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1. Introduction 

Increased leakage current and device variability are posing major challenges to CMOS 
circuit designs in deeply scaled technologies. Static Random Accessed Memory (SRAM) has 
been and continues to be the largest component in embedded digital systems or Systems-on-
Chip (SoCs). It is expected to occupy over 90% of the area of SoC by 2013 (Nakagome et al., 
2003). As a result, SRAM is more vulnerable to those challenges. To effectively reduce 
SRAM leakage and/or active power, supply voltage (VDD) is often scaled down during 
standby operation (e.g. (Qin et al., 2004; Flautner et al., 2002; Bhavnagarwala et al., 2004; 
Wang et al., 2007)) and/or active operation (e.g. (Morita et al., 2006; Joshi et al., 2007)). For 
ultra-low-energy applications, SRAMs operating with VDD near/below the threshold voltage 
(VT) are also proposed (e.g. (Calhoun & Chandrakasan, 2007; Verma & Chandrakasan, 
2008)). However, all SRAM functions, including read stability, write ability, access 
performance, and hold stability, are less reliable at lower voltage, which leads to the 
reduction of yield. The minimum supply voltage (Vmin) is limited by the lowest acceptable 
yield and determines the maximum achievable power reduction. Applying an 
underestimated Vmin will cause intolerable failures and decrease SRAM yield. On the other 
hand, applying an overestimated Vmin will waste power and energy. However, finding the 
optimum Vmin becomes difficult in the presence of global and local variations. 
In this chapter, we particularly explore SRAM Vmin during standby mode, i.e. data retention 
voltage (DRV). We first analyze the impacts of local/random and global/systematic variations 
on DRV, and then present new statistical and adaptive design methods to address those 
impacts. The goal of this chapter is to develop effective methods for achieving the best leakage 
power savings while maintaining the desired yield under variations. 

2. Variation impact on data retention voltage 

2.1 Data Retention Voltage (DRV) 
Fig. 1 shows the structure of the conventional 6T SRAM cell. The cell consists of two cross-
coupled inverters ((PL,NL) & (PR,NR)) and the pass-gate transistor XL/XR on each side. Q 
and QB are the internal nodes storing the data. During standby mode, the WL signal 
remains low. BL/BLB signals are often precharged to either high or low. Although floating 
bitline is also proposed to further reduce BL leakage current (Wang et al., 2007), we assume 
that the BLs remain high in this chapter. Fig. 1 also illustrates the paths of the major leakage 
 

Source: Solid State Circuits Technologies, Book edited by: Jacobus W. Swart,  
 ISBN 978-953-307-045-2, pp. 462, January 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Solid State Circuits Technologies 

 

124 

 

Fig. 1. 6T SRAM cell and the path of the major leakage currents. 

current components during standby mode for nanometer technologies. They are sub-
threshold leakage current (Isub), gate leakage current (Ig), gate induced drain leakage (IGIDL), 
and junction leakage current (Ij). Isub is the drain-to-source current when the transistor 
operates in weak inversion. It decreases exponentially with the reduction of the drain-to-
source voltage (VDS) due to the drain induced barrier lowering (DIBL) effect (Ferre & 
Figueras, 2005). Ig is the direct tunneling current through the gate oxide to the channel as 
well as to the overlap region between gate and source/drain extension. Since it grows 
exponentially with the scaling of the gate oxide thickness, Ig becomes the dominant leakage 
source for CMOS technologies beyond 45nm. Recent new high-k metal gate device option 
provides large reduction in gate leakage (Mistry et al., 2007). In addition, a lower VDD 

exponentially reduces Ig. IGIDL is caused by the high electric field under the gate-to-drain 
overlap region, and Ij is caused by the reverse-biased pn junction (Roy et al., 2003). Both IGIDL 

and Ij also decrease dramatically with VDD. Therefore, VDD scaling can effectively reduce the 
total cell leakage current, Ilk,total. Fig. 2 shows that Ilk,total can be reduced by more than 10× for 
a cell in 45nm. Due to the direct effect of VDD, the cell leakage power, which is equal to 
Ilk,total· VDD, can be further reduced with a lower VDD. 
 

 

Fig. 2. The normalized cell leakage current versus VDD. 
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Fig. 3. The voltage of the storage nodes against VDD for (a) a balanced cell and (b) a 
imbalanced cell (© 2007 IEEE). 

However, the drawback of a scaled VDD is the degradation of the cell stability. Fig. 3 shows 
that excessive VDD scaling results in the loss of the stored data (‘0’ in this example). Fig. 3(a) 
particularly shows the balanced case when there is no mismatch between the transistors on 
the left side (PL/NL/XL in Fig. 1) and those on the right side (PR/NR/XR in Fig. 1). Q and 
QB converge to a metastable point as a result of the degraded gain. Fig. 3(b) shows the other 
case when the cell is imbalanced by some mismatch in VT. In this case, Q and QB flip to the 
more stable state (‘1’ here). The data retention voltage (DRV) defines the minimum VDD 

below which the SRAM cell can not preserve its data (Qin et al, 2004). So DRV is the 
fundamental limiter of the lower VDD operation and prohibits additional power savings. We 
define DRV0 and DRV1 as the minimum VDD for preserving ‘0’ and ‘1’ respectively. For the 
balanced case as in Fig. 3(a), DRV0=DRV1; for the imbalanced case, one increases while the 
other decreases (e.g. DRV0>>DRV1 for the example in Fig. 3(b)). To ensure the cell can 
safely hold both ‘0’ and ‘1’, the actual DRV is the maximum value of DRV0 and DRV1. Fig. 3 
thereby implies that DRV increases when any mismatch occurs. 
Unfortunately, device variability increases with technology scaling. In order to predict the 
maximum achievable power savings from lowering VDD, we must evaluate the impact of 
device variability on DRV. All the variations can be categorized into two groups: 
global/systematic variation and local/random variation. Global variations influence all the 
transistors on the chip. On the other hand, local variations have a different effect on 
individual transistors, and thus cause mismatch between adjacent devices. Next, we will 
examine the impact of these variations on DRV. 

