10 research outputs found

    Standby Supply Voltage Minimization for Reliable Nanoscale SRAMs

    Get PDF

    Design and analysis of SRAMs for energy harvesting systems

    Get PDF
    PhD ThesisAt present, the battery is employed as a power source for wide varieties of microelectronic systems ranging from biomedical implants and sensor net-works to portable devices. However, the battery has several limitations and incurs many challenges for the majority of these systems. For instance, the design considerations of implantable devices concern about the battery from two aspects, the toxic materials it contains and its lifetime since replacing the battery means a surgical operation. Another challenge appears in wire-less sensor networks, where hundreds or thousands of nodes are scattered around the monitored environment and the battery of each node should be maintained and replaced regularly, nonetheless, the batteries in these nodes do not all run out at the same time. Since the introduction of portable systems, the area of low power designs has witnessed extensive research, driven by the industrial needs, towards the aim of extending the lives of batteries. Coincidentally, the continuing innovations in the field of micro-generators made their outputs in the same range of several portable applications. This overlap creates a clear oppor-tunity to develop new generations of electronic systems that can be powered, or at least augmented, by energy harvesters. Such self-powered systems benefit applications where maintaining and replacing batteries are impossi-ble, inconvenient, costly, or hazardous, in addition to decreasing the adverse effects the battery has on the environment. The main goal of this research study is to investigate energy harvesting aware design techniques for computational logic in order to enable the capa- II bility of working under non-deterministic energy sources. As a case study, the research concentrates on a vital part of all computational loads, SRAM, which occupies more than 90% of the chip area according to the ITRS re-ports. Essentially, this research conducted experiments to find out the design met-ric of an SRAM that is the most vulnerable to unpredictable energy sources, which has been confirmed to be the timing. Accordingly, the study proposed a truly self-timed SRAM that is realized based on complete handshaking protocols in the 6T bit-cell regulated by a fully Speed Independent (SI) tim-ing circuitry. The study proved the functionality of the proposed design in real silicon. Finally, the project enhanced other performance metrics of the self-timed SRAM concentrating on the bit-line length and the minimum operational voltage by employing several additional design techniques.Umm Al-Qura University, the Ministry of Higher Education in the Kingdom of Saudi Arabia, and the Saudi Cultural Burea

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Circuit design for embedded memory in low-power integrated circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 141-152).This thesis explores the challenges for integrating embedded static random access memory (SRAM) and non-volatile memory-based on ferroelectric capacitor technology-into lowpower integrated circuits. First considered is the impact of process variation in deep-submicron technologies on SRAM, which must exhibit higher density and performance at increased levels of integration with every new semiconductor generation. Techniques to speed up the statistical analysis of physical memory designs by a factor of 100 to 10,000 relative to the conventional Monte Carlo Method are developed. The proposed methods build upon the Importance Sampling simulation algorithm and efficiently explore the sample space of transistor parameter fluctuation. Process variation in SRAM at low-voltage is further investigated experimentally with a 512kb 8T SRAM test chip in 45nm SOI CMOS technology. For active operation, an AC coupled sense amplifier and regenerative global bitline scheme are designed to operate at the limit of on current and off current separation on a single-ended SRAM bitline. The SRAM operates from 1.2 V down to 0.57 V with access times from 400ps to 3.4ns. For standby power, a data retention voltage sensor predicts the mismatch-limited minimum supply voltage without corrupting the contents of the memory. The leakage power of SRAM forces the chip designer to seek non-volatile memory in applications such as portable electronics that retain significant quantities of data over long durations. In this scenario, the energy cost of accessing data must be minimized. This thesis presents a ferroelectric random access memory (FRAM) prototype that addresses the challenges of sensing diminishingly small charge under conditions favorable to low access energy with a time-to-digital sensing scheme. The 1 Mb IT1C FRAM fabricated in 130 nm CMOS operates from 1.5 V to 1.0 V with corresponding access energy from 19.2 pJ to 9.8 pJ per bit. Finally, the computational state of sequential elements interspersed in CMOS logic, also restricts the ability to power gate. To enable simple and fast turn-on, ferroelectric capacitors are integrated into the design of a standard cell register, whose non-volatile operation is made compatible with the digital design flow. A test-case circuit containing ferroelectric registers exhibits non-volatile operation and consumes less than 1.3 pJ per bit of state information and less than 10 clock cycles to save or restore with no minimum standby power requirement in-between active periods.by Masood Qazi.Ph.D

