we are asked to extract coupling capacitance between gate and drain, as

well as gate and source.

We first perform discretization by adding mesh grid to form a global mesh. If

the step size of macro model ports is sufficiently dense, then the global mesh uses

the same step size. However if the step size of macro model ports is too coarse, we

add more to the global mesh. On the other hand, if the step size of macro model
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ports is too dense, we may skip some in the global mesh. If either of these situations

happens, interpolation or extrapolation is used to map the macro model ports to the

global mesh.

Given the macro model M, we can build linear system to do capacitance extrac-

tion for the entire domain. Using FDM, we have the following linear system for the

domain outside of the black box: Boo Bop

Bpo M


 Vo

Vp

 =

 Do

0

 , (2.8)

where Vo and Do are the vectors of potential and electric flux on all nodes respec-

tively outside of the black box, Vp is the vector of potential on ports. Matrix Boo

is a Laplacian matrix, describing the interaction between nodes outside of the black

box. Matrices Bop and Bpo describe the interaction between nodes outside of the

black box and port nodes on the black box. Matrices Boo,Bop and Bpo are all sparse

matrices.

Since the macro model also contains the coordinates of port nodes, the connection

between nodes outside of the black box and port nodes on the black box can be

easily established. For those port nodes representing conductors inside of the black

box, a corresponding node outside of the black box is created and an equivalence is

established by Boo and Bop.

The flux from outside of the black box cancels out the flux from inside of the

black box at port nodes. This explains the dependency between Vp and Vo:

Vp = −M−1BpoVo . (2.9)
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Substituting Vp in (2.8), we have

Do = (Boo −BopM−1Bpo)Vo . (2.10)

Matrices M or its approximation is provided by the foundry. In fact, to simplify

computation, the foundry may provide M−1 directly or its approximation.

There are many known techniques to solve the linear system (2.10). Basically,

the given potential of conductors are brought into (2.10), resulting in elimination of

some rows/columns and modification of the right hand side. Then the linear system

can be solved either by a direct factorization or by an iterative method.

When solving the system by an iterative method, one needs to use a precondi-

tioner to accelerate the convergence to the solution. A block diagonal preconditioner

consisting of the two diagonal blocks of the system matrix can be used. An alter-

native is to use a block upper triangular system. The system matrix A and the

preconditioner Ã are shown below:

A =

 Boo Bop

Bpo M

 , Ã =

 Boo Bop

0 M

 . (2.11)

To analyze the effect of the preconditioner, we estimate the eigenvalues λ of the

preconditioned matrix that satisfy the equation:

 Boo Bop

Bpo M


 x

y

 = λ

 Boo Bop

0 M


 x

y

 . (2.12)
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This simplifies (2.12) to the condition that either λ = 1 or λ satisfies:

(λ− 1)My = −BpoBoo
−1Bop . (2.13)

Since the number of eigenvalues that differ from unity equals the rank of M, the

number of iterations required for convergence does not exceed the number of port

node variables.

The block preconditioner requires factoring M and Boo. Since M can be factored

once and used many times, the challenge is to factor Boo quickly. An alternative is

to replace Boo with the identity matrix or an approximation derived from incomplete

factorization of Boo such as IC(0). Each case can be analyzed to predict the quality

of the resulting preconditioner. One can also compute an incomplete factorization

of A directly using the standard algorithm.

2.5 Construction and Using of Macro Model for FEM

Instead of FDM, we can apply macro model concept to Finite Element Method

(FEM) based extraction process.

With the weak form of the Laplacian equation

−∆v = 0 (2.14)

defined as

(∇ψ,∇v) = 0 , (2.15)

assuming ψ is a test function, the basic principle of FEM is to apply finite dimensional

approximation to solution v in infinite dimensional space.
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In general, the formulation of FEM [12] is based on the discretized elements. In

each element e, the discretized local potential V e is

V e =
N∑
j=0

V e
j ψ

e
j , (2.16)

where {ψej}Nj=1 is a set of N polynomial basis functions defined on the nodes of the

element, and V e
j is the unknown expansion coefficients for the potential distribution

approximation. The Laplacian equation can be discretized into

[K] · ~V = ~b , (2.17)

where the global stiffness matrix [K] is constructed by the assembly process on the

local stiffness matrix [Ke] which is defined as

Ke
ij =

∫
Ωe

εe∇ψei · ∇ψejdΩe . (2.18)

The macro model for FEM can be built in the foundry side for any sensitive

region indicated by the black box. Once the black box is defined, Laplacian equation

can be discretized as

[KB]

 Vi

Vp

 =

 Kii Kip

Kpi Kpp


 Vi

Vp

 =

 0

KMVp

 , (2.19)

where [KB] is the stiffness matrix as an assemble of the local stiffness matrix for

the black box, Vi and Vp are potential vectors for internal nodes and port nodes

respectively. Since the port nodes are the only interface with the outside of the black

box, we simplify KpiVi+KppVp in terms of Vp and define such dependency matrix
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KM as a macro stiffness matrix. From (2.19), it is easy to get

KM = Kpp −KpiK
−1
ii Kip . (2.20)

Due to the FEM equation is actually the weak form of the conservation equation

and its performance depends on the choice of basis function, the formula of KM is

not the same as (2.4), though they are similar and close to each other in norm.

As shown in Fig. 2.1, the macro model for FEM provided by the foundries and

LPE tools provided by the EDA vendors should be well prepared before the designers

perform extraction for a system with black box. For the system outside of the black

box, assuming the corresponding stiffness matrix K′ is composed of K′oo,K
′
op,K

′
po

and K′pp, we can directly assemble KM to the port nodes part as below:

 K′oo K′op

K′po K′pp + KM


 Vo

Vp

 = 0 . (2.21)

Once the potential distribution is determined, it is trivial to calculate capacitance.

2.6 Construction and Using of Macro Model for Floating Random Walk

Method

Floating Random Walk (FRW) method [13] is composed of a series of Monte

Carlo simulation. In order to calculate capacitance of a conductor C, a point i on

the Gaussian surface of C is randomly selected as the starting point for each FRW

path. Then a transition domain D is created (i.e., a square for 2D and a cube for

3D) which encloses i. It is limited in size by the nearest conductor. A point j

on the surface of D is selected according to a probability density function which is

defined to be equal to the Green’s function [13]. If the point j is on a conductor,
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the path is ended. Otherwise, a new transition domain will be created for j and

the aforementioned process will be repeated until the path reaches a conductor.

Averaging the potential on those conductors for FRW paths starting from i gives the

potential for i.

We restrict random walks to start and end at port nodes of the black box without

leaving the black box. This process can be simplified as one hop transition from port

nodes to port nodes. The macro model over the black box describes this one hop

transition as matrix R of dimension p× p in Def. 2, where p is the number of port

nodes on the black box. V+
p is a local potential vector for all port nodes without any

contribution outside of the black box, while Vp is a global potential vector including

contribution from both inside and outside of the black box. Each entry rij of R

represents the probability that a FRW path enters the black box at port node i and

exits the black box at port node j. If the FRW path hits a conductor inside of

the black box, it will be regarded as exiting at the corresponding port node at the

boundary, and the path is terminated. Note that we allow a FRW path entering the

black box at node i, either exit at node j (j 6= i) with probability rij, or exit at node

i itself with probability rii.

Definition 2: Macro Model on FRW method in 2D

Black Box Region:
[xmin, xmax]× [ymin, ymax]

Port Nodes:
Pk = (xk, yk), k = 1, 2, ..., p.

Markov Transition Matrix:
Rp×p
specifying V+

p = RVp
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With the definition of Markov transition matrix R, a FRW field solver can com-

pute capacitance without ever entering the black box. Whenever a FRW path reaches

the boundary of the black box at port node i, it will either go out of the black box,

or enter the black box. In 2D at uniform dielectric, if i is on the black box corner,

it will enter the black box with probability 1/4. If i is on the black box edge, this

probability will be 1/2. When it gets into the black box, the FRW path will select

a port node or a conductor node j inside of the black box with probability rij. If it

arrives at conductor, this FRW path stops. Otherwise, the path continues at node

j.

To compute R, the following FRW procedure can be used: for each port node i,

many FRW paths are initiated without leaving the region. If a FRW path hits a node

j, either on the boundary or a conductor inside of the black box, matrix entry (i, j)

increases by 1. We normalize each row by dividing its sum when it is convergent.

From previous statement, in the macro model the relationship between ports flux

and potential can be summarized as Dp = MVp. Theorem. 1 shows that we can

construct R from M.

Theorem 1. Let R be the Markov transition matrix defined for a black box in the

FRW method, M be the matrix describing port flux dependency in terms of potential,

Λp be the diagonal matrix extracted from the Laplacian matrix App.

R = I−Λ−1p M . (2.22)

Proof. Random walk on the finite grids is restricted to walk to adjacent grid nodes

each step, where the grid mesh could be uniform or non-uniform. Since the FRW

method is an approximation of the random walk on grids, we adopt the latter for

analysis.
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Define a one-step transition matrix P, where pij is the probability that the random

walk goes from grid node i to its neighboring grid node j in one step. For non-adjacent

nodes i and j, pij = pji = 0 since i and j is not accessible from each other in one step

walking. For each node and its neighbors j1, j2, ..., jk,
∑

k=1 pijk = 1. This happens

to be a row in the Laplacian matrix A in (2.1) with the following conditions: 1) all

the diagonal entries are zeros, since node i is not allowed to walk to itself in one

step; 2) sum of each row is 1. Therefore, we have (2.23) where diagonal matrices

−Λi and −Λp will normalize rows corresponding to internal nodes and port nodes

respectively assuming all diagonal entries of matrix A are negative for simplicity.

The identity matrix will eliminate the diagonal entries of -1. We define sub-matrices

of P to be Pii,Ppp,Pip and Ppi, describing transition probabilities from internal

nodes to internal nodes, port nodes to port nodes, internal nodes to port nodes, and

port nodes to internal nodes respectively.

P =

 Pii Pip

Ppi Ppp

 (2.23)

=

 −Λ−1i 0

0 −Λ−1p


 Aii Aip

Api App

+ I

=

 −Λ−1i Aii+I −Λ−1i Aip

−Λ−1p Api −Λ−1p App+I

 .

The random walk procedure for computing R starts at port nodes, goes through

internal nodes, and ends at the port nodes. There are infinite possible paths to walk

from one port node to another port node. For example, it can be one step walking

from any port node to any other port node with probability Ppp; it can be two steps

walking from any port node to any internal node, and then from the internal node to

21



any port node, which has probability PpiPip; it can also be three steps walking with

probability PpiPiiPip and so on. Considering all possible cases, we could express R

in infinite series as,

R = Ppp +
∞∑

k=0

Ppi(Pii)
kPip . (2.24)

We prove ‖Pii‖2<1 first. Since all entries of Pii are non-negative and sum of

each row or column is less than or equal to 1,

‖Pii‖1 = ‖Pii‖∞ ≤ 1 . (2.25)

As a special case of Hölder’s inequality [14],

‖Pii‖2 ≤
√
‖Pii‖1‖Pii‖∞ ≤ 1 . (2.26)

However, if ‖Pii‖2=1, then 1 is the maximum eigenvalue of Pii based on the fact

that Pii is symmetric,

det(I−Pii) = det(Λ−1i Aii) = 0 , (2.27)

which contradicts with the fact that Λ−1i Aii is symmetric positive definite and

det(Λ−1i Aii)>0. Therefore, ‖Pii‖2<1.

From Theorem on Neumann Series [15], we know that I−Pii is invertible, and

∞∑
k=0

(Pii)
k = (I−Pii)

−1 . (2.28)
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Then

R = Ppp + Ppi(I−Pii)
−1Pip (2.29)

= −Λ−1p App + I−Λ−1p ApiA
−1
ii Λi(−Λ−1i Aip)

= I + Λ−1p (ApiA
−1
ii Aip −App)

= I−Λ−1p M .

2.7 Profile Simplification

Sometimes, high accuracy extraction is not required, or the foundries want to

provide simplified profile with sensitive information distorted to the users. In such

a case, macro model is not needed. However, the macro model can be used to

construct simplified profile for traditional LPE tools. Then, designers will combine

the simplified profile provided by the foundries and LPE tools provided by the EDA

vendors to perform extractions.

2.7.1 Concept of Equivalent Profile

We define that two profiles are equivalent if their electromagnetic behavior are

equal at an enclosing Gaussian surface. To be precise, let B1 and B2 be two black

boxes whose surface are both B, then we say B1 and B2 are equivalent if

‖M1 −M2‖∞
‖M1‖∞

< ε , (2.30)

where M1 and M2 are macro model matrices, ε is criteria which should be small

enough.

The flux difference at B is maximum when potential at all port nodes is 1, and
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flux contribution from each port node is in the same direction, either increase or

decrease. This explains why infinity norm is used to measure whether two black

boxes behave the same.

From classical electromagnetic theory, it is easy to derive that the profiles P1 and

P2 are equivalent if there exists equivalent B1 and B2 satisfying B1 encloses P1, and

B2 encloses P2.

Then extraction based on equivalent profile will generate the same result. If a

section of profile is complex yet appears at many places in a circuit, we can use a

simplified equivalent profile to reduce the extraction time.

2.7.2 Finding Equivalent Profile

In the domain determined by original profile, we define a black box region ran-

domly, keep its surface port nodes intact. In order to find equivalent profile, we can

make any changes within the black box, through either conductor shapes modifica-

tion or different dielectric distribution. There is no specific restriction on how to

make the updated profile equivalent with the old one. However, some heuristic ideas

can be adopted to correct those changes. For example, when we step forward to ex-

tend boundary of a conductor and make it close to the surface, it will result in great

flux changes on the corresponding port nodes. Then we need to step backward to

mitigate this effect, through adjusting dielectric around those port nodes. Through

such repetitive stepwise process, we step forward to make new geometric or param-

eter modification, and step backward to reduce great changes on port nodes, until

new profile satisfies criteria as shown in Fig. 2.3. Such heuristic approach works fine

in most cases, though it is not guaranteed that the equivalent profile is optimal and

unique.

A simplified profile not only reduces computational cost, but also keeps sensitive
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Table 2.1: 2D MOSFET: Comparison of extraction without black box and with
different black boxes.

disc. step
black box

capacitance run time
gate drain-source macro total

h
total err in box out box total error model system
(fF) (%) (fF) (fF) (fF) (%) (s) (s)

1/10
No 0.261 - - - 0.248 - - 9
Yes 0.261 0.00 0.153 0.095 0.248 0.00 1 5

1/20
No 0.258 - - - 0.246 - - 32
Yes 0.258 0.00 0.152 0.094 0.246 0.00 11 45

information secret.