2.2 Impact of local/random variation 
Variations occur in a variety of physical parameters, mainly including the threshold voltage 
(VT), the gate oxide thickness (Tox), the channel effect length (Leff ), and the channel effect 
width (Weff ). Among these parameters, DRV is most sensitive to VT (Qin et al., 2004). In 
addition, the variation of Leff can cause VT variation due to the short channel effect. 
Therefore, we mainly consider the impact of VT variation on DRV. Random doping 
fluctuation (RDF) is the dominant source of local VT variation, and it deteriorates with 
continuous device scaling. The RDF induced random VT variation can be modeled as a 

normal distribution with its standard deviation (σVT) inversely proportional to the square 

root of the channel area as below (Asenov et al., 2003). 
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(1) 

SRAM cells commonly use transistors with smaller geometry for higher density. Thus they 

are naturally more susceptible to random variations due to a larger value of σVT. 
Given the statistics of parametric variations, we can use Monte Carlo (MC) simulation to 
investigate the impact of variations on the figure of merit. Fig. 4 is the histogram of the cell 
DRV values with a 5000-point MC simulation in a commercial 90nm CMOS process. The 
DRV exhibits a non-Gaussian distribution with a longer tail on the right side. The tail value 
of the distribution is the lowest supply voltage that can be applied to the whole SRAM array 
without losing any data. We call it the standby Vmin for an SRAM. Vmin determines the 
maximum achievable power reduction for the entire SRAM array. Therefore, the estimation 
of the tail value becomes crucial. Modern SRAMs often contain millions of cells, thus the tail 
event only occurs once out of millions of cell simulations. For such a rare event, the Monte 
Carlo method requires at least millions of runs, thereby becoming prohibitively expensive. 
To speed up the estimation of these rare events, various methods arise and fall into the 
following two major categories. 
 

 

Fig. 4. The histogram of DRV from Monte Carlo simulation with 5000 samples (© 2007 IEEE). 

• Non-Monte-Carlo (non-MC) methods 
The first non-MC method is to develop a comprehensive analytical model. Although 
Qin et al. (2004) proposed a theoretical model to approximate the DRV of a single cell, 
they did not address the statistical characteristics of DRV. The question of how 
variations impact the long tail of the DRV distribution is not answered. The second and 
more generic non-MC method is the boundary searching approach, which intends to 
find the boundaries in the parameter space that correspond to success/failure of the 
circuit without using MC sampling (Gu & Roychowdhury, 2008). The authors 
demonstrated its efficiency for estimating SRAM read access yield when considering 
only two major design parameters. However, the real access yield is also determined by 
other design parameters that have a minor impact on read access. When all the 
parameters are searched, this method becomes quite expensive. 

• Improved Monte-Carlo (MC) methods 
The huge expense of MC for rare event estimation is mainly due to the inefficiency of 
the rare event sampling. Importance sampling (Kanj et al., 2006) and the Statistical 
Blockade (SB) tool (Singhee & Rutenbar, 2007) are two interesting techniques to hasten 
the generation of the rare events. However, their efficiency highly relies on the 
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goodness of the sampling distribution and the tail filter respectively. Extrapolation is an 
alternative way to avoid a full MC simulation. We can run a relatively small number of 
samples and fit them into a known distribution. After that, we can quickly acquire the 
estimates in the extreme tail region by simply calculating with the fitting distribution. 
Although it is much simpler, its accuracy is dependent on how good the fitting 
distribution is. For non-Gaussian variables like DRV, it is hard to find a proper known 
distribution that can well fit the skewed tail region. Fitting a normal and log-normal 
distribution either underestimates or overestimates the tail values, respectively. The SB 
tool proposes to use the generalized Pareto distribution (GPD) to particularly fit the tail 
samples. Its accuracy is dependent on the number of tail samples, which also requires 
fast Monte Carlo methods like the tail filter in the SB tool to accelerate its generation. 

In this chapter, we propose a new fast method to predict the tail of the DRV distribution. We 
use the extrapolation method so that only a small number of Monte Carlo samples is 
required. High accuracy is achieved by using a dedicated statistical model for DRV (Wang, 
Singhee et al., 2007). We will describe the details of this method in section 3. 

2.3 Impact of global/systematic variation 
Global variations include manufacturing related process variations, voltage supply 
fluctuations, and temperature changes (i.e. PVT variations). We assume the temperature 
range is [0°C, 105°C] and the voltage fluctuation range is [-25mV, 25mV]. Fig. 5 shows the 
DRV histogram of a 5-Kb SRAM array at three PVT cases: typical, best-case, and worst-case. 
The typical case is at the TT (typical-N and typical-P) process corner, 25°C, and zero voltage 
fluctuation; the best case for the technology we use is at the SS (Slow-N and slow-P) process 
corner, 0°C, and 25mV voltage fluctuation; the worst case happens at the FS (Fast-N and 
slow-P) process corner, 105°C, and -25mV voltage fluctuation. Under one PVT scenario, 
local variations spread the DRV of the cells, and the tail of the distribution (marked with 
circle) determines the standby Vmin for this global condition. In contrast, global variations 
predominantly move the entire DRV distribution around, so the tail point, i.e. the standby 
Vmin, also shifts with global effects. For this 90nm process, the worst-case Vmin (Vminwc) is 
about 100mV and 140mV higher than the typical case Vmin (Vmintyp) and the best-case 
Vmin (Vminbc) respectively. For more advanced processes, the variability of global effects 
might increase and result in a larger difference between Vminwc and Vmintyp/Vminbc. To 
ensure data safety under all the conditions, we must address this Vmin variability. 
The most straight forward method is the worst case approach, which uses a standby VDD 

based on the worst case at design time and even adds some guard-band for more 
robustness. For instance, authors of the drowsy cache set the standby VDD 50% higher than 
the threshold voltage despite the fact that the actual DRV can be much smaller (Kim et al., 
2004). A processor with a drowsy mode is also implemented by collapsing the supply 
voltage well above that required to upset the logic states during standby mode (Clark et al., 
2004). Although this open-loop worst-case approach is very robust, it can potentially waste 
substantial power because of two reasons. First, the worst PVT scenario only occurs in 
extreme conditions like extremely high temperature, which is very rare for most of the 
applications. Second, the difference of the Vmin values between the worst case and the non-
worst cases can be quite large, and it even becomes larger as CMOS technology 
continuously scales. We can expect that the conservative worst-case approach would 
sacrifice more power savings for future CMOS technologies. 
In order to gain optimum power reduction for non-worst-case conditions, we propose a 
closed-loop standby VDD scaling system with online replica cells as monitors for tracking 
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PVT variations (Wang & Calhoun, 2008). Section 4 will present the details of this new 
approach. 
 

 
Fig. 5. DRV distribution of a 5Kb SRAM array with global PVT variations and local 
variations. Three PVT cases (typical, best-case, and worst-case) are shown (© 2008 IEEE) 

3. Fast and accurate estimation of standby Vmin 

In this section, we propose a fast method to predict standby Vmin, i.e. the tail of the DRV 
distribution in the presence of random variations. Let us define Pcf(v) as the probability that 
the cell fails when VDD=v during standby. We can compute Pcf(v) in two ways. First, in terms 
of DRV, since DRV is the minimum VDD below which a cell cannot preserve its data we can 
compute Pcf(v) as 

 (2) 

where FDRV is the cumulative density function (cdf) of DRV. We can also compute Pcf(v) in 
terms of static noise margin (SNM), which is the conventional metric for cell stability. A cell 
fails at voltage v when its SNM is less than the lowest acceptable noise margin s (e.g. s=0 in a 
noiseless system), so we can also compute Pcf(v) as 

 (3) 

where SNMv is the cell’s SNM at VDD=v and FSNMv is the cdf of SNMv. As we observed in Fig. 
4, DRV has a non-Gaussian distribution with a heavy tail on the right side, which makes it 
hard to directly fit the DRV data into a known distribution. Nevertheless, because of the 
equivalence of (2) and (3), we can obtain FDRV through the simple transformation of FSNMv by 

 (4) 

As we will show in the next section, it is much easier to obtain FSNMv. Thus we can derive the 
cdf of DRV from SNM and finally derive the inverse cdf or the quantile function of DRV. 

3.1 Statistics of hold static noise margin 
The most popular metric for SRAM noise margin is the butterfly curve based SNM, which is 
the maximum amount of dc voltage noise that a cell can tolerate (Seevinck et al., 1987) and is 
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equivalent to the largest square that can be embedded with the two butterfly curves as 
shown in Fig. 6. Particularly, the largest square inside the upper-left lobe is defined as 
SNMH, the SNM for holding ‘0’; and the largest square inside the lower-right lobe is defined 
as SNML, the SNM for holding ‘1’. The true SNM is the minimum of SNMH and SNML. Fig. 
6 further shows how SNMH and SNML change with VDD scaling. In the case that the cell is 
balanced as in Fig. 6(a), both SNMH and SNML decrease to 0 when VDD=65mV. This implies 
that DRV=DRV0=DRV1=65mV. On the other hand, if the cell is imbalanced by variation as 
the example in Fig. 6(b), SNMH first drops to 0 while SNML still maintains a positive 
amount of value when VDD=130mV. Therefore, for this example, DRV=DRV0=130mV. In 
fact, Fig. 6 uses the same examples as Fig. 3. The same DRV results are obtained by directly 
simulating the collapse of the internal states as in Fig. 3 and by simulating the decrease of 
SNM with VDD scaling as in Fig. 6. This verifies that we can use SNM to explore DRV. 
 

 

Fig. 6. Butterfly curve based SNM changes with VDD scaling when the cell is (a) balanced and 
(b) imbalanced by some mismatch (© 2007 IEEE) 

The next question we should answer is how local random variations impact SNMH or 
SNML. Fig. 7 plots the 50,000-point MC simulation results of SNMH and SNML when 
VDD=300mV. We fit a normal distribution to the data of both SNMH and SNML. The normal 
distribution closely matches the body of both data. The deviation in the tail points is mainly 
caused by the error of Monte Carlo simulation, which decreases as we use more Monte 
Carlo samples. Therefore, it is accurate to approximate the true SNMH and SNML with an 
identical normal distribution. 
Since DRV is the VDD point when SNM is equal to the lowest noise margin (e.g. 0 here), a 

more important question is how those SNM distributions change with VDD scaling. We 

further examine the SNMH or SNML distribution at different VDD points. We find that 

SNMH and SNML remain normally distributed. Moreover, as shown in Fig. 8, the mean (μ) 

is approximately linear with VDD while the standard deviation (σ) keeps almost constant. If 

we know that the estimation of the mean and the standard deviation at an initial voltage, v0, 

are μ0 and σ0, we can quickly obtain the new mean and standard deviation values at any 

arbitrary VDD point, v, with 

 (5) 

where k is the sensitivity of μ to VDD and can be extracted by fitting the mean data in Fig. 8 to 
the linear curve. 
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Fig. 7. 50,000-point Monte Carlo results of SNMH and SNML at VDD=300mV and a normal 
distribution is fitted to both data. 

 

Fig. 8. Estimated mean and standard deviation of SNMH from MC simulations versus VDD. 

3.2 DRV and yield model 
So far we are able to predict the distribution of SNMH or SNML at any VDD point with (5). 
The real SNM is the minimum of SNMH and SNML. If we assume SNMH and SNML are 
independent random variables, according to order statistics, the cumulative density function 
of the real SNM can be calculated as follows. 

 

(6) 
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Here erfc() is the complementary error function. (6) actually estimates the cell failure 
probability during standby as expressed in (3). Thus we can quickly estimate the yield of an 
SRAM array with a given capacity when the standby VDD is equal to v. 
Another important estimation is the minimum standby VDD for a given yield or cell failure 
probability constraint. In other words, we want to estimate the DRV quantile. To derive 
DRV quantile function, we first obtain the cdf model of the DRV by substituting (6) into (4): 

 
(7) 

Then we obtain the quantile function, i.e. the inverse cdf of DRV, as: 

 
(8) 

where erfc−1() is the inverse function of erfc() and p is the probability that DRV≤v. 

Both (7) and (8) only require 4 parameters: v0, μ0, σ0, and k. First, we pick m (e.g. m≤6) 
typical VDD points, say v1, … , vm. Then we run nMC Monte Carlo samples of SNMH at vi and 
fit a normal distribution  to the data. Since we estimate the mean and standard 

deviation of the distribution body instead of the distribution tail, a small scale of Monte 
Carlo (e.g. nMC=1,000~5,000) is sufficient. After obtaining μi, we extract k by fitting a linear 
curve to the (vi, μi) data. Finally we pick one VDD point as the initial point v0, and then μ0 and 

σ0 are chosen accordingly. Therefore, the total number of Monte Carlo samples used in our 
method is equal to m×nMC, which is 6×5,000 in our test case. To further reduce the run time, 
we can use a simpler way to approximate k. Instead of running MC simulations on multiple 
VDD points, we can run a nominal dc simulation of SNM with the sweep of VDD. However, 
this simplification might cause a slightly larger error. 

3.3 Experiment results 
We use a 6T cell in a commercial 90nm process to test our DRV model. Without loss of 
generality, we choose the lowest acceptable noise margin s=0 in the test. Since SRAMs 
usually contain at least 1,000 cells, we are interested in the DRV quantiles  that have 

the probability p ≥0.999. For the same probability p, the quantile of a theoretical standard 

normal variable M ~ N(0,1) is m= Φ−1(p), where Φ−1 is the inverse of standard normal cdf. 
We thereby plot the estimated DRV quantile versus the normal quantile (m) that has the 
equivalent probability p ≥0.999. Fig. 9 plots the estimates of the DRV quantiles equivalent to 

m∈ [3,8] from several methods. 

1. Analytical model: The DRV quantiles estimated from (8) with p = Φ(m) are plotted with 

the solid curve. We select v0=100mV. μ0 and σ0 are obtained by fitting a normal 
distribution to the 5,000-point MC result for SNMH at v0. The parameter k, the 
sensitivity of the mean of SNMH to VDD, is obtained from linear fitting the curve in Fig. 8. 

2. Standard Monte Carlo or fast Monte Carlo with the Recursive Statistical Blockade: The DRV 
quantiles estimated from a 1-million-point Monte Carlo simulation of DRV are plotted 
with the circles. With 1-million raw MC samples, the maximum DRV quantile we can 
estimate with a high confidence is equivalent to the normal quantile m≈4. For m>4, we 
use the fast Monte Carlo method with the recursive statistical blockade tool (Singhee et 
al., 2008) to reduce run time. 
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Fig. 9. The DRV quantiles estimated from different methods against the theoretical standard 
normal quantiles; our new model (8) and the GPD model from the Statistical Blockade tool 
(Singhee & Rutenbar, 2007) (lines coincident on the plot) closely track Monte Carlo 
simulation and match farther out in the tail (© 2007 IEEE). 

3. GPD model from the Statistical Blockade (SB): The 1,000 tail points from the last recursion 
stage of the recursive statistical blockade run are used to fit a generalized Pareto 
distribution (GPD) (Singhee & Rutenbar, 2007). The results estimated from the GPD 
model are plotted as the dashed curve. 

4. Normal model: A normal distribution is fit to the DRV data from a 5,000-point MC 
simulation. The DRV quantiles estimated from the fitting normal distribution are 
plotted as the dash-dotted curve. 

5. Lognormal model: A lognormal distribution is fit to the same set of the 5,000 MC points 
for DRV. The DRV quantiles estimated from the fitting lognormal distribution are 
plotted as the dotted curve. 

Fig. 9 shows that both the results from our model and from the GPD model closely match 
the MC results up to m=6. In addition, our model matches well with the GPD model at the 
tail region of m>6, where the tail event has the probability smaller than 9.86e-10. 
Extrapolation with either normal or lognormal distribution is inaccurate, especially for the 
points farther out in the tail. The normal model underestimates DRV while the lognormal 
model overestimates it. 
With the comparable accuracy, our method offers a significant speedup over the standard 
Monte Carlo method because it only requires a small number (e.g. 5,000) of MC simulations 
for SNMH at a couple of VDD points (totally ≤30,000) to predict any extreme DRV tail values. 
However, if the probability of the tail event is pt , the standard MC method requires at least 
1/pt samples to obtain one estimate of the quantile. For example, when pt=9.86e-10 (i.e. 
m=6), we must run at least 1-billion simulations. Thus, our method provides a speedup of at 
least 30,000× over standard MC. The recursive statistical blockade requires about 41,700 
simulations (Singhee et al., 2008), so our method offers a slight speedup of 1.4× over it. For 
m>6, standard MC would need thousands of billions of simulations. In this case, the 
speedup over MC is extremely large. 
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4. Canary based closed-loop standby VDD scaling 

In this section, we deal with the impact of global variations on DRV and present a closed 
loop VDD scaling system for aggressive leakage power reduction while protecting data by 
maintaining VDD above the DRV of the worst SRAM cell (Wang & Calhoun, 2007). 

4.1 Principle 
Fig. 10(a) shows the basic architecture of the system. An on-chip or off-chip voltage 
regulator supplies VDD to the SRAM cells and to the canary replicas. Multiple canary 
categories are designed to fail across a range of voltages above the average DRV of the 
SRAM cells as illustrated in Fig. 10(b). The most important feature of the canary cell is its 
ability to duplicate the impact of global changes on SRAM stability. With this ability, when 
the failure voltage of the SRAM cell increases or decreases by some amount due to certain 
global effect, the failure voltage of each canary category will also change by the same 
amount. In other words, the DRV of each canary category can maintain a predefined 
proximity to the DRV of the SRAM cells despite changes in global conditions. Note that, just 
as SRAM cells, the canary cells are also sensitive to local variations. We employ redundancy  
 

 
(a) 

 
(b) 

Fig. 10. (a) Architecture and (b) mechanism of the closed loop VDD scaling system (© 2008 
IEEE). 

www.intechopen.com



 Solid State Circuits Technologies 

 

134 

and a voting strategy to sharpen the distribution of canary cells within the same category. 
The failures of the canary categories are monitored by online failure detectors. SRAM data 
safety is ensured by a programmable failure threshold, which defines the critical failure 
status of the canary categories and determines the proximity of the standby VDD to the tail of 
the SRAM DRV distribution. When entering the standby mode, the controller starts 
lowering VDD until the canary failures meet the failure threshold. Once the global stimuli 
occur, the canary failures will exceed or drop below the failure threshold, which triggers the 
controller to raise or lower VDD accordingly. 
Besides the improvement of power reduction under variations, this system also allows a 
trade-off between power savings and data reliability by altering the failure threshold. When 
the application needs a higher data reliability, a failure threshold that allows less canary sets 
to fail should be chosen. On the other hand, when the data reliability constraint is lowered 
or some data errors can be tolerated by redundancy or error correction techniques, we can 
change the failure threshold to allow more canary sets to fail so that VDD can be reduced for 
more power savings. 

4.2 Major components 
4.2.1 Canary cell 
The canary cell is the most important component in our system. It must replicate the impact 
of global variations on SRAM cell stability. Moreover, it must fail before the SRAM cells to 
prevent the loss of data in SRAM. The canary DRV distribution is not a good indicator of the 
SRAM cell DRV distribution because there are too few canary cells. Therefore, we must use 
a design that makes it more sensitive to VDD than it would be simply due to the impact of 
local variation. 
We propose the circuit in Fig. 11(a) and (b) as canary cells for holding ‘1’ and ‘0’, 
respectively. Each canary cell contains the same 6T transistors (M1~M6) as any SRAM cell, 
an additional pmos pass transistor (M7) for enhancing the ability of writing a ‘1’ at lower 
voltage, and a pmos header transistor (M8) for tuning the virtual supply of the cell. The 
input signal, W, and its inversion, WB, act as the bit lines and word line. During reset mode, 
W rises, and the pass transistors M5~7 are turned on; ‘1’/‘0’ is written into the canary cell 
‘1’/‘0’. During standby mode, W switches to low and turns off M5~7. In addition, the 
bitlines are holding the opposite states with the internal nodes, which creates the worst 
leakage current through M5~7 and contributes to a higher DRV for the canary cell. The 
header M8 plays the key role for tuning canary DRV. By tuning the input signal VCTRL at 
its gate, the virtual supply of the canary cell, VVDD, becomes smaller than VDD, which results 
in a higher VDD to flip the storage nodes, i.e. a higher DRV for the canary cell. Fig. 12 shows 
the simulated canary DRV values against the VCTRL values. For comparison, the histogram 
of the SRAM cell DRV from a 5000-point Monte Carlo simulation is also plotted. Two 
interesting observations make this tuning knob more appealing. First, there is a nice 
linearity between canary DRV and VCTRL. Thereby we can create multiple canary 
categories by simply using regularly increased VCTRL signals, which are easy to implement 
(e.g. in our test chip, we use a resistor ladder to generate a series of VCTRL signals). Second, 
the canary DRV can be potentially moved to any point in a wide range. Thus we can always 
find at least one canary category with its DRV higher than the tail value of SRAM DRV 
distribution, which could be quite large for big SRAM arrays in scaled technologies. 
Now let us further examine the canary cell’s capability for tracking PVT variations, which is 
essential to protecting data in this approach. We use a 1-Kb SRAM and 8 canary sets (#0~#7) 
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                                         (a)                                                                       (b) 

Fig. 11. Schematic of canary cell (a) for holding a ‘1’ and (b) holding a ‘0’ (© 2008 IEEE). 

 

 

Fig. 12. Simulated nominal canary cell DRV versus VCTRL relative to a 5 Kb SRAM DRV 
distribution (© 2008 IEEE). 

as an example. We first obtain the worst DRV value, i.e. Vmin, of the 1-Kb SRAM with 
Monte Carlo simulations at normal condition (i.e. at TT process corner & 25°C). Then at the 
same normal condition, we configure the canary cells by tuning their VCTRL values so that 
DRVC,7 >DRVC,6 > … >DRVC,1 >Vmin>DRVC,0. Here, DRVC,i is the DRV of the canary set #i. 
In order to protect SRAM data, the canary set #1 can be chosen as the first set that should 
never fail. After configuration, the canary VCTRL values are fixed. Then we change either 
the temperature or the process corner and rerun the simulations to obtain the new SRAM 
Vmin and DRVC,i values, which are shown in Fig. 13(a) and (b). The SRAM Vmin is plotted 
as the curve with circles. DRVC,i is plotted as the curve with triangles. For all the 
temperature and process changes, the DRV of each canary set moves almost by the same 
amount as the SRAM Vmin. This indicates that the canaries can successfully track global 
effects. The only exception here is the SF (Slow-N Fast-P) corner because the technology we 
use is a strong-N process. At the SF corner, the impact of global variation on the tail of 
SRAM DRV is overwhelmed by the impact of large local variations. However, the canary 
DRV is still affected by global variation, so DRVC,1 becomes smaller than Vmin at SF corner. 
To fix this, we can either reconfigure DRVC,1 so that DRVC,1 >Vmin at this corner or reset the 
failure threshold to choose the canary set #2 as the first one that does not allow to fail. 
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Fig. 13. Simulated DRV of the canary sets (lines with triangles and the upper ones have higher 
VCTRL) and the worst DRV of a 1 Kb SRAM (the line with circles) change consistently with (a) 
temperature and (b) process corner for the 90 nm technology (© 2008 IEEE). 

4.2.2 Failure detector and canary bank 
In our system, the failure of the canary cell is detected online. To enable a quick sensing, the 
failure detector directly monitors the storage nodes Q and QB of the canary cell. As shown 
in Fig. 3(a), Q and QB of an SRAM cell might converge if the cell is balanced. However, we 
set the two bitlines of the canary cell with the complementary values of W and WB (see Fig. 
11). This asymmetry makes Q and QB mainly flip when the current VDD is below the cell’s 
DRV. Thus we propose to use a differential sense amplifier shown in Fig. 14 as the failure  
 

 

Fig. 14. Canary bank and VCTRL generator. 
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detector. It shares VDD with the canary cell, and its input differential pair MN1 and MN2 
directly connect to Q and QB. One canary cell and its own failure detector compose a canary 
bit. 
The canary sets are deployed as rows in a bank structure as illustrated in Fig. 14. Each 
canary set occupies one row of the bank. To reduce the variance of the canary DRV, we 
employ redundancy and majority voting circuits. Thus one canary set (row) consists of n 
copies of canary bit ‘1’ and n copies of canary bit ‘0’. Although a larger n can decrease the 
variance, the area and complexity overhead would dramatically increase. By trading off 
between the efficiency of variance reduction and the overhead cost, we choose n=3. The 
failure signals from the three replicas of canary bit ‘1’/‘0’ go into the majority-3 gate to 
generate the voted failure signal. The whole canary set fails when either the majority of the 
canary bit ‘1’ or the majority of the canary bit ‘0’ fails. 
Fig. 14 also shows the VCTRL generator, which is a resistor ladder with a reference voltage 
VREF and a series of identical resistors. Each canary set (row) is connected to one VCTRL 
signal from the VCTRL generator. 

4.2.3 Feedback controller 
 

 

Fig. 15. The feedback controller connects other components in the feedback system. 

The feedback controller plays an important role in our system. As shown in Fig. 15, it ties all 

the other blocks together to form a complete feedback loop. The controller receives the final 

failure signal ‘Fail’ from the comparator, which asserts ‘Fail’ when the failure status of the 

canary sets (f0f1...f6f7) exceeds the predefined failure threshold. The controller then sends out 

different control signals to different blocks. The ‘lowerVDD’ and ‘raiseVDD’ are sent to the 

voltage regulator to lower or raise VDD by one step (e.g. 10mV). The ‘W’ signal is sent to the 

canary bank for rewriting all the canary cells. The ‘VCTRLrst’ signal is sent to the VCTRL 

generator for occasionally resetting all the VCTRL signals to 0. 
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Fig. 16. The timing diagram of the controller (© 2008 IEEE). 

Fig. 15 also illustrates the major state transitions in the controller. There are four states: idle, 
cellHold, cellFlip and cellReset. Fig. 16 gives the timing diagram that shows how the states 
transfer. Suppose the failure threshold is set to 00001111, which implies that the canary set 
#3 is the first set not allowed to fail. We configure its VCTRL=0.3V. For simplicity, we do 
not consider redundancy here. After we assert the enable signal ‘EN’, the failure detector of 
each canary set evaluates its own Q and QB. When VDD=0.37V, Q and QB of the canary set 
#4-7 flip, but those of the canary set #0-3 maintain their original values. Thus the 
failureStatus is 00001111, which is no larger than the failure threshold. Therefore, ‘Fail’ 
maintains zero, which causes the controller change from the idle state to the cellHold state, 
and the signal ‘lowerVDD’ rises up to inform the voltage regulator to decrease VDD by 
10mV. Once VDD is lowered to 0.36V, Q and QB of the canary set #3 flip to the opposite 
value, resulting in failureStatus=00011111, which is larger than the failure threshold. Thus 
‘Fail’ rises up and the cellFlip state becomes valid. This state asserts ‘raiseVDD’. As a result, 
the regulator increases VDD by one step and VDD returns to the previous value 0.37V, which 
is actually the DRV of the canary cell #3. After that, ‘EN’ goes low to disable the failure 
detection, and the controller enters the cellReset state, which asserts the ‘W’ signal to write 
the original values into Q and QB for next check. 
Since SRAM Vmin can be near or even smaller than the threshold voltage VT, all the circuits 
including the failure detector, the comparator, and the controller are designed to function in 
the sub-threshold region, where VDD<VT (Wang et al., 2006). 

4.3 Model for canary cell tuning 
We have observed in Fig. 12 that the canary DRV changes approximately linearly with 

VCTRL. By analyzing the current through the pmos header (M8 in Fig. 11(a)), we can derive 

the theoretical model for this linear dependency. We denote DRVC as the canary DRV. It is 
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equal to the VDD value when the actual supply voltage of the canary cell, VVDD, reaches the 

cell’s true DRV, DRVt, i.e. the cell DRV without the header. Let us denote Imin as the leakage 

current for holding the cell data when VVDD=DRVt. We assume that the header M8 operates 

in the sub-threshold region. Since the sub-threshold leakage current is the dominant source 

of the leakage current, we can compute Imin as 

 
(9) 

where VT,8 is the threshold voltage of M8, η8 is its DIBL coefficient, n8 is its sub-threshold 

swing factor, Vth is the thermal voltage, and I0 is its off current. For a given canary cell, we 

assume that the DRVt remains the same no matter what VCTRL is. This is reasonable 

because M1-M7 are not changed. Therefore, Imin also remains constant. We further ignore the 

rolling-off term when DRVC − DRVt > 4Vth (Vth=26mV at 300K). Then we can solve DRVC as 

 
(10)

 

 
 

Fig. 17. Estimated canary DRV from (10) versus VCTRL is compared with the simulated 
result (© 2008 IEEE). 