    U-DVS SRAM design considerations

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 73-78).With the continuous scaling down of transistor feature sizes, the semiconductor industry faces new challenges. One of these challenges is the incessant increase of power consumption in integrated circuits. This problem has motivated the industry and academia to pay significant attention to low-power circuit design for the past two decades. Operating digital circuits at lower voltage levels was shown to increase energy efficiency and lower power consumption. Being an integral part of the digital systems, Static Random Access Memories (SRAMs), dominate the power consumption and area of modern integrated circuits. Consequently, designing low-power high density SRAMs operational at low voltage levels is an important research problem. This thesis focuses on and makes several contributions to low-power SRAM design. The trade-offs and potential overheads associated with designing SRAMs for a very large voltage range are analyzed. An 8T SRAM cell is designed and optimized for both sub-threshold and above-threshold operation. Hardware reconfigurability is proposed as a solution to power and area overheads due to peripheral assist circuitry which are necessary for low voltage operation. A 64kbit SRAM has been designed in 65nm CMOS process and the fabricated chip has been tested, demonstrating operation at power supply levels from 0.25V to 1.2V. This is the largest operating voltage range reported in 65nm semiconductor technology node. Additionally, another low voltage SRAM has been designed for the on-chip caches of a low-power H.264 video decoder. Power and performance models of the memories have been developed along with a configurable interface circuit. This custom memory implemented with the low-power architecture of the decoder provides nearly 10X power savings.by Mahmut E. Sinangil.S.M

    Improved state integrity of flip-flops for voltage scaled retention under PVT variation

    No full text
    Through measurements from 82 test chips, each with a state retention block of 8192 flip-flops, implemented using 65-nm design library, we demonstrate that state integrity of a flip-flop is sensitive to process, voltage, and temperature (PVT) variation. It has been found at 25?C that First Failure Voltage (FFV) of flip-flops varies from die to die, ranging from 245-mV to 315-mV, with 79% of total dies exhibiting single bit failure at FFV, while the rest show multi-bit failure. In terms of temperature variation, it has been found that FFV increases by up to 30-mV with increase in temperature from 25?C to 79?C, demonstrating its sensitivity to temperature variation. This work proposes a PVT-aware state-protection technique to ensure state integrity of flip-flops, while achieving maximum leakage savings. The proposed technique consists of characterization algorithm to determine minimum state retention voltage (MRV) of each die, and employs horizontal and vertical parity for error detection and single bit error correction. In case of error detection, it dynamically adjusts MRV per die to avoid subsequent errors. Silicon results show that at characterized MRV, flip-flop state integrity is preserved, while achieving up to 17.6% reduction in retention voltage across 82-dies