2.8 Experimental Results

The algorithms are implemented in C++ and tested with industry cases. The

focus of the simulation is on i) the accuracy of capacitance extraction using the macro

model v.s. without using the macro model, ii) robustness for different mesh grids

and iii) run time to construct the macro model.

2.8.1 Correctness

For the 2D case, we use traditional FDM to extract coupling capacitance of gate

and source, drain first. A black box is added in Fig. 2.2. The dependency matrix

M is pre-calculated. It is integrated into global FDM matrix assuming the black

box is unknown. The final extraction results are exactly the same as those from the

traditional approach shown in Table 2.1.

Simulations on 3D FinFET model are demonstrated in Fig. 2.4. The basic

structure and two arbitrarily chosen black boxes are shown in Fig. 2.5 and Fig. 2.6

respectively. Similarly, the computation results in Table 2.2 do not result in any

accuracy loss after applying different black boxes. It shows regardless of how to
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Table 2.2: 3D FinFET: Comparison of extraction without black box and with differ-
ent black boxes.

disc. step
black box

capacitance run time
gate drain-source macro total

h
total err in box out box total error model system
(fF) (%) (fF) (fF) (fF) (%) (s) (s)

1/4

No 0.429 - - - 0.363 - - 14
Fig.2.5 Box 0.429 0.00 0.219 0.144 0.363 0.00 1 15
Fig.2.6 Box 0.429 0.00 0.056 0.307 0.363 0.00 1 16

1/8

No 0.412 - - - 0.347 - - 342
Fig.2.5 Box 0.412 0.00 0.208 0.139 0.347 0.00 3 408
Fig.2.6 Box 0.412 0.00 0.056 0.291 0.347 0.00 14 449

define the black box, the capacitance are the same.

2.8.2 Robustness

In order to verify the robustness of macro model, we choose different discretization

steps for the macro model mesh and global mesh. Interpolation and extrapolation

are used to non-matching port nodes along different discretization boundary. When

the discretization steps for macro and global are different by 2X, there are about

1% errors for 2D case shown in Table. 2.3 and 3D FinFet in Table. 2.4. Macro

models with low accuracy can be used where high accuracy is not required, resulting

in further gains in efficiency. In practical, the foundries will choose the black box

size and step size of the macro model depending on accuracy and data volume of the

actual problem, as well as the customer experience.

2.8.3 Run Time

The running time of constructing macro model is not a crucial consideration,

since it is conducted by the foundry as a pre-process and can be reusable. However,

experiment results still show that the macro model can be efficiently constructed.
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Table 2.3: 2D MOSFET: Comparison of extraction with different discretization steps
inside and outside of black box.

disc. step capacitance
h gate drain-source

global macro total err in box out box total error
(fF) (%) (fF) (fF) (fF) (%)

1/20
1/10 0.261 0.874 0.153 0.095 0.248 0.819
1/20 0.258 - 0.152 0.094 0.246 -
1/40 0.258 -0.305 0.151 0.094 0.245 -0.301

1/40
1/20 0.258 0.414 0.152 0.094 0.246 0.386
1/40 0.257 - 0.151 0.094 0.245 -
1/80 0.257 -0.146 0.151 0.093 0.244 -0.143

From Table 2.1 and Table 2.2, the time used to construct macro model is less than

25% of the total simulation time depending on the geometrical complexity inside of

the black box. Therefore, it is not a bottleneck for the foundry. Besides, in our

experiments, the black box has size up to 120 nm×120 nm and 48 nm×48 nm×48

nm for 2D and 3D cases respectively which is sufficiently large, while the grid size

is 1 nm which is sufficiently small. Thus, the macro model approach will be feasible

for practical cases in industry.

2.8.4 Equivalent Profile Experiment

We implemented two basic profile modifications to verify the accuracy of equiv-

alent profile.

The first experiment is applied on a simple 2D MOSFET with adjacent contacts

as depicted in Fig. 2.7. The original MOSFET has raised drain and source which

the foundry wants to hide. The experiment result in Table 2.5 shows the capacitance

extraction error is less than 1% when the criteria is 0.1%.
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Table 2.4: 3D FinFET: Comparison of extraction with different discretization steps
inside and outside of black box in Fig. 2.6.

disc. step capacitance
h gate drain-source

global macro
total error in box out box total error
(fF) (%) (fF) (fF) (fF) (%)

1/4
1/2 0.430 0.342 0.056 0.309 0.365 0.543
1/4 0.429 - 0.056 0.307 0.363 -
1/8 0.429 -0.057 0.057 0.306 0.363 -0.165

1/8
1/4 0.413 0.140 0.056 0.292 0.348 0.237
1/8 0.412 - 0.056 0.291 0.347 -
1/16 0.412 -0.019 0.056 0.291 0.347 -0.062

Table 2.5: Comparison of equivalent profile for MOSFET gate part with respect to
adjacent contacts with ε = 0.1%.

profile
total

err
gate-src/drn

err
gate-contact

err
gate cap cap cap

(fF) (%) (fF) (%) (fF) (%)
a 0.213 - 0.116 - 0.094 -
b 0.214 0.51 0.117 0.73 0.094 0.40

Table 2.6: Comparison of equivalent profile for trapezoidal contact with ε = 0.1%.

profile
contact cap err adjacent gate cap err

(fF) (%) (fF) (%)
a 0.072 - 0.093 -
b 0.073 0.31 0.093 -0.32
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The second experiment is to simplify trapezoidal contacts with boundary as shown

in Fig. 2.8. We use uniform staircase to approximate such boundary originally.

However, it results in too many stair steps, which increases the computational cost.

We adjust distance of contact and gate in sensitive region and balance modification

in corresponding port node flux. The results in Table 2.6 show equivalent profile

provides almost the same coupling relationship with components outside of the black

box even though great geometric modification has been made inside of the black box.

2.9 Conclusion

We propose a macro model and equivalent profile to address an increasingly

important challenge in parasitic extraction. Macro model can provide accurate result

for consistent discretizations in black box and outside, while less than 1% error for

different discretizations when linear transformations are required along the black box

boundary.

The macro model and equivalent profile will benefit the foundry, the EDA ven-

dors, and circuit designers who are the end users of parasitic extractions. They can

reveal enough profile and layout information of advanced process and devices so that

parasitic extraction can be performed accurately, yet no sensitive information about

the process is compromised. They can also be applied to speed up the field solver

computation, which will come free once the macro model feature is included.
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Figure 2.3: Flow diagram of finding equivalent profile.
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Figure 2.4: 3D FinFET Model.
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Figure 2.5: Top view and side view of the 3D FinFET structure and the black box
around Fin part.
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Figure 2.6: Top view and side view of the 3D FinFET structure and the black box
around Drain part.
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Figure 2.8: The original profile of trapezoidal contact is shown in (a), simplified
equivalent profile is shown in (b).

33



3. CAPACITANCE EXTRACTION WITH PROVABLY GOOD ABSORBING

BOUNDARY CONDITIONS

In this chapter, we define a class of absorbing boundary conditions for static PDE

problem and approximate them numerically. The performance is evaluated through

multiple experiments.

3.1 Background

Parasitic extraction using 3D field solvers has been a recent trend in industry.

Implementation of boundary conditions at the outer periphery of the numerical re-

gion is an important consideration when performing capacitance extraction with

field solvers based on such methods as Finite Difference Method (FDM), Finite Ele-

ment Method (FEM) or Floating Random Walk (FRW) [13]. Traditional boundary

conditions used in FDM/FEM include the Neumann boundary [16] (also called the

Perfect Magnetic Conductor or intuitively, reflective wall), and Dirichlet boundary

(also called the Perfect Electric Conductor, or intuitively, ground wall, when the

potential is set at 0). In FRW, the boundary is implicit. When a random walk hits

the enclosing boundary, it is either reflected back, which is equivalent to Neumann

boundary, or the walk is omitted from the calculation, resulting in significant error

in the field at that point.

It is well known that use of the Neumann boundary to reduce the size of numerical

region tends to produce an underestimated capacitance, while using the Dirichlet

boundary V = 0 tends to produce an overestimated capacitance. Thus to avoid

these errors, a very large numerical region is required. This is the case for bulk

MOSFET where the ground plane is nearby. For Silicon On Insulator (SOI) where

the ground plane is far away from the interconnects, even greater numerical regions
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are needed, resulting in much longer run time. This has been a persistent challenge

for the industry.

(a)

(b) (c)

Figure 3.1: Electric potential distribution due to 1 volt conductor above a 0 volt
ground plane. The correct distribution computed with a large numerical region is
shown in (a). When a small region is used, the traditional Neumann boundary gives
inaccurate results as shown in (b), while our absorbing boundary condition gives
accurate results as shown in (c).

The Neumann boundary condition requires ∂V/∂n = 0 on the outer boundary,

where V is the potential and n is the normal to the boundary. The result of this

boundary condition is that a portion of the electric field effectively reflects back into
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the numerical region instead of passing smoothly into the boundary in a direction

it would have taken if the boundary were not there. The Neumann condition forces

the electric to be zero at the boundary, thereby forcing the potential to have zero

slope at the boundary as shown in Fig. 3.1(b). Consequently, truncation error is

introduced because the electric field and the energy outside the numerical region

have been ignored. As an example, the capacitance of the rectangular conductor in

Fig. 3.1(b) has an error of 35.6% compared with the exact solution case shown in

Fig. 3.1(a). Rather than artificially forcing the electric field to zero along the outer

boundary, we introduce a boundary condition that behaves as if the electric field

exists far outside of the outer boundary. Fig. 3.1(c) is an implementation of this

concept and an illustration of the benefit of having an accurate absorbing boundary

condition. The electric potential distribution is very close to the distribution in

infinite large domain, thus the error in the conductor capacitance drops to around

1%.

Mathematically inspired absorbing boundary conditions have long been an item

of interest in high frequency electromagnetics [17]. These were later followed in

[18] by the idea of placing perfectly matched layers (PMLs) on the boundary. In

1993, the absorbing boundary condition was applied to 2D electrostatic problems

[19]. Recently, an equivalent dielectric layer method was proposed to reduce the

size of the numerical region for 3D devices [20] with the assumption that only the

dipolar term of the harmonics is kept. Using a rather complicated approach, knowns

as energy conservation, they derived equations for the artificial layer [20]. However,

their equation (7), (8), (9) and (10) are incorrect. In this paper, we derive the correct

equation for artificial layers using a much simpler method.

In this chapter, we propose a class of new absorbing boundary conditions, imple-

mented in Cartesian coordinates with detailed error estimates. We present two types
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of approximation schemes. The first approach is in concept similar to [21], which is

based on a series expansion of the terms in Laplace’s equation, resulting in a bound-

ary condition that can be made as accurate as the number of terms that one wishes

to add to the series. The second scheme can be considered as a sponge layer [22]

around the outer numerical boundary, designed in such a way as to absorb energy

and prevent reflections. We provide methods for applying these absorbing boundary

techniques to the FEM and FRW method. We validate our method through experi-

ments on interconnects of bulk CMOS and SOI. Both uniform and non-uniform mesh

grids are investigated and are shown to achieve similar accuracy with the proposed

boundary conditions. It is also shown that the proposed absorbing boundary con-

ditions require fewer mesh nodes than the Neumann boundary condition, and have

three to ten times faster run times.

The extraction problem studied in this chapter does not separate intrinsic para-

sitic, which is also called device parasitic and is already included in SPICE model,

vs extrinsic parasitic, which is also called interconnect parasitic. The separation

algorithm is out of the scope of this paper, and can be found in [23].

3.2 Absorbing Boundary Conditions

In the capacitance extraction problem, a bounded numerical region encloses a

finite number of conductors which reside on the grounded dielectric substrate.

In a charge free region, any point with potential V should satisfy Laplace’s equa-

tion ∇2V = 0, with Dirichlet boundary conditions ΓD at the conductor surface.

Using spherical coordinate (r, θ, φ) for any point with potential V , Laplace’s equa-

tion can be written as

1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂V

∂θ

)
+

1

r2sin2θ

∂2V

∂φ2
= 0, (3.1)
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where r is the radial distance, θ the polar angle, φ the azimuthal angle of the point,

respectively.

For any point with polar angle and azimuthal angle (θ, φ), the spherical harmonic

function of degree l and order m is defined in terms of the associated Legendre

polynomials Pm
l (cosθ) [24],

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cosθ)eimφ.

The general solution of Eqn (3.1) can therefore be expressed as [25]

V (r, θ, φ) =
∞∑
l=0

l∑
m=−l

(Almr
l +Blmr

−l−1)Y m
l (θ, φ), (3.2)

where coefficients Alm and Blm, known as the moments of expansion [26], are deter-

mined by the boundary condition ΓD. For infinite numerical region, it is well known

that Alm must be zero. Therefore Eqn (3.2) is simplified to

V (r, θ, φ) =
∞∑
l=0

l∑
m=−l

Blmr
−l−1Y m

l (θ, φ). (3.3)

Although Fast Multipole Expansion (FMM) theorem [26] has a similar form, FMM

is based on charge, our method is based on Dirichlet boundary condition. Reorganize

Eqn (3.3) into a function of r, we have

V (r, θ, φ) =
C1(θ, φ)

r
+
C2(θ, φ)

r2
+
C3(θ, φ)

r3
+ · · · , (3.4)

where Ci(θ, φ) =
∑i

m=−iBimY
m
i (θ, φ) is the coefficient of r−i, which will be simply
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labeled as Ci in the rest of the chapter. The electric field is

∂V

∂r
= −C1

r2
− 2C2

r3
− 3C3

r4
− · · · . (3.5)

Under Neumann boundary condition, ∂V/∂r = 0 is set at the outer boundary

nodes, which results in an error of O(1/r2) for approximating the field at the bound-

ary. A naive attempt to improve the Neumann boundary condition would be to set

the boundary condition ∂V/∂r = −C1/r
2. Unfortunately, C1 is not given. Instead,

we define the 1st order Absorbing Boundary Condition (ABC1) at the boundary

nodes to satisfy the following condition:

∂V

∂r
+
V

r
= 0. (3.6)

It is easy to verify that under ABC1,

∂V

∂r
= −V

r
= −C1

r2
− C2

r3
− C3

r4
− · · ·

is held at the boundary nodes. Compared with Eqn (3.5), the approximating error

of ABC1 for the field at the boundary is O(1/r3).

To define absorbing boundary condition of an arbitrary order, we introduce the

first-order operator A1 as

A1V =
( ∂
∂r

+
1

r

)
V.

Then ABC1 is the corresponding partial differential equation A1V = 0 .
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By observing that

−r
4

(∂2V

∂r2
+

2V

r2

)
= −C1

r2
− 2C2

r3
− 7C3

2r4
− 11C4

2r5
+ · · · ,

we can define the second-order operator

A2V =
( ∂
∂r

+
3

r

)
A1V,

and the corresponding ABC2

A2V =
∂2V

∂r2
+

4∂V

r∂r
+

2V

r2
= 0. (3.7)

The approximating error of ABC2 for the field is O(1/r4) relative to Eqn (3.5), since

∂V

∂r
= −r

4

(∂2V

∂r2
+

2V

r2

)
.

In general, the n-th order operator can be defined as

AnV =
n∏
i=1

( ∂
∂r

+
2i− 1

r

)
V,

and the corresponding n-th order abosorbing boundary condition is AnV = 0, with

the error for approximating the field at the boundary nodes being O(1/rn+2). This

leads to our main result.

Theorem 2. Let r be the radial distance in spherical coordinate system, then the

relative error of electric field for Neumann boundary condition is O(1/r2), while the

errors for ABC1, ABC2 and ABCn are O(1/r3), O(1/r4) and O(1/rn+2), respec-

tively. Thus, absorbing boundary conditions are asymptotically more accurate.

40



For simplicity, the above discussion assumes uniform dielectric. For a multi-layer

dielectric, the potential still decays with high order terms dropped and low order

terms 1/r, 1/r2 retained, although the spatially varying dielectrics will increase or

decrease the decay rate of the potential near the dielectric interface. Thus, ABCs

are still suitable for use in the multi-layer dielectric case. We only implement ABC1

and ABC2 in this paper but for greater accuracy higher order terms can be included

at the expense of computation time.

3.3 Implementation in Cartesian Coordinates

P

B

T

L R*

D

UUL

TL

DLBL

LL

ULL

TLL

DLL
BLL

x

y
z

UT

UB
DT

DB

+x boundary surface

Figure 3.2: The naming of neighbors for node P , which is at the +X boundary.
Fictitious node R∗ is the mirror of node L outside of the +X boundary, and V (R∗)
is approximated by ABC, used to compute V (P ).
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3.3.1 Absorbing Boundary Condition (ABC1)

Fig. 3.2 shows labels for the P node and its neighboring grid points involved in

calculation of the P node potential on the +X face of the numerical region. With

the Neumann boundary condition, V (R∗) = V (L) which is not accurate. However,

the proposed absorbing boundary condition can provide a better approximation of

V (R∗), which in turn improves the accuracy of V (P ) when the conservation law is

applied.

By the chain rule, we obtain

∂V

∂r
=
∂V

∂x

∂x

∂r
+
∂V

∂y

∂y

∂r
+
∂V

∂z

∂z

∂r
=
∂V

∂x

x

r
+
∂V

∂y

y

r
+
∂V

∂z

z

r
.

Eqn (3.6) can be converted to Cartesian coordinates (x, y, z).

∂V

∂x
= −1

x

(
V + y

∂V

∂y
+ z

∂V

∂z

)
. (3.8)

Since R∗ is the mirror node of L in terms P , and the distance between P and L is

DL, we use the finite difference approximation,

∂V (P )

∂x
=
V (R∗)− V (L)

2DL

. (3.9)

By replacing the left hand side of Eqn (3.8) with Eqn (3.9) and rearrange the terms,

we obtain

V (R∗) = V (L)− 2DL

x(P )

[
V (P ) + y(P )

∂V (P )

∂y
+ z(P )

∂V (P )

∂z

]
. (3.10)

In order to approximate ∂V (P )/∂y, the interpolation polynomial in the Lagrange

form [27] is applied in Y -direction. With known potential V (P ), V (T ), V (B) and y
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coordinates y(P ), y(T ), y(B), the potential V (y) between the node B and T can be

written in Lagrange interpolation form

V (y) = V (P )
(y − y(B))(y − y(T ))

(y(P )− y(B))(y(P )− y(T ))

+ V (T )
(y − y(B))(y − y(P ))

(y(T )− y(B))(y(T )− y(P ))

+ V (B)
(y − y(P ))(y − y(T ))

(y(B)− y(P ))(y(B)− y(T ))
.

In general, we define the coefficient of Lagrange interpolating polynomial in the

vector form

L(x|x1,x2,x3) , [L1(x),L2(x),L3(x)]|x1,x2,x3

=
[ (x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)

]
.

Then, the partial derivative ∂V (P )/∂y can be written as the linear combination of

V (P ), V (T ) and V (B). The coefficients depend on the derivative of function L,

∂V (P )

∂y
= L′(y|y(P ),y(T ),y(B))

∣∣∣
y(P )
· [V (P ), V (T ), V (B)]T .

Similarly, the partial derivative ∂V (P )/∂z can be approximated through

∂V (P )

∂z
= L′(z|z(P ),z(U),z(D))

∣∣∣
z(P )
· [V (P ), V (U), V (D)]T .

By substituting the approximation equations above into Eqn (3.10), we can express
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the potential at R∗ in terms potential of neighboring nodes

V (R∗) = CLV (L) + CTV (T ) + CBV (B) + CUV (U)

+ CDV (D) + CPV (P ), (3.11)

where

CL = 1,

CT = − 2DL

x(P )
y(P )L′2(y|y(P ),y(T ),y(B))

∣∣∣
y(P )

,

CB = − 2DL

x(P )
y(P )L′3(y|y(P ),y(T ),y(B))

∣∣∣
y(P )

,

CU = − 2DL

x(P )
z(P )L′2(z|z(P ),z(U),z(D))

∣∣∣
z(P )

,

CD = − 2DL

x(P )
z(P )L′3(z|z(P ),z(U),z(D))

∣∣∣
z(P )

,

CP = − 2DL

x(P )

(
1 + y(P )L′1(y|y(P ),y(T ),y(B))

∣∣∣
y(P )

+ z(P )L′1(z|z(P ),z(U),z(D))
∣∣∣
z(P )

)
.

Once V (R∗) is expressed in terms of the potentials of P and its neighbors, Laplace’s

equation can be enforced at boundary node P as normal 7-stencil equation. Since no

additional neighbors is involved in the calculation of node P ’s potential, there will

be no changes in bandwidth and number of non-zero entries in the matrix.

For other faces of the numerical region, the same approach is used. Similar results

can be obtained for the faces in the y and z directions.
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3.3.2 Absorbing Boundary Condition (ABC2)

Using the chain rule, we can rewrite Eqn (3.7) as

ξx
∂V

∂x
+ ξy

∂V

∂y
+ ξz

∂V

∂z
+ ξxx

∂2V

∂x2
+ ξyy

∂2V

∂y2
+ ξzz

∂2V

∂z2
+ ξxy

∂2V

∂x∂y

+ ξxz
∂2V

∂x∂z
+ ξyz

∂2V

∂y∂z
+ ξ0V = 0, (3.12)

where

ξx =
−4x(x2 + y2)

x2 + y2 + z2
,

ξy =
−4y(x2 + y2)

x2 + y2 + z2
,

ξz =
−4z(x2 + y2)

x2 + y2 + z2
,

ξxx =
z2x2

x2 + y2 + z2
+ y2,

ξyy =
z2y2

x2 + y2 + z2
+ x2,

ξzz =
(x2 + y2)2

x2 + y2 + z2
,

ξxy =
−2xy(x2 + y2)

x2 + y2 + z2
,

ξxz =
−2xz(x2 + y2)

x2 + y2 + z2
,

ξyz =
−2yz(x2 + y2)

x2 + y2 + z2
,

ξ0 =
−2(x2 + y2)

x2 + y2 + z2
.
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Substituting the Vx from Eqn (3.12) into Eqn (3.9) gives

V (R∗) = V (L)− 2DL

ξx

[
ξy
∂V (P )

∂y
+ ξz

∂V (P )

∂z
+ ξxx

∂2V (P )

∂x2

+ ξyy
∂2V (P )

∂y2
+ ξzz

∂2V (P )

∂z2
+ ξxy

∂2V (P )

∂x∂y

+ ξxz
∂2V (P )

∂x∂z
+ ξyz

∂2V (P )

∂y∂z
+ ξ0V (P )

]
. (3.13)

The approximations for ∂V (P )/∂y and ∂V (P )/∂z are the same as stated before. The

second order derivative ∂2V (P )/∂y2 can be written in terms of a second derivative

of the Lagrange interpolating coefficient function L,

∂2V (P )

∂y2
= L′′(y|y(P ),y(T ),y(B))

∣∣∣
y(P )
· [V (P ), V (T ), V (B)]T .

The derivative ∂2V (P )/∂z2 has a similar expression. However since V (R∗) is un-

known, ∂2V (P )/∂x2 cannot be approximated using the central difference. Instead,

we employ a second-order accurate one-sided difference approximation,

Vxx(P ) = L′′(x|x(P ),x(L),x(LL))
∣∣∣
x(P )
· [V (P ), V (L), V (LL)]T .

By applying the same concept for Vxy(P ), we obtain

Vxy(P ) = L′(x|x(P ),x(L),x(LL))
∣∣∣
x(P )
· [∂V (P )

∂y
,
∂V (L)

∂y
,
∂V (LL)

∂y
]T ,

where

∂V (L)

∂y
= L′(y|y(L),y(TL),y(BL))

∣∣∣
y(L)
· [V (L), V (TL), V (BL)]T ,
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and

∂V (LL)

∂y
=L′(y|y(LL),y(TLL),y(BLL))

∣∣∣
y(LL)

· [V (LL), V (TLL), V (BLL)]T .

Equations for ∂2V (P )/∂x∂z and ∂2V (P )/∂y∂z are similar. If we rewrite the co-

efficients of the related first order and second order derivative terms in the vector

forms

[A1, A2, A3] = L′(y|y(P ),y(T ),y(B)),

[B1, B2, B3] = L′(y|y(L),y(TL),y(BL)),

[C1, C2, C3] = L′(y|y(LL),y(TLL),y(BLL)),

[D1, D2, D3] = L′(z|z(P ),z(U),z(D)),

[E1, E2, E3] = L′(z|z(L),z(UL),z(DL)),

[F1, F2, F3] = L′(z|z(LL),z(ULL),z(DLL)),

[G1, G2, G3] = L′(z|z(T ),z(UT ),z(DT )),

[H1, H2, H3] = L′(z|z(B),z(UB),z(DB)),

[I1, I2, I3] = L′(x|x(P ),x(L),x(LL)),

[J1, J2, J3] = L′′(y|y(P ),y(T ),y(B)),

[K1, K2, K3] = L′′(z|z(P ),z(U),z(D)),

[L1, L2, L3] = L′′(x|x(P ),x(L),x(LL)),
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the three mixed derivative terms can be written in the compact forms

Vxy(P ) =

[
I1 I2 I3

]
A1V (P ) + A2V (T ) + A3V (B)

B1V (L) +B2V (TL) +B3V (BL)

C1V (LL) + C2V (TLL) + C3V (BLL)

 ,

Vxz(P ) =

[
I1 I2 I3

]
D1V (P ) +D2V (U) +D3V (D)

E1V (L) + E2V (UL) + E3V (DL)

F1V (LL) + F2V (ULL) + F3V (DLL)

 ,

Vyz(P ) =

[
A1 A2 A3

]
D1V (P ) +D2V (U) +D3V (D)

G1V (T ) +G2V (UT ) +G3V (DT )

H1V (B) +H2V (UB) +H3V (DB)

 .

With the approximation of all derivatives, we can rewrite Eqn (3.13) as

V (R∗) = CPV (P ) + CTV (T ) + CBV (B) + CUV (U)

+ CDV (D) + CLV (L) + CTLV (TL) + CBLV (BL)

+ CULV (UL) + CDLV (DL) + CLLV (LL)

+ CTLLV (TLL) + CBLLV (BLL) + CULLV (ULL)

+ CDLLV (DLL) + CUTV (UT ) + CDTV (DT )

+ CUBV (UB) + CDBV (DB).

48



where

CP = ξ′yA1 + ξ′zD1 + ξ′yyJ1 + ξ′zzK1 + ξ′xxL1 + ξ′xyI1 · A1 + ξ′xzI1 ·D1 + ξ′yzA1 ·D1 + ξ′0,

CT = ξ′yA2 + ξ′yyJ2 + ξ′xyI1 · A2 + ξ′yzA2 ·G1,

CB = ξ′yA3 + ξ′yyJ3 + ξ′xyI1 · A3 + ξ′yzA3 ·H1,

CU = ξ′zD2 + ξ′zzK2 + ξ′xzI1 ·D2 + ξ′yzA1 ·D2,

CD = ξ′zD3 + ξ′zzK3 + ξ′xzI1 ·D3 + ξ′yzA1 ·D3,

CL = 1 + ξ′xxL2 + ξ′xyI2 ·B1 + ξ′xzI2 · E1,

CTL = ξ′xyI2 ·B2,

CBL = ξ′xyI2 ·B3,

CUL = ξ′xzI2 · E2,

CDL = ξ′xzI2 · E3,

CLL = ξ′xxL3 + ξ′xyI3 · C1 + ξ′xzI3 · F1,

CTLL = ξ′xyI3 · C2,

CBLL = ξ′xyI3 · C3,

CULL = ξ′xzI3 · F2,

CDLL = ξ′xzI3 · F3,

CUT = ξ′yzA2 ·G2,

CDT = ξ′yzA2 ·G3,

CUB = ξ′yzA3 ·H2,

CDB = ξ′yzA3 ·H3,
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and the normalized coefficient

ξ′y = −2DL
ξy
ξx

ξ′z = −2DL
ξy
ξx

ξ′xx = −2DL
ξxx
ξx

ξ′yy = −2DL
ξyy
ξx

ξ′zz = −2DL
ξzz
ξx

ξ′xy = −2DL
ξxy
ξx

ξ′xz = −2DL
ξxz
ξx

ξ′yz = −2DL
ξyz
ξx

ξ′0 = −2DL
ξ0

ξx

Once V (R∗) is determined, Laplace’s equation can be applied to the boundary node

P . Since more neighbor nodes are needed for approximation of V (P ), both the

bandwidth and non-zero entries will increase.

3.3.3 Implement ABC1 with Artificial Layer (AL)

To make ABC easy to implement, we develop a method to convert ABC1 into

an artificial dielectric layer. It can be applied to any existing field solver without

implementation modification by adding a layer of dielectric at the outer boundary.

The artificial dielectric is non-homogeneous, and has dependency on the multi-layer

dielectric constants in the numerical region.

In [20], an energy equivalent dielectric layer of open boundary was derived with

the assumption that the dielectric is homogeneous. Since their boundary condition
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has lower accuracy than ABC1, and their approach is different, we independently

derive our more accurate artificial layer as follows.

���
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iε dε
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Figure 3.3: Top view of absorbing boundary condition with an artificial layer of
thickness d. The boundary of the numerical region is marked with red color while
the exterior Dirichlet boundary is marked with purple color.

Fig. 3.3 is the general setting of the problem, where the radial distance of node P

on the boundary is r and the dielectric constant at node P is εi. We add an artificial

dielectric layer of thickness d and permittivity εd outside of the numerical region.

We also add a Dirichlet boundary V = 0 on the exterior of this artificial layer. Our

goal is to enforce ABC1, which requires the following condition be met at P ,

∂V

∂r
= −V

r
. (3.14)

Assume without loss of generality P is on the +X face boundary with coordinate

51



x, then the electric field at node P inside of the numerical region is

∂V

∂n

∣∣∣
P−

=
∂V

∂r

∂r

∂x

∣∣∣
P−

= −VP
r

x

r
. (3.15)

On the other hand, due to the Dirichlet boundary and thickness d, the normal electric

field at node P outside of the numerical region but inside of the artificial layer is

∂V

∂n

∣∣∣
P+

=
0− VP
d

. (3.16)

Finally, we define the relative permittivity of the artificial layer around P as

εd = εi
d · x
r2

,

due to the continuity of normal electric flux density on P ,

εi
∂V

∂n

∣∣∣
P−

= εd
∂V

∂n

∣∣∣
P+

. (3.17)

Thus ABC1 Eqn (3.14) is automatically satisfied.

We also call artificial layer satisfying ABC1 as AL for simplicity in the later

sections. It is worth noting that the artificial layer is distinct from the static perfectly

matched layer approaches [28][29] where the artificial layer is anisotropic.

3.4 Application to other Methods

The artificial layer approach can be applied to any field solver without modifi-

cation to the field solver. In this section, we describe how ABC1 and ABC2 can be

directly applied to other methods.
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3.4.1 Finite Element Method

Multiplying the Laplace’s equation by a testing function ψ, and integrating over

the region Ω, we get

∫
Ω

∇ψ · ∇V dV =

∫
Γ

ψ∇V dS, (3.18)

by applying the Green’s first identity [30]. The right hand side of Eqn (3.18) rep-

resents the flux contribution from the outer boundary which is zero when Neumann

boundary condition is applied.

Suppose the whole numerical region Ω will be discretized into tetrahedral or

hexahedron element. The weak formulation for the inner elements is the same as

Eqn (3.18) except the right hand side is zero. The absorbing boundary condition

needs to impose to the outermost boundary elements. For the elements touching the

+X face of the region, ABC1 can be incorporated into Eqn (3.18) to yield

∫
Ω

∇ψ · ∇V dV =

∫
Γ

ψ
∂V

∂x
dydz,

where

∂V

∂x
=

1

2DL

(
(CL − 1)V (L) + CTV (T ) + CBV (B) + CUV (U)

+ CDV (D) + CPV (P )
)
.

Similar conclusions can be made for outermost elements with other outward normal

directions. When ABC2 is applied, ∂V/∂x will be replaced with high order terms

derived from Eqn (3.12).
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3.4.2 Floating Random Walk

Floating Random Walk (FRW) method [31] is a Monte Carlo method for inte-

gration and capacitance calculation through random walks in dielectric space. The

random walk path starts at any point on the Gaussian surface of conductor at 1 volt,

and continues to the next point with the probability defined by the Green’s function

within the transition domain bounded by the nearest conductor. If the path arrives

any conductor, it will stop.

Since the walk domain is bounded, when it arrives at the boundary, its walking

path is restricted to remain inside, which means the outward walking probability is

0. Thus, a truncation error is introduced.

ABC1 can be used in FRW to reduce such truncation error. For instance, when a

random walk path touches the boundary node P as shown in Fig. 3.2, it can continue

its path through either node U , D, B, T , L or R∗ with probability pU , pD, pB, pT ,

pL and pR∗ , assuming it is a fixed random walk for node P . Combining Eqn (3.11)

with conservation law, it is easy to find

V (P ) =
pL + pR∗CL
1− pR∗CP

V (L) +
pT + pR∗CT
1− pR∗CP

V (T ) +
pB + pR∗CB
1− pR∗CP

V (B)

+
pU + pR∗CU
1− pR∗CP

V (U) +
pD + pR∗CD
1− PR∗CP

V (D).

The coefficients for V (L), V (T ), . . . , V (D) are the probabilities that the random walk

will move to L, T, . . . , D, respectively. This will guarantee that the random walk in

bounded domain achieving the same accuracy as walking in infinite domain.

3.5 Experiments

We performed three experiments to verify the accuracy and efficiency of the

absorbing boundary conditions. We used direct solver CHOLMOD [32] to solve the
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Figure 3.4: Experiment I: Two conductors in free space.
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Figure 3.5: Accuracy of total capacitance and coupling capacitance as a function of
D for Experiment I shown in Fig. 3.4.

sparse linear system to avoid potential error caused by the iterative solver. All golden

reference results are generated from commercial field solver.

3.5.1 Conductors in Free Space

The setting of the experiment I is shown in Fig. 3.4, and the units are micro

metres.

The external boundary is at a distance D to the conductors in −x, +x, −y, +y
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direction, and D+2 in +z directions. In this experiment, uniform mesh is utilized.

The reference result is total capacitance (C11) 0.201 fF and coupling capacitance

(C12) -0.0382 fF when D = 20 µm.
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Figure 3.6: Number of non-zero entries and run time as a function of distance D for
Experiment I shown in Fig. 3.4.

The relative error with respect to distance is demonstrated in Fig. 3.5. When

ABC1 is applied and D is 8µm, the result for C11 is 0.201 fF, and for C12 is -0.0392 fF.

They differ from the reference result by only -0.16% and 2.78% respectively. When

ABC2 is applied, D = 4.2 µm gives comparable accuracy. While with AL, even D =

3.8 µm provides similar accuracy. However, when Neumann boundary condition is

applied, to achieve similar accuracy, D is at least 12µm. Thus, ABC1, ABC2 and

AL have higher accuracy than Neumann boundary condition for the same D.

The comparisons involve not only the accuracy, but also the number of non-zero

entries and run time, which are shown in Fig. 3.6. Obviously the number of entries

for both Neumann boundary condition, ABC1 and AL are almost the same. While

ABC2 has about 15% more non-zero entries in the matrix.
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Figure 3.7: Run time as a function of relative error for total capacitance C11 in
Experiment I.

ABC1 is 50% slower than Neumann boundary condition for the same distance D

due to the non-symmetricity of the matrix, while ABC2 is even worse. However, for

the same accuracy, ABC1 and ABC2 use far less time. Since the matrix for AL is still

sparse and symmetric, the time increase is less than 10% compared with Neumann

boundary condition for the same D. As shown in Fig. 3.7, when the relative error

of C11 is around 1%, the run time for ABC1, ABC2 and AL is 113s, 44s and 40s

respectively, while 401s for Neumann boundary condition. Therefore, ABCs have

four to ten times speed up to achieve the same accuracy. Since AL requires fewer

computational cost to achieve the similar accuracy as ABC1 and ABC2, it is a

preferable choice.
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Figure 3.8: Experiment II: Part of an inverter in multi-dielectric layers.

3.5.2 Conductors in Multi-layer Dielectric

The second experiment is depicted in Fig. 3.8 with all dimensional details. There

are four nets IN, OUT, VDD, VSS as well as PSUB (P-substrate) as the ground. It

is worth noting that the numerical region contains four layers of dielectric material.

In this test, we measure the total capacitance of VDD and the coupling capacitance

between VDD and other nets. We call the total capacitance of VDD as C11, while

the coupling capacitance with IN, OUT, VSS as C12, C13 and C14, respectively.

We obtain the reference result from the domain of 200 µm×200µm×200µm with

about 10 million grid points, where C11 = 1.36fF, C12 = -0.253fF, C13 = -0.229fF,

C14 = -0.0538fF. Since the uniform mesh will yield an incredibly large matrix for this

complicated case, which makes it intractable, we employ the adjusted mesh generated

by the commercial package to reduce the degree of freedom while maintaining the

accuracy.

All results are in Fig. 3.9, Fig. 3.10 and Fig. 3.11. As shown, the performance
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Figure 3.9: Accuracy of total capacitance and coupling capacitance as a function of
D for Experiment II shown in Fig. 3.8.

comparisons in terms of accuracy, non-zero entries as well as run time, have patterns

similar to experiment I. For example, when D =10µm and ABC2 is utilized, the

capacitance results have relative errors of 0.75%, -0.01%, -0.29%, -3.00% respectively,

and it requires 356s to simulate. When AL is applied, the comparable accuracy can

be obtained with only 253s. The situation with Neumann boundary condition is

worse, the error is as high as 89.59%. To achieve the same accuracy, the numerical

region of Neumann boundary condition has to be extended to D =50µm at least,

which requires 1056s to simulate, almost four times run time as AL.
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Figure 3.10: Number of non-zero entries and run time as a function of D for Exper-
iment II shown in Fig. 3.8.

3.5.3 Conductors in SOI

The third experiment is an SOI case. SOI uses a layered silicon insulator-

silicon-substrate in place of conventional silicon substrates, the ground is far away.

When ground is far away, traditional boundary will require much greater region. In

the experiment shown in Fig. 3.12, the simulation result with boundary element

method (BEM) is taken as the reference, where CAA = 0.179fF, CAB = −0.0457fF,

CAC = −0.0571fF. To achieve the same accuracy, the numerical region for FDM with

Neumann boundary condition should be at least 1000µm×1000 µm ×1000µm with

10 million grid points. We employ AL to take the far away ground into consideration.

Fig. 3.13 show better accuracy of AL compared with Neumann boundary condition.

When the distance between the conductors and the outer boundary D =16µm, the

results of applying AL have errors of 1.43%, -1.44%, -2.64% respectively. To ob-

tain similar accuracy, traditional approach will require a numerical region of at least

80µm× 80µm × 80µm with the same mesh density. From Fig. 3.14, we can find that

to achieve 3.6% error for CAB for instance, Neumann boundary condition requires
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Figure 3.11: Run time as a function of relative error for coupling capacitance C14 in
Experiment II.

run time of 2388s while AL only requires 158s, which indicates more than ten times

speed up when AL is applied.

3.6 Conclusion

Motivated by the goal of reducing capacitance extraction error due to the in-

accurate boundary conditions on the periphery of the numerical region modeling

circuits and interconnects, we have developed a class of absorbing boundary condi-

tions. Conditions ABC1 and ABC2 are approximated in Cartesian coordinates with

first and second order numerical derivatives as well as mixed partial derivatives.

They are utilized to approximate the inaccessible neighbors of the boundary nodes.

The conservation law was then rewritten with all neighbors taken into consideration

at boundary nodes. In addition, a simple artificial layer approach was introduced
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Figure 3.12: Experiment III: Three conductors in SOI.

based on the continuity of normal electric flux density. Absorbing boundary condi-

tions for parasitic capacitance extraction, can be implemented either by rewriting the

linear equation for boundary nodes with explicit expression of the neighboring node

outside of the simulation region or by artificially adding a thin lossy layer outside

of the region. The absorbing layer is terminated with the V=0 Dirichlet boundary

condition.

Simulations have demonstrated the superior performance of the proposed ab-

sorbing conditions over the Neumann boundary condition in accuracy and efficiency.

Since the Neumann boundary condition is widely used in 3-D volume based solvers,

the absorbing boundary conditions may improve the accuracy and efficiency of a

large class of field solvers.
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Figure 3.13: Accuracy of total capacitance and coupling capacitance as a function
of D for Experiment III shown in Fig. 3.12.
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Figure 3.14: Run time as a function of relative error for coupling capacitance CAB
in Experiment III.
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4. RESISTANCE EXTRACTION FOR ANISOTROPIC LAYER

4.1 Background

Finite difference method (FDM), Finite element method (FEM) and Finite vol-

ume method (FVM) belong to the class of volume methods, and the discretization

in the simulation domain is prerequisite. The classic FDM [33] is a special case of

FVM, where the volume for any node is a rectangle defined by connecting perpen-

dicular bisectors (PEBI) of the edges impinging on this node for 2D case. However,

FDM can only provide poor accuracy to the case with non-orthogonal boundary since

grids are confined to coordinate lines only, which makes it hard to converge and can

only use high degree of freedom (DOF) to compensate. Both FEM and FVM are

easy to apply to the non-orthogonal grids. The traditional FEM [34] assumes con-

tinuous or weakly continuous approximation spaces and ask for element integrals of

the weak form to be satisfied. This method is not conservative, thus often struggle

with stability for discontinuous processes, which results in low accuracy for coarse

mesh. Besides, FEM is sensitive to the distorted mesh and produces poor result

for low quality mesh. FVM uses piecewise constant approximation spaces and re-

quires integrals against piecewise constant test functions to be satisfied. Thus exact

conservation statements is guaranteed which makes FVM more robust. This is very

important for the differential equations with hyperbolic feature or fluid with phase

transition. The feature comparison of these three numerical methods is summarized

in Table. 4.1.

Both FDM and FEM are widely used for the resistance extraction problem. FVM

has already been widely used in the computational fluid dynamics [35], and petroleum

reservoir simulation [36]. However, FVM has never been introduced to this field. In
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addition, when FEM and FVM are used, cartesian grid can not be maintained.

Instead, triangular or quadrilateral mesh is prerequisite, and re-meshing is needed

whenever there are small changes in any specific domain. Such expensive costs make

both FEM and FVM hard to apply to practical problems in industry. The Immersed

Finite Element Method (IFEM) is a modified FEM working on cartesian grid with

non-orthogonal interface problem. We will introduce both FVM and IFEM in this

chapter, and evaluate their performance for resistance extraction with anisotropic

layer.

Table 4.1: Feature comparison of FDM, FEM and FVM.

Feature FDM FEM FVM
non-rectilinear geometry poor good good
easy to generate mesh easy hard medium

conservation law yes no yes
robustness good medium good

In the classical resistance extraction problem, the potential follows the diffusion

equation

∇ · σ∇V = 0, (4.1)

where σ is the conductivity of the conductor. The goal of resistance extraction is to

obtain the resistance with total flux at the Dirichlet boundary Γ

I =

∫
Γ

σ
∂V

∂n
=

1

R
. (4.2)

66



),( jiV
Ld Rd

Bd

Td

),1( jiV +),1( jiV −

)1,( +jiV

)1,( −jiV

1σ2σ

3σ 4σ

Figure 4.1: Five point stencil in 2D FDM.

4.2 Finite Difference Method

FDM is one of the simplest and of the oldest methods to solve differential equa-

tions in which finite differences are used to approximate the derivatives. To apply

FDM, the domain is partitioned into small rectangular or cubic domain with carte-

sian grid, and the finite number of dependent variables are defined on each grid

point. The partial derivatives at each grid point are approximated with first order

differences. The first order difference or Euler expression is based on the Taylor’s

theorem. For instance, as shown in Fig. 4.1, grid node (i, j) has distance dL, dR,

dB and dT with its neighboring nodes. The potential at the node (i + 1, j) can be
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written with taylor expansion

V (i+ 1, j) = V (i, j) + dRVx(i, j) + d2
R

Vxx(i, j)

2!
+ · · ·+ dn−1

R

Vn−1(i, j)

(n− 1)!
+O(dnR),

assuming the distance dR is small enough. We obtain

V (i+ 1, j) = V (i, j) + dRVx(i, j) +O(d2
R).

Rearranging the equation and neglecting the O(d2
R) term will give the forward dif-

ference in x direction

V +
x (i, j) =

V (i+ 1, j)− V (i, j)

dR
.

Similarly, the backward difference in x direction is

V −x (i, j) =
V (i, j)− V (i− 1, j)

dL
.

The diffusion term at node (i, j) will be calculated at the closed integration surface

which is formed by the PEBI of the edges between this node and its neighboring

nodes. The integration surface is marked with purple color in Fig .4.1. With the

assumption that each face on the integration surface is identified as ~Ai, the original

diffusion equation at node (i, j) can be written as

4∑
i=1

σ∇V · ~Ai = 0.
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The flux between (i− 1, j) and (i, j) through face ~A1 is

σ∇V · ~A1 =
V (i− 1, j)− V (i, j)

dL

σ2dT + σ3dB
2

.

Similar results for flux at other faces. Therefore, the conservation law at node (i, j)

can be written with five point stencil

σ2dT + σ3dB
2dL

V (i− 1, j) +
σ1dT + σ4dB

2dR
V (i+ 1, j)

+
σ3dL + σ4dR

2dB
V (i, j − 1) +

σ2dL + σ1dR
2dT

V (i, j + 1)

− (
σ2dT + σ3dB

2dL
+
σ1dT + σ4dB

2dR
+
σ3dL + σ4dR

+

σ2dL + σ1dR
2dT

)V (i, j) = 0.

4.3 Finite Volume Method

The term “finite volume” refers to the small volume surrounding each node point

on a mesh. FVM is normally categorized as node centered (NC) and cell centered

(CC) as shown in Fig. 4.2. In the NC-FVM, unknown quantities are stored in the

mesh vertices, while solutions are defined at the center of the mesh cells with the pri-

mal cells serving as the control volume for the CC-FVM. Depending on whether the

diffusion flux between two adjacent cell is two-cells stencil or not, FVM can be clas-

sified as two-point flux approximation (TPFA) and multi-point flux approximation

(MPFA).

In [37], the standard finite volume algorithm utilizes the crude finite difference

approximation to discretize the face fluxes, which makes it behave poorly in accuracy.

For non-orthogonal mesh, the flux at the cell face is typically reconstructed from the

gradient between neighboring cells and augmented with the face gradient [38][39].

There are two reconstruction scheme, either node-averaging face gradient [40] or
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(a) CC-FVM (b) NC-FVM

Figure 4.2: Mesh of CC-FVM and NC-FVM. The unknowns are associated to black
nodes, with the control volume marked with shaded domain

least-squares scheme face gradient [41]. Both stencils are asymmetric, which result

more computational cost and have difficulties to maintain accuracy on high-aspect-

ratio curved grids [42].

Morel [43] developed a cell-centered diffusion scheme which treats rigorously ma-

terial discontinuities and gives a second order accuracy. However, the drawbacks

are there are cell-face unknowns in addition to the cell-centered unknowns and the

global diffusion matrix is unsymmetric. Both the local flux mimetic finite difference

methods [44] and the Multi-Point Flux Approximation (MPFA) [36][45][46] uses two

degrees of freedom per edge to construct the local flux discretization, and has only

cell-centered unknowns and a local stencil. The only disadvantage of MPFA is the dif-

fusion matrix is asymmetric for the general quadrilaterals and triangles. In [47][48],

another MPFA scheme was developed with symmetric sparse matrix. It has bee
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verified that it has second order accuracy for triangular grids, while almost second

order accuracy for quadrilateral grids except for non smooth grids.

In this section, we employ TPFA and MPFA [47][48] to do resistance extraction.

This is the first time to apply FVM to extraction problem. We provide detailed

description of this method including the discretization of the local matrix and appli-

cation to boundary conditions.

4.3.1 Two-Point Flux Approximation

4.3.1.1 Discretization Scheme

If we consider a general grid with two neighboring cells Ωi and Ωi+1 separated by

edge [Pk, Pk+1] as depicted in Fig. 4.3, then the grid is orthogonal when there exists

a point on the face, say Pk+ 1
2
, such that

−−−−→
GiPk+ 1

2
and
−−−−−−→
Gi+1Pk+ 1

2
are orthogonal to the

face where Gi and Gi+1 are the cell centers. In such case, the flux between these two

cells becomes one-dimensional problem.

With the assumption that the mean potential at the face is V k+ 1
2
, we define the

flux Fi at the interface due to the cell Ωi with transmissibilities Ti satisfying

Fi = Ti(Vi − V k+ 1
2
) =

σi

∣∣∣−−−−→pkpk+1

∣∣∣∣∣∣−−−−→GiPk+ 1
2

∣∣∣ (Vi − V k+ 1
2
). (4.3)

Similar definition for Fi+1 with transmissibilities Ti+1

Fi+1 = Ti+1(V k+ 1
2
− Vi+1) =

σi+1

∣∣∣−−−−→pkpk+1

∣∣∣∣∣∣−−−−−−→Pk+ 1
2
Gi+1

∣∣∣ (V k+ 1
2
− Vi+1). (4.4)

Due to the continuity of flux and potential, equating the flux on each side of the
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Figure 4.3: Two-point flux approximation definition with two cells Ωi and Ωi+1.

interface gives

Fi = Fi+1, (4.5)

which can be used to solve V k+ 1
2

V k+ 1
2

=
TiVi + Ti+1Vi+1

Ti + Ti+1

. (4.6)

Inserting this expression back into Eqn (4.3) gives the flux expression

Fi =
Vi − Vi+1

1
Ti

+ 1
Ti+1

= Tk+ 1
2
(Vi − Vi+1). (4.7)

Thus, the transmissibilities defined at the interface Tk+ 1
2

is the harmonic average
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between the two neighboring cells.

1

Tk+ 1
2

=
1

Ti
+

1

Ti+1

. (4.8)

Since the face flux in this scheme only involves two neighboring cells, it is called

Two-Point Flux Approximation (TPFA). It is a special case of the MPFA, where the

off-diagonal entries in the matrix T of Eqn(4.16) become zero.

Both the rectangular mesh and the equilateral triangular mesh follows the TPFA

scheme due to the orthogonality between centroids of adjacent volumes. For instance,

the TPFA scheme will reduce to five-point scheme for rectangular mesh, which is

equivalent to FDM. In addition, the popular Voronoi mesh which is the dual mesh

of delaunay triangulation, has multiple flexible applications [49][50] with the TPFA

scheme.

4.3.1.2 Mesh generation

In order to apply TPFA, unstructured PEBI or Voronoi grid was employed. The

advantage of Voronoi grid is the edges that comprise a control volume are orthogonal

to the segment connecting control volume centroids, which ensures TPFA is applica-

ble to these meshes. As shown in Fig. 4.4, by making perpendicular bisectors of the

black triangular mesh, the Voronoi cell marked with blue polygon is formed. There-

fore, 2D Voronoi grid is considered as the dual mesh of the 2D delaunay triangular

mesh. Thus, practically, Voronoi mesh generation follows the Delaunay triangulation

procedure which has the property that no vertex lies inside any circumcircle of any

triangle.

The challenge of the practical resistance extraction problem is how to generate

a proper Voronoi grid to fit the non-orthogonal geometric interface or boundary.

The main idea is to apply unstructured grids to the non-orthogonal domain only,
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Figure 4.4: A Voronoi-Delaunay duality in two dimensions.

for instance, around the interface of two different conductivity. Because there exists

complex geometries, for which flexible shapes of the unstructured grids come into

playing a key role. For other domains such as the simulation background, we might

use structured grids, like the rectangular mesh.

To generate mesh fitting the non-orthogonal interface, the domain around the

interface which we name it as protection area has to be treated specifically. We

pre-placed fixed pairs of nodes around the interface which will be the Voronoi cell

centers along the interface. The corresponding Voronoi cell boundaries will yield the

expected interface line segment as displayed in Fig. 4.5, where d1 is the fitting depth

of the Voronoi cell center distance around the interface, which is set to be around 1/3

of the rectangular grid size. While the Voronoi cell grid size d2 along the tangential

74



Figure 4.5: Assign fixed Voronoi cell centers to fit a non-orthogonal interface edge.

direction of the interface is usually chosen to be 1/3 to 1/2 of the rectangular grid

size. Both of them are adjustable with the mesh density requirement. It is worth

noting that since the geometries with non-orthogonal interfaces are usually convex,

the approach we adopted to put fixed points can not guarantee the Voronoi mesh

match the corner points exactly. However, the approximation can still ensure high

accuracy for extraction due to the error from minor shifted interfaces is small. For

the simulation background, we put the Cartesian grid points. Delaunay mesh points

are composed of fixed points and Cartesian grid points after removing those with

distance less than d1
2

to the non-orthogonal interfaces. They will be the final Voronoi
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Figure 4.6: Mesh generation scheme to fit the non-orthogonal interfaces or bound-
aries.

cell centers. Fig. 4.6 summarizes the mesh generation flow.

4.3.1.3 Mesh Grid Optimization

It is necessary to improve the quality of the mesh since the accuracy of TPFA is

highly related to it.

Multi-level Quad-Tree Local Grid Refinements (LGR) is a well known method

for doing multi-level LGR for a structured grid in 2D. A rectangular or quadrilateral
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Figure 4.7: Multi-level quad-tree local grid refinement illustration.

grid cell is subdivided into four cells by connecting the middle points of the opposite

edges. The four new grid points are the centers of the new cells which replace the

original coarse cell grid point. Fig. 4.7 shows the basic idea of quad-tree LGR on

a Cartesian grid. Multilevel quad-tree LGR method is used to generate successively

denser grid points when an existing grid point is within a prescribed distance measure

to the protection area of the non-orthogonal interfaces. The number of levels and

distance measures can be controlled by the parameter settings. It can greatly improve

the mesh density around the non-orthogonal interfaces, where the field changes fast,

thus improve the extraction accuracy thereafter.
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4.3.2 Multi-Point Flux Approximation

Suppose the computational mesh is composed of finite number of non-overlapping

polygons. For any polygonal cell Ωi, by integrating it over the control volume, and

applying the divergence theorem, we obtain

∫
Ωi

∇ · σ∇V dV =

∮
∂Ωi

σ∇V dA, (4.9)

where ∂Ωi is the face area of the cell Ωi. The right hand side of Eqn (4.9) can be

approximated by the sum of fluxes on all faces

∑
f

Ff =
∑
f

(σ∇V )f · Af , (4.10)

where Ff is the diffusion flux on the face f .

4.3.2.1 Half Edge Flux Approximation in the Sub-cell

In this section, we will describe the numerical approach to approximate the half

edge normal flux locally.

As demonstrated in Fig. 4.8, we denote Pk− 1
2
, Pk+ 1

2
the midpoint of the edges

[Pk−1, Pk] and [Pk, Pk+1] separately. For any polygon Ωi built with vertices Pj, j = k−

1, k, k+1, ... , sub-cell Ωi
k is the quadrilateral constructed by connecting vertices Pk− 1

2
,

Pk, Pk+ 1
2

and the centroid of cell Ωi which is labeled as Gi. The inner angle between

the edge [Pk−1, Pk] and [Pk, Pk+1] is θik. We assume the potential is defined on the

edge [Pk− 1
2
, Pk] and [Pk, Pk+ 1

2
] by two constant value V k− 1

2
,k and V k,k+ 1

2
respectively.

And the half edge normal fluxes at edges [Pk− 1
2
, Pk] and [Pk, Pk+ 1

2
] are denoted as

Fk− 1
2
,k, Fk,k+ 1

2
. The direction of fluxes are defined counterclockwise with respect to

the vertex Pk which is marked with arrow in Fig. 4.8.
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Figure 4.8: Sub-cell Ωi
k constructed by vertices Gi, Pk− 1

2
, Pk and Pk+ 1

2
.

In [47], Support Operators Method (SOM) has been applied to derive a local

variational formulation within the sub-cell Ωi
k, −Fk− 1

2
,k

Fk,k+ 1
2

 =
σi

4ωik
D

 1 −cosθik

−cosθik 1

D
 V k− 1

2
,k − Vi

V k,k+ 1
2
− Vi

 , (4.11)

where

D =


∣∣∣−−−−→PkPk−1

∣∣∣ 0

0
∣∣∣−−−−→PkPk+1

∣∣∣
 , (4.12)
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σi is the conductivity coefficient in the cell Ωi. ωik is the corner volume, which is

related to the vertex Pk satisfying

∑
k

ωik = AΩi , (4.13)

where AΩi is the area of the cell Ωi. There are several possible choices for ωik. In

[51], the corner volumes of quadrilateral cells are

ωik =
1

4

∣∣∣−−−−→PkPk−1

∣∣∣∣∣∣−−−−→PkPk+1

∣∣∣sinθik. (4.14)

Similarly, we can set it to be one third of the cell area for triangular cells,

ωik =
1

6

∣∣∣−−−−→PkPk−1

∣∣∣∣∣∣−−−−→PkPk+1

∣∣∣sinθik. (4.15)

In such case, Eqn(4.11) can be simplified as

 −Fk− 1
2
,k

Fk,k+ 1
2

 = T

 V k− 1
2
,k − Vi

V k,k+ 1
2
− Vi

 , (4.16)

where

T =
3σi

2 ·
−−−−→
PkPk+1 ×

−−−−→
PkPk−1


∣∣∣−−−−→PkPk−1

∣∣∣2 −
−−−−→
PkPk+1 ·

−−−−→
PkPk−1

−
−−−−→
PkPk+1 ·

−−−−→
PkPk−1

∣∣∣−−−−→PkPk+1

∣∣∣2
 . (4.17)

The matrix T is symmetric. This matrix yields a linear relationship between the half

edge normal fluxes and the half edge potential which will be used to generate the

local diffusion matrix.

We could also derive the matrix T with the coordinate transformation, which is
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consistent with the MPFA-C(1
3
) method [52] derived with the symmetric physical

space or symmetric sub-cell transform space [48]. The parallelogram constructed by

Gi and the edges [Pk−1, Pk], [Pk, Pk+1] have the intersection points Pm and Pn. We

define a new coordinate system (ξ, η) as shown in Fig. 4.8.

From the chaining rule, we know that

 Vξ

Vη

 =

 xξ yξ

xη yη


 Vx

Vy

 , (4.18)

which results in

 Vx

Vy

 =

 xξ yξ

xη yη


−1  Vξ

Vη

 =

 yη −yξ

−xη xξ


xξyη − xηyξ

 Vξ

Vη

 . (4.19)

Hence

Vx =
Vξyη − Vηyξ
xξyη − xηyξ

,

Vy =
−Vξxη + Vηxξ
xξyη − xηyξ

. (4.20)

Suppose the coordinates for node Gi, Pn, Pm, Pk, Pk+1 and Pk−1 are (x1, y1),
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(x2, y2), (x3, y3), (x4, y4) and (x5, y5), (x6, y6) respectively. It is readily easy to get

xξ =
x2 − x1

∆ξ
,

yξ =
y2 − y1

∆ξ
,

eξ =
(x2 − x1)~i+ (y2 − y1)~j

∆ξ
,

xη =
x3 − x1

∆η
,

yη =
y3 − y1

∆η
,

eη =
(x3 − x1)~i+ (y3 − y1)~j

∆η
,

Lx = y2 − y1,

Ly = −(x2 − x1),

Rx = y3 − y1,

Ry = −(x3 − x1),

where ~L = Lx ~ex + Ly ~ey and ~R = Rx ~ex + Ry ~ey are the area vectors on the edges

[Pk, Pm] and [Pn, Pk] respectively.

The denominator in Eqn (4.20) can be rewritten as

xξyη − xηyξ =
x2 − x1

∆ξ

y3 − y1

∆η
− x3 − x1

∆η

y3 − y1

∆ξ
.
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Thus, the fluxes at the edges [Pk, Pm] and [Pk, Pn] satisfy

Fk,m = σi∇V · ~L

= σiVxLx + VyLy

= σi
Vξyη − Vηyξ
xξyη − xηyξ

Lx +
−Vξxη + Vηxξ
xξyη − xηyξ

Ly

= σi(
Lxyη − Lyxη
xξyη − xηyξ

)Vξ + (
−Lxyξ + Lyxξ
xξyη − xηyξ

)Vη

= σi
(y2 − y1)(y3 − y1) + (x2 − x1)(x3 − x1)

((x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1))/∆ξ
Vξ

+ σi
−(y2 − y1)2 − (x2 − x1)2

((x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1))/∆η
Vη

= σi
(y2 − y1)(y3 − y1) + (x2 − x1)(x3 − x1)

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(VPn − Vi)

+ σi
−(y2 − y1)2 − (x2 − x1)2

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(VPm − Vi),

and

Fk,n = σi∇V · ~R

= σiVxRx + VyRy

= σi
Vξyη − Vηyξ
xξyη − xηyξ

Rx +
−Vξxη + Vηxξ
xξyη − xηyξ

Ry

= σi(
Rxyη −Ryxη
xξyη − xηyξ

)Vξ + (
−Rxyξ +Ryxξ
xξyη − xηyξ

)Vη

= σi
(y3 − y1)2 + (x3 − x1)2

((x1 − x2)(y1 − y3)− (x1 − x3)(y1 − y2))/∆ξ
Vξ

+ σi
−(y2 − y1)(y3 − y1)− (x2 − x1)(x3 − x1)

((x1 − x2)(y1 − y3)− (x1 − x3)(y1 − y2))/∆η
Vη

= σi
(y3 − y1)2 + (x3 − x1)2

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(VPn − Vi)

+ σi
−(y2 − y1)(y3 − y1)− (x2 − x1)(x3 − x1)

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
(VPm − Vi).

83



They can be summarized in the compact form

 −Fk,n
Fk,m

 =

 T11 T12

T21 T22


 VPn − Vi

VPm − Vi

 ,
where

T11 = σi
−(y3 − y1)2 − (x3 − x1)2

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
,

T12 = T21 = σi
(y2 − y1)(y3 − y1) + (x2 − x1)(x3 − x1)

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
,

T22 = σi
−(y2 − y1)2 − (x2 − x1)2

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)
.

It is obvious to find that

(x1, y1) =
1

3
((x4, y4) + (x5, y5) + (x6, y6)),

(x2, y2) =
1

3
(x6, y6) +

2

3
(x4, y4),

(x3, y3) =
1

3
(x5, y5) +

2

3
(x4, y4),

Fk− 1
2
,k =

3

2
Fk,n,

Fk,k+ 1
2

=
3

2
Fk,m,

which can be used to derive the relationship between the half edge fluxes and the

half edge potential

 −Fk− 1
2
,k

Fk,k+ 1
2

 =

 T ′11 T ′12

T ′21 T ′22


 V k− 1

2
,k − Vi

V k,k+ 1
2
− Vi

 ,
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where

T ′11 =
3σi
2

−(y4 − y6)2 − (x4 − x6)2

(x4 − x5)(y4 − y6)− (x4 − x6)(y4 − y5)
,

T ′12 = T ′21 =
3σi
2

(y4 − y6)(y4 − y5) + (x4 − x6)(x4 − x5)

(x4 − x5)(y4 − y6)− (x4 − x6)(y4 − y5)
,

T ′22 =
3σi
2

−(y4 − y5)2 − (x4 − x5)2

(x4 − x5)(y4 − y6)− (x4 − x6)(y4 − y5)
. (4.21)

They are consistent with the Eqn (4.17) except the sign which depends on the refer-

ence flux direction and will not affect the result.

4.3.2.2 Discretization of the Local Diffusion Matrix in the Vertex

Suppose there is an internal node Pk surrounded by cells Ωj with constant poten-

tial Vj at the centroid, where j = i+ 1, i+ 2, · · · , i+ r. We label the adjacent nodes

as Pk+1, Pk+2, · · · , Pk+r. We also denote by Pa the midpoint of the edge [Pk, Pk+1].

The average potential and normal face flux on the edge [Pk, Pa] are defined by V k,a

and Fk,a respectively. Similar definition for the edges between Pk and other adjacent

nodes. As shown in Fig. 4.9, without loss of generality, we set the number of cells

r = 4 for the following derivation.

In the cell passing through the vertices Pk, Pk+1 and Pk+2, based on the local half

edge flux Eqn (4.16), the flux normal to the edge [Pk, Pa] and [Pk, Pb] satisfy

 −Fk,b
Fk,a

 = T i+1

 V k,b − Vi+1

V k,a − Vi+1

 ,
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Figure 4.9: Notation around an internal vertex pk.

where T i+1 is the local matrix in the sub-cell Ωi+1
k . It is easy to obtain

 V k,b − Vi+1

V k,a − Vi+1

 = T̃ i+1

 −Fk,b
Fk,a

 ,
where T̃ i+1 is the inverse matrix of T i+1 which is also symmetric. We have similar
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formula for fluxes in other cells: V k,c − Vi+2

V k,b − Vi+2

 = T̃ i+2

 −Fk,c
Fk,b

 ,
 V k,d − Vi+3

V k,c − Vi+3

 = T̃ i+3

 −Fk,d
Fk,c

 ,
 V k,a − Vi+4

V k,d − Vi+4

 = T̃ i+4

 −Fk,a
Fk,d

 .
We can solve these linear equations, and rewrite them in the following form



Fk,b − Fk,a

Fk,c − Fk,b

Fk,d − Fk,c

Fk,a − Fk,d


= M



Vi+1

Vi+2

Vi+3

Vi+4


, (4.22)

where

M = LTS−1L, (4.23)

L =



−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1


, (4.24)
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and

S =



T̃ i+1
22 + T̃ i+4

11 −T̃ i+1
21 0 −T̃ i+4

12

−T̃ i+1
12 T̃ i+1

11 + T̃ i+2
22 −T̃ i+2

21 0

0 −T̃ i+2
12 T̃ i+2

11 + T̃ i+3
22 −T̃ i+3

21

−T̃ i+4
21 0 −T̃ i+3

12 T̃ i+3
11 + T̃ i+4

22


. (4.25)

L is the linear combination of an identity matrix and a permutation matrix. It

is clear that S is a symmetric matrix, which results in a symmetric local diffusion

matrix M .

The expression Fk,b − Fk,a represents the outward diffusion flux in the cell Ωi+1

contributed by node Pk. Therefore, Eqn (4.22) yields a linear relation between the

outward half face fluxes of all adjacent cells and the corresponding cell-centered

potentials. If we define [MG] as an assemble of the local diffusion matrix, it has been

proven that it is SPD in [48].

4.3.2.3 Boundary Conditions

There are two type of boundary conditions: Neumann and Dirichlet. In this

section, we will analyze their contribution to the diffusion matrix.

4.3.2.3.1 Neumann Boundary Condition Suppose Pk is a boundary vertex, and

the edges [Pk, Pk+1] and [Pk, Pk+4] are located on the Neumann boundary. Then the

boundary flux will satisfy

Fk,a = Fk,d = 0. (4.26)

88



By inserting these conditions to Eqn(4.22), the unknown face fluxes can be expressed

as 
Fk,b − Fk,a

Fk,c − Fk,b

Fk,d − Fk,c

 = MN


Vi+1

Vi+2

Vi+3

 , (4.27)

where

MN = LTNS
−1
N LN ,

LN =

 1 −1 0

0 1 −1

 ,
and

SN =

 T̃ i+1
11 + T̃ i+2

22 −T̃ i+2
21

−T̃ i+2
12 T̃ i+2

11 + T̃ i+3
22

 .
The local diffusion matrix MN is also symmetric, and matrix LN and SN are the

submatrix of L and S individually, where the rule to remove rows and columns is

easy to recognize.

4.3.2.3.2 Dirichlet Boundary Condition Assume vertex Pk is located on the Dirich-

let boundary with two boundary edges [Pk, Pk+1] and [Pk, Pk+4]. If both two edges

are on the Dirichlet Boundary with constant potential value W

V k+a = V k+d = W. (4.28)
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Then the face fluxes of the cells impinging on the node Pk can be written as


Fk,b − Fk,a

Fk,c − Fk,b

Fk,d − Fk,c

 = MD


Vi+1

Vi+2

Vi+3

+ CDW, (4.29)

where

MD = LTDS
−1
D LD,

LD =



−1 0 0

1 −1 0

0 1 −1

0 0 1


,

and

SD =



T̃ i+1
22 −T̃ i+1

21 0 0

−T̃ i+1
12 T̃ i+1

11 + T̃ i+2
22 −T̃ i+2

21 0

0 −T̃ i+2
12 T̃ i+2

11 + T̃ i+3
22 −T̃ i+3

21

0 0 −T̃ i+3
12 T̃ i+3

11


,
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as well as

CD = LTDS
−1
D



1

0

0

−1


.

It is easy to obtain the total flux along the Dirichlet boundary for the vertex Pk

through Fk,d − Fk,a which is the sum of matrix columns for Eqn(4.29).

If the vertex Pk is on the corner, then one of the boundary edge will be located

on the Neumann boundary. For instance,

Fk,a = 0, V k+d = W. (4.30)

In such case, the face fluxes of the cells surrounding the node Pk can be written

as 
Fk,b − Fk,a

Fk,c − Fk,b

Fk,d − Fk,c

 = MND


Vi+1

Vi+2

Vi+3

+ CNDW, (4.31)

where

MND = LTNDS
−1
NDLND,
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LND =


1 −1 0

0 1 −1

0 0 1

 ,

and

SND =


T̃ i+1

11 + T̃ i+2
22 −T̃ i+2

21 0

−T̃ i+2
12 T̃ i+2

11 + T̃ i+3
22 −T̃ i+3

21

0 −T̃ i+3
12 T̃ i+3

11

 ,

as well as

CND = LTNDS
−1
ND


0

0

−1

 .

4.4 Finite Element Method

Finite element method (FEM) is a numerical method like the finite difference

method but is more general and powerful in its application to read-world problems

that involve complicated physics, geometry and boundary conditions.

4.4.1 Traditional Finite Element Method

In FEM, a given domain is viewed as a collection of sub-domains, and over each

domain the governing equation is approximated by any of the traditional variational

methods. In the classic Galerkin method, the weak form is a variational statement

of the problem in which we integrate against a test function. This has the effect of

relaxing the problem: instead of finding an exact solution everywhere, we are finding

a solution that satisfies the strong form on average over the domain. From other
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point of view, it weaken the original differential equation to integral or sum equation

which is much more easy to solve.

4.4.1.1 Weak Formulation and Global Stiffness Matrix

Starting with the strong form

−∇ · σ∇V = 0, (4.32)

by multiplying a test function ψ

−
∫

Ω

ψ∇ · σ∇V = 0

−(

∫
∂Ω

ψ · n · σ∇V −
∫

Ω

∇ψ · σ∇V ) = 0∫
Ω

∇ψ · σ∇V = 0,

it has been turned to the weak form

(∇ψ, σ∇V ) = 0, ∀ψ ∈ H1. (4.33)

Since the solution V comes from an infinite dimensional function space, it is impos-

sible to handle objects with infinitely many coefficients, we seek a finite dimensional

trial function to approximate it instead,

Vh =
N∑
j=1

Ujψj(x), (4.34)

where ψj(x) are the finite element shape function, Uj are unknown expansion co-

efficients, the total number N represents degree of freedom. To determine the N
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coefficients, test with N basis functions

(∇ψi, σ∇Vh) = 0, ∀i = 1, ...N.

If basis function are linearly independent, this yields N equations for N coefficients.

N∑
j=1

(∇ψi, σ∇ψj)Uj = 0, ∀i = 1, ...N,

which can be written in the compact linear system

[K]U = 0,

where [K] is the global stiffness matrix defined by Kij = (∇ψi, σ∇ψj) =
∑

e σe
∫
e
∇ψi∇ψj.

It has unique solution with the well-defined Dirichlet boundary conditions.

4.4.1.2 Linear Basis Function and Local Stiffness Matrix

Suppose the computational domain is composed of triangular elements. If the

potential distribution within a single triangular cell follows

Vh(x, y) = a0 + a1x+ a2y, (4.35)

which is linear in both x and y directions. Vh(x, y) is uniquely defined on a triangle

element by the values of Vh at the vertices of the triangle (x1, y1), (x2, y2), (x3, y3),

V1 ≡ Vh(x1, y1) = a0 + a1x1 + a2y1,

V2 ≡ Vh(x2, y2) = a0 + a1x2 + a2y2,

V3 ≡ Vh(x3, y3) = a0 + a1x3 + a2y3,
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which can be rewritten as
V1

V2

V3

 =


1 x1 y1

1 x2 y2

1 x3 y3



a0

a1

a2

 ≡M


a0

a1

a2

 .

The coefficient can be solved
a0

a1

a2

 = M−1


V1

V2

V3

 =
1

|M |


x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1



V1

V2

V3

 .

If we introduce the parameters α, β and γ

αi = xjyk − xkyj,

βi = yj − yk,

γi = −(xj − xk),

where i 6= j 6= k and they permute in a natural order, Eqn (4.35) can be written as

Vh(x, y) =
1

|M |
[(α1V1 + α2V2 + α3V3) + (β1V1 + β2V2 + β3V3)x+ (γ1V1 + γ2V2 + γ3V3)y]

=
1

|M |
([(α1 + β1x+ γ1y)V1 + (α2 + β2x+ γ2y)V2 + (α3 + β3x+ γ3y)V3]

=
3∑
i=1

Viψi(x, y). (4.36)

Comparing with Eqn (4.34), the basis function or linear interpolation function at
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Figure 4.10: Linear interpolation functions for triangle element.

the node i is

ψi(x, y) =
1

|M |
(αi + βix+ γiy), (4.37)

with the properties

ψi(xj, yj) = δi,j,

3∑
i=1

ψi = 1.

The basis function at each vertex is demonstrated in Fig. 4.10.

The basis functions are used to build the local stiffness matrix Ke which is defined
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as Ke
ij =

∫
e
σe∇ψi∇ψj within each individual triangular cell. From

∂ψi
∂x

=
βi
|M |

,

∂ψi
∂y

=
γi
|M |

,

we obtain

∫
e

σe∇ψi∇ψj = σe
βiβj + γiγj
|M |2

|M |
2

(4.38)

which is the contribution to the entry Ki,j from the eth triangular cell.

4.4.2 Immersed Finite Element Method

In the immersed finite element method (IFEM) [53][54], the basis functions are

constructed to satisfy the jump conditions across the interface. The advantage of

this method is that it can be considered as an extended finite difference method when

cartesian triangulation is utilized to generate the mesh.

4.4.2.1 From FEM to IFEM

It is easy to verify that FEM with Cartesian triangular mesh are equivalent to

FDM with Cartesian grid as displayed in Fig. 4.11.

We expect the Cartesian grid being applied to the computational domain where

there is a geometry with non-orthogonal boundary as shown in Fig. 4.12(a). In

Fig. 4.12(b), the mesh is replaced with Cartesian triangulation. We can divide all

the cells into two groups, the non-interface elements and the interface elements. If

there is no interface or boundary line passing through the interior of the element,

we call it a non-interface element, the linear basis shape functions are equivalent

to FDM applied on Cartesian grid. Otherwise, the element is an interface element
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Figure 4.11: Cartesian triangulation grid and Cartesian grid.

which are split into several parts by the interface lines, we need to take the interface

conditions into consideration for basis function construction. As the demonstration

in Fig. 4.12(c), IFEM is composed of applying FDM to non-interface parts, and

extending FEM to interface right triangle elements which is marked with red color.

The method to extend FEM for triangle element with interface lines will be described

in the following parts.

4.4.2.2 Non-conforming Basis Function for Interface Element

Suppose the computational domain Ω is separated by an interface Γ into two

parts Ω+ and Ω−, and the conductivity coefficient σ has two pieces separated by the

interface Γ

σ(x, y) =


σ+ (x, y) ∈ Ω+

σ− (x, y) ∈ Ω−
(4.39)

For instance, the interface triangle cell 4ABC as shown in Fig. 4.13 is separated

into two parts with conductivity σ+ in triangle 4ADE and σ− in quadrilateral

98



(a) (b) (c)

Figure 4.12: From FEM to IFEM: (a) geometry with non-orthogonal boundary in
Cartesian grid; (b) geometry with non-orthogonal boundary in Cartesian triangular
grid; (c) Cartesian grid for non-interface element and Cartesian triangular grid for
interface element.

�DBCE. Suppose the potential is piecewise linear in 4ABC cell as follows:

V +(x, y) = a0 + a1x+ a2y, (x, y) ∈ 4ABC

V −(x, y) = b0 + b1x+ b2y. (x, y) ∈ �DBCE (4.40)

The potential continuity condition at node D and node E are

V +(D) = V −(D),

V +(E) = V −(E). (4.41)

In addition, the normal flux at the interface should be conservative

σ+∂V
+

∂n
= σ−

∂V −

∂n
. (4.42)

Suppose the slope of the interface line segment within 4ABC is α, then the normal
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Figure 4.13: Cartesian triangles with an interface line cutting through.

direction vector of the line segment is (α,−1). Since

∂V

∂n
= ∇V · ~n,

Eqn (4.42) can be rewritten as

σ+(a1α− a2) = σ−(b1α− b2). (4.43)

Combining with potential equation in terms of node A, B and C, the new local linear
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system becomes



1 x1 y1 0 0 0

0 0 0 1 x2 y2

0 0 0 1 x3 y3

1 x4 y4 −1 −x4 −y4

1 x5 y5 −1 −x5 −y5

0 α −1 0 −σ−

σ+α
σ−

σ+





a0

a1

a2

b0

b1

b2


≡M



a0

a1

a2

b0

b1

b2


=



V (A)

V (B)

V (C)

0

0

0


. (4.44)

We can obtain two separate linear shape functions coefficients


a0

a1

a2

 = W σ+


V (A)

V (B)

V (C)

 ,

and 
b0

b1

b2

 = W σ−


V (A)

V (B)

V (C)

 ,

after solving this linear system. Fig .4.14 shows the modified basis function at node

A with IFEM, where the changes at the interface line are continuous. It is easy to

recognize the small discontinuous jumps along the element boundaries, thus the basis

function is non-conforming.

The contribution term to the global entry Ki,j is also separated into two parts:

∫
4ABC

σ4ABC∇ψi∇ψj =

∫
4ADE

σ+∇ψi∇ψj +

∫
�DBCE

σ−∇ψi∇ψj.

101



Figure 4.14: The basis function at node A in Fig.4.13 with IFEM when σ+

σ− = 10.

The gradient calculation for each part is the same as the traditional approach.

4.4.2.3 Conforming Basis Function for Interface Element

Compared with non-conforming IFEM, the conforming IFEM manually force the

continuity at the element boundaries. For instance, in the4ABC, we need to modify

the non-conforming basis functions so that the local basis functions can be not only

continuous at the edge DE, but also be continuous along the edge AB and AC.

After obtaining linear basis function in 4ABC, the value at node D will be

V (D)4ABC = [1, x4, y4]


a0

a1

a2


4ABC

≡ OD
4ABC


V (A)

V (B)

V (C)

 .
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Similar relationship in 4AFB

V (D)4AFB = OD
4AFB


V (A)

V (F )

V (B)

 .

We choose the average value of D as the continuity node along the edge AB

V (D) =
1

2
(V (D)4ABC + V (D)4AFB) ≡ OD



V (A)

V (B)

V (C)

V (F )


.

Similarly, the value at node E is adjusted to be the average of values with non-

conforming basis functions at triangle 4ABC and 4ACG,

V (E) ≡ OE



V (A)

V (B)

V (C)

V (G)


.

To calculate the basis function for 4ABC after boundary node adjustment, we

need to split the triangle into three parts,4ADE,4DBE,4EBC or4ADE,4DBC,4DCE.

The sub-triangles need to satisfy the requirement that the maximum acute angle is

greater than or equal to π/4 or the supplementary angle of the obtuse angle is not

less than π/4.

For each sub-triangle, the basis function is piecewise linear function determined

by the values at the corresponding vertices. For example, the basis function at
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4ADE needs to satisfy


1 x1 y1

1 x4 y4

1 x5 y5

 ·

a0

a1

a2


4ADE

=


E1

OD

OE


5×5

·



V (A)

V (B)

V (C)

V (F )

V (G)


,

where E1 is standard unit vector of length 5.

From the above analysis, we can find that both the non-conforming and con-

forming IFEM will result in a nine point stencil, with the same degree of freedom

as the original cartesian triangulation. When the conductivity ratio is 1, there is no

interface, the stencil will reduce to the original five point FDM stencil. It has been

proved that the accuracy of conforming IFEM is second order accurate in terms of

V , while the accuracy of non-conforming IFEM is between first order and second

order in [53]. However, since the difference in the following experiments is trivial, we

only show the simulation results with non-conforming IFEM.

4.5 Simulation and Evaluations

4.5.1 Resistance Extraction of non-rectilinear Conductor

There is a simple resistance extraction case where there is a very thin diagonal

stripe shaped conductor. All dimensional detail are shown in Fig. 4.15, the non-

rectilinear stripe shaped conductor can be any rotation angle α. We use FEM solver

to obtain the reference results, when α = 30◦, R = 3.34Ω with dof = 19696, when

α = 45◦, R = 3.22Ω with dof = 19664, while when α = 60◦, R = 3.06Ω with

dof = 19740.
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Figure 4.15: Experiment I: Resistance extraction case for a very thin non-rectilinear
conductor.

4.5.1.1 FDM with Cartesian grid

As shown in Fig. 4.16, we use very dense Cartesian grid to form the high density

staircases to approximate the non-orthogonal interface. From Table .4.2, we found

that the accuracy is very low when the mesh is coarse. It requires dense mesh grid

to compensate which brings much more computational cost. Especially, when the

rotation angle becomes larger, it needs even higher mesh density to achieve the same

accuracy.
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(a) (b) (c)

Figure 4.16: Cartesian grid fitting the stripe shaped conductor with different rotation
angle α for case in Fig. 4.15. (a) α = 30◦; (b) α = 45◦; (c) α = 60◦.

4.5.1.2 TPFA with Voronoi grid

In order to apply TPFA, we need to place fixed voronoi cell centers to ensure

the voronoi cell boundary will fit the rotated stripe domain. Since the potential

changes faster along the interface, it is reasonable to increase the mesh density in

those sensitive regions. Examples can be found in Fig. 4.17.

Compared with FDM, TPFA are able to get very accurate result with fewer com-

putational cost. For example, to achieve the same accuracy when rotation angle is

45◦, FDM uses more than 200 times number of unknowns and more than 150 it-

erations to calculate. Although it is much more simple and efficient to use TPFA,

there are two problems with the voronoi mesh for TPFA. When pre-fixed points are
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Table 4.2: Resistance extraction for Experiment I with FDM.

α dof R err(%) iter

30

588 2.52 -24.53 19
2204 2.82 -15.52 35
8120 3.09 -7.51 49
31088 3.22 -3.58 74

45

1600 2.54 -20.96 32
5900 2.86 -10.87 54
22400 3.03 -5.71 95
87600 3.12 -2.82 153

60

4400 2.68 -12.52 49
16530 2.86 -6.53 106
64356 2.96 -3.29 177
255348 3.01 -1.66 245

Table 4.3: Resistance extraction for Experiment I with TPFA.

α
Voronoi Grid Voronoi Grid with quad-tree LGR

dof R err(%) iter dof R err(%) iter
30 335 3.35 0.17 22 439 3.35 0.17 29
45 343 3.22 0.19 22 449 3.22 0.13 28
60 365 3.07 0.31 23 526 3.07 0.15 33

utilized to approximate the non-orthogonal interface, it is impossible to make the

voronoi cells to completely fit the boundary at the corner point, or the intersection

point of two lines, even with highly adjusted parameters. For example, the intersec-

tion of the rotated parts and the outer boundary does not fit the original interface

line in Fig .4.17(c) and Fig .4.17(f). Another problem is that it is a one-time mesh

which needs to update even for a tiny change.

4.5.1.3 MPFA with Triangular grid

To apply MPFA, we employ the package triangle [55] to generate triangular mesh

as shown in Fig. 4.18. In order to estimate the performance of MPFA, we compare
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the simulation result with the traditional FEM. The result in Table .4.4 shows both

of them converge fast and can achieve high accuracy with small dof compared with

FDM. It is worth noting that for the same triangular mesh, the number of nodes

is roughly half of the number of cells, thus the dof of FEM is less than the dof of

MPFA.

Table 4.4: Resistance extraction for Experiment I with MPFA and FEM.

α
MPFA FEM

dof R err(%) iter dof R err(%) iter

30

94 3.35 0.30 11 60 3.35 0.13 13
399 3.35 0.30 16 232 3.34 -0.07 23
773 3.35 0.27 28 428 3.34 -0.10 34

38796 3.34 0.13 189 19696 3.34 0.00 219

45

127 3.23 0.29 13 77 3.19 -0.80 14
424 3.23 0.29 21 244 3.22 -0.10 23
782 3.23 0.29 29 434 3.21 -0.29 33

38716 3.22 0.06 189 19664 3.22 -0.00 214

60

140 3.07 0.21 14 84 3.06 -0.03 15
430 3.07 0.18 23 247 3.05 -0.46 23
800 3.07 0.18 29 444 3.05 -0.31 32

38875 3.06 0.09 191 19740 3.06 -0.00 213

4.5.1.4 IFEM with Cartesian grid

The original IFEM requires that at most one interface line segment cutting

through an element, and the interface line is smooth enough within the interface

elements. However, since the stripe shaped conductor is very thin, it is possible that

there are two disjoint line segments cutting through some interface elements when

the Cartesian grid is coarse. We can extend the non-conforming IFEM for two dis-

joint interface line segments. For example, in Fig. 4.19, there are two line segments
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cutting through the element 4ABC. There will be three basis functions for three

sub-domains respectively,

V 1(x, y) = a0 + a1x+ a2y, (x, y) ∈ 4ADE

V 2(x, y) = b0 + b1x+ b2y, (x, y) ∈ �DFGE

V 3(x, y) = c0 + c1x+ c2y. (x, y) ∈ �FBCG

The potential and normal flux continuity at the edge DE which has the slope

αDE can be written as

a0 + a1x4 + a2y4 = b0 + b1x4 + b2y4,

a0 + a1x5 + a2y5 = b0 + b1x5 + b2y5,

σ1(a1αDE − a2) = σ2(b1αDE − b2).

Similar equations for the edge FG which has the slope αFG,

b0 + b1x6 + b2y6 = c0 + c1x6 + c2y6,

b0 + b1x7 + b2y7 = c0 + c1x7 + c2y7,

σ2(b1αFG − b2) = σ3(c1αFG − c2).
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Thus, the local linear system is



1 x1 y1 0 0 0 0 0 0

0 0 0 0 0 0 1 x2 y2

0 0 0 0 0 0 1 x3 y3

1 x4 y4 −1 −x4 −y4 0 0 0

1 x5 y5 −1 −x5 −y5 0 0 0

0 αDE −1 0 −σ2
σ1
αDE

σ2
σ1

0 0 0

0 0 0 1 x6 y6 −1 −x6 −y6

0 0 0 1 x7 y7 −1 −x7 −y7

0 0 0 0 αFG −1 0 −σ3
σ2
αFG

σ3
σ2





a0

a1

a2

b0

b1

b2

c0

c1

c2



=



V (A)

V (B)

V (C)

0

0

0

0

0

0



.

Suppose there are more than two interface lines, whenever there is another dis-

joint line segment added to the local system, there will be one more basis function

for the new sub-domain which has three unknown parameters. While three equa-

tions determined by the potential continuity at the two intersection points and flux

continuity at the normal direction of the edge, will make the updated local system

still solvable.

In the experiment for non-rectlinear conductor, we employ very coarse mesh grid

as shown in Fig. 4.20. All the results in Table. 4.5 are very accurate, even when the

number of grid point is less than 10. The advantage of IFEM over FDM, FVM and

FEM is obvious. It does not require any specific technique to generate complicated

mesh to fit the non-orthogonal interface or update mesh for any small changes, which

greatly saves the computational cost. In addition, since the matrix construction for

non-interface elements still maintain the FDM five-point stencil, it only requires

solving local system for non-interface elements. Thus, it is much more efficient than
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other approaches.

Table 4.5: Resistance extraction for Experiment I with IFEM.

α dof R err(%) iter

30

1 3.32 -0.56 0
9 3.34 0.00 1
25 3.34 -0.03 6
81 3.34 -0.07 11
289 3.34 -0.03 22

45

1 3.17 -1.49 0
9 3.08 -4.28 1
25 3.21 -0.16 6
81 3.22 0.06 11
289 3.22 0.00 21

60

1 0.98 -2.89 0
9 3.15 2.71 1
25 3.04 -0.67 7
81 3.09 0.80 12
289 3.08 0.43 21

4.5.2 Resistance Extraction of FinFET Contact

The resistivity between the boundary of FinFET gate and contact is anisotropic,

which means that the resistivity in the normal direction is different from that in

the tangent direction as shown in Fig. 4.21(a). In order to take this property into

consideration , we create a very thin layer with different resistivity. All dimensional

detail is depicted in Fig. 4.21(b). The half circle curve is approximated by thirty

two equal length segments. We did experiments for the case ρ1/ρ2 = 20 and ρ1/ρ2 =

200. The reference result from FEM solver is R = 2.35Ω for the former case, and

R = 11.14Ω for the latter case with dof = 155903.
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Table 4.6: Resistance extraction for Experiment II with FDM.

cases dof R err(%) iter runtime(s)
506 1.69 -27.82 19 0.41

ρ1/ρ2 = 20 1720 2.05 -12.63 30 1.04

Rref = 2.35Ω
6308 2.20 -6.04 47 3.49
24124 2.27 -3.20 78 14.39
94316 2.32 -1.00 127 124.25
372940 2.35 0.31 214 2118.5

506 1.96 -82.37 20 0.36
ρ1/ρ2 = 200 1720 7.84 -29.62 32 1.00

Rref = 11.14Ω
6308 9.66 -13.24 62 3.46
24124 10.40 -6.65 121 14.77
94316 10.78 -3.23 221 132.95
372940 10.95 -1.64 377 2029.76

4.5.2.1 FDM with Cartesian grid

It requires very dense Cartesian grid to approximate the non-orthogonal boundary

as usual, which is demonstrated in Fig. 4.22. Though coarse mesh is used for domains

without non-orthogonal interface, the dof is still very large to ensure accuracy. The

results in Table. 4.6 show poor results for coarse mesh even though it converges fast.

As the ratio ρ1/ρ2 becomes large, it requires even more grid points to guarantee the

accuracy, which leads to much more computational costs. Therefore, as the resistivity

contrast along the non-orthogonal interface becomes larger, the performance of FDM

is even worse.

4.5.2.2 TPFA with Voronoi grid

Fig. 4.23 displays Voronoi grid examples with and without local grid refinement.

Since there are multiple line segments to form the curve shape, the Voronoi cells

around the intersection point of the line segments can not fully match the boundary

lines. Therefore, the Voronoi cells boundaries approximate the non-orthogonal inter-
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Table 4.7: Resistance extraction for Experiment II with TPFA.

cases
Voronoi Grid Voronoi Grid with quad-tree LGR

dof R err(%) iter runtime(s) dof R err(%) iter runtime(s)
ρ1/ρ2 = 20 473 2.31 -1.48 27 0.21 619 2.32 -1.04 30 0.23
ρ1/ρ2 = 200 473 11.16 0.22 27 0.18 619 11.12 -0.11 31 0.22

faces with trivial accuracy loss. When local grid refinement is included, greater mesh

density is applied for interface domains while lower mesh density for other domains,

which is much more efficient.

4.5.2.3 MPFA with Triangular grid

With the triangular mesh in Fig.4.24 generated by triangle package, we did ex-

periments with both MPFA and FEM, and compare both accuracy, ICCG iteration

times as well as run times in Table. 4.8. Both of them can achieve high accuracy with

small number of grid points which is much more efficient than FDM. Their iteration

number is comparable. The simulation with FEM is much faster than MPFA when

dof is small while becomes slower when dof is large. The reason is it is expensive

to construct the local matrix for a single node in MPFA than constructing the local

matrix for a single element in FEM, while the number of nodes is around half of the

number of cells for the same triangular mesh. As the dof increases, the run time

becomes much more sensitive to the total assembling times of the local matrix.

4.5.2.4 IFEM with Cartesian grid

In this experiment, we adopts Cartesian grid for non-interface elements, while

Cartesian triangular grid for interface elements, as shown in 4.25. Traditional FDM

will be applied to the rectangle cells, while IFEM is limited to those interface cells.

It is clear that the number of interface cells is proportional to the dimension of the

non-orthogonal interfaces, which is very small. Thus, the cost to solve the local
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Table 4.8: Resistance extraction for Experiment II with MPFA and FEM.

cases
MPFA FEM

dof R err(%) iter runtime(s) dof R err(%) iter runtime(s)

ρ1/ρ2 = 20

336 2.44 4.00 19 0.41 182 2.27 -3.36 20 0.15
777 2.40 2.13 28 0.68 423 2.29 -2.25 30 0.25
2521 2.39 0.97 50 1.67 1328 2.32 -0.98 53 0.49
15477 2.36 0.47 111 8.33 7909 2.34 -0.35 124 2.19
155055 2.35 0.34 266 83.8 78047 2.34 -0.05 307 98.4
310200 2.34 -0.12 376 184.50 155903 2.35 0.00 421 401.9

ρ1/ρ2 = 200

336 11.26 1.13 20 0.44 182 11.04 -0.88 20 0.14
777 11.20 0.56 30 0.75 423 11.06 -0.66 31 0.20
2521 11.16 0.22 55 1.82 1328 11.09 -0.44 59 0.41
15477 11.15 0.11 120 8.33 7909 11.12 -0.22 130 1.95
155055 11.14 0.06 263 92.94 78047 11.12 -0.11 308 116.25
310200 11.14 0.03 371 189.00 155903 11.14 0.00 412 401.64

system for non-orthogonal elements is small which avoids the disadvantage of the

traditional FEM. From Table. 4.9 and Fig. 4.26, by applying IFEM, high accuracy

can be achieved with small number of grid points than FDM, FEM and MPFA. The

iteration number is comparable to those with FEM and MPFA, and the run time is

smaller than FEM and MPFA with the same accuracy. From Fig. 4.27, the efficiency

improvement is even more clear. For instance, when ρ1/ρ2 = 20, to achieve 1% error

for resistance, FDM requires run time of 120s while IFEM only requires less than 1s,

which indicates more than 100 times speed up when IFEM is applied. The efficiency

improvement is more than 1000 times when ρ1/ρ2 = 200.

4.6 Conclusion

We introduce FVM and IFEM to solve the resistance extraction problem with

non-orthogonal interface. MPFA is similar to FEM, which assembles local matrix

for each node instead of element. IFEM applies FDM to non-interface elements and

extended FEM to interface element, which combines the advantage of both them.

Experiments have verified that both FVM and IFEM can provide accurate result

with small number of unknowns than FDM. The accuracy and efficiency of FVM

114



Table 4.9: Resistance extraction for Experiment II with IFEM.

cases dof R err(%) iter runtime(s)

ρ1/ρ2 = 20

64 2.26 -3.51 11 0.17
156 2.31 -1.73 15 0.22
460 2.32 -1.25 29 0.32
1591 2.33 -0.79 53 0.71
5893 2.33 -0.54 102 2.15
22657 2.34 -0.42 197 10.3

ρ1/ρ2 = 200

64 9.37 -15.84 12 0.18
156 10.91 -1.97 15 0.23
460 11.09 -0.44 29 0.33
1591 11.11 -0.22 54 0.73
5893 11.12 -0.11 103 2.22
22657 11.12 -0.11 197 10.8

is comparable to FEM, with the same non-cartesian mesh generation requirement.

IFEM provides better efficiency with the simple Cartesian mesh which greatly reduces

the mesh generation costs, especially when few geometric changes are made.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Voronoi grid fitting the stripe shaped conductor with different rotation
angle α for case in Fig. 4.15. (a) α = 30◦ without LGR; (b) α = 45◦ without
LGR; (c)α = 60◦ without LGR; (d) α = 30◦ with quad-tree LGR; (e) α = 45◦ with
quad-tree LGR; (f)α = 60◦ with quad-tree LGR.
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(a) (b) (c)

Figure 4.18: Triangular mesh fitting the stripe shaped conductor with different ro-
tation angle α for case in Fig. 4.15. (a) α = 30◦; (b) α = 45◦; (c)α = 60◦.
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Figure 4.19: Cartesian triangle with two disjoint interface lines cutting through.
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(a) (b) (c)

Figure 4.20: Cartesian mesh for non-interface elements and Cartesian triangular
mesh for interface elements for case in Fig. 4.15. (a) α = 30◦; (b) α = 45◦; (c)α =
60◦. All interface elements are marked with blue color while the rest elements are
labeled with yellow color.
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Figure 4.21: Experiment II: Resistivity at the boundary between FinFET gate and
contact is anisotropic. (a) different resistivity in the normal direction and tangent
direction of the boundary (b) equivalent model with a very thin layer at the boundary.

Figure 4.22: Cartesian grid fitting the thin layer between FinFET gate and contact
in Fig. 4.21.
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(a) (b)

Figure 4.23: Voronoi mesh fitting the thin layer between FinFET gate and contact
in Fig. 4.21. (a) without local grid refinement (b) with multi-level quad-tree local
grid refinement.

Figure 4.24: Triangular mesh fitting the thin layer between FinFET gate and contact
in Fig. 4.21.
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(a) (b)

Figure 4.25: Cartesian mesh for non-interface elements and Cartesian triangular
mesh for interface elements for case in Fig. 4.21. (a)coarse mesh with two lines
cutting through elements (b)dense mesh. All interface elements are marked with
blue color. Non-interface elements outside of the thin layer are labeled with yellow
color, while non-interface elements insides of the thin layer are labeled with green
color.
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Figure 4.26: Accuracy convergence and run time comparison for Experiment II.
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Figure 4.27: Run time as a function of relative error for resistance in Experiment II.
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5. CONCLUSION

In this dissertation, we present several practical techniques for parasitic extraction

of advanced integrated circuits.

We first tackle the problem of capacitance extraction for interconnect with sen-

sitive information hided. We propose the macro model around any region that

foundries or IP vendors wish to hide information, which allows accurate capaci-

tance extraction inside and outside of the region. The novelty of this approach is

that the geometrical and dielectric constant information within the sensitive region

is irreversible, which can effectively protect trade secrets for foundries and vendors.

Experimental results demonstrate that there is no accuracy loss when the mesh den-

sity inside and outside of the sensitive region are the same, while the error is less

than 1% when the mesh density is inconsistent.

The second problem we investigate is to decrease the truncation error introduced

by the Neumann boundary condition. We propose a class of absorbing boundary

conditions, which when implemented, significantly reduce the distortion of the field

at the numerical boundary and consequently throughout the numerical region. The

absorbing boundary condition we propose will allow the field throughout the numeri-

cal region to behave as though there is no numerical boundary, accurately mimicking

the fields in an actual region. As a result, the size of the numerical region can sig-

nificantly reduced, which in turn reduces the run time without sacrificing accuracy.

Experimental results for capacitance extraction with interconnects in multi-layer di-

electrics and SOI show the proposed methods have three to ten times faster run times

for the same accuracy.

The third problem we focus on is to improve the accuracy and efficiency of resis-
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tance extraction for FinFET with non-orthogonal conductivity interface. The bot-

tleneck for the application of FDM is that it requires very dense Cartesian grid to

approximate the non-orthogonal interface. Though FEM is an applicable approach,

the costs to generate proper triangular mesh is non-trivial. Besides, it is expensive to

solve the local system. We introduce both FVM and IFEM to resolve this problem.

The performance of FVM is comparable to FEM, which faces the similar dilemma of

mesh generation costs. IFEM combines the advantage of both FDM and FEM, which

maintains simple stencil for regions without non-orthogonal interface, while solving

the local system for the grid cell elements with interface lines. It has better accuracy

than all other approaches, and avoids the high mesh generation costs effectively.
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