This proves the linear relationship between the canary DRV and VCTRL and implies that 

the slope can be approximated as 1/(1+η8). To verify this model, we first obtain DRVt and 
Imin from simulation without the header. Then we compute the canary DRV values against 
VCTRL with (10) and compare them with the simulated results. Fig. 17 shows that our first-
order linear model provides an excellent approximation for all the VCTRL values across a 
wide range. A slightly larger error occurs only when VCTRL<50mV. In this region, the 
canary DRV (DRVC) is very close to DRVt, so the rolling-off term cannot be ignored, in 
which case numerically solving (9) can give a more accurate estimation. 
In section 3.2, we proposed the model to predict SRAM DRV quantile and yield in the 

presence of random variations. Now by combining (8) and (10), we can estimate the VCTRL 

value y that is needed for a canary cell in order to satisfy a given SRAM cell yield as: 
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(11)

where p=P(DRVS <DRVC(y)), the probability that the SRAM DRV (DRVS) is less than 

DRVC(y), i.e. the canary DRV when VCTRL is equal to y. All the other parameters are the 

same as in (8) and (10). Fig. 18 plots the estimated VCTRL values from (11) with the solid 

curve. In this figure, the point at the coordinates of (x,y) means P(DRVS <DRVC(y)) is equal 

to Φ(x), where Φ is the cdf of a theoretical standard normal variable. For instance, if one 

application requires 90% yield for a fault-free 100-Kb SRAM, the required failure probability 

is ~1e-7, which is equivalent to the probability when x=5.2. From Fig. 18, we quickly know that 

all the canary cells with VCTRL≤120mV should never fail in order to meet this yield. This 

gives us the guidance to choose the proper VCTRL value for each canary set. Fig. 18 gives an 

example of the canary configurations. We configure the canary set #2 with VCTRL=120mV. 

Then we assign 5 points in the region VCTRL>120mV to the canary set #3~7 and assign 2 

points in the region VCTRL<120mV to the canary set #0~1. The failure threshold is set to 

00011111 so that only the upper 5 canary sets are allowed to fail. This configuration ensures 

that SRAM can always achieve 90% yield under any PVT variations. If the application changes 

and needs a different reliability, we can reset the failure threshold or even reconfigure all of 

the canary sets (by remapping VCTRL values) for better results. 

 

 
 

Fig. 18. Estimated VCTRL value y to satisfy that P(DRVS <DRVC(y)) = Φ(x), where x is a 
standard normal quantile. To achieve 90% yield for a fault-free 100Kb SRAM (i.e. x = 5.2), 
only the canary sets with VCTRL>120mV are allowed to fail (© 2008 IEEE). 

4.4 Test chip implementation & measurement 
We implement all of the circuits in Fig. 10(a) except the VDD regulator in a 90nm CMOS bulk 

test chip. In addition to a 16×8Kb SRAM, the test chip contains the canary circuits and test 

circuits. The area overhead of the canary circuits is about 0.6%. Fig. 19 shows the die photo 

of the chip. Fig. 20(a) shows the measured average DRV of canary cells versus VCTRL at  
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Fig. 19. The die photo of the 90nm test chip (© 2007 IEEE). 

 

 
 

Fig. 20. The measured canary DRV against VCTRL at (a) room temperature and (b) different 
temperatures (© 2008 IEEE). 
 

 

Fig. 21. The normalized measured SRAM leakage power against VDD (© 2008 IEEE). 
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room temperature. The tuning of VCTRL allows us to provide the desired continuum of 

failure voltages for the canary cell. It also verifies a good linear relationship between the 

canary DRV and VCTRL. Fig. 20(b) further shows the measured canary DRV against VCTRL 

at different temperatures, which verifies that our canary cell can successfully track 

temperature changes. Fig. 21 plots the normalized measured leakage power of the SRAM 

array with VDD scaling. Under normal environmental conditions, the measured worst DRV 

of one 8Kb SRAM array is 0.35V. We estimate that the worst standby Vmin for all the PVT 

variations plus certain guardband is equal to 0.7V. With the worst case approach, we always 

set the standby VDD to 0.7V. In contrast, by using our canary-based feedback approach, we 

can adjust VDD to near the true Vmin value (i.e. 0.35V) at the normal condition. Thereby the 

canary approach offers ~5× power reduction compared with the conservative worst-case 

approach and ~11× reduction compared with using the nominal VDD, 1V. 

5. Conclusion 

Variation has become one of the biggest challenges for circuit design in scaled CMOS 

technologies. In this chapter, we first investigate the impact of both local and global 

variations on SRAM data retention voltage (DRV) and then present a method to deal with 

each type of variation. Local random variations spread the cell DRV across the same array, 

and the tail of the distribution is the minimum standby VDD (Vmin) that can be applied on 

the whole SRAM. We propose a fast and accurate method to predict the tail DRV. Our 

method offers the comparable accuracy with the standard Monte Carlo (MC) method and 

shows an excellent agreement with another fast method, the Statistical Blockade (SB) tool, 

for the tails up to 8σ. It offers the speedup of > 104× over MC and 1.4× over SB. Global PVT 

variation results in the shift of Vmin values. The worst-case design approach over-protects 

non-worst-case scenarios. To enable optimum power savings for any PVT scenario, we 

propose a closed-loop VDD scaling approach. It uses online canary replica cells and monitors 

to track global variations, and a feedback circuit to adjust VDD to approach the true Vmin. As 

device variability continues growing with CMOS technology scaling, SRAM supply voltage 

scaling requires efficient statistical analysis methods and smart adaptive approaches to 

maximize power reduction while maintaining correct functionality and acceptable noise 

immunity. 

6. References 

Asenov, A. et al. (2003). Simulation of intrinsic parameter fluctuations in decananometer 

and nanometer-scale MOSFETs, IEEE Transactions on Electron Devices 50(9): 1837–

1852. 

Bhavnagarwala, A. J. et al. (2004). A transregional CMOS SRAM with single, logic VDD and 

dynamic power rails, Symposium on VLSI Circuits, pp. 292–293. 

Calhoun, B. & Chandrakasan, A. (2007). A 256-kb 65-nm sub-threshold SRAM design for 

ultra-low-voltage operation, IEEE Journal of Solid-State Circuits 42(3): 680–688. 

Clark, L., Morrow,M. & Brown,W. (2004). Reverse-body bias and supply collapse for low 

effective standby power, IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems 12(9): 947–956. 

www.intechopen.com



Standby Supply Voltage Minimization for Reliable Nanoscale SRAMs  

 

143 

Ferre, A. & Figueras, J. (2005). Low-Power Electronics Design, 2nd, CRC Press, chapter Leakage 

in CMOS Nanometric Technologies, pp. 3_1–3_19. 

Flautner, K. et al. (2002). Drowsy caches: simple techniques for reducing leakage  

power, Proceeding of International Symposium on Computer Architecture,  

pp. 148–157. 

Gu, C. & Roychowdhury, J. (2008). An efficient, fully nonlinear, variability-aware non-

montecarlo yield estimation procedure with applications to SRAM cells and ring 

oscillators, Proceedings of Asia and South Pacific Design Automation Conference, pp. 

754–761. 

Joshi, R. et al. (2007). 6.6+ GHz low Vmin, read and half select disturb-free 1.2 Mb SRAM, 

Symposium on VLSI Circuits, pp. 250–251. 

Kanj, R., Joshi, R. & Nassif, S. (2006). Mixture importance sampling and its application to the 

analysis of SRAM designs in the presence of rare failure events, Proceedings of 

Design Automation Conference (DAC), pp. 69–72. 

Kim, N. S. et al. (2004). Circuit and microarchitectural techniques for reducing cache leakage 

power, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(2): 167–

184. 

Mistry, K. et al. (2007). A 45nm logic technology with high-k+metal gate transistors, strained 

silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% pb-free 

packaging, Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 

247–250. 

Morita, Y. et al. (2006). A Vth-variation-tolerant SRAM with 0.3-V minimum operation 

voltage for memory-rich SoC under DVS environment, Symposium on VLSI Circuits, 

pp. 13– 14. 

Nakagome, Y. et al. (2003). Review and future prospects of low-voltage RAM circuits, IBM 

Journal of Reseach & Development 47: 525–552. 

Qin, H. et al. (2004). SRAM leakage suppression by minimizing standby supply voltage,  

Proceedings of International Symposium on Quality Electronic Design (ISQED), pp. 55–

60. 

Roy, K., Mukhopadhyay, S. & Mahmoodi-Meimand, H. (2003). Leakage current mechanisms 

and leakage reduction techniques in deep-submicrometer CMOS circuits, 

Proceedings of the IEEE 91(2): 305–327. 

Seevinck, E., List, F. & Lohstroh, J. (1987). Static-noise margin analysis of MOS SRAM cells, 

IEEE Journal of Solid-State Circuits 22(5): 748–754. 

Singhee, A. & Rutenbar, R. (2007). Statistical blockade: A novel method for very fast  

monte carlo simulation of rare circuit events, and its application, Proceedings of 

Design, Automation & Test in Europe Conference & Exhibition DATE ’07,  

pp. 1–6. 

Singhee, A. et al. (2008). Recursive statistical blockade: An enhanced technique for rare event 

simulation with application to SRAM circuit design, Proceedings of 21st International 

Conference on VLSI Design VLSID 2008, pp. 131–136. 

Verma, N. & Chandrakasan, A. (2008). A 256 kb 65 nm 8T subthreshold SRAM employing 

sense-amplifier redundancy, IEEE Journal of Solid-State Circuits 43(1):  

141–149. 

www.intechopen.com



 Solid State Circuits Technologies 

 

144 

Wang, A., Calhoun, B. H. & Chandrakasan, A. P. (2006). Sub-Threshold Design for Ultra Low-

Power Systems, Springer. 

Wang, J. & Calhoun, B. (2007). Canary replica feedback for near-drv standby VDD scaling in a 

90nm SRAM, Proceedings of IEEE Custom Integrated Circuits Conference (CICC), pp. 

29–32. 

Wang, J. & Calhoun, B. H. (2008). Techniques to extend canary-based standby VDD scaling 

for SRAMs to 45 nm and beyond, IEEE Journal of Solid-State Circuits 43(11): 2514–

2523. 

Wang, J., Singhee, A. et al. (2007). Statistical modeling for the minimum standby supply 

voltage of a full SRAM array, Proceedings of European Solid State Circuits Conference 

(ESSCIRC), pp. 400–403. 

Wang, Y. et al. (2007). A 1.1GHz 12uA/Mb-leakage SRAM design in 65nm ultra-low-power 

CMOS with integrated leakage reduction for mobile applications, IEEE International 

Solid-State Circuits Conference, pp. 324–606. 

www.intechopen.com



Solid State Circuits Technologies

Edited by Jacobus W. Swart

ISBN 978-953-307-045-2

Hard cover, 462 pages

Publisher InTech

Published online 01, January, 2010

Published in print edition January, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The evolution of solid-state circuit technology has a long history within a relatively short period of time. This

technology has lead to the modern information society that connects us and tools, a large market, and many

types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs

and improvements every year. This book is devoted to review and present novel approaches for some of the

main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by

authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia

and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects

presented in the book offers a general overview of the main issues in modern solid-state circuit technology.

Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of

great scientific and educational value for many readers. I am profoundly indebted to the support provided by

all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who

worked hard and generously agreed to share their results and knowledge. Second I would like to express my

gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful

experience while working together to combine this book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jiajing Wang and Benton H. Calhoun (2010). Standby Supply Voltage Minimization for Reliable Nanoscale

SRAMs, Solid State Circuits Technologies, Jacobus W. Swart (Ed.), ISBN: 978-953-307-045-2, InTech,

Available from: http://www.intechopen.com/books/solid-state-circuits-technologies/standby-supply-voltage-

minimization-for-reliable-nanoscale-srams



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