    Ultra-low-power SRAM design in high variability advanced CMOS

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-181).Embedded SRAMs are a critical component in modern digital systems, and their role is preferentially increasing. As a result, SRAMs strongly impact the overall power, performance, and area, and, in order to manage these severely constrained trade-offs, they must be specially designed for target applications. Highly energy-constrained systems (e.g. implantable biomedical devices, multimedia handsets, etc.) are an important class of applications driving ultra-low-power SRAMs. This thesis analyzes the energy of an SRAM sub-array. Since supply- and threshold-voltage have a strong effect, targets for these are established in order to optimize energy. Despite the heavy emphasis on leakage-energy, analysis of a high-density 256x256 sub-array in 45nm LP CMOS points to two necessary optimizations: (1) aggressive supply-voltage reduction (in addition to Vt elevation), and (2) performance enhancement. Important SRAM metrics, including read/write/hold-margin and read-current, are also investigated to identify trade-offs of these optimizations. Based on the need to lower supply-voltage, a 0.35V 256kb SRAM is demonstrated in 65nm LP CMOS. It uses an 8T bit-cell with peripheral circuit-assists to improve write-margin and bit-line leakage. Additionally, redundancy, to manage the increasing impact of variability in the periphery, is proposed to improve the area-offset trade-off of sense-amplifiers, demonstrating promise for highly advanced technology nodes. Based on the need to improve performance, which is limited by density constraints, a 64kb SRAM, using an offset-compensating sense-amplifier, is demonstrated in 45nm LP CMOS with high-density 0.25[mu]m2 bit-cells.(cont.) The sense-amplifier is regenerative, but non -strobed, overcoming timing uncertainties limiting performance, and it is single-ended, for compatibility with 8T cells. Compared to a conventional strobed sense-amplifier, it achieves 34% improvement in worst-case access-time and 4x improvement in the standard deviation of the access-time.by Naveen Verma.Ph.D

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Energy-Efficient System Architectures for Intermittently-Powered IoT Devices

    Get PDF
    Various industry forecasts project that, by 2020, there will be around 50 billion devices connected to the Internet of Things (IoT), helping to engineer new solutions to societal-scale problems such as healthcare, energy conservation, transportation, etc. Most of these devices will be wireless due to the expense, inconvenience, or in some cases, the sheer infeasibility of wiring them. With no cord for power and limited space for a battery, powering these devices for operating in a set-and-forget mode (i.e., achieve several months to possibly years of unattended operation) becomes a daunting challenge. Environmental energy harvesting (where the system powers itself using energy that it scavenges from its operating environment) has been shown to be a promising and viable option for powering these IoT devices. However, ambient energy sources (such as vibration, wind, RF signals) are often minuscule, unreliable, and intermittent in nature, which can lead to frequent intervals of power loss. Performing computations reliably in the face of such power supply interruptions is challenging

    Conception innovante et développement d'outils de conception d'ASIC pour Technologie Hybride CMOS / Magnétique

    Get PDF
    Depuis plusieurs années de nombreuses technologies non volatiles sont apparues et ont pris place principalement dans le monde de la mémoire, tendant à remplacer tout type de mémoire. Leurs atouts laissent à penser que certaines d'entre elles, et en particulier les technologies MRAM, pourraient améliorer les performances des circuits intégrés en utilisant leurs composants magnétiques, si connus notamment sous le nom de jonctions tunnel magnétiques, dans la logique. Pour évaluer ces éventuels gains, il faut être capable de concevoir de tels circuits. C'est pourquoi nous proposons dans ces travaux d'une part un kit de conception complet pour les flots de conception full custom et numérique, permettant de couvrir l'ensemble des étapes de conception pour chacun d'entre eux. Une partie de ce kit a servi à plusieurs partenaires de projets de recherche ANR, pour concevoir des démonstrateurs. Nous proposons également dans ce kit de conception un latch magnétique non volatil innovant ultra compact, pour lequel deux brevets d'invention ont été déposés, intégré à une flip-flop. Enfin, nous présentons l'intégration de composants magnétiques à deux applications, sécurité et faible consommation, ainsi qu'une étude qui montre que les gains en consommation statique peuvent être considérables.For several years many non-volatile technologies have been appearing and taking place mainly in the memory world, aiming at replacing all kind of memory. Their assets let thinking that some of them, specially the MRAM technologies, could improve the integrated circuit performances, using their so called magnetic components in the logic, in particular the magnetic tunnel junctions. To evaluate the potential benefits, it is necessary to be able to design such a circuit. That is the reason why we are proposing a full design kit for both full custom and digital designs, allowing all the design steps. Part of this kit has been used by partners in research project to design demonstrators. We also propose in this kit an innovative ultra-compact magnetic latch, for which 2 patents have been deposited, integrated in a flip-flop. Finally, we present the integration of magnetic components for two applications, security and low power, as well as a case study which shows that the static consumption reduction can be huge.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore